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Outline of talk

1. Introduction

2. Fully-polarized phase of a quantum magnet

3. Experiments on frustrated magnet Cs2CuCl4

4. Transition out of full alignment

5. Conclusions
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Excitations in the fully-polarized phase
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2D Frustrated quantum magnet Cs?CuCU
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Excitations lineshapes in the fully saturated phase

2D Brillouin zone
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Dispersion relation and exchange constants

2D Brillouin zone Triangular lattice
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Splitting and Dzyaloshinskii-Moriya couplings
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Local DM couplings favour same sense of rotation in one
layer and opposite sense in adjacent layers
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=> counter-rotating layers in the 5=0 cycloids
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Dispersion relation and magnon wavefunctions
(021) (010) (020) (021)

0.0 0.5 1.0

B=UT\\a
T<0.2K

30 (0,1.447,0)'

0.4/ 0.5 0.6
• * Energy (meV)

pictorial n

representation

U
J = 0.374(5) meV
/ ' = 0.128(5) meV

- / " = 0.017(2) meV
Da= 0.020(2) meV

Mixing of
eigenstates

due to
interlayer

coupling / "

odd 0
even

CL
a b

Magnon wavefunction

odd

even

small a ~ 0.065 71



Long-range order as a condensation of magnons
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The wavefunction of the magnetic order can be constructed
from the wavefunctions of the condensed magnons
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Closing the magnon gap and onset of long-range order
1.5 -
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Conclusions

1. Full ferromagnetic saturation prepares a magnet in a
phase where the ground state and all excited states
have exactly known wavefunctions. Experimental
measurement of the excitations in this phase gives
the bare Hamiltonian with absolute (un-
renormalized) values for all couplings.

2. For strongly fluctuating magnets this is a uniquely
powerful method to experimentally determine
ground-state energies and quantum
renormalizations.

2D frustrated quantum
magnet Cs2CuCl4

(/V/=0.33)

3. Closing the magnon gap at the saturation field
allows studies of the conditions in which order
arises from condensation of particles in the ground
state ( fee ~ fr " /< ^ ^
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