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Problem %. Given a non-degenerate irrational in-

definite quadratic form B of signature (m,n), study

at
the set of its values @8 integer points.

Approach: using a linear unimodular change of vari-

ables g : R™*" 1 R™*+™ one can write

B(x) = ASp.n(9x)

—

where A € R, g € SLy 40 (R) and
2 2

2 2
S’m,n(ml; s ;-'L'm—l—n) =T+ '+$m_$m—l—1.—' T Lmn

and then work with {gx |x € Z™™"}.




: Example Tl\_Q Oppenheim C.ujec"ute :

| | Lo QVQI'j mJ«e{"n;"'Q_, irtaft onal 1‘“‘(‘“*;_
form B on_l&k, k%3, |

| PfOVQJ by
in.(; 1 8 (x )l = Q MM’julis
X €T {oy in 1986
No{; kue o k=2 if %(p,q ):(dq-P)q,
L% R(x)|? = ~fls &
Hen 2o 07 ST P o

3



Problem 2. Given a system of m linear forms

Ai,..., A, on R® how small (simultaneously) can

be the values of

when q = (q1,.-.,q,) € Z™ is far from 07

Approach: Put together

A(qQ) +p1,-- -, Am(Q) + pm and  q1,. .., ¢,

and consider the collectionlof vectors

() ver) o]

where L, def (Ig" _;1

rows Ai, ..., An.

) and A is the matrix with
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Emwp[{ Li“'&.woodlf Cohjec'f'ufe :
gor ANy Yy, , Yy, clR

ind |‘jt‘l*P1“ -t l'&ﬂ*t"h' = 0O
l'n-wPaG?L

qeZ~{o) | @
né 144,%*9a g+ PHYl- .- 1qal = O
PeZ, q,,.,qm€ 2 {0} LR | o
(V\Q'l‘ Hue CL Y\='- 1)
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This motivates the use of the following dynamical

system:

Phase space. Fix k£ € N and consider

"

\ Q= det the set of unimodular lattices in R*

- (discrete subgroups with covolume 1).

That is, any A € €2 is equal to le' D --- D Lxg

where the set {X;,...,x;} (called a generatmg set of

the 1attlce) is hnearly independent, and
“xi A.-_-. A Xk “ "

An element of © which is easy to distinguish is Z*
(the standard lattice). In fact, any A € Q is bequal
def SLi(R). That is, G acts

transitively on €2, and, further, I' = det SLi(Z) is the

to gZ* for some g € G

stabilizer of Z*. In other words,  is isomorphic to

the homogeneous space G/I.



Topology. Two lattices are close if their generating

sets are close. This defines a topology on {2 which

coincides with the quotient topology on G/T.

a subset K

Fact: ) is not compact. More precisely,
of ) is bounded iff there exists € > 0 such that for

| any A € K one has infecp oy ||| > € (Mahler’s

Compactness Criterion). In other words, define

ng—?-f{AEQI x|l <€forsomex€A\{O}};

then 2 \ Q. is compact.

Measure. One can consider a Haar measure on GG

(both left and right invariant) and the correspond-
ing left-invariant measure on (2. Fact: the resulting
measure is finite (Borel-Harish Chandra). We denote

by p the normalized Haar measure on ().



Action. () is a topological G-space, with the (con-
tinuous) left action defined by

gh={gx|x€A} or g(hl')=(gh)T. J

L

One can consider the action of various subgroups

(one- or multi-parameter) or subsets of G.

Features:

e uniformity of the geometry of the

homogeneous space G/I’
(a nbhd of every A € 2 2 anbhd of e € G)

e the representation theory of G

(the G-action on ) <« the regular repr-n of G on
L*())

o combinatorial structure of the space of

lattices

e intuition coming from number theory
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- general _situations:

s+ G = (connecied) [ie g Foulp .
P e G o (attice

& G = Connecied

Sema’si'mp_(& Lie 3r¢q,p‘
ceunfar.

ffee, no compact Eactors

C e on ireduc; by latdrce

5= (P B} a Guite ek of primes
(p.;ss:u., intluding oo )
®
G= 1 G, 6= Lie growp over B
=1 ( @m - 'R)

( b S-arithmebic  wumber H\eotn)
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Jiven HC &, descibe
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- with prescribed  behavier of M

Cwhile  wedq wuwher Jhuj dedls with
pfobloms  (;le:

A

desccide PNe sed of [m‘:tf:s

malices

f

with yresu.'bgd‘ .'a??ro_x{md\'m w:»wv Y L
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Since g(hA) = (ghg';l)gA, local properties of the

g—-actionva,re determined by the differential of the

conjugation map, Ad,(z) = s exp(m)g ) =0

ghA
hA — /s
Al \
An element g € G is said to be: \3}\

unipotent if (Ady, —Id)’ = 0 for some j € N

(& all eigenvalues of Ad, are equal to 1);
quasi-unipotent if are of absolute value 1;

partially hyperbolic if it is not quasi-unipotent.

Equivalently: given g € GG, define

Hi(g) ={h€ G| g hg' — e as | — +oo}

(expanding and contracting horospherical subgrou ps)

Then G is locally a direct product of
H_(g), Hy(g) and another subgroup Hy(g),
and g is quasiunipotent iff Hy(g) =
(that is, H_(g) and H 4 (g) are trivial).



Furthermore, for any A € Q .the orbits H_(g)A,
" H,(g)A and Hy(g)A are leaves of stable, unstable

and neutral foliations on ().

Example. Suppose that g € G is diagonalizable
over R, and choose a basis of R* in which g =

diag()\l,...,)\l, ..... ..,')\l,...,)\g), )\1>...>Al_

11 times 7; times
NI, ;|
Then Ho (o)  (72N/ [/ .

d H e
Xk
are subgroups T
of lower- P /
o i B ,:_-,:?‘.‘..':Mm___,_ﬁ,m. . _l
and upper- T TG fﬂ“;f 7
L s 2 e FP | f ‘.“, fg
triangular T e e /f 7 /
| £ -w“’ : / . . /

groups: T e //é{{/ ‘;‘,{ﬁ
A e




More examples. The simplest case k = 2: then |

2 = the unit tangent bundle to - \\'\ / SL 2.( ‘l) :
The geodesic flow — the action of g; = | 0 et ]

The l}g;gpym — the action of u; = ({1) i ) |

~(an ‘éxample- of a unipotent flow).




Ergodic properties.

Moore’s Theorem: the action of any noncompact

closed subgroup of G on € is ergodic and mixing.

Decay of correlations: there exists § > 0 such
‘that for any two functions ¢,9 € Cg;,,,(€2) with
[¢= [1% =0 and any g € G one has

|/(9‘P -9))| ﬁconst(go, p)e Plal

In particular, if g; is partially hyperbolic, then

oy

l I/(gi(p )| < const(p, 9, ge)e " . J

(Mozore, Ratner for k = 2,

Howe, Cowling, Katok-Spatzier for & > 2).
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Uniform distribution of unstable leaves: let g; be

a partially hyperbolic one-parameter subgroup of G,
H = H,(g), v a Haar measure on H. Then there
exists A > 0 with the following property:

for any open subset V of H, any ¢ € Comp(Q)
and any compact subset @ of {2 there exists C > 0
~such that | |

1
v(gtVg—t)

/ @(hg:A) dv(h) — /cpdp, < Ce™™
QtVQ t Q2

I il

L

foral A€ Qand t >0. (K—Margulis 1996) -




Orbit closures of unipotent flows.

Fact: any orbit of the horocycle flow on SLy(R)/T
is either periodic or dense (Hedlund 1930s).

Theorem. LetU be a unipotent subgroup of G. Then

for any A € Q there exists a closed connected sub-

group L of G containing U such that the closure of

the_orbit UA coincides with LA and there is an L-

invariant probability measure supported on LA.

(conjectured by Raghunathan, proved by Ratner)

Furthermore, L = G for A not lying in a countable

union of proper submanifolds of G/T".

(unipotent flows are “not very chaotic”)

14



Corollary. Let S(z1,x2,23) = 2173 — ac% , and

Hs = {h € SL3(R) )= 56 ¥V x € R} 502, 1)

(the stabilizer of S). Then any relaﬁvely compact |

orbit HsA, A a lattice in R®, is compact.

Explanation: Hg is generatéd by its unipotent one-

parameter subgroups,

t2/2°\ 1

1 ¢ | 0 0
Vi)=10 1 ¢t JandVI@®)=| t 1 0
0 0 1 t2/2 t 1

and there are no intermediate subgroups between

Hg and SL3(R).

14q



Corollary. Let B be a real nondegenerate indefinite

quadratic form mn 3 variables.

If|B(x)| = €
for some € > 0

and all x € Z>~. {0},

v |
Ihx]2e fr some €50
and all heHy X e2 {0}

¢

cela {~:wek7 Compac/?(.' in SV,

T
K

He A s

then B is
proportional to

a rational form.

HQ, s dzgd OV O

g
HanSLi(2) s
Zatski dewse i Hy

g

vol (He /Mg NSL5(72)) < 00

telak u‘Q(kf CQG'\PQ(,-{' ‘
(here R%) 5S(5x) N 7

owa N = 37&3 )

14s



Basics of metric number theory

Let ¥(z) be a non—incréa.éing function R, — R,.

Definition. Say that A € Mm N (R)

(viewed as a system of linear fgtms
Ar,.y Am | on R" ) is 1-approximable
if there are infinitely many g € Z™such that

liAg +Pr5 P( “3 for some p € Zn

Theorem 1. Every A€Mpsn(R) s %-—appmmz’mable.
(Dirichlet 1842)

Theorem 2. Almost every (resp. almost no) A _

is Y-approzimable, provided the integral floo Y(z) dzx l
diverges (resp. converges). (Groshev 1938) |
| ( e gh;“i\-gh;“e-(i-(c)shgv Thﬂoﬂm)

15 A



Definition. A € M, x»(R) is badly approximable

if it is not S-approximable for some ¢ > 0; that is,

IAq +p|[™llq||™ > ¢
Vp € Z™ and all but finitely many q € Z™.

if there exists ¢ > 0 such that

(If m = n =1 o € R is badly approximable <
coefficients in the continued fraction expansion of «

are bounded)

Facts. The set of badly approximable A € M., «»(R)
1S

o ponempty (Perron 1921)

e of measure zero (Khintchine 1926)

e of full Hausdorff dimension (Jarnik 1929 for

m = n = 1, Schmidt 1969 for the general

case)

16



Theorem 3. (Dani 1985) A € me.n(R) is badly
approzimable iff the trajectory {g: L, Z™ ™ |t € R, },
with LA* = IM A) aud

(*) gt = dia‘g(et/m) SR et/m; e—-t/'n e—t/‘n) )

9. %+ vy

o unimodular labhicrs in (RM*Z

" 15 bounded in the space —S—)Y(rﬂe?"e k=m+mn.)
(Reestl: s = { A f2 AN B, #{ov], N~Rg %MP‘O{')

(¢$> for some ¢ > 0, {g: L., Z™ [t e Ry INQ = @)
(@ no \al-hre pomh Coom

Proof.

w\ n His region)

3

o / ) nA«,; pl”
MAq+ el Naizc

( ‘jt ~invaciant )
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Corollary. (Dani 1985) The set
{Ae|{gAlt 2 0} is bounded} ,
with {g:} as in (x), has fulf ‘Hausdorff dimension.

D _ B 0 m-+n
prof 0= (& p )z =

B 0\ _
gtA — gt g—t : gtLAZm+ . L]
C D _.
L I _/

. 4
Yaunded

18



Theorem 4. (K-Margulis 1996) Let F = {g¢ | t >
0} bea 'one—pammeter subsemigroup of G, H = H,(g1)

the empandmg horospherical subgroup. Then fo'r’ any

closed F-invariant null subset Z of Q and any A € Q,
the set {h € H | FhA is bounded and FhANZ = &}

has full Hausdorﬁ ‘dimension.

\\. o o
Cor.ollary. If {g:} is partially hyperbolic, then the
set {A € Q| FA is bounded and FAN Z = @} has

full Hausdorff dz'mensio_n.

T X ( owvoid

Another Corollary: Schmidt’s result on bad.ly ap-

proximable systems of linear forms

(since for g; as in (%), H = {LA | A € men( )})

i
®




Proof of Theorem 4. Use uniform distribution of
unstable leaves to create a Cantor-like set of big

Hausdorff dimension.

S'l'ﬁaﬂ- 1 of the (q'\"‘ﬁ?_ SQ'& consfruckion:

(Holds for any Lie group G and any lattice I' ¢ G

under an additional _tech_hiéal assumption on {g;}.)

20



Inhomogeneous approximation

An affine form = a linear form plus a real number.

A system of m affine forms in n variables is given by

a pair (4,b), where A € M, x»(R) and b € R™.
(x=>Ax 1+ b RE>R")

Definition. A system of affine forms given by
(A,b) € My, xn(R) x R™ is +p-approximable
if there are infinitely many q € Z™ such that

lAq +b +p|™ <¥(]lq||*) for some p € Z™,

and it is badly approximable if it is not £-approximable

xr

for some ¢ > 0; that is, if there exists ¢ > 0 such that

l |Aq + b+ p||™"[lq]|” > ¢ s

Vp € Z™ and all but finitely many q € Z".

Fact: The set of badly approximable

(Ab € My xn{R) x R™ is of measure zero (an

‘inhomogeneousiversion of Khintchine-Groshev)

21



Exames  (m=n=1) (laqspspl vs. Iq1)

1. d%'*’%“” Po = O  €of seome P,,?Q € ZL
,l),
1q!

Latqerpepllal = 1a(q-90) +p-pol{q-qo] - ——
| u' t ‘i - 7@‘

Colig) is badly appfoximable &=y q;r::-::::ye

. deQ,p4@Q {«q+3+p|pqe 2 } po
i'j discrete
/A

‘dqf ?"‘P“ﬂ 2 const- Iq| --'-') badly qwe'oximnue,

3. 77?7

2\e



All known examples of badly approximable
(A, D) € My xn(R)xR™ belong to a countable union
of proper submanifolds of My,x»(R) x R™ = form

a set of positive Hausdorft codlmensmn

= T

A dvnamical approach:

- cons_,ider the collection of vectors

{ (Aq+qb+ P)ip c Zm, = Z‘n} _ LAZm+n+(g)

This would be an element of the space = G/T" of

affine lattices in R™™"_ where
“

G dot AF(R™) = G x R™ " and I‘ T x zmtn

That is,

QO {A+w|AeQ, weR™"}.

22



Note that:

e the quotient tbpology on ﬁ coincides with
the natural topology on the space of affine
lattices; that is, A;+w; and Ax-+ws are c.lonse
to each other if so are w; and the generating
elements of A; |

e () is non-compact and has finite Haar mea-

sure

e  (the set of true lattices) can be identified
Cwithasubsetof @ ( LT (AefLlOeA})

e ¢g; as in (%) acts on , and the expanding

horospherical subgroup corresponding to g;

is '_exa,ctly the set of all elements of G with
linear part L, angfr t’]ﬁ&ﬂSl&tiOﬂ part (g),

B A€ My«n(R) and b € R™,
T _men b YA 2 mn by}
( 9, (Laz™ +(}) = ('S*LAj‘*)"‘.l *5{(0)/
| s |

y



For € > 0, define
diﬁ-—f{Aeﬁl |%]| < & for some x € A}.

Then O ~ . is a closed (non-compact) set disjoiilt

N

from §2. !a_ﬂ_
‘-, A

Theorem 5. Let F' = {g; | t > 0} be as in (x).
Then

R — | (b)) { is bounded and
4 0 stays away from Q
)y
| m-+n b ~ ~ |
FL,Z + 0 CQ\ngorsome€>0
b

(A,b) is badly approzimable

24



Proof. &) Othetwise 3 Ay € F(LA"&QM*“* (g))
and %y ¢ M wide Xl > O since the otbit
i¢ reh’cml’ compact | {/\kkhas a limt pownt A

which must wntain 50, (.2, be‘aha to -n- .

b) See Hw picture | p.17,and skt the lathice
Ccom a %ﬁmet-\ VIS i dn og._T’lr\deM &
_0"'\2,' deduces

)

- Theorem 4. Let F = {g; | t > 0} be a one-parameter
| subsemigroup of G, H = H, (g1) the ezpanding horo-
spherical subgroup. Then for any closed F-itnvariant

- null subset Z of Q and any A € Q, the set
{h € H | FhA is bounded and FhAN Z = &}
has full Hausdorff dimension.

Corollary. The set of badly approximable (A, b) €
 Mmxn(R) x R™ has full Hausdorff. dimension.

25



Back to the homogeneous approximation.

One can generalize Dani’s correspondence as follows:
Given a non-increasing function 9 : R, — R,
there is a unique function € : R, — R, such that

the following holds:

A € My, «n(R) is 1-approximable

)

gs L, Z"" € Q) for infinitely many t € N

Thus Theorem 2 is equivalent to the following

Theorem 2'. For almost all (resp. almost ho)

A € Q one has g A € Q) for infinitely many t € N,

provided the sum

oo ' o0

Soem)™ (~ Do) )

t=1 t=1

diverges ( resp. converges).

26



The above theorem can be proved using ergodic
theory (1n parti(jular, exponential decay of correla-

tions) and can be generalized to

e any partially hyperbolic g;, not necessarily of

the form ()

e other Lie groups G and latticess ' ¢ G
e more general than Q, subsets of G/T

(with “yniformly __gpgular boundaries”)

e multi-parameter actions

See [K-Margulis, Inv. Math. 1999]

4

e a new (dynamical) proof of Theorem 2

e logarithm laws for geodesics and flats in

noncompact finite volume loc.sym.spaces

2%
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4 sl : the Burel-Cantell Lemeo,

'/,_ ;FQ-"( Giced Pq, the Se b o f
/"7 yelo1" satisgying (¥ )

'H\Qf& are at m:os{- c,ons,', “q“ Values of PS) n " "l’(l "‘“ )
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qelﬁ ' ey
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i~ Problem. (Mahler’s conjecture, 1932)

Is it true that for almost all € R the inequality
P+ @12 + @22% + - 4 gaz™| < ||q|| )

has at most finitely many solutions for every 8 > 07
(for a.e. z, the n-tuple (z,2?,...,z") is not VWA)

Why the same proof does not work:

the measure of solutions sets near tangency points

is bigger than it should be.

15 Solved in 1964 by V. Sprindzuk

\,Gave rise to a new branch of number theory,

“Diophantine approximation

et e e - e e LT T T

with dependent quantities”

(Crucial: dependence relations between

ylzm,y2=m2,...,yn=az”)
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Why Hhis is iﬁiio(_hw\_‘“-‘_ |
1. Mallee’s otivetion:

(%,..,x") net VWA
S

V?no thete afe ot most Fnitely m'n?
e L(>] ' wibh

poly nomials
L 1P < hey™™»

| j%ﬁ:iﬁ ht of e

P g

Y

X s “wot v_e!;; alae\'fafc "

2. Diophan tine condifions in KAM

{g ﬂﬁae’ﬁgiﬂ?wh °f @ difp equation are

Q shficked éim e on a submanifold of TR“,
1+ ey e wPofant do kasw Chat almost qlf

valugs of MR weffiends howe cordfein
apyroximalon bleprsKes
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3 Pé’l‘%‘_ﬁiw‘ generalizations

Say tot & C"submanield MeR”
is vondegeneqate ot yoe M ¢ “plahes
cantot have a highes ordes taryene fo it at y ©
¢ R spauncd by pasdal dRiivatives of
g=(£,..5) at %o | where

M= £(V), vcw? , and Y, = €(%)

Meh- ijec{ute Let MciR” be a C™
submanifalcd mn&sema*@ of almost evef7 Paint

Thewn | M-, 'i)mphawtmeﬁbmﬁm‘c yelﬂ u/ln(,t\
holds 6 _ae veRT, wolds goc ae geM.

Cownjectuie (qumo"euh 1920% For M ay absye,
M s @N%F‘eﬁmﬂ)

n=2 (M =a plavar cuwrve with nonyero Cudvat
W-Schmedé (364

uf a.e

General aig K-Maggulis 199g

.usius the if,nq.m:cq‘ a??roq_f_j,‘
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Mote generally: KWiakching - fype theotems
on_ wmanields

Sl with Mz {(x,k‘,.-,x“)lrelﬁ}

o
Btk 1984: 2 $lk)<oo
K= \‘!,
(2,5.") iy Nov ¥- anrommkh fr ae x
%eresnw.ck 1998 - 2 wle) = oo
Y
XL, TT) 1S peaplfeximebR  for a.@
A Com\’ma"nsn '-C 'kﬂcld“m\ ’&t\\mqk&
| with R “me%,& of (q-l'-l-.czs :
Let Mc@! bea C."“q.em&qemde submanfald, They,
QL*‘_?.L*;_:_(,I ( cesp. giw_p.;'l- M) YEM wre ¢ -appro ximab (o
pravided the S 4 ZMM diverres (resp. coaverges )

-

(& %e ¢ \ Y
&?ﬂnik K MQ{SH(G 1999 @ Becesney ch l993_.__
#» + 3€feshev.‘ck (20017

M= {(£0),.., fatd} is ae nonrdRqentsa i
G-hmk (=, ..., x"))l/ (xeIcR)

fof 0.0. %, ((‘,rx.), my fnlx)) m-l VWA
(u‘.e. M is E -
exiremal é | - %2

——




Q Ceﬁ QH?_.
tH d¢¢¢ ¢l _______ e
3 f>5 sedn that gy im(-.wk" mqw, ‘I€7£ one hag
wp)
L“l.m*---*‘ln&-*"l “aql T , sowme pe/l

¥
3 in{;u&l—e\y m«a) + €N suth thet &0 som q¢ 7Lh' p&l

W *
T {\q'm R ) <e -t 8)
L Suqu < et |
L/z _
_¢ ~B¢
{1 ranrpl e €19,9,5...43. 9.t c 2
%xi 1 < Yn & . "
Wl ce™ el iz m e Flq (e e®, izl n

Ay WA s,

:’ 4-"' ' "‘:
{ e({'* { .,.H\ lq\‘l;"’ "'1“‘,.\1'“ ¢ eh \ e

~d(ev By L A. .2 .
(*1' {'f ) |1~ ( Qﬂ...‘ e h*‘* ’ t':"\-.' h

T

3 L s@\ueme {5-94-::9 and c‘x >

Such thak 9_&.'—7 1.“.\ € .Q_QQ-K'EJJ
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Alyo recall: L. = 4 9w\ | SLE spaa e
'Y 4 ‘ Uw: moduler
A ladtice s
- ) 7+ -t -t/ " N
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Recurrence of unipotent trajectories.

An elementary observation:

horocyclic trajectories
on SL2 (R)/SL2 (Z)

do not run off to infinity.
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What about degenerate submanifolds?

The simplest class of examples:

proper affine subspaces L C R".

It has been known for a‘long time (Schmidt 1964)
that some of them are extremal, and that it de-

pends on Dié)phantine properties of coefficients of

parametrizing affine maps.

clearly (:c,ac) is }

— VWA for all z ! [

A modification of the method described above

allows one to:

e write down the criterion for extremality of L

[not hard to obtain by standard
(Sprindzuk’s) methods, but still unpublished]
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e as a-consequence, show that the set of

non-extremal r-dimensional affine subspaces

of R™ has Hausdbrf_fpodimension r.

| <« has Hausdorff dimension (n—r)(r+1)—r ]

¢ prove the following generalization of y

Theorem. Let L be an extremal affine subspace of
R"™, and let M be a smooth submanifold of L which is

non-degenerate 'in L at almost every point.

Then M is extremal.

M c Lis nondegenerate in L at yo if |
Ty, L is spanned by partial derivatives of f at xo, |

where M =f(U), U C R?, and yo = f(xo).
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Multiplicative approximation

Let 9(z) be a non-increasing function R, + R,.

~ Definitions. Say that y € R™ is

Y-approximable -mult.approximable

if there are infinitely many q € Z™ such that

Iy .q+ p| is not greater than
!

[w(lai™) | (1] laih

— q: F#0

Lo

for some p € Z.

Clearly y-approximable = 1y-mult.approximable,
. ymuldiplicatively
hence every y € R™ is =-approximable.

Theorem 2M. Almost every (resp. almost no)

y € R™ s ¥-mult.approximable, provided
the integral | [ (logz)" *(z)dx | diverges

(resp. converges). (W. Schmidt 1960)
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Definition. y E R™ is badly mult. approximable (BMA)
ff it is not < % roximable for some ¢ > 0; that is, if

gél%"s Iy . q T pl HQ%#O |Q'Ll > 0

qeZ™~ {0}

0

inf [T, l1.g +p.llg] >0
PEZ",
q€Z~{0}

Facts. The set of BMA y € R™ is
e of measure zero (Theorem 2M)

? empty if n > 2 (Littlewood’s Conjecture)

Note: the validity of the conjecture for n = 2 implies

the general case = will assume n = 2.
RSl
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{(Fe L2

Repeat: (yl, ‘yg) is BMA iff is bounded

‘ pig% Y101 + Y22 + D] -max (1,(q.1)- max (14q,1) >0
q1 sQQGZ:\{O}

———

g i
119 + p1llyeq + p2llg] > 0
p1,pz €Z,
qGZ\{O} - —J
| 4 J
\ 3
NGRS (e )
-t/
) et s e
QNX {\ ° e-‘l') Ly-&- } . s bounded
e oundsed - |
both y; and y, are BA (y1,92) is BA

qeb
® 1,2 are cubic irrational = (y,,y2) is BMA

(Cassels and Swinnerton-Dyer 1955)
e for any 11 € R,
dim ({yg | y2 is BA, (y1,32) is not BMA}) =1

(Pollingtdn and Velani 2000)
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An elementary observation: y E R? ig BMA iff the
trajectory Dy LyZ3, with D+ {gt | t € RZ} and

d1ag( bittz o tl,e"tz),

is bounded in the space Q = SL3(R)/SL3(Z).

1 y1 y2
Recall: Ly=10 1 0 ], sothat
' 0 O 1
p et(qry1 + q2y2 + p)
gLy | ¢1 | = e "1qq
q2 e "2qy

(hff@ '% = ”&1 1’%&)
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Moreover: for s = (81, $2), with s; > 0 and

s1 + s2 = 1 (weight vector), 'deﬁne the

s-quasinorm on R? by

def
|(z1, z2)lls = max (Jz1]'/2, |z2]'/°2) ,

and say that y is s-badly r approximable if

inf  |y1q1 + y2q2 + pl|lalls > 0
pEZL

b

q€Z?~.{0}
| )
¢ 0 0
{0 e~%1t LyZ3 t > 0 » is bounded.
\ 0 0 e St

Clearly BMA implies s-BA for every s.

One can prove: the set of s-BA pairs has Hausdorft

dimension 2 for every s.

e, T
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Conjecture. (W.Schmidt 1982) There exists a pair
(y1,Yy2) which is both (3, %)-BA and (%, $)-BA.

Quoting Schmidt: “If this conjecture is false, then

Littlewood’s conjecture is true.”

It seems plausible to conjecture that:

for any choice of finitely many weight vectors sq,. .., sg,

the set of pairs (y1,y2) which are s;-BA for every 1

is non-empty (and maybe even has

full Hausdorff dimension).

A more general dynamical conjecture:

for any choice of finitely many partially hyperbolic
one-parameter subsemigroups F; of D,

the set of A € €2 such that

the trajectory F;A is bounded for every i _
is non-empty (and maybe even has

full Hausdorff dimension).
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" Note: the orbit of the full diagonal group
DE {gs | t € R?} is obviously unbounded
(moreover, any sequence gt(k)LyZ3 with

£*) 4¢3, oo tends to infinity in ).

So to prove Littlewood’s Conjecture

one needsl to show that | /




Another elementary observation: if it does happen,

then the closure of D, L, Z? contains a lattice A such

that the full orbit DA is relatively compact in (.

(take a limit point of ggsLyZ3, k — 4-00)

A non-elementary observation: there are very strong

reasons which rule out a possibility for such an Ol”bit

DA to be compact!

Thus Littlewood’s Conjecture is reduced to

Conjecture (CSM). |
(Cassels and Swinnerton-Dyer 1955, Margulis 1999)

—

Any relatively compact orbit DA, A € (1, is
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Theorem. (Cassels and Swinnerton-Dyer 1955)

(“igolation theorem” or

“local rigidity of compact orbits”)

Define\B(x) = :El.’EgLEg‘ (a cubic form on R3 stabilized
by D), and let A € 2 be such that DA is compact.

Then for every 0 < a < b there exists a neighborgood
U of A such that

VA€UNDA dx€A withla < |B(x)| <b

In particular, Ve > 0 there exists U © A such that

DAN Q. £ | forany Ac€U~DA.

(et Hw2 in Cank 4,
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Reduction of Littlewood’s Conjecture to (CSM):

Ifyisa coﬂnterexa.mple, then one finds a sequence
of lattices Ay = dpxLyZ>, dy, € D, converging to a
lattice A with a relatively compact D-orbit.

By (CSM), DA is compact.

By the Isolation ‘Theorem, no gap in the values of

|B(x)|, x € Ay, is possible.

However

B(x)=1B (Ly (g)) = (@Y1 + @y2 +D)N1g2

o _
is equal to zero if g1g2 = 0,

and 1s bounded away from 0 otherwise. [
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Lemma. Let A € Q be such that DA is_compact.

Then any root subgroup of D
(for example, F = {f, = diag(e*, e, e")})

acts topologically transitively on DA.

Ezplanation. DgZ3 is compact

)

g 1'Dg N SL3(Z) is Zariski dense in g~ ' Dg

0

g“ng has no non-trivial rational characters.

Similarly, if x is a character on D and F' = Ker(x),

FgZ3 is compact < g lfg e SL3(Z) for some f € F

= h > x(ghg™?') is rational, a contradiction. [J
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?L‘i@ o _mﬁg__elah;e&wr@ﬁ Assame that
there exist Ay =g A 2] suc that

theie is o gap i valugs of 5 on Xe€A,
B (B0 & soma ach)

there i a qap in values of B - xedp, , deD
| 7
there 4 a 9% in values of R
on X € eum d Ak ,o‘ G-D

koo

(o ey 222
3’:(@{-23-3: Lind d_€D  such that

the Goait (athice of {a‘. Ag% does not
hove o 9ap at (Q,b)
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S.-{'?'P-}s © WLOG  can assume Hhat
é-j;. is Homsversal & D
o (9u),, = mox; | (3“‘).:,;\

Clam  Given awy M>0

p——— T T,

;udﬁ\ &kq,'l'

Y
Uy A = N(e) € DA
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_'&3‘,2_ Now use akothas Jvfrec/ﬁ_q_n,
K. - _

e
Mot is, .Qs .-..( e'zs )
es

37 Lgmma, can chooge Sk"bw guch ’Hﬂl"’ .cshA!“@@‘
szss&aj o a subsequum of {43,

an  assume Loy ,p;: — 1 Then

fsahe B = £ 087 £, ue A

£s ond ue v
- - '
CQMNHLQ: - ‘cs“ x“ .csu u.v -F;“ A - ul" A
) LS y W
v J
1 A

(now i+ is & due wnipolent orpid1!)

%ﬁt: for any Xz(x,x,x) ¢ A
wikh 2\13<° anwd X, # Q ,

{%(ufx): (z"-l-fxs)xaxs } has no j@P.’
(ice. Y ack T ¥ such hat a< BCu.x) <hb )

= a cmladichon 2
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Q‘ﬁ@!}@ﬂ (&{@M Pz ‘VM@!@W)

elotvely cam?ad’ obil DA, Ae .D
such '!'5‘1&% its closure DA contmins a Conrad' othi#

(s Q@m@&c+

In .{Z@.c}@, onk ¢an q?p&y R&M; Mr'-ew\
o e um‘po{eu{- Subgfawp U, L:HS'['(R(/‘CA

in the  eoufse of fa prasf +o 2stablsh
, Ca%’@“;&.!j (G{am the pr.ae,c)

L.Q{- AeSL b such ¢hat
the aﬁ«@%wﬁ'@ 137(' confeins o comred e?%&{ﬁ

Thew either DA = DA or DA = SL
(eec:odic) (dense)
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A ?Mfa(%af\an of M'LQ cbove MjuM
gives

The.orews (Rafak Weiss + Elon Lincan sfrauss) k ;) 3

S).= th(@§/gi.k(‘?;) D= d'@jaﬂg! Sbjp of S’Lk“@)
let Aedl be sucl, +that

«L/ke closure DA contatns a MMPM* ohit

Than Weote Qmﬂ-s a cloted Subaramr L of SLkUR)
Coﬂ{'amwxa D such that FJ:LA and

LA c.a(ﬁes Gh L- “invel qut P!abqb.l ? MQQ}M@

Motewe.r, L has the form (k y P":ﬂ 2 [‘[ﬂ’-‘-Eol’1
d

Ay | |
Lz={p (‘—[&l Q?“ Ai eGLy(R) Z

T ded(a,) . det(A,) = 4 §

PEt o
L
. [

whece k=d% and P s a pe!‘mwhﬁ‘an ma i
N .
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Gujechuie (Margulis 1939 ) (k33 )
Foc ava A e SL one 6&' H\&{oﬂawinj hgidfj

seither DA s homogeneous, e

theie exists o cdoced subjrocp L< SL, (R)
tonkeining D Sach that [DA = LA

o or here u‘s. an a[j&brm'c Lactor map

onte a Tfank-one Qc{-n‘ow, i e

(m Qee
theie exist Dcl e ¢ aud S)

- an epimorphism @ L SH sk {hat

LA s cdosed ia L, |
_k?({aegag;%/k-:é\}) is disefele in ’
and [ dim @ (DS =1

( Gnjecture (CSM) s a special case )
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'FO Provw@ that a. e y@M is M" VWMA ,}

Conjectuie (A-Baker (1975)

for a.¢. X & R, (=, x? .., xX") is not VWMA
Proved @r ney (Bermik. Borpat)
Congecture (v.sprine fuk 1380)

" nom-degenrate. (amalyh) > 9.9, Y &M
Mc IR” non-des ' is Mot VWMA

Proved for n=2  (SprindSuk)  sex
M s shiongly

%&mmu\
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