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Problem 1. Given a non-degenerate irrational in-

definite quadratic form B of signature (m, n), study

the set of its values £i integer points.

Approach: using a linear unimodular change of vari-

ables g : M m + n •-• R m + n one can write

where A G R, ^ G S'Lm+n(M) and

2 2

and then work with { j x | x G Z m + n }
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Problem ft. Given a system of m linear forms

4i , • • - ,̂ 4m o n ^n? how small (simultaneously) can

be the values of

Pi

when q = (<?i,. - . , f̂n) € Z n is far from 0?

Approach: Put together

and

and consider the collection of vectors

where LA = I ™ T I and 4̂ is the matrix with

rows A i , . . . , Am.
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This motivates the use of the following dynamical

system:

Phase space. Fix k E N and consider

ft = the set of unimodular lattices in

("discrete subgroups with covolume 1).

That is, any A E ft is equal to

where the set {xi , . . . , X&} (called a generating set of

the lattice) is linearly independent, and

An element of ft which is easy to distinguish is Zfc

(the standard lattice). In fact, any A E ft is equal

to gZk for some g 6 G = 5Lfc(R). That is, G acts
1 n

transitively on ft, and, further, V = SLkCZ) is the

stabilizer of Zfc. In other words, ft is isomorphic to

the homogeneous space G/T.



Topology. Two lattices are close if their generating

sets are close. This defines a topology on ft which

coincides with the_guotient- topology on G/T.

Fact: ft is not compact. More preciselyja subset K

of ft is bounded iff there exists e > 0 such that for

any A £ K one has infx6Ax |0 | [|x|| > el (Mahler?s

Compactness Criterion). In other words, define

ft£ =f {A e Q | ||x|| < e for some x € A \ {0}} ; /

then ft \ fte is compact.

Measure. One can consider a Haar measure on G

(both left and right invariant) and the correspond-

ing left-invariant measure on ft. Fact: the resulting

measure is finite (Borel-Harish Chandra). We denote

by [i the normalized Haar measure on fl.



Action. Q, is a topological G-space, with the (con-

tinuous) left action denned by

or gjhT) =

One can consider the action of various subgroups

(one- or multi-parameter) or subsets of G.

Features:

• uniformity of the geometry of the

homogeneous space G/T

(a nbhd of every A e f l ^ a nbhd of e <E G)

• the representation theory of G

(the G-action on ft -£= the regular repr-n of G on

combinatorial structure of the space of

lattices

intuition coming from number theory
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Since g(hA) = (ghg 1)^A, local properties of the

^-action are determined by the differential of the

conjugation map, Ad5(x) =
KA.

A-'
An element g G G is said to be: .

unipotent if (Adg — Id)J = 0 for some j 6 N

(<$ all eigenvalues of Ad5 are equal to 1);

quasi-unipotent if are of absolute value 1;

partially hyperbolic if it is not quasi-unipotent.

Equivalently: given g G G, define

JH±(flr) =-{h€G\ g~lhgl - ^ e a s l - ^ ±00}

(expanding and contracting horospherical subgroups)

Then G is locally a direct product of

H-(g)j H+(g) and another subgroup Ho(g)<>

and g is quasiunipotent iff Ho(g) — G

(that is, H-(g) and H+(g) are trivial).



Furthermore, for any A G fi the orbits H-(g)A,

H+(g)A and H0(g)A are leaves of stable, unstable

and neutral foliations on Q.

Example. Suppose that g e G is diagonalizable

over R, and choose a basis of Rk in which g =

diag(Ai,... ,Ai, , - A ; , . . . , A j ) , A i > ••• > A / .

times it times

Then ff.(g)

and iJ+(g)

are subgroups

of lower-

and upper-

triangular

groups:
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More iples. The simplest case k = 2: then

^ the unit tangent bundle to

The geodesic flow — the action of gt =
0 °

The horocvcle flow — the action of ut

(an example of a uoipotent flow).



Ergodic properties.

Moore's Theorem: the action of any noncompact

closed subgroup of G on Q is erpodic and mixing.

Decay of correlations: there exists /3 > 0 such

that for any two functions ip.i/j £ C^mp(fi) with

J (p = J ijj = 0 and any g G G one has

In particular, if (̂  is partially hyperbolic, then

(Moore, Ratner for k = 2,

Howe, Cowling, Katok-Spatzier for fc > 2).



Uniform distribution of unstable leaves: let gt be

a partially hyperbolic one-parameter subgroup of G,

H = i?+(^), v a Haar measure on H. Then there

exists A > 0 with the following property:

for any open subset V of i7, any tp E

and any compact subset Q of Q, there exists C > 0

such that

v
<p(hgtA) dv(h) -

n
< Ce~xt

for all A e Q and t > 0. (K-Margulis 1996)



Orbit closures of unipotent flows.

Fact: any orbit of the horocycle flow on

is either periodic or dense (Hedlund 1930s)

Theorem. Let U be a unipotent subgroup ofG. Then

for any A E $1 there exists a closed connected sub-

group L of G containing V'such that the closure of

the orbit U/[ coincides with Lfc and there is an L-

invariant probability measure supported on

(conjectured by Raghunathan, proved by Ratner)

Furthermore, L = G for y\ not lying in a countable

union of proper submanifolds of G/T.

(unipotent flows are "not very chaotic")
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Corollary. Let — x\ , and

SL3(R) =S(x) Vx SO(2,

(the stabilizer of S). Then any relatively comvact

orbit HsA, A a lattice in R3
; is comvact

Explanation: Hs is generated by its unipotent one-

parameter subgroups,

V(t) =
t t2/2

\
0 1
0 0

t
1

Tand-Vi(t) =
< 1 0 0

1 0
t 1

and there are no intermediate subgroups between

Hs andSL3(R).



Corollary. Let B be a real nondegenerate indefinite

quadratic form in 3 variables.

for some e > 0

and allx e Z3\{0} ;

i|V\x)| ^

/

/ i

A =

t/ien S is

proportional to

a rational form.

Q
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Basics of metric number theory

Let ip{x) be a non-increasing function

Definition. Say that

n , 1 ) is

if there are infinitely many | 6 Z such that

for some

Theorem 1. Every A^^XHOK)^ ^-approximate.

(Dirichlet 1842)

Theorem 2. Almost every (resp. almost no) A

is ip-approximate, provided the integrally i/?(x) dx

diverges (resp. converges). ((yfoSHtV



Definition. A G Mmxn^R) is badly approximate

if it is not --approximable for some c > 0; that is,

if there exists c > 0 such that[l|Aq + pHml|q||w > c\

Vp G Zm and all but finitely many q e Zn.

(If m = n = 1: a G R is badly approximable ^>

coefRcients in the continued fraction expansion of a

are bounded)

Facts. The set of badly approximable A G Mm x n

is

(Perron 1921)

of measure zero (Khintchine 1926)

of full HausdorfF dimension (Jarnik 1929 for

m = n — 1, Schmidt 1969 for the general

case)

16



lmxnTheorem 3. (Dani 1985) A € M,

approximable iff the trajectory {gtLAZm+n

With LA a f1^ A \

is badly

t £ R+} ;

A .

- diag(e*/m , . . . ,
ttfch ^k Wt

is bounded in the space £if(Here k = m + n.

for some e > 0,

Proof.

1 E R+} fil]£ = 0)

17



Corollary. (Dahi 1985) The set

{A G fl t > 0} is bounded] ,

with {gt} as in {*), has fait Hausdorff dimension.

Proof. A = [ B
c °D ) L A Z m + n

gtk = •

18



Theorem 4. (K-Margulis 1996) Let F = {gt \ t >

0} be a one-parameter subsemigroup ofG, H = H+(gi)

the expanding horospherical subgroup. Then for any

closed F-invariant null subset Z of ft and any A E ft,

the set {h 6 H \ FhA is bounded and FhAnZ = 0}

has full Hausdorf)'dimension.

Corollary- If {gt} is partially hyperbolic, then the

set FA is bounded and FA D Z = 0}

Hausdorff dimension.

Another Corollary: Schmidt's result on badly ap-

proximable systems of linear forms

(since for gt as in (*) ,# = {LA | A G.Mmxn(R)})

U

19



Proof of Theorem 4- Use uniform distribution of

unstable leaves to create a Cantor-like set of big

Hausdorff dimension.

(Holds for any Lie group G and any lattice F c C

under an additional technical assumption on {gt}-)

20



Inhomogeneous approximation

An af&ne form = a linear form plus a real number.

A system of m amne forms in n variables is given by

a pair (A,b), where A G Mmxn(M) and b G Mm.

Definition. A system of affine forms given by

(A,b) G MmXn(R) x Rm is tfr-approximable

if there are infinitely many q G Zn such that

and it is badly avvroximable if it is not --approximable

for some c > 0; that is, if there exists c > 0 such that

\

Vp G Z m and all but finitely many q G Z n .

Fact: The set of badly approximable

(A,t) fe M^xnfR) >4 Mm is of measure zero (an

inhoipogeHetms fversion of Khintchine-Groshev)

21
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All known examples of badly approximable

{A, b) G M m x n (R) x l m belong to a countable union

of proper submanifolds of M m x n (R) x Rm => form

a set of positive Hausdorff codimension.

A dynamical approach:

consider the collection of vectors

p G Z m , q € Z n | =|

This would be an element of the space £1 = G/T of

affine lattices in R m + " , where

def A defG = Afif(Rm+n) = G « R m + n and T = T ix Zm+n

* *

That is,

* V

* ' is

, w e R m + n } .

22



Note that:

the quotient topology on Q coincides with

the natural topology on the space of affine

lattices; that is, Ai+wi and A2+W2 are close

to each other if so are w^ and the generating

elements of A*

Cl is non-compact and has finite Haar mea-

sure

ft (the set of true lattices) can be identified

with a subset of Cl ( -TL= {Aei i I 0 € Aj

gt as in (*) acts on Q, and the expanding

horospherical subgroup corresponding to gi

is exactly the set of all elements of G with

linear part LA and translation part

and b Gmxn



For e > 0, define

defft£ = {A € fi ||x|| < £ for some x G Aj .

Then $1 \ Qe is a closed (non-compact) set disjoint

from £1

Theorem 5. Lei F — {g± \ t > 0} be as in (*).

F
b
0

is bounded and

stays away from ft

L Zm+n+ C n \ Oe /or some e > 0

b) 25 6ad/y approximable

24



Proof. 01) <Hh*fome 3

0

VWe

Theorem 4. Let F = {gt \ t > 0} be a one-parameter

subsemigroup ofG, H = H+(gi) the expanding horo-

spherical subgroup. Then for any closed F-invariant

null subset Z of ft and any A G J7; the set

{he H \ FhA is bounded and FhA n Z = 0}

has full Hausdorff dimension.

Corollary. The set of badly approximate (A,h) G

x Rm has full Hausdorff dimension.
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Back to the horaogeneous approximation.

One can generalize Dani's correspondence as follows:

Given a non-increasing function ip : M+ *—• M+,

there is a unique function £ : R+ —> R+ such that

the following holds:

A G Mm X n(R) is t/^-approximable

t
gtLAZm+n G tt£(t) for infinitely many t G N

Thus Theorem 2 is equivalent to the following

Theorem 2'. For almost all (resp. almost no)

A G 0. one has gtA G S\(t) for infinitely many t G N;

provided the sum

oo oo

t = l t = l

diverges (resp. converges).

26



The above theorem can be proved using ergodic

theory (in particular, exponential decay of correla-

tions) and can be generalized to

• any partially hyperbolic gt, not necessarily of

the form (*)

• other Lie groups G and lattices T C G

• more general than Qe subsets of G/T

(with "uniformly^regular boundaries"

• multi-parameter actions

See [K-Margulis, Inv. Math. 1999]

a new (dynamical) proof of Theorem 2

logarithm laws for geodesies and flats in

noncompact finite volume loc.sym.spaces



*

o
c

L

3

,<|, »(,e Jef

»o, is OK

=
•for



~ Problem. (Mahler's conjecture, 1932)

Is it true that for almost all a:GR the inequality

has at most finitely many solutions for every f3 > 0?

(for a.e. x, the n-tuple {x: x
2 , . . . , xn) is not VWA)

Why the same proof does not work:

the measure of solutions sets near tangency points

is bigger than it should be.

^Solved in 1964 by V. Sprindzuk

rise to a new branch of number theory,

"Dipphantine approximation

with^dependent quantities"

(Crucial: dependence relations between

X) 2/2 x , . . . , yn — x j

29
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Recurrence of unipotent trajectories.

An eleiaentair observation:

horocyclic. trajectories

on SL2(R)/SL2(Z)

do not run off to infinity. .«
1

Much harder to prove: the same holds for any

on 0. for k> 3 (Maxgulis 1971, Dani

1986)
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What about degenerate submanifolds?

The simplest class of examples:

proper;_affine subspaces L C

It has been known for along time (Schmidt 1964)

that some of them are extremal, and that it de-

pends on Diophantine properties of coefficients of

parametrizing affine maps.

clearly (x,x) is

VWA for all x !

A modification of the method described above

allows one to:

• write down the criterion for extremality of L

[not hard to obtain by standard

(Sprindzuk's) methods, but still unpublished]

40b



as a consequence, show that the set of

non-extremal r-dimensional affine subspaces

of Rn has Hausdorff codimension r.

has HausdorfTdimension (n—r)(r+l)—r ]

• prove the following generalization of

Theorem. Let L be an extremal affine subspace of

W1, and let M be a smooth submanifold ofL which is

non-degenerate in L a£ almost every point

Then M is extremal.

M c L i s nondegenerate in L at yo if

Tyo L is spanned by partial derivatives of f at

where M = f({7), U C Rd, and y0 = f(x0).

40c



Multiplicative approximation

Let ip(x) be a non-increasing function

Definitions. Say that y G Rn is

ijj-ayproximable il)-rnult.a,pproximable

if there are infinitely many q G Zn such that

y • q +p | is not greater than

for some pG

Clearly t/^-approximable =^ ^-mult.approximable,
»w>»fltf{;cafiVe

hence every y G Mn is ^-approximable.

Theorem 2M. Almost every (resp. almost no)

' is ip-mult.approximable, provided

the integral J^°(logx)n 1ip(x)dx [ diverges

(resp. converge^). (W. Schmidt 1960)



Definition, y G M71 is badly mult.approximable (BMA)

if it is not --Bpproximable for some c > 0; that is, if

q€Zn\'{0}

t

Facts. The set of BMA y e W1 is

• of measure _zero (Theorem 2M)

jt^ if n > 2 (Littlewood's Conjecture)

Note: the validity of the conjecture for n = 2 implies

the general case =^ will assume n = 2.

42



Repeat: (yu y2) is BMA iff

mf 2/292 O >0

both 2/1 and 3/2 are BA (2/1*2/2) is BA

s
• 2/1,2/2 are cubic irrational =>> (2/1,2/2) is BMA

(Cassels and Swinnerton-Dyer 1955)

• for any y\ E R,

dim ({2/2 I y2 is BA, (2/1^2) is not BMA}) = 1

(PoUington and Velani 2000)



An elementary observation: y G I 2 is BMA iff the

trajectory £>+LyZ3, with D+ =f {gt 11 £ R\} and

is bounded in the space $1 = SL

Recall:
2/2

= 1 0 1 0
0 0 1

\
, so that

\

(here

43



Moreover: for s = (51,52), with Si > 0 and

si + S2 = 1 (weight vector), define the

s-quasinorm on R2 by

and say that y is s-badly approximable if

0
0

0

0 \
0 > 0 > is bounded.

Clearly BMA implies s-BA for every s.

One can prove: the set of s-BA pairs has Hausdorff

dimension 2 for every s.

43 a



Cojajegture. (W. Schmidt 1982) There exists a pair

which is both ( i , i)-BA and (#, £)-.

Quoting Schmidt: "If this conjecture is false, then

Littlewood's conjecturejstrue."

It seems plausible to conjecture that:

for any choice of finitely many weight vectors s i , . . . ,

the set of pairs (2/1,2/2) which are Sj-BA for every i

is non-empty (and maybe even has

full Hausdorff dimension).

A more general dynamical conjecture:

for any choice of finitely many partially hyperbolic

one-parameter subsemigroups Fi of D+,

the set of A G ft such that

the trajectory i^A is boundedjor everyj

is non-empty (and maybe even has

full Hausdorff dimension).

44



Note: the orbit of the full diagonal group

D = {gt | t G M2} is obviously unbounded

(moreover, any sequence gt{k)Lyl? with

infinity in ft).H + *

So to prove Littlewood's Conjecture

one needs to show that

cannot happen (no problem if n = 1).

44 ft baity



Another elementary observation: if it does happen,

then the closure of D + L y Z 3 contains a lattice A such

that the full orbit DA is relatively compact in

(take a limit point of g\^Lyl?, k —> +00)

A non-elementary observation: there are very strong

reasons which rule out a possibility for such an orbit

DA to be compact!

Thus Littlewood's Conjecture is reduced to

Conjecture (CSM).

(Cassels and Swinnerton-Dyer 1955, Margulis 1999)

Any relatively compact orbit DA, A G fi, is compact

45



Theorem. (Cassels and Swinnerton-Dyer 1955)

"isolation theorem" or

"local rigidity of compact orbits")

Define)p{x) = a cubic form onlR3 stabilized

by D), and let A £ Q be such that DA is compact

Then for every 0 < a < b there exists a neighborgood

U of A such that

\/AeU\DA 3x <E A witha< \B(x)\ <b

In particular, Ve > 0 there exists U 3 A such that

D A n ( ] £ / 0 for any A G U \ DA

46



Reduction of Littlewood's Coniecture to (CSM):

If y is a counterexample, then one finds a sequence

of lattices A& = dkLyZ
3', d^ E £), converging to a

lattice A with a relatively compact P-orbit.

By (CSM), DA is compact.

By the Isolation Theorem, no^gar) in the values of

|i?(x)|, x E Afc, is possible.

However

- B ( iy(^)) = (qiyi + Q2V2 +p)qiQ2

is equal to zero if <?i<?2 — 0,

and is bounded away from 0 otherwise.

47



Lemma, Let A G ft be such that DA is compact.

Then any root subgroup of D

(for example, F = {ft — diag(e*, e~2t, e1)})

acts topologicallxi transitively on DA.

Explanation. Dgl? is compact

t

~xDg n SL(1) is Zariski dense in g~lg~xDg n SLs(1i) is Zariski dense in g~lDg

g~1Dg has no non-trivial rational characters.

Similarly, if \ is a character on D and F = Ker(x),

FgT? is compact <&g~xfg e SX3(Z) for some f eF

^ h t—>• x{ghg~1) is rational, a contradiction. •

48
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