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A quasilinear approximation for the three—dimensional Navier-Stokes

system

E. I. Dinaburg, Ya. G. Sina¥



A coﬁlmonly accepted view is that, for typical initial data, the
three-dimensional Navier-Stokes system (NSS) has a unique strong solution,
In this article we consider the NSS in whole si)aée and without an e)éternai
force. The energy inequality shows that this solution must decrease in time,
which does not preclude growth of enstrophy. (On the NSS see, e.g., [1]).

Below we suggest a modification of the NSS that, in our
opinion, preserves the basic character of the nonlinearity but is quasilinear
in the Fourier space. Because of this fact, it possesses characteristics along
which the nonlinearity propagates. There is some evidence that in a certain
sense the asymptotic behavior of the NSS and our system is identical.
Consider the NSS describing the motion of a viscous incompressible fluid in

the three-dimensional space R*:

du
P (u-Viu+ Vp =vAu
> (0.1)
V-u=140,
where u = u(z,t) = (w (2, t), us(2, t), us(z, 1)) is the velocity vector,
p = p(z,t) is the pressure, z = {x,zy,x3), and v > 0 is the viscosity.

Applying the operator V to both sides of the first equation and using the .

second equation, we obtain the following expression for p:
p={(=A)"(V-(u-V)u),

or in coordinates of the vector u
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Let 4(k,t) be the Fourier transform of the vector u(z,t) = [ a(k,t)e**dk.
R3

For @u(k, ) we obtain the following system of equations:
N N A
@§ﬂ+zgymﬂhﬂ@@—@ﬁMk—HJMH—

ik f [ ki (K ) (b = Ky )n (B — K 0)dE = —v|k?iy(k,t), 1=1,2,3

TIL2
W =1

3 . -
_lekjuj(_k,t) = 0.
J:

Since u(x,t) is a real vector, we see that @(k,t) = 4(—k,1).
We unll consider (2) in the invariant space of pure smaginary odd functions.
Setting (k. t) = iv(k,1), we get
. 3
Oulkt) _ 2 v (k' 0)(kj — Ko (k — K, ) dk'+

3 .
+]_kl|£§- .Z_l S k:;vm(kfa t)(;im - k;n)?/'n(k - kr‘i t)dkf = __Vlklgw(ka t)‘i [= 1’ 2"3

3
2 kjvj(k: t) =0.
j=1
and v(k.t) = —v(—k,t). Using the last equation of (3), we obtain a system

equivalent to (3):

P

; 3
2ot = 5k S Ok~ K 1)dk+
J:

K o

=

ﬁ-%ﬁmﬁmﬂﬁﬂ%&w&ﬂﬂkhﬂﬁ%wﬁ,l:L&B@M)

ijvj(kat) =0.
J
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Our main hypothesis, which constitutes the basis for the
suggested approximation, is that solutions v decay rather slowly at infinity

and t-herefore the main contribution to the Fourier transform comes from the

two domains t|. In other words, the integral in (4)
may be represented as a sum of two terms, one being the integral over these
domains and the other over their complement; this last integral is discarded

since we regard it as a small quantity of higher order.

In what follows, we drop the argument ¢ in the unknown functions.

1) First consider the domain |&’ Taylor expanding in &', we obtain

[ oK Yok = 1)k = u(k) [ vi(K)dk 2 [ ik a'“’ PR =

4 @u
Kk dk' 5
L oL / dk’ 4+ - (0.5)

since the first integral is equal to zero because v(k) is odd, and

c%n
s—"l

= an(k)/k;;um(_k’)dk" Foe (0.6)

[ Fvm(Rou(k — Kk = v, (k) [ Kyom(k)dE - ] Lk v (KK + - =

(similarly. the second integral equals zero since v(k) is odd).

we set bk — k' = k",

k|,

2) To obtain the expansion in the domain |k — ¥'| <

Then ¥ =k — k" and we get

| 5 Ovy
vy (K Yu(k = BV = [ vk — K" (KR = - i NeLdE + ., (0.7
/v Jak = [ ) X 5 fulh (0.7)

which follows from (5) after the interchange of the indices j and I. Further,

[ v (K Yok = K)dE = [(kn — B2 vm(k — B )ua(K")dE" =
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= (k) [ (ko — K yoa(K")dE" — [ b — k) E v, (K"K -+

=~ (k) [ Kyva(K)dK — Lzavmfk (KK + - - - (0.8)

In the derivation of (8) we use the identities [ v, (k" ) dk" =0
and [kl kYv,(K")dE" = 0 following from the fact that v(k) is odd.
In expansions (5)-(8) dots denote the higher order terms that we discard.

Substitufing (3)—(8) in (4) and using the identities

3 1 N I 3 Ovy ! 31t 5 ; 6?)3'
E ki [o;(Kyui(k — K)dk =~ 3 k; 2 / K)kLdk' — J; kY 5 [ulh

=1

@Ekfvj

i Ok

Mw

Ojs’Uj,

Lo
I
—

dv;
7 Ok
! ! a?) ! !

j (Kyulk — &)k = blakl Zkf ()kdk)+zfu5]w

an

we obtain that up to the terms of higher order

> ko [ Ky (K Yvn(k — K)dk = > kmvalk ) [ Eyom(K)dE — 3 B (k ) [ ke

m,n m,n

-5k knza’”m]k K)dk' =

“Zk:fufk’v (K)dk' ~ >k i(m 5 )/k’ Kk =
mUn m n YA msUm vn

§=1

= 3= Funtn /k’ v (&) dE + Z kU y S [k’ v (K )dK

z (k) [ Kyom(k)dE'

I
o 3

{Here we interchange m and n in the second sum.)
Finally we get the following system of equations:

D
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ks =0,

where A4;; = [ kwv;(k, t)dk, B; = jiijl.ijij. System (11) is our suggested
approximation of the NSS. The conjecture is that, for a wide class of initial
data. solutions of system (11} decay at iﬁﬁnity slowly whenever system (3)
has a solution with the same property..

System (11) may be rewritten in the form

. 3. : 3 3
Ou 4o~ QB = y|kPu+ T vy — W ) v,B,, 1=1,2.3
= 5= (0.12)

3
Y kv, = 0,
=]

System (12) has the following important property.
Suppose that the initial data v(k,0) = v\O(k) of system (12)
satisfy the incompressibility condition z_é kifugo)(k) = 0. Then for any t > 0
solutions of systermn (12) satisfy the same condition -.::i kivi(k,t) = 0 provided
a solution exists for this t.
Proof. We have

3
6(_51 kyvi(t)) 3 3L vk, )

3
T '_'_'B' -_— k? 3T v
ot o E ok v{k] .Zlkzvﬁ(kﬂt)‘l'
|

3 3 23
£ R 042 3 iy S8

If the incompressibility condition is satisfied at the moment £, then:
1) the second term equals 0;
2) the first sum equals

6
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2.2 djvilk,t) | By =~ > Z 8jivilk, ) B; vilk, ) B;.
Jj=li=1 ak} i=1 4= i=1

Since Z kiA;; = = 1, we finally have
3
1%, gl ]{?.i'vg(k, t) 3 3 3
= ; Z vk, 1) j—ggvj(k;t)3j=0-

Thus if ¥ k;v;(k,t) = 0 for £ > 0, then E( fj kivi(k,t)) = 0 for this ¢.
Therefore ZJ kivi(k,t) = 0 for all £ such that the solution exists.

System (12) has characteristics satisfying the following system of equations:

3 3
%{%! = *Vlkl%)l -+ >;1 USASI - I‘%FT% 921 UsBsa
de— B 1=1,2,3 (0.13)
kv, =0,

Aj; and By are nonlocal functionals of v in this system.
Finite-dimensional approximations
Let the initial data v;{0) be
nonzero only at a finite number of points k{8 = (k:(ls), ké‘g)?k( ), 1 <s<N;
denote v; (9, 0) = v . Instead of a partial differential equation, for initial

data of this kind we obtain a system of 6NV ordinary differential equations

() N
di}z ZL (ZkaJ))ﬁ i=1,2,3, s=12,---,N

n=l

dut S 3 (s ;) 3 3. (s) n) (n
chz_: ~v[k) lz’b‘f 2 J(r (E k ( )_ |i!f's1|2j§ ”( (;Lk (Z K )'Uz('

j=1 = n=
Also, the incompressibility condition 2 k-s (s)( t) =0,
s=1,2.---, N, holds if it is satisfied at the initial moment: Z L (0) z(s (0)

forall s =1,2,---,N.

|



For N =1 system (14)
is trivial. We study some properties of this system in the case N = 2. For
the two points kY = (k‘%l),kén,ké”) and k) = (k?),kém,kg?]), the finite-

dimensional system consists of 12 equations

i=1
7 _ 0 & 20
? L A _
o oo (Z;Z(ll) Lo 3 (0.15)
7 = —uEOPfY 0! 3 kj o) - B 5 KO,
! i @ :
- = kR + o) S E i’fslzmnk?&%vn“k.ﬂvﬁé% i=1,2,3

In addition, Z LJ =0,1=1,2.
i=1

System (15) admits three first integrals
1) ,.(2 2), (1 , : . .
EORY kP = ¢, i=1,2,8, i<

In other words, the vector product [k, k{?)] is invariant under the flow.
Proof. From the first six equations we have

B KD p® P

M~ @ @ T O
N A A L

i#3
(to obtain this, divide the equations by each other). Hence

Af)dkﬁ kP e =0
KA — kVdE =0, i # 5.

Adding these two equations, we obtain

dEMED —EVEPY =0, i



and -

In this notation system (15) assumes a simpler form

| 4 = Kvo,
A = kv,
| %;l ulk P (m +v( 'y @’ffifﬁ Yy @), | (0.16)
40— RO 4 DY) By 0y
i=1,2,3.

-

We compute dV{1) /dt:

1 3 i 2
dv _ Z k(z) dT/l'( ) n i Ugl)ik_(_)_ - —Vlk(1)|2v(l) + (i k@]@r@)) V{I)
boodt ' 2o

i=1

i=1 =1
3 9,.(2) (1) a dlnlk(1)12
2k Ry s WDy ey _ SRIETE 6y
2, Tk Lo i

In the last step of this derivation we use the equalities Zl k( J( 9=

for i = 1,2 and the equations dk"/dt = kPV®, i =12 3, of system (16).

We finally obtain

d(In [VO|j51)2
(ln | dtH |):ﬁy|k(1)|2_ (0.17)

Similarly, we obtain

9



Il [V EOP)

_ 32 0.18
- k) (0.18)

Thus the following lemma is proved.
Lemma 1. System (15) admits two Lyapunov
functions Fy = In (IV(I)Hk(l)Iz) and Fy = In (IV(Q)Hk(z)P).

From (17) and (18) we get that for all £ > ¢, > 0

i
VI R ()] = VO (£0) (K1 (t0) [ exp (‘V / Ik‘s)("f)lgd’r) , s=12
| /

Recently one of us (E.D.) proved for the system (16) the following theorem.
Theorem. |
For any initial conditions kKV(0) # 0, k(D) # 0, v (0), v (0) satisfying
incompressibility conditiony the solution ED@®), KD, v, + () existy
for all t > 0 and |
U}E& kO = kD (c0) #0 ewist{,}i =1,2;
2)lim i E) =0, i=1,2.
This result can be considered as a manifestation of the absence of blow-up
in solutions of (12).
f The prﬁ;of f:he theorem will be published elsewhere.
In /g Ems clipiomawgquations for vorticity :éu{btained that are similar X
fpeifg to our equations (11).
| The authors are grateful to RFBR for the financial
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