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-the result is a very useful dictionary expressing any spin
operator in terms of a free massless boson operator whose
Green's functions and thermodynamics are easily computed
-only works for low energy long distance behavior however
-the free boson Langrangian in (1+1) dimensions is:

-vs is the spin-wave velocity-1 often setvs =1, below
-the dictionary also contains the dual boson, defined by:

-both uniform and staggered components of lattice spin
operators are represented by (different) boson operators:

Sz
f « + const. • (-1V cos—
J ITTR dx R

s 2mR0
J

const. • cos— + C(- IV
R

here the parameter R = n4^ but takes other values in general
-note that (l/2KR)jdxd<p/dx = -(l/2nR)jdxd0/dt is the
z-component of the conserved total magnetization-
this has the right commutator: [s?,S~]= -S~
-it is now straightforward to calculate Green's functions
of spin operators near wave-vectors 0 and n
-note that uniform part of Sz is a single boson operator
but staggered part is a multi-boson (non-linear) operator



-using < <P(X> 0<KO,0 >= -(1 / An) ln(x2 -12 + is)
we see that staggered Sz correlation function has power law
behavior- Fourier transform has multi-boson cut rather
than single particle pole

single particle excitation near k=0

multi-particle continuum
near k= n

0 spectral
weight here

0 n

I

power-law singularity, not pole

vs|k-7r

-N.B. by rotational symmetry correlation functions are
equal for Sx, Sy, and Sz although this is far from obvious
from bosonization formulas



2) Effect of an Applied Magnetic Field

extra term in Hamiltonian is -
classically spins lie in xy plane and cant in z-direction:

\

-spectrum still contains a gapless Goldstone modej-
corresponding to rotations around z-axis
-within bosonization approach:

J dx
-we eliminate this term in the Lagrangian by a simple
change of variables:

<p(x) - » <p(x)

-so the magnetization is m(H) =
-we still have a massless free boson Lagrangian but:

-i.e. critical wave-vector shifts by ±H for staggered part
of Sz, but not staggered part of S"
- a more careful analysis shows that R varies smoothly
as a function of H (as does vs)
-R(H) vs(H) are calculable using Bethe ansatz for
S=l/2 Heisenberg model



3) What's Special about Cu Benzoate?
Staggered H-Field

-in general Zeeman term in Hamiltonian is:

j,a,b

-in some low symmetry crystals like Cu Benzoate,
gyromagnetic tensor, g, has a staggered term:

-this results from 2 inequivalent Gu ions per unit cell
along chain direction (c-axis)
-leads to an effective staggered field, h, approximately
perpendicular to uniform applied field, H
-h/H is strongly dependent on direction of applied field
-there is another peculiar, low symmetry exchange interaction
that occurs in these crystals (Dzyaloshinski-Moriya)
-this can also be mapped into a staggered field
-other anisotropy is small so we can always define z as
uniform field direction and x as staggered field direction

Hamiltonian = ^[JSj •SJ+l+HS* +.h(-l)J S*]
j
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1.97*

Figure 2.2: Crystal structure of Cu(C6H5COO)2 - 3H2O, copper beozoate. (A) Schematic view of
one-half the imit eel. Hoofn temperature lattice constants are a = 6.98 A, b = 34.12 A, c •= 6.30
A, and 0 = 89.5°. (B) Oieutaik>fi of the local symmetry axes I and II in (A) arising from the
distorted octafeedra surrounding eack CM ion. The a'-axis is defined as JL to the b and c' axes. (C)
Uait octafeedron, siaowmg tke distances between Cu and its ligand atoms. Figure reprinted from
Reference [41].
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-Goldstone mode now has finite gap semi-classically-

-semi-classical excitations are small fluctuations and solitons
^-rotations of staggered magnetization in xy plane)
-bosonization description: uniform field just gives momentum
shift but staggered field produces sine-Gordon interaction
-writing L in terms of the dual 0-field:

L = - [(dt0f - {dx6f ]+ hC cos 2nR 0

-as before, the effect of the uniform field, H, is essentially
just to shift R, v and the critical wave-vector

H2-



4) Sine-Gordon Model Quantum Field
Theory in (1+1) Dimensions

-non-trivial exact excitation spectrum is known since the
semi-classical solution by DHN
-consists of several interacting (stable) massive particles:
solitons and "breathers"- i.e. soliton-antisoliton
boundstates, depending on value of R [P2=(27TR)2=2TI]

-in general breathers can be very strongly bound with
Mj considerably smaller than 2MS

-at small (3, the lowest breather may be thought of as the
perturbative fundamental boson excitation and the higher
breathers as boundstates of it
-at P2Z=2TT there is an exact SU(2) symmetry and the lowest
breather is degenerate with soliton and anti-soliton, forming
a spin triplet and there is a second breather heavier by a
factor of V2
-as R decreases, both breather masses decrease and a third
breather drops below soliton-antisoliton continuum at 2MS

-breather states are created from the vacuum by the operators
sin (2TTR9), COS (2TXR 0), since they are "9 -particles"
-solitons carry charge ±1 with respect to U(l) symmetry:

-they are created by exp( ±i (p/R) operators



-the mass scale is determined by renormalization group
scaling arguments:
Msoc h \ with v-1 /(2-TTR2)«2/3

-the model is exactly integrable: infinite number of
conserved currents
-exact specific heat C(T) is known: it crosses over from
massless boson behavior at T » M S : C =(TI/6V)T, to
massive boson behavior at T « M S : C= (M3 /2nT5)m e "M/T

(where M is mass of lightest breather)
-from exact F(h,T) we can also determined staggered
susceptibility, <92F/ dh2

-exact form factors are known
-for R<V2TT, the first breather form factor is much bigger
than higher breathers (perturbative behavior)



5) Back to Cu Benzoate

a) Specific Heat (O&A, Essler)
-specific heat changes from linear to exponential in
finite field
-gap scales as H2/3,
-as expected, there is strong dependence on field direction
since h/H depends on field direction
-detailed form of C(T) agrees quite well with S-G model

b) Neutron Scattering
-in zero field there are no single particle peaks- just
power law singularities
-at finite H we see expected momentum shift n—> n±H
-we also see resolution limited single particle peaks
-different mass gaps at wave-vector n, corresponding
to S ± Green's function (breather) and7t±H corresponding
to Sz Green's function (soliton)
MB/MS=.79 for TIR2=.41, predicted by S-G model
-this value of R is expected for Heisenberg model for
gjnBH/M52 (H = 7 Tesla, J=1.57 meV) from Bethe ansatz
-soliton is also visible at wave-vector n, but at energy

E = JMI+H2 due to momentum shift by H



FIG. 4. Specific heat as a function of temperature for fields
of H=3.5T and H=7T applied along the c" axis .
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FIG. 5. Specific heat as a function of temperature for fields
of H=3.5T and H=7T applied along the c" axis. The spin
velocity is taken to be eight percent smaller than in the MM
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0.12-

8

Figure 6.14: (a) Field dependence of the displacement Sq of the incommensurate side peaks from
<j — IT in copper benzoate, as derived from fits to the data shown in Fig. 2. The solid line is the
theoretical curve from Ref. [21]. (b) Field dependence of the energy gap derived from fits to specific
heat data such as those shown in Fig. 4. Data for fields along the three principal magnetic directions
are shown. Filled symbols are the gaps measured at q = n and q = L12TT by neutron scattering.
The solid lines are from fits to power-laws described in the text.
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Figure 6.8: Energy dependence of the magnetic scattering intensity at T = 0-3 K for Q = (0.3,0,1)
and Q = (0.3,0,1.12) at T = 0.3 K. The latter wave vector corresponds to the position of the
incommensurate maxima in the H = 7 T constant-foj = 0.21 meV scan. The solid lines through the
H — OT data are the theoretical dynamic correlation function [23] convolved with the experimental
resolution. The dashed lines are the average of the data in (b) for 0.08 meV < fuj < 0.6 meV, which
is a good measure of the over-subtraction caused by isotropic magnetic scattering contained in the
T = 25 K data used as a background.

described in the last section and in Chapter 5.

The spectrum changes dramatically for H = 7 T, as shown in Fig. 6.8(c) and Fig. 6.8(d).
At q — ?r, there is no magnetic scattering for HLJ < 0.1 meV, indicating that a gap has developed
in the spectrum. Above this gap, a sharp, resolution-limited mode peaked at fuj = 0.17 meV now
marks the onset of the continuum. A second, resolution-limited mode also appears at q = K at an
energy close to the Zeeman energy gp-sH = 0.81 meV. Figure 6.8(d) reveals that at H — 7 T, the



c) Electron Spin Resonance
-adsorption of microwave radiation viaZeeman coupling,
proportional to zero wave-vector Green's function
-corresponds to <9X6 Green's function at
wave-vector H in bosonized theory
-at T » M this is essentially just free massless boson
Green's function- cosine interaction negligible
-gives a 5-function peak at E=H
-as T is lowered, the S-G interaction can be treated, at first,
in perturbation theory
-in second order it produces a finite width and shift of
this peak: width =.7Jh2/T2

-width increases as T is lowered and S-G interaction
becomes more important
-at T « M , perturbation theory in S-G interaction is
infrared divergent and non-perturbative behavior of S-G
model must be taken into account:
-dx0 creates breather (plus negligible multi-particle continuum)
-breather peak occurs at E = 4Ml+Hl

-peak width goes to zero as exp (-M/T) at low T since
only collisions with thermally activated particles produce
broadening
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-temperature and frequency dependence of ESR line width for H// c"
compared to our theory based on staggered field broadening: rj och2/T2

-although the agreement is not too bad at low T there is clearly another
contribution to the width which increases with T at higher T
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The field-direction dependence and magnitude of the line-width in
Cu benzoate are roughly reproduced by our theory based on the staggered
field anisotropy. According to our theory, the staggered field vanishes
when the applied field is along the a" axis, so the width vanishes in that case
There must be some other kind of anisotropy producing a small width
for that field direction.
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The angular dependence of the resonance field at very low T
agrees with the angular dependence of the energy of the breather,

co = + A(h):

which arises from the angular dependence of the staggered field, h.
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well with the numerical results for k close to 0. For
k/ir > 0-1 the free-boson estimate for the two magnon
part of S(k) is larger than the numerical results for the
full structure factor. Since the free-boson theory does
not take interaction effects into account this is perhaps
not too surprising.

In Figs. 13 and 14 are also shown the inelastic neu-
tron scattering (INS) results of Ref. 18, which are di-
rectly comparable to our results. The open triangles
are points where to within experimental accuracy 5"
and Sx were identical. The full squares and circles are
data points where S^ and 5 X , respectively, could be
resolved experimentally. Good agreement is obtained
with the experiment apart from an overall scale factor
of about 1.25, which was to be expected, since the ex-
perimental total intensity exceeded the exact sum rule:
(l/L) Eafc5 O t°W = s(8 + x) b y 30% (± 30%). A very
nice agreement between the numerical results and exper-
imental data is evident.

Figure 15 summarizes our results for S^ and 5-K In
this figure the two structure factors are plotted together
with the different theoretical estimates. For the range
(0 .1 - 0.85) k/n 5" is the larger of the two, and only when
k/rr > 0.85 or k/ir < 0.1 does S1- become dominant. The
crossing of the two structure factors near AJ/TT ~ 0.85 is
correctly described by the SRL if different velocities for
the two modes are allowed for. The crossing near AJ/TT ~
0.1 seems also to be predicted by the free-boson theory
estimate for the two-magnon part of the structure factor.
This seems also to be supported by exact diagonalization
studies for L = 16.24

In the case of the isotropic chain, with D = 0.0, it
is possible to obtain an exact expression for the two-
magnon part of S(kw) within the framework of the NLcr
model,46 thereby taking into account interaction effects.
In Ref. 46 it is shown that with S = 5X = 5^ = 5Z, the
two-magnon contribution to S is given by

io-3
0.2 0.80.4 0.6

k/TT

FIG. 15. The structure factors S1' and S1- as a function of
k/ic for a 100-site anisotropic chain. The numerical results are
shown as open squares and circles, respectively. The dashed
lines are the SRL form obtained by fitting close to k = ?r.
The solid lines are the predictions from the free-boson theory
for the contribution to the structure factor stemming from
two-magnon excitations.

K . K > 4 A » . (6.10)

Here K K = 4A2cosh2(0/2) and |G(0)|2 is given by the
expression

64: ir)* V
(6.11)

This calculation contains no free parameters. The expres-
sion for the two-magnon contribution to S(k, LJ) can now
easily be integrated numerically over LJ to obtain S(k).
Our numerical results are shown in Fig. 16 along with
the SRL form using the previously obtained values for
v, g, and f. The SRL form is shown as the short-dashed
line. Also shown, as the solid line, is the NLcr model re-
sults for the two-magnon part of S(k). As seen in Fig. 16
there is excellent agreement between the theoretical and
numerical results. The long-dashed line is the prediction
from the free-boson theory for the two-magnon contri-
bution to the structure factor. The inclusion of interac-
tion effects changes the shape of S (&), and we see that
the free-boson estimate, although qualitatively correct
near A; = 0, somewhat overestimates S(k) for larger k.
Presumably the NLcr model also predicts a four-magnon
(and higher) contribution to S^k^cv). This is not known
exactly and not included in Eq. (6.10). Hence, the full
S(k) in the NL<7" model should be somewhat larger than
Eq. (6.10). The very precise agreement with the numer-
ical results may indicate that this multimagnon contri-
bution is very small. Alternatively, it may indicate that
the NLcr model somewhat overestimates the two-magnon
part. Our numerical results for S(k) are also in good
agreement with previous results using Monte Carlo tech-
niques30'31 for chains of length 64.

io-3

FIG. 16. The structure factor 5 as a function of k/it for a
100-site isotropic chain. The numerical results are shown as
open squares. The short-dashed line is the SRL form obtained
by fitting close to k = *\ The solid line is the exact prediction
from the NLcr model for the contribution to the structure
factor from two-magnon excitations. The long-dashed line is
the free-boson prediction for the two-magnon contribution to
the structure factor.
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v

0 1 2 3 A 5 6

PIG. 1. S(w, k) for k = 2.6A/v from the free-boson an
nonlinear <x models.

Note that at n —• oo we obtain the free-boson resuli
G(B) = 1. Evaluating the integral for n = 3, gives

(3.9

where V(z) is Euler's gamma function. Thus

(

At small 0 this behaves as: |G(0)|2 « 1.52(1 - O.O902'
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M/L
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T - OK magnon-magnon interaction included

T » OK free magnon

0.35 0.45 0.5 0.55 H

FIG. 7. Magnetization curve for S= 1 chain near critical field
Hc = A. (The exchange constant and gfxB are set equal to 1.) For
infinite length and at 7*=0, we plot it as given in Eq. (4.7). The full
line has included the leading-order contribution of magnon-magnon
interactions. The dashed line is a reference line for comparison and
it is for free hard-core boson approximation.

fkF dk

j -kF2TT

dk k2

( 4 5 )

Here we have included the Zeeman term, —Hn in the en-
ergy; H is the applied magnetic field. Performing the inte-
grals gives

(4.6)
om

This represents an expansion of the energy in powers of the
density. The first term which depends on the interactions is
the O(n*) term. Minimizing Eo with respect to n gives the
density or magnetization per unit length:

(4.7)

In Fig. 7 we plot MIL vs H from Eq. (4.7) with and without
the interaction {a = — 0.34f or a = 0). The leading-order cor-
rection due to the magnon-magnon interaction is obvious
around magnetization A//Z, = 0.02.

This finite density correction can be generalized to finite
temperature T, as was observed by Okxmishi26 in the special
case of the ^-function interaction. The correction to the free
energy of lowest order in density is given by including ther-
mal occupation numbers in the second term of feq. (4.5):

AF/L
2m)

dkxdk2
-nF{k{)nF{k2){kx-k2)

2. (4.8)

Note that it is the Fermi distribution function which appears,
rather than the Bose function. This simply follows from the

M/L

0.05

0.04

0.03

0.02

0.01

1/kT=100andL = 100

magnon-magnon interaction included

free magnon

Monte Carlo results: dots

0.35 0.4 0.45 0.5 0.55 H

FIG. 8. Magnetization curve for S= 1 chain near critical field
/ / c = A, with length L= 100 and at temperature kT= 1/100. The full
line has included the leading-order contribution of magnon-magnon
interaction. The dashed line is a reference line for comparison and it
is for the free hard-core boson approximation. The dots are the
Monte Carlo results (Ref. 19).

condition that the kj should all be distinct so that there is an
effective occupation number for each momentum which can
be 0 or 1 only. nF(k) is evaluated at finite Tand //, then the
magnetization is obtained by the usual thermodynamic for-
mula, dFIdH— —M. In order to compare with recent Monte
Carlo data on the magnetization for the 5 = 1 chain, it is
useful to also generalize our formulas to finite length, L with
periodic boundary conditions. There is a slight subtlety in
doing so because the allowed wave vectors of the magnons
alternate between k=27rn/L ("even wave vectors") for an
odd number of magnons and k-2ir{n+ \/2)/L ("odd wave
vectors'*) for an even number. This follows from the sign
change of the wave function each time one magnon passes
another one. However, this is easily dealt with exactly by
inserting appropriate factors of

(4.9)

into the partition function trace. This effectively gives the
chemical potential an imaginary part, essentially converting
fermion occupation numbers into boson ones. For # = 0, the
partition function is given by

Z° = (\/2)[ZFe-\/Z
0
Be+ZFo+VZ°Bol (4.10)

Here Z°Fe denotes the partition function for free fermions
with even wave vectors; Z°Bo denotes the partition function
for bosons with odd wave vectors, etc. Note that inverse
boson partition functions occur. The thermal average of the
second term in Eq. (4.3) becomes


