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Visual hallucinations

. . . the hallucination is ... not a static process but a dynamic process, the instability of

which reflects an instability in its conditions of origin

R. MOURGUE (1932)

• Various sources of hallucinations:

exposure to flickering lights (Purkinje, Helmholtz)

administration of certain anaesthetics

waking up or falling asleep

deep binocular pressure on the eyeballs

the ingesting of drugs

• In 1928 Kliiver classified various reported images

into four classes or form constants:

tunnels and funnels (I)

spirals (II)

lattices such as honeycombs (III)

cobwebs (IV)



Hypothesis I: Geometric visual hallucinations are

generated ab initio in VI.

Images are seen both by blind subjects and in

sealed dark rooms.

Images are stable with respect to eye movements

Recent studies suggest that areas VI and V2 are

involved in visual imagery.

Hypothesis II: The action of hallucinogens on those

brain stem nuclei that control cortical excitability in-

duce the spontaneous formation of cortical patterns

of activity in VI.

Hypothesis III: Since all observers report seeing

Kliiver's form constants or variations, those proper-

ties common to all such hallucinations should yield

information about the architecture of VI. In partic-

ular, they should reflect any symmetries of VI.



(I) (II)

(III) (IV)
Figure 1: (I) funnel and (II) spiral images induced by LSD, (III) honeycomb generated by
marihuana, (IV) cobweb petroglyph



The retino-cortical map

• Away from the fovea, 1° < rR < 30°, the retino-

cortical map is a complex logarithm
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Visual Field Striate Cortex

• If (j)R is the orientation of a line in the visual field,

then:

i.e. local orientation in the visual cortex is relative

to the angular coordinate of visual field position.



Form constants as spontaneous cortical patterns

Figure 2: Action of the retino-cortical map on the funnel form constant.

• Form constants comprising circles, rays, and loga-

rithmic spirals, in the visual field correspond roughly

to stripes of neual activity at various angles in VI.

Figure 3: Action of the retino-cortical map on the spiral form constant.



Orientation tuning in VI

• Most VI cells not only signal position in the visual

field but also the local orientation of a contrast edge

or bar (Hubel and Wiesel 1962)
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• The distribution of orientation preferences is roughly

7r-periodic - approximately every millimeter there is

an iso-orientation patch of a given preference

Figure 4: Distribution of orientation preferences in VI obtained via optical imaging. Re-
drawn from Blasdel (1992).

• A hypercolumn is a region of VI roughly 1.5mm x

lmm on its surface and extending throughout its

depth with two sets of iso-orientation patches in the

range 0 < </> < TT, one for each eye. Approximately

36 x 36 = 1296 such hypercolumns per hemifleld.



• At least two interaction length-scales:

(a) local connections - cells less than a millimeter

apart tend to make connections with most of their

neighbors in a roughly isotropic fashion
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Figure 5: Connections made by an inhibitory interneuron in VI (Das and Gilbert).

(b) intrinsic lateral connections - cells make patchy

connections every millimeter or so along their ax-

ons with cells in similar iso-orientation patches.

Such connections are found mainly in layers II

and III of VI and tend to run parallel to the vi-

suotopic axis of their cell's orientation preference.



C,

Figure 6: Lateral Connections made by a cell in VI. A radioactive tracer is used to show
the locations of all terminating axons from cells in a central injection site, superimposed
on an orientation map obtained by optical imaging (Blasdel [Personal Communication] and
Bosking et a! (1997))
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A new cortical model

hypercolumn
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Euclidean symmetry

• Define the novel (shift-twist) action of the Eu

clidean group on R2 x S1 by

s • (r, 4>) = (r + s, <f>) s € R2

where « is the reflection

is the rotation matrix
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Turing instability

• Let a (r, </>) = 0 be a stationary solution of the

evolution equation. This homogeneous state is stable

for all JJL less than a critical value fic.

• The homogeneous state will destabilize if /i crosses

/ic. This could occur when the excitability of VI

increases due to the action of hallucinogens on brain

stem nuclei such as the locus coerelus or the raphe

nucleus, which secrete the monamines serotonin and

noradrenalin.

• If ji remains close to JJLC then new stationary states

develop that are approximated by (finite) linear com-

binations of eigenfunctions of the linearized evolution

equation.

• The equivariant branching lemma guarantees the

existence of new states with the symmetry of certain

subgroups of the Euclidean group.
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Eigenfunctions of VI

• Solutions of the form a(r, 0, i) = a(r, (f))eXt

• Expand in powers of /3 = vj\i <C 1 and use degen-

erate perturbation theory to solve eigenvalue equa-

tion.

• To lowest order in /? the eigenvalues are

1 -

with

± q)}

Here

and

is ^n e P^h Fourier mode of WLOC(<I>)

,sin(2p(90) »oo

wLAT(s)J2p(qs)ds

where J2p is a Bessel function and #o determines the

spread of lateral connections
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Associated eigenfunctions are

o ( r , <f>) = <pn)

with k n = g(cos ipn, sin y?n) and to lowest order in (3

= cos zv0: up{0) = sin

• Represent plane waves modulated by even or odd

phase-shifted TT-periodic functions.

7i/q

p = 0 p = l,odd p= 1, even

wavelength of stripe is 2?r/g and direction is cpn
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Marginal stability curves

1.0 p = l

p = 0

1.0

Hubel-Wiesel mode (pc = 0) Coupled-ring mode (Pc >

• If JJL < fJi±(p, q) for all p, q then the homogeneous

state is locally stable

• Critical coupling for a Turing instability is

• oo-degeneracy since all wavevectors k such that

|k| = qc are selected

• For small lateral spread (6Q < 45°) odd e-functions

are selected otherwise even e-functions are selected.
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Form constants as planforms

• Need to compute actual patterns of VI that de-

velop when the uniform state loses stability - linear

combinations of critical eigenfunctions (planforms).

• Assume that planforms generate regular tilings of

the plane by restricting to doubly periodic solutions:

a : R2 x S1 -+ R is doubly periodic with respect to

a planar lattice C if for every £ E C.

a{x + £,(/)) = a{x,4>)

• Planforms then have either rhombic, square or

D4

hexagonal symmetry. Finite combinations of plane

waves (k lies on dual lattice of C)
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The equivariant branching lemma

• Each doubly periodic eigenfunction is invariant with

respect to a discrete subgroup of E(2). If the eigen-

function is the only solution with such a symmetry,

then it corresponds to an axial subgroup of E(2).

• The equivariant branching lemma shows that when

the homogeneous state of a symmetric dynamical sys-

tem becomes unstable, new solutions appear that

(generically) have symmetries corresponding to the

axial subgroups of the underlying system symmetry

group.

• The axial subgroups are distinct for even and odd

solutions
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(I) (II)

I I I I I I 1 I I 1 I I I I 1 I I

(III) (IV)

VI planforms
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(I) (II)

(III)

Visual field planforms
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Future directions

Other feature maps:

spatial frequency

ocular dominance

binocular disparity

color

motion

Contextual effects

Layered structure of cortex: multi-population model

Feedback from higher cortical areas

Temporal dynamics

21
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Figure 7: Tunnel hallucination generated by LSD (Oster 1970).
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Figure 8: Complex hallucination generated by LSD (Oster 1970)

23



—

B

N

v>
O
Q.
<n
CD

a:

N

</)
C

o
Q.
V>
(D

a:

center

.....---surround

High-contrast center pius surround

220

190

160

. Cell 2

-90 -60 -30 0 30 60 90 -90 -60 -30 0 30 60 90

Surround orientation (°)

Low-contrast center plus surround

80 30 -

Center alone
60 - •

4 0 x Cell 3

-90 -60 -30 0 30 60 90 -90 -60 -30 30 60 90

Surround orientation (°)

24



Coupled-ring mode revisited

• Can reduce dynamics to a set of amplitude equa-

tions for the population tuning curves:

a) determine selection of planforms

b) determine modulatory effects of lateral interac-

tions on response to LGN inputs - contextual effects

a(r2,<|>,t)

lateral
A •

hypercolumns

I
population tuning curves

lateral

LGN input LGN input
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Center-surround modulation

(a)

Surround input

(b)

§E

(c)

LGN input

(a) Circular center-surround stimulus configuration

(b) Center hypercolumn interacting with a ring of

surround hypercolumns

(c) Effective single-hypercolumn circuit
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If Z is amplitude of center hypercolumn then

— Z(fi — \Z\2) + LGN inputs + surround inputs
dr

• Assume lateral interactions change from inhibitory

to excitatory as contrast C of center stimulus is re-

duced. This induces a switch from suppression to

facilitation for colinear center and surround.
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• Let <i> denote relative orientation of center and sur

round. Switch from suppression to facilitation as

is increased.

5Z
1.2

1.0

0.5
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2 ( ) 0 4 0 0 / 6 0 0 800

suppression

• Anisotropy of lateral interactions implies a depen-

dence on the relative positions of center and surround

stimuli.
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• Three population model distinguishes between in-

terneurons with horizontally distributed axonal fields

(basket cells) and those with predominantly verti-

cally aligned axonal fields (martinotti, chandelier)

LGN
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Primaiy visual cortex (VI)
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