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Mott Insulators

Optical conductivity

Formation of "Mott-Hubbard Excitons"

weakly coupled Mott insulators
crossover MI —> Fermi liquid

Quasi-ID Quantum Magnets j

"Dimensional Crossover"

The "High-energy" physics in the ordered phase of spin-1/2

antiferromagnets

" Field induced gap systems":

quantum solitons and "breathers" in CuBenz
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Some Generalities |

• Gapless quasi-ID systems can be treated by means of CFT

techniques (—> reviews by e.g. Schulz, Voit, book by GNT)

• We are interested in quasi-ID systems with a gap. These are
much more difficult to handle.

• We will do so using field-theory techniques. This imposes

some limitations.

Magnets:

n n

Field theory applies at energies/temperatures a;, T <C J if the

gap is small M(h) <C J; J plays the role of a UV cutoff.

Mott Insulators:

,acn+i,a + h.c] + U
n,a k

Field theory applies for u, T, M(U) < t. This does not
imply that U <C t

We will further assume that T < M([/) so that we can
neglect temperature corrections. The results will apply in the
regime

< T < M(U) < t .



Dynamical Properties of ID Mott
insulators

Tough old problem: strongly correlated with a gap.

Candidates/Examples:

• quasi-lD antiferromagnets CK&51 [

• carbon nanotubes

• organic conductors e.g. Bechgaard salts

ID Mott transition:

Simplest example: Hubbard model

Phase diagram:

\

AP = 2 7in-=»[ AElarge^j

\

incommensurate filling
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Field Theory of ID Mott insulators

ID Metal = Luttinger liquid

•"LL ~ -"charge T -"spin

nspin

^charge — o Kr
KC

spin-charge separation. ^ Ck(fax\n>

Umklapp only affects the charge sector

' -"MI ~ -"charge ~r -"spin

^charge — ^ Kc

Hubkaii

- A COS v87T0 c .

This is quite general! LKc= 4-

Spectrum in the charge sector: Gap M.

• Kc > | "holon" and "antiholon" only, (spinless charge =fe carriers)

• Kc = ^ "Luther-Emery point"

• Xc < | holon, antiholon and several excitons (hh bound states)
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"Luther-Emery" Point |

At the special point /? = V4TT, the SGM

- x c o s

is equivalent to a free massive Dirac fermion

• £ = [i

This is a free theory —> easy to calculate correlation functions

local in fermions.

In the literature it is often stated that

• Correlation functions at the LE point are representative for

the whole SGM ("universal").

This is incorrect; the LE point is quite special.

• the physics of the Hubbard model is described by its LE

point.

The Hubbard model does not have a LE point.

The easiest way to see that is to note that free fermions have
a 2-particle S-matrix S = — 1, whereas the exact S-matrix of
the Hubbard model [Essler/Korepin '94] is
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Situation in the Bechgaard salts

quarter-filled

small dimerization

H = -
n,cr

+ U

= Ho + Hint.

Diagonalize Ho : HQ = (k) - ul(k)ua{k)}

e(k) = -2\/t2 cos2 k + 82 sin2 k .

-0.5 -

-fl/2

• Interaction terms mix the 2 bands

• Integrate out upper band and "high-energy" regions of lower
band —y effective Hamiltonian for degrees of freedom around
±kF.

• —y generates double Umklapp (T. Giamarchi)

v y
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"double Umklapp1

Bosonize the resulting Hamiltonian

rl — /^charge T" flspin

1
2

+

^charge —
l

Kf

c

+Kc(dt(j)cy + A cos v87T(/>c + ficos

vSiC) Ks^ A,/x are functions of (7/t, V

"Double Sine-Gordon Model" (Delfino/Mussardo '98,
Fabrizio/Gogolin/Nersesyan '99) not integrable.

Study limiting cases:

• A oc S and therefore A <^ /i is possible —> double Umklapp should
dominate at "high" energies -> "SGMi"

• If dimerization is dominant physical ingredient —> neglect double

Umklapp-> "SGM2" (THIS HAW^S AT Kc>%)

• if both processes are important —>• trouble.
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CLECTROM OfERA\oRS
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CALCULATE OPTICAL GoMDUCTiVlTY :

± fe S<U Sdt ( [
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Comparison to Dynamical DMRG

DDMRG calculates

for specific lattice models on 128 sites.

half-filled Hubbard model U ~ 3*, 77 = O.lt:

1.0

0 2 4 6 8 10 12 14

Extended Hubbard models: —* exciton formation
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half-filled extended Hubbard model: [E. Jeckelmann (2001)]

1.0

0.8

EO.6

0.4
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0.0

DMRG vs. field theory
1D extended Hubbard model (t=1), U=3.5, V=1.4, rj=O1

0.0 0.5

— DMRG (128 sites)
FT (4=1.37, A=0.6642)

1.0
0)

1.5 2.0

DMRG vs. field theory
1D extended Hubbard model (t=1), U=4.15, V=2, T]=0.1

DMRG (128 sites)
FT(£=1,A=0.6490)
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Single-Particle Green's function

1. Half-Filled Case, (ft2 = STTKC)

ikFx) Ra(x) +exp(—ikpx) La(x)] ,

La = r}a exp I -

R<r = Vcr exp I - -

exp I -<

a = i^TCjcr —t?^? Vv Klein factors rfe = 1,

• spin sector: free boson —> easy to get correlation functions

• charge sector: use form factor approach. Complicated operators but

formfactors have recently been determined by Lukyanov/Zamolodchikov

(2001). Form factor expansion looks like

/

where next contribution is from intermediate states with 2 solitons and

1 antisoliton. Take only single-soliton intermediate state into account

( ^ T ~ IX)(VCT — I

Fourier transform and analytically continue—> retarded Green's function
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Spectral Function

Figure 1: (a) Density plot of the spectral function Ami(u;,q) as a function
of u and vq/m for vs = vc = v. (b) Constant energy (a; = 3m) scan of the
spectral function for a = 1.

4

2

-

-2 0
vq/m

Figure 2: (a) Density plot of the spectral function Ann(uj,q) as a function
of u) and vcq/m for vs/vc = 0.4. (b) Constant energy (a; = 3m) scan of the
spectral function for a = 0.4.
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Single-Particle Green's function

2. Quarter-Filled Case.(£2 = 32TTKC)

ikFx) Ra(x) + exp(—ikpx) La(x)]

= ifc exp exp

I

4

° = 1\>U tyr Klein factors % = 1, 77̂ 77̂  = — 1

• spin sector: free boson —> easy to get correlation functions

• charge sector: use form factor approach [Lukyanov/Zamolodchikov
(2001)]. Form factor expansion looks like

[de1d62

J 2TT 2TT

i.e. lowest contribution comes from two solitons. Can understand this

intuitively by considering U — V extended Hubbard model with "large"

V:

• O • O • O • GS1

O

O

O

o

o O GS2

O O Kink

The kink has charge 1/2 —> electron operator must couple to two
kinks.



use the explicit expressions for the form factors

™

W)
X

Vcq

Vc>(0) - 3-

s2 = u)2.— v^q2, c($) — 2Mcosh^, a — vs/v,

G(0) = iCismhB/2
r

dt sinh2

C1

*CX)

x\

— exp -

- 1 ] )
sinh2t sinh^i cosht

t sinh2t sinh^t cosh* / '

- 6 - 4 - 2 0 2 4 6

No singularities !!
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Weakly coupled Mott insulators

HALF-FILLED Qhlb

•t,u,v

•t,u,v

•t,u,v

t,u,v

Take the interchain hopping into account in Random Phase Approximation

l-tL(k) G1D(uj,q)

t±(k) =

—> can nave a pole = collective mode (with quantum numbers of an

electron)

Spectral Function:

MODE

-38--
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