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CHA()T\C, DYNAM\CS AND
FluTude OF  ATTRACTORY

EvryQue W ?UaALS

Description of the asymptotic behaviour of orbits {f™(x)} when
f: M — M is a diffeomorphism of a compact riemaniann manifold

M.

Given a diffeomorphisms f, we could try:
1. to "describe”
L{f) = Closure(Ugeprw{z) U a(x))

2. to "understand” how this description changes under perturba-
tion.



One tentative description to achive, motivated by the hyperbolic
theory, is the following:

Topological description.
To decompose the limit set,

L{f) = UA;
such that
1. is a finite union;
2. the sets A; are pair disjoints;
3. each A; is a transitive closed set;

4. for "any” y € M, exists z, € L(f): dist(f"(y), f*(zy)} — 0

We may consider that:
1. the sets A; are attractors and
2. M = UB(A;) at Lebesgue almost every point (B(A;) is the

basin of attraction of the attractors).

Statistical description.
At Lebesge almost every point

1
—Xizo0fi(a)

converges, i.e.: at almost every point the limit of the Birkhoff sums

exists.
When are the limits decribed by a finite number of ergodic mea-

sures?



Remarks

¢ [s this a proper description?

Consider the case of conservative (symplectic) systems. KAM
theory and Aubry-Mather theory. Although for this case the
description above does not hold (in fact it is false), the infor-
mation availabe is rich and extremly satisfactory.

» Due to the fact that it is impossible to give this description
for every system (Residual sets of diffeomorphisms exhibiting
infinitely many sinks; KAM theory), so:

1. we could try to describe a dense set of systems. Topological
point of view in the set of diffeos.

2. Or for generic parametrized family, we could try to de-
scribe the dynamic for a set of total Lebesgue measure of
parameters. ” Metric” point of view in the set of diffeos



Conjecture (Palis)

Every system can be C"—approximated by another having only
finitely many attractors, which are nice, and whose basins cover
almost all of the ambient space M.

Nice attractors:

e support SRB measures, and have no holes in their basins of
attraction;

e the dynamics restricted to each basin of attraction is stochas-
tically stable.

Moreover,

for almost all small perturbations of such systems, 99% of M
(in measure) is covered by the basins of a finite number of nice
attractors. Statistical Stability.

For generic parametrized family, such descrition can be done for
a set of total lebesgue measure of parameters.



We want to discuss the following:
1. Cases in which it is possible to give such description:

(a) hyperbolic systems (Newhouse-Smale theorems of decom-
position of the limit set), attracting invariant measure with
uniform Lyapunov exponents({Pesin theory),

(b) smooth one dimensional endomorphisms,

(¢) surface diffeomorphisms exhibiting dominated splitting; (par-
tial hyperbolic systems in higher dimension?)

2. Systems in which this ”description” fails:

(a) Newhouse's phenomena, residual sets of diffeomorphisms
exhibiting infinitely many sinks;

(b) Conservative systems;

3. Arguments that could show why it is possible to obtain such a
description,

4. Arguments to the contrary,
5. Some other related problems,

6. Are the ”stable” systems interesting?



The problem in general is extremly wide and there are many
other question that we should understand first.

Classicaly, the basic tool for the understanding of the dynamic
from topological and statistical point of view, was the study of local
stable and unstable sets. |

W2(z) = {y € Bf"(2)) d(f"(x), f*(y)) = 0 for anyn > 0}
Wi(z) = {y € Bf"(z)) d(f"(z), /"(y)) — 0 for anyn < 0}

maybe € = €(z)

In particular, we should understand:
The w-limit (a—limit) of points which are ”Lyapunov
stable”.

Lyapunov stable point

A point & is Lyapunov stable (in the future) if for any € there is
§ = 8(¢) such that

fH(Bs(z)) C Be(f"())

for any positive integer n.

Lyapunov, A.M. "Probléme général de la stabilité du mouve-
ment” (1892).

This means:

What is the w(U) (w—limit of U) if U is a set of small diame-
ter and such that f*(U) remains with small diameter for positive
terates?

We will try to adress this problem in any of the situation that
we will consider:

1. hyperbolic systems



2. one dimensional endomorphism
3. surface systems exhibiting dominated splitting

4. partial hyperbolic systems with onedimensional subbundles.



Hyperbolic systems
The Limit set is well characterized for hyperbolic sets.

L(f) is hyperbolic if there is a continuous splitting:
TL(f)M = E"

where | D f*|gs| < CX* |Df ™" g«| < CX" for some A < 1 and C > 0.

Under the hypothesis of hyperbolicity, then L( f) can be decomposed
into finite pieces of disjoint compact invariant and transitive sets.
Moreover, the asymptotic behaviour of any point in the manifold is
represented by an orbit in L(f).

In the hyperbolic case, the description of the dynamics follows from
a fundamental tool:

Local Stable and Unstable sets are transversal manifolds
of uniform size.

At each point there are transverse invariant manifolds of uniform
size and these manifolds have a dynamic meaning (points in the
“stable” one are asymptotic to each other in the future, and points
in the “unstable” one are asymptotic to each other in the past).

What happens with this decomposition for perturbations of the
initial system?

If L(f) is hyperbolic and a non cycle condition holds, for g C*
close to f then the dynamics are conjugated on the Limit set.



Statistical information

If f is C?, considering just the attractors A; of the spectral de-
composition then

1. M = U;B(A;) at lebesgue almost every point,

2. each attractor support an SBR- measure.

Non-uniform hyperbolic case

Let p an invariant measure of a diffeo C1+4.

Oseledet Theorem:
There is a set of total measure showing a mesurable splitting
E* + E° 4+ E* such that:

1. for any vector v®* € E°

1
lim,, —log|D f™ () s
n

= M (z) < 0;
2. for any vector v* € E*

Iimn%10g|Df_”(a:)|,Uu|| = —\%(z) < 0;
3. for any vector v° € E°

1
limn—log[Dfn(a:)IvcH = 0;
n

If £° =0 then the measure y is called hyperbolic.



If there is A > 0 such that for almost every point A*(z) < —A <
0 < A < A¥(z) then it is said that the Lyapunov exponents are
uniformly bounded.

Is it possible to decompose the measure in a finite (countable)
number of ergodic components? u = U;u; such that each pu; is
ergodic.

Not true in general, even in the case that the Lyapunov exponents
are uniformed bounded.
Pesin theory

Existence of hyperbolic blocks.
There exists a set K, C(K) > 0, and C'(K) such that

L. p(K) > 0;
2. almost every point has an iterate on K

3. for z € K, there is A(z) > 0 such that for any vector v® € E*
and for any vector v* € E*

(3) X'() < —A(z) < 0 < Az) < X'(a),

(b) D] < C(K)expA(z)nl,

(©) 1Dfipi | < C(EexplA(w)n]
)

4. angle(E*(z), E*(z)) > C'(K)

Large local stable and unstable manifolds for points in the hyperbolic
blocks.

There is €(z) such that for every point z € K the local stable
and local unstable sets are transversal C”— manifold of size e{x).

Absolute continuity of the stable and unstable lamination

10



The holonomy maps along these foliations are Lebesgue measur-
able and preserve the class of Lebesgue measure.

Pesin, Pugh-Shub
Let f € CY*%(8 > 0) and p and f—invariant measure, which

induce an absolutely continuous measure on almost unstable mani-
folds, then

1. the basin of attraction has positibe Lebesgue measure;

2. the basin of attraction of ¢ (up to a zero Lebesgue measure)
is the countable union of the basin of attraction of ergodic
measure.

The union is finite if we assume that the Lyapunov exponents
are uniformly bounded.

11



One dimensional endomorphisms

Given f endomorphisms of the circle or the interval.

Questions:
What is the w—limit of a Lyapunov stable set?
weaker versions:

e What is the w(J) for an interval J such that {f*(J)},>o is pair
disjoint and fl"'} is an homeo for any n > 0.

Existence of Wandering Intervals. J is a wandering interval if
{f™(J) }nu>0 is pair disjoint, fﬁ} is an homeo and J is not in the
basin of attraction of a sink.

o What is the w(J) such that £} is an homeo and |f"*(J)| is small
for any n > 0.

12



Cl—topology

1.
2.

existence of endomorphisms exhibiting wandering intervals;

existence of endos exhibiting infinite sinks with unbounded pe-
riod {even without critical points); |

. hyperbolic systems are generic (Jakobson).

The C'—topology, is extremly local. This is showed by the ex-
istence of wanderings intervals. It is rich in the universe of the
"hyperbolic systems”, but maybe poor out of it.

How the dynamic of a system is affected as the smoothness of
the system is improved?
C"—topology (r > 2) (rigidity)

1.

non existence of wandering intervals:

(a) circle diffeomorphisms (Denjoy),
(b} non presence of critical points (Schwartz),

(c) unimodal maps with negative Schwartzian derivative (Guck-
enheimmer),

(d) unimodal maps with non flat criticalities (de Melo Van
Strien),

(e) endomorphisms with non flat critical points which are turn-
ings (Blokh Lyubich)

(f) general case, non flat critical points (Martens et al)

13



2. For endos without critical points, and under the hypothesis
that all periodic points are hyperbolic then either L{f) is hy-
perbolic or f is conjugated to an irrational rotation.

3. For unimodal maps such that the critical point is quadratic
then we get either: |

(a) existence of one attracting periodic point,

(b) infinitely renormalizable (i.e.: there is a sequence J,.1 C
Jn each interval containing the critical point and converg-
ing to it, a sequence k, — oo such that f*=(J,) C J, and
{£'(J.) }o<i<k, is pair disjoint),

(c) it is induced a Markov map, i.e.: there exists neighborhood
I C J such that for almost any point there exists a positive
integer m and a neighborhood T, of z such that f7 is
monotone, f™(z) € I and J C f™(T,). This implies that
we can change f by {f™}, such that this maps is Markov
and has bounded distortion.

Without the hypothesis of quadratic criticality, also we can get
absorbing cantor set. A cantor set of measure zero, absorbing the
hole interval (a.e.) and the map being transitive in the whole inter-
val.

14



What happens about the periodic attractors?

What happens about the renormalizable systems? And what
about the absorbing cantor sets? '

1. Finiteness of attracting periodic points. Under smooth and
non flat condition, the period of the attracting periodic points
1s bounded

2. In the quadratic family and in unimodal families, the measure
of the renormalizable systems and the one exhibiting attracting
cantor set 1s zero

15



Dominated splitting and partial hyperbolic systems

All the results are with Martin Sambarino.

Two ways to relax hyperbolicity:

Partial hyperbolcity, which allow the tangent bundle to split
into D f-invariant subbundles TM = E* @ F°¢ & E¥, and such that
the action of the tangent map in F° may be neutral.

Non-uniform hyperbolicity (or Pesin theory), where the tan-
gent bundle splits for points a.e. with respect to some invariant
measure, and vectors are assympotically contracted or expanded in
a rate that may depends on the base point.

Another category (which includes the partial hyperboliciy). The
Dominated Spliting,.

An f-invariant set A is said to have a dominaied splittingif we can
decompose its tangent bundle in two invariant subblundles Th M =
E & F, and such that:

”Df;lE(x)H“Df/_;{]'(fn(m))” <CAY, forallz € A,n > 0.

withC >0and 0 < A <1

Introduced independently by Maiié, Laio and Pliss, as a first step
in the attemp of proving that structurally stable systems implies
hyperbolicity.

Trivial examples of sets having dominated splitting wich are not
hyperbolic:

1. invariant closed curves normaly hyperbolic (at least one direc-
tion is hyperbolic),

2. two non-hyperbolic periodic points homoclinic related (no hy-
perbolic direction),

16



3. a horseshoes where the hyperbolicity is relaxed along an infinite
orbit (Cl—topology).

Question:
It is possible to describe the dynamics of systems having Dominated
Decomposition?
Is Domination rich enough to obtain some dynamical consequences?

Considering Smoothness:

1. Yes, for surface diffeomorphisms,

2. Also, 1f all the subbundles are one dimensional,

Main Theorem: Let f € Dif f2(M?) and assume that L(f) has
a dominated splitting. Then L(f) can be decomposed into L(f) =
TUL(f)UR such that

1. T is contained in a finite union of normally hyperbolic periodic
arcs.

2. R 1s a finite union of normally hyperbolic periodic simple closed
curves supporting an irrational rotation.

3. f/L(f) is expansive and admits a spectral decomposition (into
finitely many homoclinic classes)

The dynamic of C*diffeomorphism having dominated splitting
can be descomposed into two parts:

one where the dynamic consists on pertodic and almost periodic
motions (Z, R) and the diffeomorphism acts equicontinuously, and
another one where the dynamics is expansive and similar to the
hyperbolic case.

17



Key Theorem _

Let f be a C?-diffeomorphism on a compact surface, and let
A C Q(f) be a compact f-invariant set having a dominated split-
ting T)AM = E @ F and such that all the periodic points in A are
hyperbolic. Then, A = Ay U Ay where Ay

s hyperbolic and Ao consists of a finite union of periodic simple
closed curves

Cy, ...C,, normally hyperbolic and such that f™ . C; — C; is con-
jugated to an irrational rotation (m; denotes the period of C;).

Domination is a rich enough structure (improving smooth-
ness) to obtain dynamical consequences and topological de-
scriptions.

What happen in higher dimension, for systems having dominated
splitting or at least partialy hyperbolic?
Remarks

e There are open sets of diffeomorphisms which are not hyper-
bolic but partially hyperbolic;

¢ also examples with multidimensional central directions.

18



Thm: Assume TM = F @ F and F is one dimensional then, the
central manifold tangent to the F direction is dynamicaly defined;
Le.:

Wilz) = {y : () € Bf(@)) : d(f"(a), F(y)) — 0 n < 0}
is a C? manifold of large € '
(If also F = FE* then F is hyperbolic.)

Thim:
Let f € Diff" (r > 2) and assume TM3 = E5 @ E° @ EY, then
either:

1. is an Anosov or,

2. there is a closed invariant curve tangent to the central direction,
and f can be C7 approximated by another one showing points
of different index.

Question:
Let f € Dif f7 (r > 2), assume that TM? = E° ¢ E°® E* and all
the periodic points are hyperbolic with the same index, then either:

1. is an Anosov (central direction is either espansive or contrac-
tive) or,

2. Skew product on T? x S! over an Anosov on 72, with dynamics
on S! conjugated to irational rotations (central direction is an
isometry) or,

3. the time map of an Anosov flow (central direction is an isom-
etry).

19



e Skew products on T2 x S over an Anosov on T2 could be
(robustly):

1. hyperbolic (essencially Anosov on T product Morse-Smale),

2. non hyperbolic (presence of points of different index in a
same transitive set; central direction for some points is

expansive, and for other is contractive).

e Time one maps of Anosov flows. Can be approximated by

hyperbolic systems?

20



First steps in the direction to prove previous results.

Analysis of the dynamic behaviour of the central manifolds.

¢ For dominated splitting (in surfaces), is showed that the man-
ifolds tangent to F and F' are dynamically defined.

¢ For partial hyperbolicity is showed that the manifold tangent
to F° is either: :

1. dynamically defined (stable or unstable) or,

2. there is a closed invariant curve.

Dynamically defined:

WELE (2) is eiher W — ¢*(z) or WX(z).

To understan this, we have to understand:

The w—limit (a—limit) of points which are ”Lyapunov
stable”.

Denjoy anlysis

1. Dominated Splitting for surfaces: We try to understand w(I),
curve such that

(a) I C Af and £(f*(I)) < § for all n > 0.
(b) f™(I) is always transversal to the F-direction.

2. Partial hyperbolic systems with one dimensional central direc-
tion: We try to understand w(I), curve such that

(a) I C AT and £(f"(I)) <6 for all n > 0.
(b) f™*(I) is always transversal to the F° @ E-direction.

21



Residual sets of diffeos exhibiting infinitely many attrac-
tors

Newhouse:

1. Opens sets of stable tangencies

Existence of open sets U C Dif f2(M) such that any f € U
exhibits a tangency between the stable and the unstable man-
ifolds of a hyperbolic set. As a consequences:

2. There exists open sets Y C Dif f*(M?) containing a residual
set R in U such that any f € R exhibits infinitely many sinks.

What happens in the C'—topology? Are the hyperbolic systems
dense?

In higher dimension, the are C'— residual sets of diffeos exhibit-
ing infinitely many sinks {Bonatti-Diaz).

Questions:

e It is possible to find a dense set D C U such that for any f € D
the L({f) is (almost every point) decomposed in a finite number
of attractors? Or at least exhibiting just a finite number of
sinks?

¢ In parametrized family, is it true that the lebesgue measure
of the parameter corresponding to diffeos exhibiting infinitely
many sinks is zero?

e Open sets of diffeos exhibiting infinitely many sinks?

22



Simple sink: given a sink p of period n we say that it is simple if
for n—1 iterates the point remains in a neighborhood of a hyperbolic
set.

Tedeschini-Lalli, Yorke:
The measure (in the parameter) of diffeos exhibiting infinitely
many simple sinks 1s zero.

For each simple sink p let J(p) be the set of the parameter where
a simple sink ”persist”, then it is proved that X,|J(p)| < oo . Using
a Borel-Cantelli argument’s is proved the result.

There are much more than simple sinks. Sinks obtained by the
unfolds of the iterates of the local stable and unstable sets. More-
over, the unfold of an homoclic tangency implies:

1. cascade of bifurcation (Alligood, Yorke)
2. Henon like attractors (Mora, Viana)
3. infinitely many Henon like attractors (Colli)

4, super exponential growth of periodic points (Related to the
higher order of contact) (Kaloshin)

5. existence of wandering regiond not increasing the diameter
(Colli, Vargas)

And each of the last 3 phenomenas imply the existence of tan-
gencies.

23



On the other hand, even in the presence of stable tangencies,
some kind of non-uniform hyperbolicity can be guarantee:

Palis, Yoccoz:

Leb{({p < € : f, has not sinks})
€
It 1s proved that some kind of non-uniform hyperbolicity is preva-
lent. It do not allow the existence of infinitely many attractors.

In this case, there is an strong dissipation and when the tangency
is unfolded the dynamic generated is close to a one dimensional
dynamic.

What happens for systems without strong dissipation?

For C"—conservative systems, there exists open sets of diffeos
exhibiting infinetily many elliptic points and invariant circles (KAM,
Aubry Mather).

Is it possible to perturb the system to have just finite number of
attractors? Or infinitely many attracting components persists even
if the systems is perturbed in a non-conservative way?

24



What is the 7structure” of the Limit set in the presence of the
infinitely many sinks phenomena?

When the systems has infinitely many periodic attractors, what
can we say about each sinks? Basin of attraction, eigenvalues.

In a one dimensional system, if there are infinitely many sinks
1
{p.}, then |f*'|% — 1 (where k, is the period).

It is not true in dimension 2. There is a residual set of diffeos
such that any f has infinitely many sinks {p,}, and |D fk“\ﬁ do not
converge to 1 (where k,, is the period). And so, also the eigenvalues
do not converge to 1.

Related questions:

1. Is it possibe to find a dense set of diffeos such that if f has
infinitely many sinks then |D f;f:ﬁ converge to 1?7 ({p,} the
sinks and k, the period). The same questions for the eigenval-
ues. (results for parametrized families?).

2. Is it possible to find a dense set D C i such that the ”complex”
sinks are finite? The same question for parametrized families.

25



Even in this case, we could have that this non uniform hyperbol-
icity is robust.

Sambarino, P-
There are C? surface diffeomorphism f such that:

1. f has infinitely many hyperbolic periodic points with eigenval-
~ues going to 1 (there are not uniformly hyperbolic).

2. for any C%—diffeo ¢ close to f, these periodic points remain
hyperbolic.

The analysis, maybe, should be more global.
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For C?—one dimensional endomorphisms, we get:

absence of critical poinis imply hyperbolicity.

Generically for C?—surface diffeo we get:

Dominated Splitting imply hyperbolicity
Absence critical points <-> Dominated Splitting
For one dimensional endos, presence of critical point is ”the”

obstruction for hyperbolicity.

For diffeos on surfaces, tangencies is ”the” obstruction for hyper-
bolicity.

For diffeos on compact surfaces we get that C!1—far from tangen-
cies we get Dominated Splitting.

In same sense, tangencies work like critical points.

27



What happens when a set has not dominated splitting?
two alternatives:
1. there is a continuous splitting but without domination,

2. there is not splitting.

Can we describe the dynamic of a continuous splitting?
Alternatives:

1. saddle connection,
2. dominated splitting,

3. conjugated to a two dimensional rotation.

It is a problem related to the existence of Denjoy counterexam-
ple for surfaces diffeo. Do exist maps on 72 semiconjugated to an
irrational rotation on 72 and exhibiting wandering regions?

Yes, for C**¢ (McSwieggen)

But, if f € C*"2 then the wandering region can not be all ”square
regions” (Norton, Sullivan)
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What is the two dimensional phenomena just that its absence is
enough to guarantee domination?
What are Two dimensional critical poinis.
It should be dynamically defined. (Benedix-Carlesson, L. Wen-Lai
Sang Young), |

We could have splitting but not uniform in angle. Recall the case
of invariant measures.

Question:
Given an invariant measure with one negative Lyapunov exponents,
is this enough to guarantee that the other one is positive?

Previous question:

Given an invariant measure with one negative Lyapunov expo-
nents, can we guarantee that we have dynamically defined stable
and unstable sets? i.e.: for almost every point can we have eventu-
ally defined the local stable and the unstable sets?

Not true in general. Obstructions:

1. invariant circle normally hyperbolic;
2. time one map of a Cherry flows;

3. two dimensional version of one dimension phenomenas like ei-
ther infinitely renormalizable or absorbing cantor sets.
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The one dimensional analysis is done using strongly the concept
of critical point, an arguments of distortion.

What are the critical points and what kind of distortion argument
should we consider in the two dimensional case?

Two dimensional baby models.

Fil=1,1]%[0,1] = [-1,1] x [0, 1]

F(z,y) = (1 - a(z)y’, g(z,y))
where a : [-1,1] — (1,2), and
gle,yy=by if x <0
glz,y)=by+(1-b) ifz >0

The dynamic is concentrated on a cantor cross an interval.

Let us consider an invariant measure u = Hy,er X BE, MK IS 2
Cantor measure, and u, << Lebesgue

Questions

Assuming that there exists almost every point negative lyapunov
exponents,

e there are not wandering intervals;

e alternative as in one-dimensional theorems
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