

international atomic energy agency **abdus salam s the international centre for theoretical physics**

SMR: 1343/2

EU ADVANCED COURSE IN COMPUTATIONAL NEUROSCIENCE An IBRO Neuroscience School

(30 July - 24 August 2001)

"Advanced Statistics

presented by:

Martin STETTER

Siemens AG, Corporate Technology CT IC 4, Otto-Hahn-Ring 6 81739 Miinchen GERMANY

These are preliminary lecture notes, intended only for distribution to participants.

Statistics - Short Intro

Martin Stetter

Siemens AG, Corporate Technology CT IC 4, Otto-Hahn-Ring 6 81739 Munchen, Germany

martin.stetter@mchp.siemens.de

Statistics Tutorial - Martin Stetter

 $\overline{2}$

Topics to be Addressed

- Introduction and Definitions.
- Moments and Cumulants.
- Some Basic Concepts of Information Theory.
- Point Processes.
- Statistical Modeling Basic Concepts.
- \bullet Statistical Modeling Examples.

Statistics Tutorial - Martin Stetter

Introduction and Definitions

One Discrete Random Variable

Consider a discrete random variable X. If sampled ("trial"), it randomly assumes one of the values $X = x(1), x(2), \ldots, x(M).$

Probability for event $X = x(i)$: $Prob(X = x(i)) =: p_i$.

Properties:

- $0 \leq p_i \leq 1$. $p_i = 0$: $x(i)$ does'nt ever occur; $p_i = 1$: $x(i)$ occurs in every trial (\Rightarrow no other $x(j)$ ever observed).
- $\sum_{i=1}^{N} p_i = 1.$ After all, anything must happen in a trial.

 $\overline{4}$

Contract Contract C

One Continuous Random Variable

A continuous random variable X can take any real or complex value x (possibly within an interval). We assume $x \in \mathbb{R}$ Need different probability concept (because $\text{Prob}(X = x) = 0$).

- $P(x) := \text{Prob}(X \leq x)$ Cumulative distribution function.
- $p(x)dx := \text{Prob}(x \leq X \leq x + dx)$. $p(x) = \text{probability density function}$ (pdf), if dx small (infinitesimal).

Properties:

- $p(x) \geq 0$.
- \bullet $\int_{-\infty}^{\infty} p(x') dx' = 1.$
- $P(x) = \int_{-\infty}^{x} p(x') dx'$. $0 \leq P \leq 1$; $P(x)$ monotonically increasing.

Statistics Tutorial - Martin Stetter

6

Example: Multivariate Gaussian Distribution

$$
p(\mathbf{x}) = \frac{1}{(2\pi)^{d/2} (\det \mathbf{G})^{1/2}} \exp \left(-\frac{1}{2} (\mathbf{x} - \mu)^T \mathbf{G}^{-1} (\mathbf{x} - \mu) \right) =: \phi(\mathbf{x} | \mu, \mathbf{G})
$$

 μ = mean; G = covariance matrix (symmetric, positive definite, see later).

Interpretations of Probabilities

- Relative frequency of finding a value x_i of a random variable after many trials ("frequentist philosophy").
- Our belief, that one of several possibilities (labelled by x_i) will happen in the near future ("Bayesian philosophy").

Statistics Tutorial - Martin Stetter

8

Bayes' Law:
$$
p(y|x) = \frac{p(x|y)p(y)}{p(x)} = \frac{p(x|y)p(y)}{\int p(x|y')p(y')dy'}
$$

Consider higher-dimensional random vectors $\mathbf{X} = (X_1, ..., X_d)$:

- Bayes for Subsets X, Y: $p(y|x) = p(x|y)p(y)/p(x)$.
- Decomposition: $p(x_1, ..., x_d) =$ $p_d(x_d|x_{d-1},...,x_1)p_{d-1}(x_{d-1}|x_{d-2},...,x_1)...p_2(x_2|x_1)p_1(x_1)$
- Special case: Independence: $p_{d-1}(x_{d-1})$...
- Special case: 1st order Markov chain: $p(x_1,...,x_d) = p_d(x_d|x_{d-1}) p_{d-1}(x_{d-1}|x_{d-2}) ... p_2(x_2|x_1) p_1(x_1)$

Statistics Tutorial - Martin Stetter 10

Random Processes and Random Fields

- Random process = random time series (e.g. LFP data, Spike train etc.).
- Formally: Set of random variables $X(t)$ labelled by a (discrete) time index t. It assumes random values $x(t)$. $p(x(t))$ is the probability for observing the value x in the small time interval around t .
- Full characterization by joint pdf: $p(x_1(t_1), x_2(t_2), \ldots, x_d(t_d)) \equiv p(x)$
- Stationary random process: $p(x_1(t_1), x_2(t_2), \ldots, x_d(t_d)) = p(x_1(t_1 + \tau), \ldots, x_d(t_d + \tau)) \ \forall \tau.$ In particular: $p_k(x(t_k)) = p_k(x(t_k + \tau))$.
- 1st order Markov process: $p(x_1(t_1), x_2(t_2), \ldots, x_d(t_d)) =$ $p_d(x_d(t_d)|x_{d-1}(t_{d-1}))$... $p_2(x_2(t_2)|x_1(t_1))p_1(x_1(t_1))$

Statistics Tutorial- Martin Stetter **12**

Moments and Cumulants

The Mean

Consider random vector $\mathbf{X} = (X_1, ..., X_d)$, distributed according to $p(\mathbf{x})$. Consider a function $f(\mathbf{X})$.

Def. Mean:

$$
\langle f \rangle := \int p(\mathbf{x}) \ f(\mathbf{x}) \ d\mathbf{x}
$$

- $p(x)$ known \Rightarrow Means of arbitrary functions available.
- Means for all functions f known $\Rightarrow p(x)$ can be determined \Rightarrow Statistics of X completely known.

Practically, set of all functions f not accessible.

 \Rightarrow Look for a "clever" set of functions.

Moments

Def.: n -th order moment of random vector X :

$$
\langle X_{i1} X_{i2} ... X_{in} \rangle = \int p(\mathbf{x}) x_{i1} x_{i2}, ... x_{in} d\mathbf{x}
$$

=
$$
\int p(x_{i1}, ... x_{in}) x_{i1}, ... x_{in} dx_{i1}, ... dx_{in}.
$$

Examples:

- 1st order: $\mu_i = \langle X_i \rangle = \int p(x_i) x_i dx_i$ = mean value; $\mu = (\mu_1, ..., \mu_d)$.
- 2nd order: $\langle X_1^2 \rangle$, $\langle X_2 X_3 \rangle$.
- \bullet 3rd order: $\langle X_1 X_2 X_3 \rangle$, $\langle X_1^3 \rangle$, $\langle X_2 X_3^2 \rangle$

All moments known \Rightarrow Mean of every Taylor-expansible function known.

Statistics Tutorial - Martin Stetter **¹⁴**

Cumulants - Motivation

Goal: Construct functions of random variables, which characterize $p(x)$ efficiently and have additional desirable properties.

Example - Covariance:

$$
G_{i,j} = \langle X_i X_j \rangle - \mu_i \mu_j = \int dx_i \int dx_j \ p(x_i, x_j) x_i x_j - \mu_i \mu_j.
$$

$$
G_{i,i} = \sigma_i^2
$$
 = variance of X_i .

Covariance matrix of a random vector X:

 $\mathbf{G} = (G_{i,j}) = \langle \mathbf{X} \mathbf{X}^T \rangle - \mu \mu^T.$

If X has independent components \Rightarrow $G_{i,j} = \delta_{i,j} \sigma_i^2$.

Plot: Gaussian data, $G_{i,i} = 1$; $G_{1,2} = 0.8$;

Cumulants - Definition

Def: Cumulant generating function: Log of (inv.) fourier transform of $p(x)$:

$$
\Phi(\mathbf{s}) := \log \int \exp(i\mathbf{s}^T \mathbf{x}) \ p(\mathbf{x}) \ d\mathbf{x} = \log \langle \exp(i\mathbf{s}^T \mathbf{x}) \rangle
$$

Def: n -th order cumulant of random vector X :

$$
\langle \langle X_{i1}, \dots, X_{in} \rangle \rangle = (-i)^n \left. \frac{\partial \Phi(s_1, s_2 \dots s_d)}{\partial s_{i1} \partial s_{i2}, \dots \partial s_{in}} \right|_{s=0}
$$

Cumulants are expansion coefficients of Φ around 0 (existence assumed). Hence:

- All cumulants known
	- \Rightarrow we know $\Phi(s)$
	- \Rightarrow we know $p(\mathbf{x}) = \frac{1}{2\pi d} \int \exp(-i\mathbf{x}^T \mathbf{s}) \exp(\Phi(\mathbf{s})) ds$.

But even more interestingly ...

Statistics Tutorial - Martin Stetter 16

Statistics Tutorial- Martin Stetter **18**

Def: Shannon entropy:

$$
H(X) = \langle J \rangle = -\sum_{i} p_i \ln p_i
$$

- Average information gained by sampling X once.
- Average length of message (nats) needed at least to describe one observation.

For continuous random variables, we can define the differential entropy (should be scored against a reference value, e.g. for $p_i = const.$)

$$
H(X) = -\int p(x) \ln p(x) \ dx.
$$

The (differential) entropy for a random vector is

$$
H(\mathbf{X}) = -\int p(\mathbf{x}) \ln p(\mathbf{x}) \, d\mathbf{x}.
$$

Statistics Tutorial - Martin Stetter 20

Some Properties • Among all random variables with bounded values (discrete or cont.) $H(X) = \max \iff p = const.$ (uniform distribution). • Among all random variables with the same mean μ and variance σ^2 $H(X) = \max \iff p(x) = \frac{1}{\sqrt{2\pi\sigma^2}} \exp(-(x-\mu)^2/2\sigma^2)$ (Gaussian distribution). • $X = (X_1, ..., X_d)$ random vector distributed according to $p(x)$. X_i are independent, $p(\mathbf{x}) = \prod_i p_i(x_i) \Longleftrightarrow H(\mathbf{X}) = \sum_{i=1}^d H(X_i)$ $(H(X_i) = -\int p_i(x_i) \ln p_i(x_i) dx_i$ marginal or pixel entropies) • Generally: $H(\mathbf{X}) \leq \sum_{i=1}^{d} H(X_i)$

Information Capacity C

Def. Information capacity C: Maximum amount of information that can be carried by the random vector X (is a function of $p(x)$).

Can be achieved, if

- X has independent components: $H(\mathbf{X}) = \sum_i H(X_i)$, and
- each marginal entropy $H(X_i)$ is maximal

Example: Discrete random vector, M values for each of the d components.

- Maximum marginal entropies: \Rightarrow $H(X_i) = -\sum_{k=1}^{M} \frac{1}{M} \ln \frac{1}{M} = \ln M$.
- Independence $\Rightarrow C = H_{\text{max}}(\mathbf{X}) = d H(X_i) = d \ln M$.

Interpretation of capacity: Maximum description length we can expect for the random variable X.

Statistics Tutorial - Martin Stetter 22

Redundancy

In presence of redundancy, we need less than the capacity to describe the statistics.

Def. Redundancy of X:

$$
R = 1 - \frac{H(\mathbf{X})}{C}
$$

or

$$
R = \frac{1}{C} \left(C - \sum_{i=1}^{d} H(X_i) \right) + \frac{1}{C} \left(\sum_{i=1}^{d} H(X_i) - H(\mathbf{X}) \right)
$$

(1) Due to non-uniform dist. (2) Due to mutual dependencies

J

Mutual Information

Term (2) of the redundancy is proportional to the Mutual Information I between the components X_i :

$$
I(\mathbf{X}) = \int p(\mathbf{x}) \ln \frac{p(\mathbf{x})}{\prod_{i=1}^{d} p_i(x_i)}
$$

 $I(\mathbf{x})$ measures, how much $p(\mathbf{x})$ differs from factorization.

Kullback-Leibler Divergence

Distance measure between two pdf's $p(x)$ and $q(x)$:

$$
K(p||q) = -\int d\mathbf{x} \ p(\mathbf{x}) \ln \frac{q(\mathbf{x})}{p(\mathbf{x})}
$$

Observation: $I(\mathbf{X}) = K(p(\mathbf{x})||\prod_{i} p_i(x_i)).$

Statistics Tutorial- Martin Stetter

24

Statistical Characterization

Consider process of length T, divided into N small bins dt : $T = N dt$.

• Full characterization: Joint density for all configurations of events:

$$
p(x_1, ..., x_N) d^N t
$$
 $x_i \in \{0, 1\}$ (2^N numbers).

• Special case: Instantaneous Rate: (Biology: PSTH)

$$
R(t_n) = R(n \ dt) = p(x_n = 1) = \frac{\text{Prob(Spike in } [t_n, t_n + dt])}{dt}.
$$

Stationary process: $R(t) = R$.

• Special case: Autointensity function: (Biology: Autocorrelogram)

$$
C(t_m, t_n) = p(x_m | x_n) = \frac{\text{Prob(Spike in } [t_n, t_n + dt] \mid \text{Spike in } [t_m, t_m + dt])}{dt}
$$

Stationary process: $C(t_1, t_2) = C(t_2 - t_1, 0) \equiv C(t_2 - t_1).$

Statistics Tutorial - Martin Stetter

Poisson-Process

Point process with independent events $x_n\colon p(x_1,\text{ ... },x_N)=\prod_n^N p(x_n).$ Some Properties:

- Fully characterized by the rate $R(t)$. Prob(Spike in $[t, t + dt]$) = $R(t) dt$.
- Homogeneous Poisson process: $R(t) \equiv R$.
- Interval density: $p(\tau) = R \exp(-R\tau)$.
- Interspike intervals are statistically independent.
- Spike count Z in time interval T is Poisson-distributed: $P(Z) = \exp(-L)L^Z/Z!; \ \ L = \int_0^T R(t)dt \ \ \ \ \text{(Homog: } L = RT).$ $\Longrightarrow \langle Z \rangle = \sigma_Z^2 = RT.$

General Aspects of Statistical Data Modeling

Goals of Statistical Modeling

Realistic Situation:

Data sample $\mathbf{x}^{(\alpha)},\;\;\alpha=1,\; ... \;,P,$ drawn from an unknown pdf $p(\mathbf{x}).$ Goal: Extraction of statistical structure from the data. Important techniques:

 \bullet Density estimation.

Estimate the pdf underlying the data. Characterize redundancies (structure) therein.

• **Function approximation.** Regression: characterize functional

relationships between pairs of data. Classification: characterize underlying prob. of class-membership.

Statistics Tutorial- Martin Stetter 28

Non-Parametric Density Estimation

Functional form of pdf $p(x)$ is not specified in advance (est. from data only).

Examples:

- Histogram method. Divide data space into intervals of width h. Calculate relative frequencies.
- Kernel density estimator. "Smoothing" of data cloud: $\hat{p}(\mathbf{x}) = \sum_{\alpha=1}^{P} u((\mathbf{x} - \mathbf{x}^{(\alpha)})/h),$ with $u(\mathbf{x}) \geq 0$, $\int u(\mathbf{x}) d\mathbf{x} = 1$.
- K -nearest neighbors. Average over K adjacent data points, no fixed h.

Parameters h or K have to be suitably chosen (nontrivial).

Statistics Tutorial - Martin Stetter

window *1*

 $\tilde{}$ p $\ddot{}$

Regression

Formulate model for underlying deterministic structure in input-output pairs, $(\mathbf{x}^{(\alpha)}, \mathbf{y}^{(\alpha)}), \alpha = 1, ..., P$ of data:

$$
\mathbf{y} = \mathbf{f}(\mathbf{w}; \mathbf{x}) + \mathbf{n}
$$

 $f = regression$ function, parameterized by w.

 $n =$ random noise vector.

- Link to density estimation:
	- Estimate joint density $p(\mathbf{x}, \mathbf{y})$.
	- Take regression function as conditional average:

 $f(x) = \hat{y}(x) = \int y p(y|x) dy.$

$$
30\,
$$

Maximum Likelihood Parameter Estimation

Goal: Optimize params w of parametric models given the data $\{x^{(\alpha)}\}$. **Principle:** Adjust w as to maximize the likelihood, that the observed data have been generated by the model:

 $\mathbf{w}^{\mathrm{ML}} = \mathrm{argmax}_\mathbf{w} L(\mathbf{w})$ with

$$
L(\mathbf{w}) := p(\mathbf{x}^{(1)}, \mathbf{x}^{(2)}, \dots, \mathbf{x}^{(P)} | \mathbf{w}) = p(\{\mathbf{x}^{(\alpha)}\} | \mathbf{w}).
$$

Equivalently: Minimize negative log likelihood: $w = \arg\min_{\mathbf{w}} E(\mathbf{w})$ with

$$
E(\mathbf{w}) = -\ln L(\mathbf{w}) = -\ln p(\{\mathbf{x}^{(\alpha)}\}|\mathbf{w}).
$$

For independently drawn data points:

 $E(\mathbf{w}) = -\ln \prod_{\alpha} p(\mathbf{x}^{(\alpha)} | \mathbf{w}) = -\sum_{\alpha} \ln p(\mathbf{x}^{(\alpha)} | \mathbf{w}).$

Statistics Tutorial – Martin Stetter 32

Maximum Likelihood for Regression

Consider regression via estimation of the joint density $p(\mathbf{y}, \mathbf{x})$. ML for data $(\mathbf{x}^{(\alpha)}, \mathbf{y}^{(\alpha)}), \alpha = 1, ..., P$:

$$
L(\mathbf{w}) = \prod_{\alpha} p(\mathbf{y}^{(\alpha)}, \mathbf{x}^{(\alpha)} | \mathbf{w}) = \prod_{\alpha} p(\mathbf{y}^{(\alpha)} | \mathbf{x}^{(\alpha)}, \mathbf{w}) p(\mathbf{x}^{(\alpha)})
$$

Leaving constants away:

$$
E(\mathbf{w}) = -\sum_{\alpha} \ln p(\mathbf{y}^{(\alpha)} | \mathbf{x}^{(\alpha)}, \mathbf{w}).
$$

Λy

 $\overline{v^{(\alpha)}}$

With $\mathbf{y}^{(\alpha)}=\mathbf{f}(\mathbf{w};\mathbf{x}^{(\alpha)})+\mathbf{n}^{(\alpha)}$ and \mathbf{n} distrib. according to $p_n(\mathbf{n})$:

$$
p(\mathbf{y}^{(\alpha)}|\mathbf{x}^{(\alpha)},\mathbf{w})=p_n(\mathbf{y}^{(\alpha)}-\mathbf{f}(\mathbf{w};\mathbf{x}^{(\alpha)})).
$$

For Gaussian noise, $p_n = \phi$, ML = least squares:

$$
E(\mathbf{w}) = -\frac{1}{2\sigma^2} \sum_{\alpha} \left(\mathbf{y}^{(\alpha)} - \mathbf{f}(\mathbf{w}; \mathbf{x}^{(\alpha)}) \right)^2.
$$

 $(w;x)$

 $\boldsymbol{\chi}$

Bayesian Inference

Goal: Specify whole pdf of model parameters w given - the known data set $\{x^{(\alpha)}\} =: \chi$ and - prior knowledge (the amount of "blind" belief in the models). **Principle:** Use Bayes' law as follows:

$$
\underbrace{p(\mathbf{w}|\chi)}_{\text{posterior}} = \frac{1}{p(\chi)} \underbrace{p(\chi|\mathbf{w})}_{\text{likelihood}} \underbrace{p(\mathbf{w})}_{\text{prior}}
$$

Bayesian density estimation: Use average over all models:

$$
p(\mathbf{x}|\chi) = \int p(\mathbf{x}|\mathbf{w}) \ p(\mathbf{w}|\chi) \ d\mathbf{w}
$$

Special Case: Maximum a Posteriori (MAP) parameter estimation (reduces to maximum likelihood for flat priors).

$$
\mathbf{w}^{\mathrm{MAP}} = \mathrm{argmax}_{\mathbf{w}} p(\mathbf{w}|\chi)
$$

Statistics Tutorial – Martin Stetter 34 and 34 and 35 and 36 and 36

Statistical Data Modeling - Examples

Density Estimation by Gaussian Mixture Models

General mixture model:

$$
p(\mathbf{x}) = \sum_{j=1}^{M} p(\mathbf{x}|j) P(j)
$$

 $p(\mathbf{x}|j)$ = component density.

 $P(j)$ = mixing parameter. Specifies probability that the data point is generated by component j .

Gaussian mixture model:

$$
p(\mathbf{x}) = \sum_{j=1}^{M} \phi(\mathbf{x}|\mu_j, \mathbf{G}_j) P(j)
$$

Optimize μ_j , \mathbf{G}_j , and $P(j)$, $j = 1, ..., M$, e.g. by Maximum Likelihood.

Statistics Tutorial - Martin Stetter 36

Maximum Likelihood Solution for Linear Models

Gaussian noise: ML provides least squares solution:

$$
\mathbf{w}^{\mathrm{ML}} = \left(\mathbf{F}^T \mathbf{F}\right)^{-1} \mathbf{F}^T \mathbf{y}
$$

Estimate of noise variance:

$$
\hat{\sigma}_n^2 = \frac{(\mathbf{R}\mathbf{x})^T(\mathbf{R}\mathbf{x})}{\text{trace}(\mathbf{R}\mathbf{x})},
$$

 $\mathbf{R} = \mathbf{I} - \mathbf{F}(\mathbf{F}^T\mathbf{F})^{-1}\mathbf{F}$ = residual generating matrix. Variance of parameter w_j :

$$
\sigma_j^2 = \left(\hat{\sigma}_n^2 (\mathbf{F}^T \mathbf{F})^{-1}\right)_{j,j}
$$

Radial Basis Functions for Regression

Generalization/unification of linear models and gaussian mixture models. -Approximate regression function by linear superpositions of Gaussians:

$$
f_k(\mathbf{x}) = \sum_{j=0}^{M} w_{kj} \phi_j(\mathbf{x} | \mu_j, \mathbf{G}_j), \quad \phi_0 \equiv 1, \quad k = 0, \dots, K
$$

$$
\mathbf{f}(\mathbf{x}) = \mathbf{W} \phi(\mathbf{x}), \quad \phi = (\phi_0, \phi_1, \dots, \phi_M) \equiv (\phi_j)
$$

- Optimize parameters μ_j, G_j of Gaussians by use of input values $\mathbf{x}^{(\alpha)}$ only (like Mixture of Gaussians).
- Use optimal Gaussians as model functions of a linear model: $\mathbf{W}^T = (\Phi^T \Phi)^{-1} \Phi^T \mathbf{Y}.$ $\Phi_{\alpha j} = \phi_j(x^{(\alpha)}); \quad \mathbf{Y}_{\alpha k} = y_k^{(\alpha)}.$ $j = 0, \ldots, M; \quad k = 1, \ldots, K.$

Statistics Tutorial – Martin Stetter 38

Multilayer Perceptrons (MLP)
\nCan be viewed as a generalization of
\nRBF Networks
\n– to several layers,
\n– to nonlinear transfer functions,
\n– to arbitrary weights.
\n
\n
$$
u_{N_1}
$$

\n u_{N_2}
\n u_{N_1}
\n u_{N_2}
\n u_{N_3}
\n u_{N_4}
\n u_{N_5}
\n u_{N_6}
\n u_{N_7}
\n u_{N_8}
\n u_{N_9}
\n u_{N_1}
\n u_{N_1}
\n u_{N_2}
\n u_{N_3}
\n u_{N_4}
\n u_{N_5}
\n u_{N_6}
\n u_{N_7}
\n u_{N_8}
\n u_{N_9}
\n u_{N_1}
\n u_{N_1}
\n u_{N_2}
\n u_{N_3}
\n u_{N_4}
\n u_{N_5}
\n u_{N_6}
\n u_{N_7}
\n u_{N_8}
\n u_{N_9}
\n u_{N_9}
\n u_{N_9}
\n u_{N_9}
\n u_{N_1}
\n u_{N_1}
\n u_{N_2}
\n u_{N_3}
\n u_{N_4}
\n u_{N_5}
\n u_{N_6}
\n u_{N_7}
\n u_{N_8}
\n u_{N_9}
\n u_{N_9}
\n u_{N_1}
\n u_{N_1}
\n u_{N_1}
\n u_{N_1}
\n u_{N_2}
\n

Error-Backpropagation:

Recipe from minimization of cost function E (e.g. $E = \sum_k (y_k - f_k)^2)$

- Apply input $\mathbf{x}^{(\alpha)}$, calculate PSPs a_j and activities z_j,f_k (forward propagation).
- Calculate output errors $\delta_k = \partial E/\partial a_k$ (e.g. $\delta_k = h'(a_k)(f_k y_k)$).
- Propagate errors back trough the net: $\delta_j = g'(a_j) \sum_k w_{kj} \delta_k$.
- Modify weights according to $\Delta w_{kj} = -\delta_k z_j$.

Statistics Tutorial - Martin Stetter

Goal: Estimate both A and s from the fact (or assumption), that s has independent components.

40

Statistics Tutorial - Martin Stetter 42

