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A commonly accepted view is that , for typical initial data, the

three-dimensional Navier-Stokes system (NSS) has a unique strong solution.

In this article we consider the NSS in whole space and without an external

force. The energy inequality shows that this solution must decrease in time,

which does not preclude growth of enstrophy. (On the NSS see, e.g., [1]).

Below we suggest a modification of the NSS that , in our

opinion, preserves the basic character of the nonlinearity but is quasllinear

in the Fourier space. Because of this fact, it possesses characteristics along

which the nonlinearity propagates. There is some evidence that in a certain

sense the asymptotic behavior of the NSS and our system is identical.

Consider the NSS describing the motion of a viscous incompressible fluid in

the three-dimensional space i?3:

% + (u • V)u + Vp = vAu
ot (0.1)

where u — u{x.t) — (ui(x,t)^U2(x,t),u^(x.t)) is the velocity vector,

p — p(x,t) is the pressure, x = (xi^x^^x^), and v > 0 is the viscosity.

Applying the operator V to both sides of the first equation and using the

second equation, we obtain the following expression for p:

or in coordinates of the vector u
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Let u(kj) be the Fourier transform of the vector u(x:t)

For u(k, t) we obtain the following system of equations:

J u(k,t)eikxdk.

dui{k,t)
dt • E

j) = 0.

Since u{x,t) is a real vector, we see that u(k,t) ~ u(—k,t).

We will consider (2) in the invariant space of pure imaginary odd functions.

Setting u(k,t) = iv(k,t), we get

^§^ ~ .E /VJ(A',£)(AJ - *>,(* - ^ , t ) ^+

f E fVnvm(k',t)(km-k[a)vn(k-V1t)dV = -v\k\2v1(k,t), / = 1,2,3
3

E ktvAk.t) =0.

and v(A:,t) = -v(~k,t). Using the last equation of (3), we obtain a system

equivalent to (3):

^ ~ h kJfvj{k',t)vl{k-k!,t)dk>+

1 ,t)vn{k - k;,t)dk' = -

= 0 ,

1,2,3 (0.4)



Our main hypothesis, which constitutes the basis for the

suggested approximation, is that solutions u decay rather slowly at infinity

and therefore the main contribution to the Fourier transform comes from the

two domains \k'\ <C \k\ and \k — k'\ <C \k\. In other words, the integral in (4)

may be represented as a sum of two terms, one being the integral over these

domains and the other over their complement: this last integral is discarded

since we regard it as a small quantity of higher order-

In what follows, we drop the argument t in the unknown functions.

1) First consider the domain \k'\ <C |fc|. Taylor expanding in k1, we obtain

j \ d v i ,j JU/ vj(k')vi(k - k')dk' = vt 'yik' - £ I vj(k')?£-k'adkt + • • • =
s=l J Vk$

since the first integral is equal to zero because v{k) is odd, and

3 dvn

(0.5)

k!
nvm(k!)vn{k - k')dk! = vn(k) Jk!

nvm(k')dti ~E~rJk'nk',vm{k')dk' + • • • =

= v n { k ) ! k ' n v m { k ' ) d k ' + ••• (0.6)

(similarly, the second integral equals zero since v(k) is odd).

2) To obtain the expansion in the domain \k — k'\ <C \k\, we set k — k' ~ k"'.

Then k' = k — k" and we get

^ ^dk' + . . . , (0.7)Vjik'Mk - k')dk' = JVj(k - k'

which follows from (5) after the interchange of the indices j and /. Further.

k'nvm(kf)vn(k - k



vm(k)j(kn-k:)vn(k")dk" Xdu

s-\ urus

s=\

In the derivation of (8) we use the identities fvn(k
f')dk" = 0

and /kljlk"vn(k")dk" = 0 following from the fact that v(k) is odd.

In expansions (5)-(8) dots denote the higher order terms that we discard.

Substituting (5)-(8) in (4) and using the identities

"} I ^7 \ J ^l V liJbfti ^^ / /v7 / ^ I U-i \ tit }I\J^Lbf\j — / tv-i s ~T—™" /
J j-l s=l OKs J j ~ \ s = l V&s J

3

3 An- ^ A ^JUJ

3
> fey / t',-(A: }vi(k — « Ja^ = - >_, ——- [ } . kj Vj(k )kAk + V vs / vHfc )KSC

J=I ^ . = 1 ^ . W 7 / s=i J

we obtain that up to the terms of higher order

E km I' k'nvm(k')vn{k - k')dk! - E kmvn{k) I tfnvm(h')dk! - E kmvm(k) f k'ni
m,n J rn,n J m,n J

- 1 k'svn{k')dk' -

m,
3 /

m,n

3

- E kmvn[k'nvm(k')dk' - $>„ E M k r 1 ^ - E^.«m • IKvn{k')dk' =
m,n J n s-\

= E *mWn(*) / k'nVm{k!)dk'
m,n J m,n

= 2

(Here we interchange m and u in the second sum.)

Finally we get the following system of equations:



1 = 1,2,3

E Ms — 0,

g

where Ay = / fciVj(fc, 0^> ^ " £ -fyA^. System (11) is our suggested

approximation of the NSS. The conjecture is that, for a wide class of initial

data, solutions of system (11) decay at infinity slowly whenever system (3)

has a solution with the same property.

System (11) may be rewritten in the form

ff + E ffi?, - -v\k\\ + t vAsi - | E vsBa, I = 1,2,3
Ot s=l dkf s = l |A-I s=l (Q ]_2)

E ksva = 0,

System (12) has the following important property.

Suppose that the initial data v(k,Q) — v^(k) of system (12)

satisfy the incompressibility condition E hvl (k) ~ 0. Then for any t > 0
3 = 1

3

solutions of system. (12) satisfy the same condition E ki'Ui(k,t) = 0 provided
ii

a solution exists for

d{kk

3

+ E *.

iVi(t))

t
3

r-i

this t.

1 3

Proof.

A dv.

3

We

dkj

\h?
1
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If the incompressibility condition is satisfied at the moment t, then:

1) the second term equals 0;

2) the first sum equals



E E ( ^ y i l - ^(M)) flj: = - E E
o 3 . 12

Since E AjA,-j = Bj and •£ w = 1, we finally have

9.E kiVi(k,t)
i=1 = V Vi(k,t)Bi + T, vAkA)B* - 2 V ^ ( M ) 3 ; = 0.L-J

Thus if E M i ( M ) = 0 for t > 0, then | ( E hv^kA)) = 0 for this i.

Therefore E kiVi{k,t) — 0 for all £ such that the solution exists.

System (12) lias characteristics satisfying the following system of equations:

+ h vsAsl - m E vaB81
s = l l ' S = l

= B,, i = 1,2,3 (0-13)

Aji and S; are nonlocal functionals of v in this system.

Finite-dimensional approximations

Let the initial data •Uj(O) be

nonzero only at, a finite number of points £ ^ = (^1 , ̂ 2 , ^3 )) 1 £ s ^ ^*i

denote iJ,;(A"''̂ ,O) = v\b. Instead of a partial differential equation, for initial

data of this kind we obtain a system of QN ordinary differential equations

i?^^)-0^1^(,4*!"
Also, the incompressibility condition E k^ v^ \t) ~ 0,

s — 1. 2. • • •, JV, holds if it is satisfied at the initial moment: E k\ (0)'4 (0)

for all s — 1,2," - ,iV.



For N = 1 system (14)

is trivial. We study some properties of this system in the case Ar = 2. For

the two points k^ = ( f e r , * ^ ^ J a n d

dimensional system consists of 12 equations

1 i=i ' J'

(0.15)

^ = _y|jfc(2)|2vj
2)+i;j (1)^(2) (2)

In addition. E kfvf = 0, i = 1,2.

System, (15) admits three first integrals

& k ~ k fcj ]•

In other words, the vector product [fc(1%fc(2J] is invariant under the flow.

Proof. From the first six equations we have

rlh{l) h{2) ^ ( 2 ) k{l)

i l l ) j ( Z ] • 7 T ( ^ I i t i )
ft k1 IC ft K* it?

(to obtain this, divide the equations by each other). Hence

Adding these two equations, we obtain

= o,



4. Let

V™ = ±

and

In this notation system (15) assumes a simpler form

dt

dt

it

vp +

( = 1,2,3.

We compute dV^/dt:

dt dt dt

(0.16)

In the last step of this derivation we use the equalities E kjVj = 0

for i = 1,2 and the equations dk^/dt = kf]V^, i = 1,2,3, of system (16).

We finally obtain

dt
(0.17)

Similarly, we obtain



dt
= W i ( 0 1 8 )

Thus the following lemma is proved.

Lemma 1. System (15) admits two Lyapunov

functions F1 - In (\V^\\k^\2) and F2 = In (\V^\\k^\2).

From (17) and (18) we get that for alH > t0 > 0

vj \k^(T)\2dr\ , s = 1,2.

Recently one of us (E.D.) proved for the system (16) the following theorem.

Theorem.

For any initial conditions fcW(O) f 0, fc(2>(0) ̂  0, ^ ( 0 ) , f(2)(0) satisfying

incompressibility condition's the solution k^(t), k^(t), v^(t), v^(t) exist%

for all t > 0 and

^ 0 e^5^ i = 1,2;

0, i = l,2.

This result can be considered as a manifestation of the absence of blow-up

in solutions of (12).

The procjfe of the theorem will be published elsewhere.

In IE. Ein's diplomayequations for vorticity ai^obtained that are similar ji<

to our equations (11).
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