

international atomic energy agency the **abdus salam**

international centre for theoretical physics

SMR1321/3

School and Workshop on Dynamical Systems

(30 July - 17 August 2001)

Interactions between homogeneous dynamics and Number Theory

Dmitry Kleinbock

Department of Mathematics Brandeis University Waltham, MA 02454 U.S.A.

These are preliminary lecture notes, intended only for distribution to participants

INTERACTIONS BETWEEN

HOMOGENEOUS DYNAMICS

AND NUMBER THEORY

DMITRY Y. KLEINBOCK

Brandeis University

Plan of the lectures

- ① SLn(IR)/SLn(72), basic facts Quadratic forms, Oppenheim Gnjecture
- 2 Linear forms, badly approximable systems
 One-parameter pastially hyperbolic actions
 - 3 Diophantine approximation on manifolds Non-divergence of quesi-polynomial flows
 - (4) Higher rank actions Multiplicative approximation, Littlewood's Conj.

Problem 1. Given a <u>non-degenerate irrational in-</u> <u>definite quadratic form</u> B of signature (m, n), study the set of its values $\overset{\text{tr}}{=}$ integer points.

<u>Approach</u>: using a linear unimodular change of variables $g : \mathbb{R}^{m+n} \mapsto \mathbb{R}^{m+n}$ one can write

$$B(\mathbf{x}) = \lambda S_{m,n}(g\mathbf{x})$$

where $\lambda \in \mathbb{R}, g \in SL_{m+n}(\mathbb{R})$ and

 $S_{m,n}(x_1,\ldots,x_{m+n}) = x_1^2 + \cdots + x_m^2 - x_{m+1}^2 - \cdots - x_{m+n}^2,$

and then work with $\{g \mathbf{x} \mid \mathbf{x} \in \mathbb{Z}^{m+n}\}$.

Example The Oppenheim Gnjecture:

for every indefinite irrational quadratic form B on $|\mathbb{R}^k$, $k \ge 3$, inf |B(x)| = 0 Aargulis $x \in \mathbb{Z}^k \setminus \{0\}$ in 1986

Not true for k=2: if $B(p,q) = (\alpha q-p)q$, then inf $|B(x)| > 0 \iff |\alpha - \frac{p}{q}| > \frac{c}{q^2}$ for some $x \in \mathbb{Z}^2 - \{0\}$ **Problem 2.** Given a system of *m* linear forms A_1, \ldots, A_m on \mathbb{R}^n , how small (simultaneously) can be the values of

$$|A_i(\mathbf{q}) + p_i|, p_i \in \mathbb{Z},$$

when $\mathbf{q} = (q_1, \ldots, q_n) \in \mathbb{Z}^n$ is far from 0?

<u>Approach</u>: Put together

 $\underline{A_1(\mathbf{q}) + p_1}, \dots, \underline{A_m(\mathbf{q}) + p_m}$ and $\underline{q_1}, \dots, \underline{q_n},$

and consider the collection of vectors

 $\left\{ \left(\begin{array}{c} A\mathbf{q} + \mathbf{p} \\ \mathbf{q} \end{array} \right) \middle| \mathbf{p} \in \mathbb{Z}^{m}, \ \mathbf{q} \in \mathbb{Z}^{n} \right\} = L_{A} \mathbb{Z}^{m+n}$

where $L_A \stackrel{\text{def}}{=} \begin{pmatrix} I_m & A \\ 0 & I_n \end{pmatrix}$ and A is the matrix with rows A_1, \ldots, A_m .

This motivates the use of the following dynamical system:

<u>Phase space</u>. Fix $k \in \mathbb{N}$ and consider

 $\Omega \stackrel{\mathrm{def}}{=}$ the set of unimodular lattices in \mathbb{R}^k

(discrete subgroups with covolume 1).

That is, any $\Lambda \in \Omega$ is equal to $\mathbb{Z}\mathbf{x}_1 \oplus \cdots \oplus \mathbb{Z}\mathbf{x}_k$ where the set $\{\mathbf{x}_1, \ldots, \mathbf{x}_k\}$ (called a <u>generating set</u> of the lattice) is linearly independent, and $\|\mathbf{x}_1 \wedge \ldots \wedge \mathbf{x}_k\| = 1$.

An element of Ω which is easy to distinguish is \mathbb{Z}^k (the standard lattice). In fact, any $\Lambda \in \Omega$ is equal to $g\mathbb{Z}^k$ for some $g \in \underline{G} \stackrel{\text{def}}{=} SL_k(\mathbb{R})$. That is, G acts transitively on Ω , and, further, $\underline{\Gamma} \stackrel{\text{def}}{=} SL_k(\mathbb{Z})$ is the stabilizer of \mathbb{Z}^k . In other words, $\underline{\Omega}$ is isomorphic to the homogeneous space G/Γ .

4

Topology. Two lattices are close if their generating sets are close. This defines a topology on Ω which coincides with the quotient topology on G/Γ . Fact: Ω is not compact. More precisely, a subset Kof Ω is bounded iff there exists $\varepsilon > 0$ such that for any $\Lambda \in K$ one has $\inf_{\mathbf{x} \in \Lambda \setminus \{0\}} ||\mathbf{x}|| \ge \varepsilon$ (Mahler's Compactness Criterion). In other words, define $\Omega_{\varepsilon} \stackrel{\text{def}}{=} \{\Lambda \in \Omega \mid ||\mathbf{x}|| < \varepsilon \text{ for some } \mathbf{x} \in \Lambda \setminus \{0\}\};$ then $\Omega \setminus \Omega_{\varepsilon}$ is compact.

<u>Measure</u>. One can consider a <u>Haar measure</u> on G(both left and right invariant) and the corresponding left-invariant measure on Ω . <u>Fact</u>: the resulting <u>measure is finite</u> (Borel-Harish Chandra). We denote by μ the normalized Haar measure on Ω .

 $\mathbf{5}$

<u>Action</u>. Ω is a topological *G*-space, with the (continuous) left action defined by

 $g\Lambda = \{g\mathbf{x} \mid \mathbf{x} \in \Lambda\} \quad ext{or} \quad g(h\Gamma) = (gh)\Gamma \,.$

One can consider the action of various subgroups (one- or multi-parameter) or subsets of G.

<u>Features</u>:

• <u>uniformity</u> of the geometry of the homogeneous space G/Γ

(a nbhd of every $\Lambda \in \Omega \cong$ a nbhd of $e \in G$)

• the representation theory of G

(the G-action on $\Omega \Leftarrow$ the regular repr-n of G on $L^2(\Omega)$)

- <u>combinatorial structure</u> of the space of lattices
- intuition coming from <u>number theory</u>

More general situations:

- G = (connected) Lie group P G G a lattice
- G = connected <u>semisimple</u> Lie group, center-free, no compact factors
 F c G an <u>irreducible</u> lattice

•
$$S = \{P_{1}, P_{k}\}$$
 a finite set of primes
(possibly including ∞)
 $G = \prod_{i=1}^{k} G_{i}$, $G_{i} = \text{Lie group over } O_{P_{i}}$
($Q_{\infty} = IR$)

Roughly speaking, the problems arising from number theory are of the following type:

given HCG, describe the set of $x \in G/F$ with prescribed behavior of Hx

while <u>metric number theory</u> deals with problems like:

describe the set of mumbers vectors matrices with prescribed "approximation property"

Since $g(h\Lambda) = (ghg^{-1})g\Lambda$, local properties of the g-action are determined by the differential of the conjugation map, $\operatorname{Ad}_g(x) = \frac{d(g \exp(tx)g^{-1})}{dt}|_{t=0}$ gh/ An element $g \in G$ is said to be: <u>unipotent</u> if $(\mathrm{Ad}_g - \mathrm{Id})^j = 0$ for some $j \in \mathbb{N}$ (\Leftrightarrow all eigenvalues of Ad_q are equal to 1); quasi-unipotent if _____ are of absolute value 1; partially hyperbolic if it is not quasi-unipotent. <u>Equivalently</u>: given $g \in G$, define $H_+(q) = \{h \in G \mid q^{-l}hq^l \to e \text{ as } l \to \pm \infty\}$ (expanding and contracting horospherical subgroups) Then G is locally a direct product of $H_{-}(g), H_{+}(g)$ and another subgroup $H_{0}(g)$,

and g is quasiunipotent iff $H_0(g) = G$ (that is, $H_-(g)$ and $H_+(g)$ are trivial). Furthermore, for any $\Lambda \in \Omega$ the orbits $H_{-}(g)\Lambda$, $H_{+}(g)\Lambda$ and $H_{0}(g)\Lambda$ are leaves of <u>stable</u>, <u>unstable</u> and <u>neutral</u> foliations on Ω .

Example. Suppose that $g \in G$ is diagonalizable over \mathbb{R} , and choose a basis of \mathbb{R}^k in which $g = \text{diag}(\underbrace{\lambda_1, \ldots, \lambda_l}_{i_1 \text{ times}}, \underbrace{\lambda_l, \ldots, \lambda_l}_{i_l \text{ times}}, \lambda_1 > \cdots > \lambda_l.$

Then $H_{-}(g)$ and $H_{+}(g)$ are subgroups of lowerand uppertriangular groups:

More examples. The simplest case k = 2: then $\Omega \cong$ the unit tangent bundle to $H^4/SL_2(2)$

The <u>geodesic flow</u> — the action of $g_t = \begin{pmatrix} e^t & 0 \\ 0 & e^{-t} \end{pmatrix}$

The horocycle flow — the action of $u_t = \begin{pmatrix} 1 & t \\ 0 & 1 \end{pmatrix}$ (an example of a unipotent flow).

Ergodic properties.

<u>Moore's Theorem</u>: the action of any noncompact closed subgroup of G on Ω is <u>ergodic</u> and <u>mixing</u>.

<u>Decay of correlations</u>: there exists $\beta > 0$ such that for any two functions $\varphi, \psi \in C^{\infty}_{comp}(\Omega)$ with $\int \varphi = \int \psi = 0$ and any $g \in G$ one has

$$\left|\int (g\varphi\cdot\psi)\right|\leq \operatorname{const}(\varphi,\psi)e^{-\beta\|g\|}.$$

In particular, if g_t is partially hyperbolic, then

$$\left|\int (g_{\mathbf{i}} \varphi \cdot \psi)\right| \leq \operatorname{const}(\varphi, \psi, g_t) e^{-\gamma t}.$$

(Moore, Ratner for k = 2,

Howe, Cowling, Katok-Spatzier for k > 2).

<u>Uniform distribution of unstable leaves</u>: let g_t be a partially hyperbolic one-parameter subgroup of G, $H = H_+(g)$, ν a Haar measure on H. Then there exists $\lambda > 0$ with the following property:

for any open subset V of H, any $\varphi \in C^{\infty}_{comp}(\Omega)$ and any compact subset Q of Ω there exists C > 0such that

$$\left|\frac{1}{\nu(g_t V g_{-t})} \int_{g_t V g_{-t}} \varphi(hg_t \Lambda) \, d\nu(h) - \int_{\Omega} \varphi \, d\mu\right| \le C e^{-\lambda t}$$

for all $\Lambda \in Q$ and $t \ge 0$. (K-Margulis 1996)

Orbit closures of unipotent flows.

<u>Fact</u>: any orbit of the horocycle flow on $SL_2(\mathbb{R})/\Gamma$ is either <u>periodic</u> or <u>dense</u> (Hedlund 1930s).

Theorem. Let U be a <u>unipotent</u> subgroup of G. Then for any $\Lambda \in \Omega$ there exists a closed connected subgroup L of G containing U such that the <u>closure</u> of <u>the orbit</u> UA <u>coincides with</u> LA and there is an Linvariant probability measure supported on LA.

(conjectured by Raghunathan, proved by Ratner)

Furthermore, L = G for \bigwedge not lying in a countable union of proper submanifolds of G/Γ .

(unipotent flows are "not very chaotic")

Corollary. Let
$$S(x_1, x_2, x_3) = 2x_1x_3 - x_2^2$$
, and
 $H_S = \{h \in SL_3(\mathbb{R}) \mid S(x_2) = S(x) \forall x \in \mathbb{R}^3\} \cong SO(2, 1)$

(the <u>stabilizer</u> of S). Then any <u>relatively compact</u> orbit $H_S\Lambda$, Λ a lattice in \mathbb{R}^3 , is <u>compact</u>.

<u>Explanation</u>: H_S is generated by its <u>unipotent</u> oneparameter subgroups,

$$V(t) = \begin{pmatrix} 1 & t & t^2/2 \\ 0 & 1 & t \\ 0 & 0 & 1 \end{pmatrix} \text{ and } V^T(t) = \begin{pmatrix} 1 & 0 & 0 \\ t & 1 & 0 \\ t^2/2 & t & 1 \end{pmatrix},$$

and there are no intermediate subgroups between H_S and $SL_3(\mathbb{R})$.

Corollary. Let B be a real nondegenerate indefinite quadratic form in 3 variables.

If $|B(\mathbf{x})| \geq \varepsilon$ then B is for some $\varepsilon > 0$ proportional to and all $\mathbf{x} \in \mathbb{Z}^3 \setminus \{0\}$, a rational form. He is defined over Q ||hx|| > E for some E>O N and all he Ha, x e Z3 for Hansla(Z) is Zariski deuse in Hk HBZ³ is relatively compact in N. vol (Ho/HB n SL3 (Z)) < 00 = Ha Z3 H_c ∧ is vol(HsA) <00 relatively compact (here B(x)=2S(gx) HSA is Compact and $\Lambda = 9 \mathbb{Z}^3$)

Basics of metric number theory

Let $\psi(x)$ be a non-increasing function $\mathbb{R}_+ \mapsto \mathbb{R}_+$.

Definition. Say that $A \in M_{m\times n}(\mathbb{R})$ (viewed as a <u>system of linear forms</u> $A_{1,...,A_{m}}$ on \mathbb{R}^{n}) is ψ -approximable if there are infinitely many $q \in \mathbb{Z}^{n}$ such that

 $\|\mathbf{A}\mathbf{q} + \mathbf{p}\|^{\mathbf{h}} \leq \psi(\|\mathbf{q}\|^{\mathbf{h}}) \quad \text{for some } p \in \mathbb{Z}^{\mathbf{h}}.$

Theorem 1. Every $A \in M_{m \times n}(\mathbb{R})$ is $\frac{1}{x}$ -approximable. (Dirichlet 1842)

Theorem 2. Almost every (resp. almost no) A is ψ -approximable, provided the integral $\int_{1}^{\infty} \psi(x) dx$ diverges (resp. converges). (Groshev 1938) (the Khintchine-Groshev Theorem) **Definition.** $A \in M_{m \times n}(\mathbb{R})$ is <u>badly approximable</u> if it is not $\frac{c}{x}$ -approximable for some c > 0; that is, if there exists c > 0 such that $||A\mathbf{q} + \mathbf{p}||^m ||\mathbf{q}||^n \ge c$ $\forall \mathbf{p} \in \mathbb{Z}^m$ and all but finitely many $\mathbf{q} \in \mathbb{Z}^n$. (If m = n = 1: $\alpha \in \mathbb{R}$ is badly approximable \Leftrightarrow coefficients in the continued fraction expansion of α are bounded)

Facts. The set of badly approximable $A \in M_{m \times n}(\mathbb{R})$ is

- <u>nonempty</u> (Perron 1921)
- of measure zero (Khintchine 1926)
- of full Hausdorff dimension (Jarnik 1929 for m = n = 1, Schmidt 1969 for the general case)

Corollary. (Dani 1985) The set

$$\left\{\Lambda\in\Omega\mid \{g_t\Lambda\mid t\geq 0\} \text{ is bounded}
ight\},$$

with $\{g_t\}$ as in (*), has full Hausdorff dimension.

Proof.
$$\Lambda = \begin{pmatrix} B & 0 \\ C & D \end{pmatrix} L_A \mathbb{Z}^{m+n} \quad \Rightarrow$$

$$g_t \Lambda = g_t \begin{pmatrix} B & 0 \\ C & D \end{pmatrix} g_{-t} \cdot g_t L_A \mathbb{Z}^{m+n}$$
.

18

Theorem 4. (K-Margulis 1996) Let $F = \{g_t \mid t \ge 0\}$ be a one-parameter subsemigroup of G, $H = H_+(g_1)$ the <u>expanding horospherical subgroup</u>. Then for any closed F-invariant null subset Z of Ω and any $\Lambda \in \Omega$, the set $\{h \in H \mid F\underline{h}\Lambda \text{ is bounded and } Fh\Lambda \cap Z = \emptyset\}$ has full Hausdorff dimension.

Corollary. If $\{g_t\}$ is partially hyperbolic, then the set $\{\Lambda \in \Omega \mid F\Lambda \text{ is bounded and } \overline{F\Lambda} \cap Z = \emptyset\}$ has full Hausdorff dimension.

<u>Another Corollary</u>: Schmidt's result on badly approximable systems of linear forms

Proof of Theorem 4. Use uniform distribution of unstable leaves to create a Cantor-like set of big Hausdorff dimension.

Stage 1 of the Cantor set construction:

(Holds for any Lie group G and any lattice $\Gamma \subset G$ under an additional technical assumption on $\{g_t\}$.)

Inhomogeneous approximation

An <u>affine form</u> = a linear form plus a real number. A system of m affine forms in n variables is given by a pair $\langle A, \mathbf{b} \rangle$, where $A \in M_{m \times n}(\mathbb{R})$ and $\mathbf{b} \in \mathbb{R}^m$. $(\times \rightarrow A \times + b : \mathbb{R}^n \rightarrow \mathbb{R}^m)$ **Definition.** A system of affine forms given by $\langle A, \mathbf{b} \rangle \in M_{m \times n}(\mathbb{R}) \times \mathbb{R}^m$ is ψ -approximable if there are infinitely many $\mathbf{q} \in \mathbb{Z}^n$ such that $||A\mathbf{q} + \mathbf{b} + \mathbf{p}||^m \le \psi(||\mathbf{q}||^n) \text{ for some } \mathbf{p} \in \mathbb{Z}^m,$ and it is <u>badly approximable</u> if it is not $\frac{c}{x}$ -approximable for some c > 0; that is, if there exists c > 0 such that $\|A\mathbf{q} + \mathbf{b} + \mathbf{p}\|^m \|\mathbf{q}\|^n \ge c$

 $\forall \mathbf{p} \in \mathbb{Z}^m$ and all but finitely many $\mathbf{q} \in \mathbb{Z}^n$.

<u>Fact</u>: The set of badly approximable $\langle A, \mathbf{b} \in M_{m \times n}(\mathbb{R}) \times \mathbb{R}^m$ is <u>of measure zero</u> (an inhomogeneous version of Khintchine-Groshev)

Examples (m=n=1) (laq+B+Pl vs. 191) 1. $dq_0+\beta+p_0=0$ for some $p_{0,q_0}\in\mathbb{Z}$ キ $|\alpha q + \beta + p| |q| = |\alpha (q - q_0) + p - p_0| \cdot |q - q_0| \cdot \frac{|q|}{|q - q_0|}$ \mathbf{h} < a, B) is badly approximable (=) approximable 2. $d \in Q, \beta \neq Q \Rightarrow \{ \alpha q + \beta + p \mid p, q \in \mathbb{Z} \} \neq 0$ is discrete 1 ldq+\$+p[.19] ≥ const. 191 ⇒ badly approximable 3. ???

All known examples of badly approximable $\langle A, \mathbf{b} \rangle \in M_{m \times n}(\mathbb{R}) \times \mathbb{R}^m$ belong to a countable union of proper submanifolds of $M_{m \times n}(\mathbb{R}) \times \mathbb{R}^m \Rightarrow$ form a set of positive Hausdorff codimension.

<u>A dynamical approach</u>:

consider the collection of vectors

$$\left\{ \left. \begin{pmatrix} A\mathbf{q} + \mathbf{b} + \mathbf{p} \\ \mathbf{q} \end{pmatrix} \right| \mathbf{p} \in \mathbb{Z}^m, \, \mathbf{q} \in \mathbb{Z}^n \right\} = L_A \mathbb{Z}^{m+n} + \begin{pmatrix} \mathbf{b} \\ 0 \end{pmatrix}$$

This would be an element of the space $\hat{\Omega} = \hat{G}/\hat{\Gamma}$ of <u>affine lattices</u> in \mathbb{R}^{m+n} , where

$$\hat{G} \stackrel{\text{def}}{=} \operatorname{Aff}(\mathbb{R}^{m+n}) = G \ltimes \mathbb{R}^{m+n} \text{ and } \hat{\Gamma} \stackrel{\text{def}}{=} \Gamma \ltimes \mathbb{Z}^{m+n}.$$

That is,

$$\hat{\Omega} \cong \{\Lambda + \mathbf{w} \mid \Lambda \in \Omega, \; \mathbf{w} \in \mathbb{R}^{m+n}\}$$
 .

Note that:

- the quotient topology on Ω coincides with the natural topology on the space of affine lattices; that is, Λ₁+w₁ and Λ₂+w₂ are close to each other if so are w_i and the generating elements of Λ_i
- $\hat{\Omega}$ is non-compact and has finite Haar measure

- Ω (the set of <u>true lattices</u>) can be identified with a subset of $\hat{\Omega}$ ($\Omega \cong \{ \land \in \hat{\Omega} \mid O \in \land \}$)
- g_t as in (*) acts on $\hat{\Omega}$, and the expanding horospherical subgroup corresponding to g_1 is exactly the set of all elements of \hat{G} with linear part L_A and translation part $\begin{pmatrix} \mathbf{b} \\ 0 \end{pmatrix}$, $A \in M_{m \times n}(\mathbb{R})$ and $\mathbf{b} \in \mathbb{R}^m$.

 $g_{\pm}(L_{A}\mathbb{Z}^{m+n}+\binom{b}{0}) = (g_{\pm}L_{A}g_{\pm})g_{\pm}\mathbb{Z}^{m+n}+g_{\pm}\binom{b}{0}$

For $\varepsilon > 0$, define

$$\hat{\Omega}_{\varepsilon} \stackrel{\text{def}}{=} \left\{ \Lambda \in \hat{\Omega} \mid \|\mathbf{x}\| < \varepsilon \text{ for some } \mathbf{x} \in \Lambda \right\}.$$

Then $\hat{\Omega} \smallsetminus \hat{\Omega}_{\varepsilon}$ is a closed (non-compact) set disjoint from Ω .

Theorem 5. Let $F = \{g_t \mid t \ge 0\}$ be as in (*). Then

 $\langle A, \mathbf{b} \rangle$ is badly approximable

 $\mathbf{24}$

Proof. a) Otherwise ∃ A_k ∈ F(L_AZ^{m+n}+(b))
and ×_k ∈ A_k with || ×_k|| → O; since the orbit is relatively compact, {A_k} has a limit point A which must contain O, i.e. belong to J2.
b) See the picture, p.17, and shift the lattice from a general version of Theorem 4, one deduces

Theorem 4. Let $F = \{g_t \mid t \ge 0\}$ be a one-parameter subsemigroup of \hat{G} , $H = H_+(g_1)$ the expanding horospherical subgroup. Then for any closed F-invariant null subset Z of $\hat{\Omega}$ and any $\Lambda \in \hat{\Omega}$, the set

 $\{h \in H \mid Fh\Lambda \text{ is bounded and } \overline{Fh\Lambda} \cap Z = \emptyset\}$ has full Hausdorff dimension.

Corollary. The set of badly approximable $\langle A, \mathbf{b} \rangle \in$ $M_{m \times n}(\mathbb{R}) \times \mathbb{R}^m$ has <u>full Hausdorff dimension</u>.

Back to the homogeneous approximation.

One can generalize Dani's correspondence as follows:

Given a non-increasing function $\psi : \mathbb{R}_+ \mapsto \mathbb{R}_+$, there is a unique function $\varepsilon : \mathbb{R}_+ \to \mathbb{R}_+$ such that the following holds:

 $A \in M_{m \times n}(\mathbb{R})$ is ψ -approximable

1	ጉ
ſ	ŀ

 $g_t L_A \mathbb{Z}^{m+n} \in \Omega_{\varepsilon(t)}$ for infinitely many $t \in \mathbb{N}$

Thus Theorem 2 is equivalent to the following **Theorem 2'.** For almost all (resp. almost no) $\Lambda \in \Omega$ one has $\underline{g_t}\Lambda \in \Omega_{\varepsilon(t)}$ for infinitely many $t \in \mathbb{N}$, provided the sum

$$\sum_{t=1}^{\infty} \varepsilon(t)^{m+n} \qquad \left(\sim \sum_{t=1}^{\infty} \mu(\Omega_{\varepsilon(t)}) \right)$$

diverges (resp. converges).

26

The above theorem can be proved using ergodic theory (in particular, exponential decay of correlations) and can be generalized to

- any <u>partially hyperbolic</u> g_t , not necessarily of the form (*)
- other Lie groups G and lattices $\Gamma \subset G$
- more general than Ω_{ε} subsets of G/Γ (with "uniformly regular boundaries")
- <u>multi-parameter</u> actions

See [K-Margulis, Inv. Math. 1999]

∜

- a new (dynamical) proof of Theorem 2
- logarithm laws for <u>geodesics</u> and <u>flats</u> in noncompact finite volume loc.sym.spaces

Recall: the Khintchine-Groshev Theorem, m=1, easy part: $\sum_{k=1}^{\infty} \psi(k) \perp \infty \Rightarrow \text{ for a.e. } y \in \mathbb{R}^n$ $|y_1q_1+\cdots+y_nq_n+p| \leftarrow \psi(||q||^n)$ (*) has at most finitely many solutions. Proof : the Boral-Cantelli Lemma >4(IIqII") For fixed pig, the set of ye [0,1]" satisfying (*) there are at most const. 11 qll values of p, 11911 (11911") and $\Sigma \psi(\|q\|^n) \simeq \tilde{\Sigma} k^{n-1} \psi(k^n) \simeq \tilde{\Sigma} \psi(k)$ Example YE(k) = k (1+B), B>0, is OK Very well approximable def 43-approximable for some (Diophantine def not 48-approximable for some \$>0) B>0

Ritty K

NO CO CY

D

e < t u r e

3

L
Problem. (Mahler's conjecture, 1932) Is it true that for almost all $x \in \mathbb{R}$ the inequality $|p + q_1x + q_2x^2 + \cdot + q_nx^n| \le ||\mathbf{q}||^{-n(1+\beta)}$ has at most finitely many solutions for every $\beta > 0$? (for a.e. x, the *n*-tuple (x, x^2, \ldots, x^n) is not VWA) Why the same proof does not work: the measure of solutions sets near tangency points is bigger than it should be. Solved in 1964 by V. Sprindžuk "Gave rise to a new branch of number theory, "Diophantine approximation with dependent quantities" (Crucial: dependence relations between

 $y_1 = x, y_2 = x^2, \ldots, y_n = x^n$

Why this is important: 1. Mahler's motivation: $(x, ..., x^n)$ not VWA \hat{U} VB>0 there are at most finitely many polynomials $P \in \mathbb{Z}[x]$, deg $P \leq n$, with $I P(x) | < h(P)^{-n(1+B)}$ height of P \hat{U} x is "not very algebraic"

2. Diophantine conditions in KAM If coefficients of a diff.equation are restricted to lie on a <u>submanifold</u> of <u>IR</u>ⁿ, it may be important to know that almost all values of the coefficients have certain approximation properties

3. Potential generalizations

Say that a C^{n} submanifold $M \in \mathbb{R}^{n}$ is <u>non-degenerate</u> at $y_{0} \in M$ if "planes cannot have a higher order tangency to it at y_{0} " $(\widehat{P} \mid \mathbb{R}^{n} \text{ is <u>spanned by pastial derivatives</u> of$ $<math>f = (f_{1,...,f_{n}})$ at x_{0} , where M = f(U), $U \in (\mathbb{R}^{d}, \text{ and } y_{0} = f(x_{0})$

Meta-conjecture Let McIRⁿ be a C^m submanifold nondegenerate at almost every point Then "any <u>Diophantine property</u>" of <u>yelk</u>" which holds for a.e. <u>yelk</u>, holds for a.e. <u>yeM</u>. Conjecture (Sprindžuh 1980) For Mas above, a.e. <u>yeM</u> is not VWA (I) M is <u>extremal</u>)

<u>n=2</u> (M=a planar curve with nonzero curvature a.e. W.Schmidt 1364

General case: K-Margulis 1998

using the dynamical approach

More generally: Khintchine-type theorems on manifolds Start with $M = \{(x, x^2, ..., x^n) | x \in \mathbb{R}\}$ Ž 4(k)~00 Bernik 1984: (x,x²,...,xⁿ) is NOT 4-approximable for a.e. x $\sum_{k=1}^{\infty} \psi(k) = \infty$ Beresnevich 1998 : (x,x²,..., x") is y-approximable for a.e. x A combination of traditional technique with the "method of lattices": Let MCR" bea C"a.e. non-degenerate submanifold. Then almost all (resp. almost no) yEM are y-approximable provided the sum [Zy(k) <u>diverges</u> (resp. converges) (& Beresnevich 1999) Bernik, K, Margulis 1999 + Beresnevich (2001? In this talk: $M = \{(f_1(x), \dots, f_n(x))\}$ is a.e. nondegenerate Office a.e.x, $(f_1(x), \dots, x^n)$ is not VWA (xeleR) lie. M is 32 extremal

Also recall:
$$L_y = \begin{pmatrix} 1 & y_1 & \dots & y_n \\ 1 & \ddots & q \end{pmatrix}$$

 $\mathfrak{I}_{\xi} = \operatorname{diag} \left(e^{\pm}, e^{\pm t/n}, \dots, e^{-t/n} \right)$
 $\mathfrak{I}_{\xi} = \left\{ \Lambda \in \mathfrak{L} \mid \Lambda \cap \mathcal{B}(0, \varepsilon) \neq \{0\} \right\}$
 $\mathfrak{I}_{\xi} = \left\{ \Lambda \in \mathfrak{L} \mid \Lambda \cap \mathcal{B}(0, \varepsilon) \neq \{0\} \right\}$
 $\mathfrak{I}_{\xi} = \left\{ \Lambda \in \mathfrak{L} \mid \Lambda \cap \mathcal{B}(0, \varepsilon) \neq \{0\} \right\}$
 $\mathfrak{I}_{\xi} = \left\{ \Lambda \in \mathfrak{L} \mid \Lambda \cap \mathcal{B}(0, \varepsilon) \neq \{0\} \right\}$
 $\mathfrak{I}_{\xi} = \mathfrak{I}_{\xi} \mathfrak$

-

.

:

To prove the claim : think of ge L f(x) 72 +1 as of a "dynamical system" with time x (t is fixed) $(f(x) = (x, ..., x^n) \Rightarrow g_t L_{f(x)} = \begin{pmatrix} e^t e^{t} x \dots e^t x^n \\ e^{-t} h \end{pmatrix}$

Get a "flow" on I which looks very much like unipotent flow

 $u_{\mathbf{x}} = \begin{pmatrix} 1 & \mathbf{x} \\ 0 & 1 \end{pmatrix}$

Recurrence of unipotent trajectories.

An elementary observation: <u>horocyclic trajectories</u> on $SL_2(\mathbb{R})/SL_2(\mathbb{Z})$ do not run off to infinity.

<u>Much harder to prove</u>: the same holds for any unipotent flow on Ω for $k \ge 3$ (Margulis 1971, Dani 1986) Margulis 1971 : for any $\Lambda \in \Omega$ and any unipotent $\{u_x\} \in G$ $\exists \varepsilon > 0$ such that $\forall T > 0$, $\{u_x \land [x \ge T\} \notin \Omega_{\varepsilon}$ (all unipotent of bits return to some compact subset of Ω)

Dani 1986: for any A en any unipotent flux & CE and any S>O JE>O such that $\forall T = O$ $\left| \{ O \le x \le T \mid U_x \land E : P_E \} \right| \le S T$ <u>Need to</u>: i) express S as a function on E 2) replace unipotent subgroups by more general polynomial or "polynomial-like" maps, 38

Notation: :
$$\Delta \subset \mathbb{R}^{k}$$
 a discrete subgroup
 $\frac{1}{2}$
 $d(\Delta)^{*}=$ volume of $\Delta_{\mathbb{R}}/\Delta$
 $= 11 \times_{A} \dots A \times_{m} 11$, where $\{x_{i}\}$ are linearly
independent generators of Δ
Theorem IciR an interval, $p>0$, reav
 $h: I \rightarrow GL_{n}(\mathbb{R})$ such that $\forall \Delta \subset \mathbb{Z}^{k}, \Delta \neq 0$,
(i) $d(h(x)\Delta)$ is a polynomial of degree $\leq m$
(ii) $\sup_{x \in I} d(h(x)\Delta) \geq p$
Then for any positive ϵ one has
 $\left| d(x \in I \mid h(x)\mathbb{Z}^{k} \in \Omega_{\epsilon} \leq | \leq 2^{k}kC_{m}(\frac{\epsilon}{p})^{N-1} | I \right|$

where $C_r = 2r(r+1)^{\frac{1}{2}r}$

.

To prove the claim, need to check (i) and (ii)
straightforward
write down action of
$$g_{t} \perp_{f(x)}$$

on exterior powers
Also can derive
Corollary (quantitative strengthening of
Margulis-Dani)
For any $\Lambda \subset \mathcal{L}$ there exists $p = p(\Lambda) > 0$
such that for any unipotent $\{u_x\} \subset G$
and any $\varepsilon > 0$ one has
 $\left|\left|\left(O \leq x < T\right)\right| = \Lambda \in \mathcal{R}_{c} \le 1 \le 2^{h} k C_{k^{2}} \left(\frac{\varepsilon}{p}\right)^{1/k^{2}} |I|\right|$

(here $g(\Lambda) = \min_{\substack{\Delta \in \Lambda \\ \Delta \in \Lambda}} d(\Lambda)$, and $d(u_{X\Lambda}) = a polynomial of degree <math>\leq k^2$)

To replace
$$(x,...,x^n)$$
 by a non-degenerate
carve $(f_n(x),...,f_n(x))$, need to understand
what is nice about polynomials
 $(f_n(x) = 0)$
Definition Say that f is $(f_n(x) = 0)$
If for any subinterval JCI and any $\varepsilon = 0$,
 $[f_{x \in J}| |f(x)| \le \varepsilon |g_{y \in J}| |f(y)| \} \le c \cdot \varepsilon^{d} |J|$
Fact 1 fet $[x], deg(f) \le r$
 U
 $(2r(r+1)^{W}, \frac{1}{r})$ -good on IR
 $ro good$
Fact 2 $(f_1(x),...,f_n(x))$ is non-degenerate at $f(x_0)$
 U
 \exists a neighborhood I of xo and C=0 such that
any linear combination of 1, $f_1,..., f_n$
 is $(C, \frac{W}{M})$ -good on I
Them in the Theorem (p. 39) one replaces
"polynomial" by (C,x) -good, G by C and $\frac{1}{r}$ by d
(and then back to $\frac{1}{r}$ by Fact 2), and the same
 $y \log x$

What about degenerate submanifolds?

The simplest class of examples:

proper affine subspaces $L \subset \mathbb{R}^n$.

It has been known for a long time (Schmidt 1964) that some of them are extremal, and that it depends on <u>Diophantine properties of coefficients</u> of parametrizing affine maps.

clearly (x, x) is VWA for all x!

A modification of the method described above allows one to:

• write down the criterion for extremality of L[not hard to obtain by standard

(Sprindžuk's) methods, but still unpublished]

• as a consequence, show that the set of <u>non-extremal *r*-dimensional</u> affine subspaces of \mathbb{R}^n has <u>Hausdorff codimension *r*</u>.

 \Leftrightarrow has Hausdorff dimension (n-r)(r+1)-r

• prove the following generalization of $\mathbf{\mathcal{O}}$: **Theorem.** Let L be an extremal affine subspace of \mathbb{R}^n , and let M be a smooth submanifold of L which is non-degenerate in L at almost every point. Then M is extremal.

 $M \subset L$ is <u>nondegenerate in L at \mathbf{y}_0 if $T_{\mathbf{y}_0} L$ is spanned by partial derivatives of \mathbf{f} at \mathbf{x}_0 , where $M = \mathbf{f}(U), U \subset \mathbb{R}^d$, and $\mathbf{y}_0 = \mathbf{f}(\mathbf{x}_0)$.</u>

<u>Multiplicative approximation</u>

Let $\psi(x)$ be a non-increasing function $\mathbb{R}_+ \mapsto \mathbb{R}_+$.

Definitions. Say that $\mathbf{y} \in \mathbb{R}^n$ is

 ψ -approximable

 ψ -mult.approximable

if there are infinitely many $\mathbf{q} \in \mathbb{Z}^n$ such that $|\mathbf{y} \cdot \mathbf{q} + p|$ is not greater than

$$\psi(\prod_{q_i\neq 0} |q_i|)$$

for some $p \in \mathbb{Z}$.

Clearly ψ -approximable $\Rightarrow \psi$ -mult.approximable, hence every $\mathbf{y} \in \mathbb{R}^n$ is $\frac{1}{x}$ -approximable.

Theorem 2M. <u>Almost every (resp. almost no)</u> $\mathbf{y} \in \mathbb{R}^n$ is ψ -mult.approximable, provided the integral $\int_1^{\infty} (\log x)^{n-1} \psi(x) dx$ <u>diverges</u> (resp. converges). (W. Schmidt 1960)

Definition. $\mathbf{y} \in \mathbb{R}^n$ is <u>badly mult.approximable</u> (<u>BMA</u>) if it is not $\frac{c}{x}$ -approximable for some c > 0; that is, if

Facts. The set of BMA $\mathbf{y} \in \mathbb{R}^n$ is

- <u>of measure zero</u> (Theorem 2M)
- ? empty if $n \ge 2$ (Littlewood's Conjecture)

<u>Note</u>: the validity of the conjecture for n = 2 implies the general case \Rightarrow will assume n = 2.

 $\left\{ \begin{pmatrix} e^{\tau_1 \cdot \tau_2} \\ e^{-t_1} \\ e^{-t_2} \end{pmatrix} L_y \mathcal{X}^3 \right\}$

• for any $y_1 \in \mathbb{R}$,

 $\dim \left(\left\{ y_2 \mid y_2 \text{ is BA}, (y_1, y_2) \text{ is not BMA} \right\} \right) = 1$

(Pollington and Velani 2000)

<u>An elementary observation</u>: $\mathbf{y} \in \mathbb{R}^2$ is <u>BMA</u> iff the trajectory $D_+L_{\mathbf{y}}\mathbb{Z}^3$, with $D_+ \stackrel{\text{def}}{=} \{g_{\mathbf{t}} \mid \mathbf{t} \in \mathbb{R}^2_+\}$ and

$$g_{\mathbf{t}} = \operatorname{diag}(e^{t_1+t_2}, e^{-t_1}, e^{-t_2}),$$

is bounded in the space $\Omega = SL_3(\mathbb{R})/SL_3(\mathbb{Z})$.

Recall:
$$L_{\mathbf{y}} = \begin{pmatrix} 1 & y_1 & y_2 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$
, so that
$$g_{\mathbf{t}}L_{\mathbf{y}} \begin{pmatrix} p \\ q_1 \\ q_2 \end{pmatrix} = \begin{pmatrix} e^t(q_1y_1 + q_2y_2 + p) \\ e^{-t_1}q_1 \\ e^{-t_2}q_2 \end{pmatrix}$$

$$(here t = t_1 + t_2)$$

<u>Moreover</u>: for $\mathbf{s} = (s_1, s_2)$, with $s_i > 0$ and $s_1 + s_2 = 1$ (<u>weight vector</u>), define the <u>s-quasinorm</u> on \mathbb{R}^2 by

$$\|(x_1, x_2)\|_{\mathbf{s}} \stackrel{\text{def}}{=} \max\left(|x_1|^{1/s_1}, |x_2|^{1/s_2}\right),$$

and say that \mathbf{y} is <u>s-badly approximable</u> if

Clearly BMA implies s-BA for every s.

<u>One can prove</u>: the set of s-BA pairs has Hausdorff dimension 2 for every s.

Conjecture. (W. Schmidt 1982) There exists a pair (y_1, y_2) which is both $(\frac{1}{3}, \frac{2}{3})$ -BA and $(\frac{2}{3}, \frac{1}{3})$ -BA.

Quoting Schmidt: "<u>If this conjecture is false</u>, <u>then</u> <u>Littlewood's conjecture is true</u>."

It seems plausible to conjecture that: for any choice of finitely many weight vectors $\mathbf{s}_1, \ldots, \mathbf{s}_k$, the set of pairs (y_1, y_2) which are $\underline{\mathbf{s}_i}$ -BA for every iis non-empty (and maybe even has full Hausdorff dimension).

A more general dynamical conjecture: for any choice of finitely many partially hyperbolic one-parameter subsemigroups F_i of D_+ , the set of $\Lambda \in \Omega$ such that the trajectory $F_i\Lambda$ is bounded for every iis non-empty (and maybe even has full Hausdorff dimension).

<u>Note</u>: the orbit of the full diagonal group $D \stackrel{\text{def}}{=} \{g_{\mathbf{t}} \mid \mathbf{t} \in \mathbb{R}^2\}$ is obviously <u>unbounded</u> (moreover, any sequence $g_{\mathbf{t}^{(k)}} L_{\mathbf{y}} \mathbb{Z}^3$ with $t_1^{(k)} + t_2^{(k)} \to -\infty$ tends to infinity in Ω).

So to prove Littlewood's Conjecture one needs to show that

Another elementary observation: if it does happen, then the closure of $D_+ L_y \mathbb{Z}^3$ contains a lattice Λ such that the full orbit $D\Lambda$ is relatively compact in Ω .

(take a limit point of $g_{kt}L_{\mathbf{y}}\mathbb{Z}^3, k \to +\infty$)

<u>A non-elementary observation</u>: there are very strong reasons which <u>rule out a possibility</u> for such an orbit $D\Lambda$ to be compact!

Thus Littlewood's Conjecture is reduced to

Conjecture (CSM).

(Cassels and Swinnerton-Dyer 1955, Margulis 1999)

Any <u>relatively compact</u> orbit $D\Lambda$, $\Lambda \in \Omega$, is <u>compact</u>.

Theorem. (Cassels and Swinnerton-Dyer 1955) ("i<u>solation theorem</u>" or "local rigidity of compact orbits") $Define B(\mathbf{x}) = x_1 x_2 x_3$ (a cubic form on \mathbb{R}^3 stabilized by D), and let $\Lambda \in \Omega$ be such that <u>DA is compact</u>. Then for every $0 \leq a < b$ there exists a neighborgood U of Λ such that

 $\forall \Delta \in U \smallsetminus D\Lambda \quad \exists \mathbf{x} \in \Delta \quad with |a < |B(\mathbf{x})| < b$

In particular, $\forall \varepsilon > 0$ there exists $U \ni \Lambda$ such that

 $D\Delta \cap \Omega_{arepsilon}
eq arepsilon \ for \ any \ \Delta \in U \smallsetminus D\Lambda \,.$

(not true in rank 1,

<u>Reduction of Littlewood's Conjecture to (CSM)</u>:

If **y** is a counterexample, then one finds a sequence of lattices $\Delta_k = d_k L_y \mathbb{Z}^3$, $d_k \in D$, converging to a lattice Λ with a <u>relatively compact *D*-orbi</u>t.

By (CSM), $D\Lambda$ is compact.

By the Isolation Theorem, no gap in the values of $|B(\mathbf{x})|, \mathbf{x} \in \Delta_k$, is possible.

However

$$B(\mathbf{x}) = B\left(L_{\mathbf{y}}\binom{p}{\mathbf{q}}\right) = (q_1y_1 + q_2y_2 + p)q_1q_2$$

is equal to zero if $q_1q_2 = 0$,

and is bounded away from 0 otherwise.

Lemma. Let $\Lambda \in \Omega$ be such that $\underline{D\Lambda}$ is compact. Then any root subgroup of D(for example, $F = \{f_t = \text{diag}(e^t, e^{-2t}, e^t)\})$ acts topologically transitively on $D\Lambda$.

Explanation. $Dg\mathbb{Z}^3$ is compact

€

 $g^{-1}Dg \cap SL_3(\mathbb{Z})$ is <u>Zariski dense</u> in $g^{-1}Dg$

⊅

 $g^{-1}Dg$ has no non-trivial rational characters.

Similarly, if χ is a character on D and $F = \text{Ker}(\chi)$, $Fg\mathbb{Z}^3$ is compact $\Leftrightarrow g^{-1}fg \in SL_3(\mathbb{Z})$ for some $f \in F$ $\Rightarrow h \mapsto \chi(ghg^{-1})$ is rational, a contradiction. \Box Proof of Isolation Theorem Assume that there exist $\Delta_k = g_k \wedge , g_k \rightarrow I$, such that there is a gap in values of B on $\mathbf{X} \in \Delta_k$ IL (B(X) & (a,b) for some acb) there is a gap in values of B on xed Dk, de D there is a gap in values of B $x \in \lim_{k \to \infty} d_k \Delta_k$, $d_k \in D$ Strategy: find due D such that the limit lattice of {d. A. does not have a gap at (a,b) du 9 a p " 0

Claim Given any M>D one can choose $t_{\kappa} \rightarrow \infty$ such that

Then $h_{t} \Delta_{w} = h_{t} g_{w} \Lambda = h_{t} g_{w} h_{t}^{-1} h_{t} \Lambda \rightarrow u_{r} \Lambda^{\prime}$ $u_{r} \Lambda^{\prime} = \Lambda^{\prime}(r) \in D\Lambda$

I.e. ht. A. = Xx 4r A', where Xx -> I

(WOW! It looks like the closuse contains a <u>unipotent</u> orbit!) 50 (although A' depends on m)

Step 2 Now use another direction,
that is,
$$f_s = \begin{pmatrix} e^s e^{-2s} \\ e^s \end{pmatrix}$$

By Lemma, can choose $s_n \rightarrow \infty$ such that $f_{s_n} \Lambda' \rightarrow \Lambda$ Passing to a subsequence of $\{t_n\}$, can assume $f_{s_n} \mathcal{S}_n f_{s_n}^{-1} \rightarrow I$ Then

(now it is a true unipotent orbit!!!) But: for any $X = (x_1, x_2, x_3) \in \Lambda$ with $x_1 x_3 < 0$ and $x_2 \neq 0$,

 $(B(urx) = (x_1 + fx_3)x_2x_3 \ bas no gap!$ (i.e. $\forall a < b = \exists r such that a < B(urx) < b$) => a contradiction Geollary (from the theorem) Any relatively compact orbit DA, $A \in D$, such that its closure \overline{DA} contains a compact orbit is compact

In fact, one can apply Ratner's Theorem to the unipotent subgroup Up constructed in the course of the proof to establish Corollary (from the proof) Let $\Lambda \in \Omega$ be such that the closure $D\Lambda$ contains a compact orbit. Then either $D\Lambda = D\Lambda$ or $D\Lambda = \Omega$ (periodic) (dense)

A generalization of the above asgument
gives
Theorem (Barak Weiss + Elon Lindenstrouss)
$$k = 3$$
,
 $\mathcal{D}_{i} = SL_{k}(R)/SL_{k}(R)$, $D = diagonal subgroups of $SL_{k}(R)$
Let $\Lambda \in \Omega$ be such that
the closure $D\Lambda$ contains a compact orbit
Then there exists a closed subgroup L of $SL_{k}(R)$
containing D such that $D\Lambda = L\Lambda$ and
 $L\Lambda$ carries an L-invasiant probability measure
Moreover, L has the form $(K :s prime =) \begin{bmatrix} closed \\ dense \end{bmatrix}$
 $L = \left\{ P\left(\begin{array}{c} A_{2} \\ A_{2} \end{array} \right) P^{-1} \\ A_{i} \in GL_{d}(R) \\ det(A_{i}) \cdots det(A_{q}) = 1 \end{bmatrix} \right\}$
where $k = dR$ and P is a permutation matrix$

.

53 🖉

Conjecture (Margulis 1999) (k23) For any NEJL one of the following holds: · either DA is homogeneous, i.e. there exists a closed subgroup LCSL. (R) containing D such that DA = LA· or there is an algebraic factor map onto a sank-one action, i.e. (M. Rees) these exist DCLCG and an epimorphism q: L => H such that LA is closed in IL, q({gel. | gA=A}) is discrete in H, and dim $\varphi(D) = 1$

(Conjecture (CSM) is a special case)

Multiplicative approximation on manifolds yeir is very well multapproximable (VWMA) if it is yo-mult. approximable for some B>O, i.e. for infinitely many gezn one has $|y-q+p| \leq (\prod_{q_i \neq 0} |q_i|) = (1+B)$ for some $p \in \mathbb{Z}$ WWMA a bigger VWA Aull subset of IR" (for a submanifold MCIR", it is much harder to prove that a.e. YEM is not VWMA) Conjecture (A. Baker 1975) For a.e. x & R, (x, x², ..., xⁿ) is not VWMA Proved for n ≤ 4 (Bernik-Borbat) Conjecture (V. Sprind žuk 1980) Mc IR" non-degenerate (analytic) => a.e. YEM is not VWMA proved for n=2 (sprindžuk) II det M is strongly extremal 55

=> a.e.yEM is not Y-MA IF [(log x)ⁿ⁻¹ Y(x)dx < 00 (Bernik-K-Margulis (995)

Based on : $y \in \mathbb{R}^{n}$ is VWMA The orbit $D_{+} L_{y} \mathbb{Z}^{n+1}$ grows not too fast where $D_{+} = \{d_{ing}(e^{t}, e^{-t}, ..., e^{-t}) \mid t; >0, \tilde{z}t; = t_{i}\}$ Then $t = (t_{0}, t_{1}, ..., t_{n})$ becomes fixed, and the main yesterday's estimate applies.

Books

Starkov Dynamical Systems on Homogeneous Spaces AMS, 2000 Bekka - Never Ergodic Theory and Topological Dynamics of Group Actions on Homogeneous Spaces LMS, 2000

Surveys :

Dani in: Dynamical Systems, Ergodoc Theory and Applications EMS, 2000 K-Shah-Starkov Elsevier, to appear

Topics omitted:

- Integer points on algebraic varieties Eskin-Mozes-Shah, Clozel-Oh-Ullmo, Oh-Gan, Oh
- . Quantitative Oppenheim Eskin-Margulis-Mozes
- · Error term for lattice points in polyhedra Skriganov, Skriganov-Starkov
- n-point correlations for values of linear forms
 Marklof
- · Multidimensional continued fractions Korkina, Lagasias, Kontsevich-Suthor
- Homogeneous dynamics S Teichmüller
 Diophantine approximation Heavy

Veech, Masur, Eskin, Minsky, Weiss