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Statistics Tutorial - Martin Stetter

Why Statistics in CNS?

• Analysis of biological neural data.

• Statistical characterization of sensory data.

• Modeling the brain as a statistical inference machine...

- Statistical characterization of optimal codes.

- Description of brain dynamics at a population level.

- Statistical biophysical models (reaction kinetics).

• You name it...
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Topics to be Addressed

• Introduction and Definitions.

• Moments and Cumulants.

• Some Basic Concepts of Information Theory.

• Point Processes.

• Statistical Modeling - Basic Concepts.

• Statistical Modeling - Examples.
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Introduction and Definitions

A

One Discrete Random Variable

Consider a discrete random variable X.
If sampled ("trial"), it randomly assumes one of the values

Probability for event X = x(i): Prob(X = x(i)) =: p*.

Properties:

• 0 < pi < 1. pi = 0 : x(i) does'nt ever occur; pt = 1 : o;(i) occurs in
every trial (=*• no other x(j) ever observed).

• 5Z^ p» = l . After all, anything must happen in a trial.
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One Continuous Random Variable

A continuous random variable X can take any real or complex value x
(possibly within an interval). We assume x e IR
Need different probability concept (because Prob(X = x) = 0).

# p[x) := Prob(X < x) Cumulative distribution function.

• p(x)dx := Prob(x < X < x + dx). p(x) = probability density function
(pdf), if dx small (infinitesimal).

Properties:

p{x) > 0.

0 < P < 1; P(x) monotoni-
cally increasing.

P(x)
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Several Random Variables, Random Vectors

Often, several random variables X1} ... , Xd have to be considered at the
same time (multivariate data).

X = (XL , X2, ... , Xd) Random vector. Assumes values x e

p(x) = p(xi,x2,..., Xd) Joint probability density function.

dX:

p (x) dx

Xj
0 1 2 3

Gray-level image of a 2D-Gaussian pdf p(x) 300 vectors drawn from p
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Example: Multivariate Gaussian Distribution

TG"1exp ( - i (x - /i)TG"1(x - , G)

/i = mean; G = covariance matrix (symmetric, positive definite, see later).

Interpretations of Probabilities

• Relative frequency of finding a value xi of a random variable after many
trials ("frequentist philosophy").

• Our belief, that one of several possibilities (labelled by xi) will happen in
the near future ("Bayesian philosophy").
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Some Probability Definitions and Probability Laws

Consider two random variables X and Y.
• Conditional Probability: p(y\x)dy Probability for finding

Y £ [y5 V + dy]> i f w e already know that X e[x,x + dx].

• p{y,x) =p{y\x)p(x) =p(x\y)p{y).

• Marginalization: p(y) = f p(y,x)dx = f p(y\x)p(x)dx.

• X and Y are independent <̂ => p(x, y) = p(x)p(y) o p{y\x) = p(y).

P(y) p(x>y)
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n» ' i / i \ p(x\y)p(y) P(X\V)P(V)
Bayes Law: p(y\x) = v ' ^ ^ / = y\ \yjy\yj—

V ' ' P(x) jp{x\y>)p{yi)dy>

Consider higher-dimensional random vectors X = (X±, ... , Xd)\

• Bayes for Subsets X, Y: p(y|x) = p(x|y)p(y)/p(x).

• Decomposition: p(xi,...,x<i) =

• Special case: Independence:

pd-i{xd-i) ...

• Special case: 1st order Markov chain:

p(xi,...,Xd) =Pd(Xd\Xd-l) Pd-l(Xd-l\Xd-2)
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Random Processes and Random Fields

• Random process = random time series (e.g. LFP data, Spike train
etc.).

• Formally: Set of random variables X(t) labelled by a (discrete) time
index t. It assumes random values x(t). p(x(t)) is the probability for
observing the value x in the small time interval around t.

• Full characterization by joint pdf: p(x1(t1),x2(t2), ... ,xd{td)) =P(X)

• Stationary random process:

) , ,d(d + r)) V r .

In particular: pk(x(tk)) =Pk{x(tk + T ) ) .

1st order Markov process: p(x1(t1),x2{t2), ... ,xd{td)) =
Pd(xd(td)\xd-i(td-i)) ... p2(x2(t2)\x1(t1))p1(x1(ti))
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A instances of random process
x K ' ( ( A ) ) I l\x

h t

Gaussian random process: z

p(x) = 1 exp ( - i

Random field = random image (e.g. instances are a set of camera
images).

Formally: Set of random variables X(r) labelled by a (discrete) spatial
index r, characterized by p(x1(r1),x2{r2), ... ,xd(rd)) =p(x(r)).

1 st order Markov random field: j9(xi(ri),x2(r2), ... ,xd(rd)) =
(0, Ar)).
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Moments and Cumulants

The Mean

Consider random vector X =
Consider a function / (X ) .

Def. Mean:

, ... , Xd), distributed according top(x).

:=fp(x)f(x) dx

• p(x) known =» Means of arbitrary functions available.

• Means for all functions / known => p(x) can be determined ^ Statistics
of X completely known.

Practically, set of all functions / not accessible.
^ Look for a "clever" set of functions.
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Moments

Def.: n-th order moment of random vector X:

(XnXi2 ... = / p(x) H Xi2, . . .

Examples:

• 1st order: ^i = (Xi) = Jp(xi) Xi dxi = mean value;

• 2nd order: {Xl), {X2X3).

• 3rd order: (XiX2X3), , (X2X3
2

All moments known =>• Mean of every Taylor-expansible function known.
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Cumulants - Motivation

Goal: Construct functions of random variables, which characterize p(x)
efficiently and have additional desirable properties.

Example - Covariance:

= dxi dxj p(xi,Xj)xiXj — fiifij.
j J

i = af = variance of

Covariance matrix of a random vector X:

If X has independent components

Plot: Gaussian data, G^i = 1; Gi,2 = 0.8;
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Cumulants - Definition

Def: Cumulant generating function: Log of (inv.) fourier transform of p(x):

r

<£(s) := log / exp(isTx) p(x) dx = log(exp(zsTx))

Def: n-th order cumulant of random vector X:

Cumulants are expansion coefficients of $ around 0 (existence assumed).
Hence:

• All cumulants known
=4> we know<E>(s)
=> we knowp(x) = ^ /exp(-zxTs) exp($(s)) ds.

But even more interestingly ...
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Cumulants - Some Properties

• p(x) Gaussian =» all higher than 2. order cumulants vanish.

Why?
- The Fourier transform of a Gaussian is again a Gaussian.
- Its logarithm, <3>(s) is a square function.
- All higher than second order derivatives vanish...
=» Use higher order cumulants for detection of non-Gaussianity.

• X has independent components <4> All cross-cumulants vanish.
Only the cumulants ((Xf)), % = l,..., d can be non-zero.

Why?

-p(x) factorizes <$ we find $(s) = J2i ^(50»
& Mixed derivatives vanish.
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Cumulants - Examples

• 1. order:
Mean

2. order: ((Xi,X2)) = (X1X2) - (covariance).

((Xi,Xi)) = o\ variance

• 3. order: ((X1,X2,X3)} = (X1X2X3)

= (X?) - = S skewness

• 4- order: (... Gulp ... ) but for zero-mean data (/x = 0):

- (X1X3)(X2X4) -

= (X?) - 3<r$ = K kurtosis
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Some Basic Concepts of Information Theory
Shannon Information and Information Entropy

• Consider a discrete random variable X, which assumes values
x(i), i = 1, ... , M with probabilities p^

• Find a quantity "information" such that
- it describes our "surprise" to see a particular value x{%) happen.
- the information of two statistically independent events adds up linearly.

Def: Information of symbol x(i):

J(x(i)) = In — = —
Pi
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Def: Shannon entropy:

' ^J

• Average information gained by sampling X once.

• Average length of message (nats) needed at least to describe one
observation.

For continuous random variables, we can define the differential entropy
(should be scored against a reference value, e.g. \oxpi = const.)

H{X) = - fp(x) ]np(x) dx.

The (differential) entropy for a random vector is

H(X) = - /p(x) lnp(x) dx.
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Some Properties

• Among all random variables with bounded values (discrete or cont.)
H{X) = max <=> p = const.
(uniform distribution).

• Among all random variables with the same mean ^ and variance a2

# ( X ) = m a x <=> p(x) - i ( 2 2 )

(Gaussian distribution).

• X = (Xi, ... , Xd) random vector distributed according top(x).
Xi are independent, p(x) = UiPifa) <=> H(x) = E t i H(xi)
(H(Xi) = - fpi{xi) lnpi(xi) dxi marginal or pixel entropies)

# Generally: H(X) < J2t=
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Information Capacity C

Def. Information capacity C: Maximum amount of information that can be
carried by the random vector X (is a function of p(x)).

Can be achieved, if

• X has independent components: H(X) = £ \ H{Xi), and

• each marginal entropy H(Xt) is maximal

Example: Discrete random vector, M values for each of the d components.

• Maximum marginal entropies: => H(Xi) = - J2kLi i f l n i? = ^nM-

• Independence =» C = #max(X) = d H(Xi) = dlnM.

Interpretation of capacity: Maximum description length we can expect for the
random variable X.

J
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Redundancy

In presence of redundancy, we need less than the capacity to describe the
statistics.

Def. Redundancy of X:

or

R= ^{
(1) Due to non-uniform dist. (2) Due to mutual dependencies
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Mutual Information

Term (2) of the redundancy is proportional to the Mutual Information I
between the components Xf.

/(x) measures, how much p(x) differs from factorization.

Kullback-Leibler Divergence

Distance measure between two pdf'sp(x) and q(x):

Observation: J(X) = K(P(x)\\YliPi(xi)).
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Stochastic Point Processes
Definition

o

__l_r

Xi

\_L-o_l_rvJ_

O

T2

O

j

24

t\ t2 h
J C O O O O 1 O O O O 1 O O 1 O

Binary random process.
Resembles an "idealized spike train"...
Defined by set {u} of "1 "-events or by ti plus {n} of interspike-intervals.



Statistics Tutorial - Martin Stetter 25

Statistical Characterization

Consider process of length T, divided into N small bins dt: T = N dt.

• Full characterization: Joint density for all configurations of events:

p{xi, ... ,XN) dNt Xi e {0,1} (2^ numbers).

• Special case: Instantaneous Rate: (Biology: PSTH)

R{tn) = R(n dt) =p(Xn = 1)= Prob(Spike in [U,t* +dt})

Stationary process: R(t) = R.

• Special case: Autointensity function: (Biology: Autocorrelogram)

, x _ , , x _ Prob(Spike in [tn,tn + dt] \ Spike in [tm, tm + dt])

dt

Stationary process: C(t1,t2) = C(t2 - £i,0) = C(t2 -h).
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Poisson-Process

Point process with independent events xn: p(x±, ... ,xN) = Yin P(X^)-

Some Properties:

• Fully characterized by the rate R(t). Prob(Spike in [t, t + dt]) = R(t) dt.

• Homogeneous Poisson process: R(t) = R.

• Interval density: p(r) = Rexp(-Rr).

• Interspike intervals are statistically independent.

• Spike count Z in time interval T is Poisson-distributed:
P(Z) = exp(-L)Lz/Z\; L = /Q

T R(t)dt (Homog: L = RT).
= * (Z) =a% = RT.
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General Aspects of Statistical Data Modeling

Goals of Statistical Modeling

Realistic Situation:
Data sample x(oi), a = l , ... ,P, drawn from an unknown pdf p(x).
Goal: Extraction of statistical structure from the data. Important techniques:

# Density estimation.
Estimate the pdf underlying the data.
Characterize redundancies (struc-
ture) therein.

• Function approximation.
Regression: characterize functional
relationships between pairs of data.
Classification: characterize underly-
ing prob. of class-membership.
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Parametric Density Estimation

• Model the pdf of random vector X as a parameterized function: p(x|w).
(We introduce a "Generative Model" for the data).

• w is the set of parameters.
w is optimized such that data are optimally described by p(x|w).

• Example: Gaussian: p(x|w) = <£(x|/i, G).

Advantage: Few parameters to be estimated.
Disadvantage: Who knows, if the model is cor-
rect?
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Non-Parametric Density Estimation

Functional form of pdf p(x) is not specified in advance (est. from data only).

Examples:

• Histogram method.
Divide data space into intervals of width
h. Calculate relative frequencies.

• Kernel density estimator.
"Smoothing" of data cloud:

with u(x) > 0, / w(x) dx = 1.

• if-nearest neighbors.
Average over K adjacent data points, no
fixed h.

Parameters h or K have to be suitably chosen (nontrivial).

, - T * N window U \ , - " r^N"p * N
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Regression

Formulate model for underlying deterministic struc-
ture in input-output pairs, (x ( a ) ,y ( a ) ) , a = l , ... ,P
of data:

y = f(w;x) + n

f = regression function, parameterized by w.
n = random noise vector.

dots: data, line: f.

• Parameter set w is adjusted for an optimal description of data.

• Link to density estimation:
- Estimate joint density p(x, y).
- Take regression function as conditional average:
f (x) = y(x) = / y p(y|x) dy.
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Maximum Likelihood Parameter Estimation

Goal: Optimize params w of parametric models given the data {x (o ; )}.
Principle: Adjust w as to maximize the likelihood, that the observed data
have been generated by the model:

wM L = argmaxwL(w) with

L(w) :=p(x ( 1 ) ,x ( 2 ) , ... ,x ( P ) |w) =p({x ( o°}|w).

Equivalently: Minimize negative log likelihood:

wM L = argminw£(w) with

E(w) = - lnL(w) = -lnp({x (a )}|w).

For independently drawn data points:

Gauss: Optimize /x, G
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Maximum Likelihood for Regression

Consider regression via estimation of the joint density p(y, x).

L(w) =J]p(y(a),x(a!)|w) =

Leaving constants away:

With y ( a ) = f (w; x ( a )) + n ( a ) and n distrib. according to pn (n):

=Pn

For Gaussian noise, pn = 0, ML = least squares:
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Bayesian Inference

Goal: Specify whole pdf of model parameters w given
- the known data set {x (a ; )} =: % and
- prior knowledge (the amount of "blind" belief in the models).
Principle: Use Bayes' law as follows:

( | ) p(w)7y
posterior likelihood prior

Bayesian density estimation: Use average over all models:

Special Case: Maximum a Posteriori (MAP) parameter estimation (reduces
to maximum likelihood for flat priors).

w M A P = argmaxwp(w|x)
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Statistical Data Modeling - Examples

Density Estimation by Gaussian Mixture Models

General mixture model:

M

p(x) =

p(x|j) = component density.
P(j) = mixing parameter. Specifies probability that the data point is
generated by component j.

Gaussian mixture model:

M

Optimize fij, Gjt and P(j), j — 1, ...,M, e.g. by Maximum Likelihood.
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Regression by Linear Models

Special case: Regression function is linear in w: / (w; x) = f (x)w.
=> Output is linear combination of prototype functions.

Foradatasetx(Q:),y(a!),a

M

y = Fw + n, y =

F =
/x(x<2>)

design matrix

y(a)

/
O

0

/

<'

n
0

0

(a)

O ^/ °

1
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Maximum Likelihood Solution for Linear Models

Gaussian noise: ML provides least squares solution:

wML=(pTp)"1pTy

Estimate of noise variance:

. 2 _ (Rx) r(Rx)
Gri ~ trace(Rx) '

R = I - F(F T F)" 1 F = residual generating matrix.
Variance of parameter WJ\

o) =
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Radial Basis Functions for Regression

Generalization/unification of linear models and gaussian mixture models.

-Approximate regression function by linear superpositions of Gaussians:

M

f (x) =
j=0

W = (0o, 0i, ... , 0 M ) = (0i)

• Optimize parameters IJLJ.GJ of

Gaussians by use of input values

x ( a ) only (like Mixture of Gaussians).

• Use optimal Gaussians as model

functions of a linear model:

= 0, ... , M; /c = 1, ... , K.

y'—f

R B F a s a N e u r a , Network.
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Multilayer Perceptrons (MLP)

Can be viewed as a generalization of

RBF Networks

- to several layers,

- to nonlinear transfer functions,

- to arbitrary weights.

Dynamics for two layers:

Two-layer MLP (bias omitted).

CLJ = Y?i=i ujiXi, ZJ = g(aj) Synaptic input and output of hidden node j.

ak = YsjLo wkjZj, fk = h(ak). Synaptic input and output of output node k.

Total:

M M

/fc(W,U;x) = h g = h(ak).
j=0
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Error-Backpropagation:

Recipe from minimization of cost function E (e.g. E = Y,k{vk ~ f^)2)

• Apply input x(c*\ calculate PSPs a? and activities zj,fk (forward
propagation).

• Calculate output errors Sk = dE/dak (e.g. 5k = ti(ak)(fk - yk)).

• Propagate errors back trough the net: Sj = g'(aj) Y,

• Modify weights according to Awkj = -Skzj.
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Independent Component Analysis (ICA)

Mix: x = As

s,

(Sep?y = q(xlyx2)

40

Problem: Measure x = A s. Mixing matrix A and sources s unknown.

Goal: Estimate both A and s from the fact (or assumption), that s has
independent components.
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Solution (sketch):

• Formulate generative model for the pdf of the observed data:
g(x) =detWp(Wx) = detW n ^ ( ( w * ) 0 -
(Can be viewed as a special case of density estimation).

• Maximum likelihood:

E(W) = -£logna<?(x(a)) = - ^ E . E >
= min.

• Resulting update rule (nat. gradient):
AW = (I - G(y)yT)W; y = Wx; 9{ =

Mixture 1 Mixture 2 Estim. source 1 Estim. source 2
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Further Reading

• C. M. Bishop, Neural Networks for Pattern Recognition. Clarendon
Press, Oxford, 1995.

• C. W. Gardiner, Handbook of Sochastic Methods. Springer, Berlin,
1983.

• W. Bialek, F. Rieke, R. R. de Ruyter van Steveninck and D. Warland,
Spikes. MIT Press, Cambridge, 1998.


