)

11§

the

united nations

educational, scientific abdus salam
Sgmiadon international centre for theoretical physics
(&)

international atomic
energy agency

SMR: 1343/2

E U ADVANCED COURSE IN
COMPUTATIONAL NEUROSCIENCE
An IBRO Neuroscience School

(30 July - 24 August 2001)

"Advanced Statistics”

presented by:

Martin STETTER

Siemens AG, Corporate Technology
CT IC 4, Otto-Hahn-Ring 6
81739 Miinchen
GERMANY

These are preliminary lecture notes, intended only for distribution to participants.

strada costiera, | | - 34014 trieste italy - tel. +39 04022401 | | fax +39 040224163 - sci_info@ictp.trieste.it - www.ictp.trieste.it






Statistics Tutorial — Martin Stetter

i

Statistics — Short Intro
Martin Stetter

Siemens AG, Corporate Technology
CT IC 4, Otto-Hahn-Ring 6
81739 Miinchen, Germany

martin.stetter@mchp.siemens.de

Statistics Tutorial — Martin Stetter

(
Why Statistics in CNS?

Analysis of biological neural data.

Statistical characterization of sensory data.

Modeling the brain as a statistical inference machine...

-~ Statistical characterization of optimal codes.
— Description of brain dynamics at a population level.

- Statistical biophysical models (reaction kinetics).

You name it...
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Topics to be Addressed

e Introduction and Definitions.
¢ Moments and Cumulants.
e Some Basic Concepts of Information Theory.

Point Processes.

Statistical Modeling — Basic Concepts.

Statistical Modeling — Examples.

Statistics Tutorial — Martin Stetter
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Introduction and Definitions

One Discrete Random Variable

Consider a discrete random variable X.
If sampled (“trial”), it randomly assumes one of the values
X =z(1),2(2), ... ,z(M).

Probability for event X = z(i): Prob(X = z(i)) =: p;.

Properties:

e 0<p; <1 p; = 0: z(:) does’nt ever occur; p; = 1: z(¢) occurs in
every trial (= no other z(j) ever observed).

o 3N pi=1 After all, anything must happen in a trial.

\ _/
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A continuous random variable X can take any real or complex value z
(possibly within an interval). We assume z € IR
Need different probability concept (because Prob(X = z) = 0).

ne Continuous Random Variable

e P(x) := Prob(X < z) Cumulative distribution function.

o p(z)dz := Prob(z < X <z + dx). p(z) = probability density function
(pdf), if dz small (infinitesimal).

Properties:
e p(x) >0.

o [Z p(a')da’ =1.

o P(z)= [ p(z') da'.
0 < P < 1; P(z) monotoni-
cally increasing.

\
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Several Random Variables, Random Vectors

Often, several random variables X1, ... , X4 have to be considered at the
same time (multivariate data).

e X = (X1,X2, ..., Xq) Random vector. Assumes values x € IR®.

o p(x) = p(z1,z2, ..., za) Joint probability density function.

X2 2
p(x)dx ]
S ! ( 1

dx| . o ‘ S ".1‘%&%-:&‘5 ..

: : . : o.:' ..,...“.‘ ;.,-:..o i
0 5 A
] : > =2 =2 :
dy x, ;
-3 -2 -1 ,1() 1 2 3 -3 -2 -1 ;}1 1 2 3
Gray-level image of a 2D-Gaussian pdf p(x) 300 vectors drawn from p

\_ _/
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Example: Multivariate Gaussian Distribution

() = sy O (~5 0~ 076 = ) ) = 6l )

p=mean; G = covariance matrix (symmetric, positive definite, see later).

Interpretations of Probabilities

¢ Relative frequency of finding a value z; of a random variable after many
trials (“frequentist philosophy”).

¢ Our belief, that one of several possibilities (labelled by z;) will happen in
the near future (“Bayesian philosophy”).

\- J
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Some Probability Definitions and Probability Laws

Consider two random variables X and Y.
¢ Conditional Probability: p(y|x)dy Probability for finding
Y € [y, y + dy], if we already know that X € [z, z + dz].

* p(y,z) = p(ylz)p(z) = p(xly)p(y)-
e Marginalization: p(y) = [ p(y, z)dz = [ p(y|z)p(z)dz.

e X and Y are independent <= p(z,y) = p(z)p(y) < p(ylz) = p(y).

ry)

r®)

p(;lxo) ; /\é

P(y|%0)




Statistics Tutorial — Martin Stetter

-

Bayes' Law: p(ylz) = 2ZWPW) _  ply)p(y)
i p(z) S p(ly)p(y)dy’
Consider higher-dimensional random vectors X = (X1, ..., Xg):

e Bayes for Subsets X, Y: p(y|x) = p(x|y)p(y)/p(x).

e Decomposition: p(z1,...,z4) =

pd(zd|Td—1, ..., Z1)Pd—1(Td—1|Td—2, ..., 1) ... p2(x2|z1)D1(Z1)

e Special case: Independence:
p(21, ..., Ta) = pa(®a) pa—1(za—1) ... p1(z1) = [Tf_; Pr(zs)

e Special case: 1st order Markov chain:

P(21, ..., Ta) = pa(Ta|Ta—1) Pa—1(Td—1]|Ta—2) ... p2(z2|x1) p1(x1)

\-

Statistics Tutorial — Martin Stetter

Random Processes and Random Fields

e Random process = random time series (e.g. LFP data, Spike train
etc...).

e Formally: Set of random variables X (¢) labelled by a (discrete) time
index ¢. It assumes random values x(t). p(z(t)) is the probability for
observing the value z in the small time interval around ¢.

¢ Full characterization by joint pdf: p(z1(t1), z2(t2), ... ,z4(ta)) = p(x)

e Stationary random process:
p(z1(t1), z2(t2), ... ,xa(ta)) = plx1(ts +7), ... ,za(ta + 7)) V7.
In particular: pr(z(tr)) = pr(z(te + 7)).

e 1st order Markov process: p(zi(t1), z2(t2), ... ,za(ta)) =
pa(za(ta)|za-1(ta-1)) ... p2(z2(t2)|z1(t1))p1(21(t1))
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instances of random process

X
(b (t))

fH th t

Gaussian random process: z

t,t!

1 1
p(z) = < exp (—5 D (@(t) = p))G(t ) () - u(t’))) -
¢ Random field = random image (e.g. instances are a set of camera
images).

e Formally: Set of random variables X (r) labelled by a (discrete) spatial
index r, characterized by p(z1(r1), z2(r2), ..., za(rq)) = p(z(r)).

o 1st order Markov random field: p(zi(r1), z2(r2), ... ,za(ra)) =
\_ [1, pe(z(ri)lz(rs + (A7, 0)), z(rx + (0, Ar)).
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(Moments and Cumulants

The Mean

Consider random vector X = (X3, ..., X4), distributed according to p(x).
Consider a function f(X).

Def. Mean:

e p(x) known = Means of arbitrary functions available.

e Means for all functions f known =- p(x) can be determined = Statistics
of X completely known.

Practically, set of all functions f not accessible.
= Look for a “clever” set of functions.

\ _/

11
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Moments

Def.: n-th order moment of random vector X:

(X1 Xi2 ... Xin)

/p(x) Til Ti2y ... Tin dX
= /p(:l?il, ZEin) Ti1y, oo Tin dxil, dxm .

Examples:

e 2nd order: (X?), (X2X3).

e 3rd order: (X1 X>X3), (X3?), (X2X3)

All moments known =- Mean of every Taylor-expansible function known.

\.

o 1storder: u; = (Xi) = [ p(x:) x: dzi =meanvalue; p = (u1, ..., ta).
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Cumulants — Motivation

Goal: Construct functions of random variables, which characterize p(x)
efficiently and have additional desirable properties.

Example — Covariance:
Gij = (XiXj) — paps = /dfb’i /dfvj P(®i, T3)TiT5 — pildj.

G;; = o2 = variance of X;.

’

Covariance matrix of a random vector X:

G = (Gij) = (XXT) —pu". 1 !
If X has independent components = 0 : e%?
Gij = 8i,j07 . *-‘%

-2

Plot: Gaussian data, G; ; = 1; G1,2 = 0.8;

-3

9 | x,

13
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Cumulants — Definition

Def: Cumulant generating function: Log of (inv.) fourier transform of p(x):

d(s) := log/exp(isTx) p(x) dx = log(exp(is” x))

Def: n-th order cumulant of random vector X:

0P(s1,582 ... 8q)

Xia--'>X7:'n = (—1)"
<< 1 )) ( Z) 831:1 83,52, ...83in s=0

Cumulants are expansion coefficients of ® around 0 (existence assumed).
Hence:

o All cumulants known
= we know &(s)
= we know p(x) = 57 [exp(—ix"s) exp(®(s)) ds.

But even more interestingly ...

\
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Cumulants — Some Properties

¢ p(x) Gaussian = all higher than 2. order cumulants vanish.

Why?

— The Fourier transform of a Gaussian is again a Gaussian.

— Its logarithm, ®(s) is a square function.

— All higher than second order derivatives vanish...

= Use higher order cumulants for detection of non-Gaussianity.

e X has independent components < All cross-cumulants vanish.
Only the cumulants ({(X[*)}),i = 1, ...,d can be non-zero.

Why?
— p(x) factorizes < we find ®(s) = >, ¢i(s:),
< Mixed derivatives vanish.

15
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Cumulants — Examples

o 1. order:
((X1)) = (X1) =p1 Mean

o 2. order: ((Xi1, X)) = (X1X2) — pipue = G1,2  (covariance).

((X1,X1)) = of variance

e 3. order: ((Xl,XQ,X3)> = (X1X2X3>
— (X1 Xo)pus — (XoXahu1 — (X3 X1)po + papops;

(X1, X1, X)) = (X} = 3(XDpu1 + 3 =S skewness

e 4, order: (...Gulp...) but for zero-mean data (u = 0):
({X1, X2, X3,X4)) = (X1 X2X3X4)
—<X1X2>(X3X4) — <X1X3)(X2X4> - <X1X4><X2X3).

(X1, X1, X1, X1)) = (X7) ~ 301 = K kurtosis

Statistics

Tutorial — Martin Stetter
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ﬁSome Basic Concepts of Information Theory

Def: Information of symbol z(3):

Shannon Information and Information Entropy

e Consider a discrete random variable X, which assumes values
z(i), i =1, ... , M with probabilities p;.

¢ Find a quantity “information” such that
— it describes our “surprise” to see a particular value z() happen.
— the information of two statistically independent events adds up linearly.

0 w
1> wn o wm

I
n

information (nats)

J(z(i)) =In ~ = —Inp;

7

-

hd
n

<
C)

02 04 0.8 1

0.6
px) ‘
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Def: Shannon entropy:

H(X)=(J)= —Zpi In p;

¢ Average information gained by sampling X once.

e Average length of message (nats) needed at least to describe one
observation.

For continuous random variables, we can define the differential entropy
(should be scored against a reference value, e.g. for p; = const.)

H(X)=- /p(x) Inp(z) de.

The (differential) entropy for a random vector is

H(X) = —/p(x) In p(x) dx.

\_
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Some Properties

o Among all random variables with bounded values (discrete or cont.)
H(X)=max <= p = const.
(uniform distribution).

e Among all random variables with the same mean x and variance ¢>
H(X)=max <= p(z)= \/#7 exp (—(z — p)?/20?)
(Gaussian distribution).

e X = (X1, ..., Xq) random vector distributed according to p(x).
X; are independent, p(x) = [], pi(z:) <= H(X) = 30, H(X;)
(H(X;) = — [pi(zi) Inp;(z;) dz;  marginal or pixel entropies)

o Generally: H(X) < 3% H(X:)

-

19

20



Statistics Tutorial — Martin Stetter

¢ A

nformation Capacity C

Def. Information capacity C: Maximum amount of information that can be
carried by the random vector X (is a function of p(x)).

Can be achieved, if

¢ X has independent components: H(X) = . H(X;), and

e each marginal entropy H(X;) is maximal
Example: Discrete random vector, M values for each of the d components.

e Maximum marginal entropies: = H(X;) = - ,_, +In+ =In M.

e Independence = C' = Hnax(X) =d H(X;) =dIn M.

Interpretation of capacity: Maximum description length we can expect for the
\random variable X. J
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Redundancy

In presence of redundancy, we need less than the capacity to describe the
statistics.

Def. Redundancy of X:

or

1 d 1 {<&
R= —C—(C—;H(Xi)> + 6(;H(Xi)—H(X)>

(1) Due to no;-uniform dist. (2) Dueto mutuzl dependencies
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Mutual Information

Term (2) of the redundancy is proportional to the Mutual Information I
between the components X;:

p(x)
I(X) = /p(x) In —/————.
H?:l pi(zs)
I(x) measures, how much p(x) differs from factorization.
Kullback-Leibler Divergence

Distance measure between two pdf’s p(x) and ¢(x):

Kiplla) = - [ dx plm 2

Observation: I(X) = K(p(x)|| I, pi(z:)).

\_
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Stochastic Point Processes

Definition

X00001000010 010

— Binary random process.
— Resembles an “idealized spike train” ...
— Defined by set {¢;} of “1”-events or by ¢1 plus {7;} of interspike-intervals.

A\

_/
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Statistical Characterization

Consider process of length T, divided into N small bins dt: T'= N dt.

Full characterization: Joint density for all configurations of events:
p(x1, .. zn) d"t z; € {0,1} (2" numbers).

Special case: Instantaneous Rate: (Biology: PSTH)

__ Prob(Spike in [tr, tn + dt])
- dt

R(tn) = R(n dt) = p(xz, = 1) .
Stationary process: R(t) = R.

Special case: Autointensity function: (Biology: Autocorrelogram)

__ Prob(Spike in [t,,t, + dt] | Spike in [tm, tm + dt])

Ctm,tn) = p(Tml|zn) = o

Stationary process: C(t1,t2) = C(t2 — t1,0) = C(t2 — t1).

J
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Poisson-Process
Point process with independent events z..: p(z1, ... ,zn) = Hf:’ 2(Tn).

Some Properties:

Fully characterized by the rate R(t). Prob(Spike in [¢, ¢ + dt]) = R(¢) dt.

Homogeneous Poisson process: R(t) = R.
Interval density: p(7) = Rexp(—R7).
Interspike intervals are statistically independent.

Spike count Z in time interval T is Poisson-distributed:
P(Z) =exp(~L)L? /2% L= [] R(t)dt (Homog: L = RT).
= (Z) = 0% = RT.

25
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General Aspects of Statistical Data Modeling

Goals of Statistical Modeling

Realistic Situation:
Data sample x(*), « =1, ..., P, drawn from an unknown pdf p(x).
Goal: Extraction of statistical structure from the data. Important techniques:

¢ Density estimation.
Estimate the pdf underlying the data.
Characterize redundancies (struc-
ture) therein.

¢ Function approximation.
Regression: characterize functional
relationships between pairs of data.
Classification: characterize underly-
ing prob. of class-membership.

Statistics Tutorial — Martin Stetter
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Parametric Density Estimation

e Model the pdf of random vector X as a parameterized function: p(x|w).
(We introduce a “Generative Model” for the data).

e w is the set of parameters.
w is optimized such that data are optimally described by p(x|w).

o =x®
p
e Example: Gaussian: p(x|w) = ¢(x|u, G). .
o
Advantage: Few parameters to be estimated. > %% /-G
[+
Disadvantage: Who knows, if the model is cor- L
rect? °
‘h

- y

27
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Non-Parametric Density Estimation

Functionai form of pdf p(x) is not specified in advance (est. from data only).

Examples:

¢ Histogram method. J
Divide data space into intervals of width
h. Calculate relative frequencies.

o Kernel density estimator.
“Smoothing” of data cloud:

p(x) = Efj:l u((x — x(“))/h), | T window I, =77~
with u(x) > 0, [u(x) dx = 1. \ X
e K-nearest neighbors. ;/h‘ ",
Average over K adjacent data points, no e o
fixed h. = x

Parameters h or K have to be suitably chosen (nontrivial).

Statistics Tutorial — Martin Stetter
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Regression

Formulate model for underlying deterministic struc-

of data:
y=f(w;x)+n

f = regression function, parameterized by w.
n = random noise vector.

¢ Link to density estimation:
— Estimate joint density p(x, y).

f(x) =y(x) = [y p(ylx) dy.

ture in input-output pairs, (x(*),y(*)) o =1, ...

] P 2.5

2|
~1.5]
1

0.5

dots: data. line: f.

e Parameter set w is adjusted for an optimal description of data.

— Take regression function as conditional average:

29
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Maximum Likelihood Parameter Estimation

Goal: Optimize params w of parametric models given the data {x(*)}.
Principle: Adjust w as to maximize the likelihood, that the observed data

have been generated by the model:

wMl = argmax , L(w) with

Lw) :=p(x®,x® . xP|w) = p({x*}w).

Equivalently: Minimize negative log likelihood: p—
wMl = argmin,, F(w) with
Gy--"""~ \
E(w) = —InL(w) = —Inp({x*}|w).
For independently drawn data points: ”,\/ ol
’,’ \HML

E(w) =

——lan x®|w) = Zlnp x®|w). Z

Gauss: Optimize p, G

G

J
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Maximum Likelihood for Regression

Consider regression via estimation of the joint density p(y, x).
ML for data (x(*),y(®)), a =1, ..., P:

w) =[] p(r®, x®w) = [Ty 1x,

Leaving constants away:

w) p(x'®)

E(w) = Zlnm( 1%, w).

With y(*) = f(w; x{*)) 4+ n(®) and n distrib. according to p,, (n):

p(y @ 1%, w) = pa(y® — £(w;x)).

For Gaussian noise, p,, = ¢, ML = least squares:

E(w) = —-% Z (y(o‘) — f(w; x(a))>2.
\.

31
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Goal: Specify whole pdf of model parameters w given

— the known data set {x(®)} =: x and

— prior knowledge (the amount of "blind” belief in the models).
Principle: Use Bayes’ law as follows:

ayesian Inference

1
p(wlx) = — p(xlw) p(w)
e p(X) N = N~
posterior likelihood prior

Bayesian density estimation: Use average over all models:

p(xlx) = / p(x|w) p(wlx) dw

to maximum likelihood for flat priors).

wMAP argmax,, p(w|y)

\.

Special Case: Maximum a Posteriori (MAP) parameter estimation (reduces
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Statistical Data Modeling — Examples

Density Estimation by Gaussian Mixture Models

General mixture model:
M
p(x) =Y p(x|j)P(j)
=1

p(x|j) = component density.
P(j) = mixing parameter. Specifies probability that the data point is
generated by component ;.

Gaussian mixture model:

M
Z¢ x|ui, G;)P(5)
j=1

Optimize 1;, G;, and P(j), j =1, ..., M, e.g. by Maximum Likelihood.

33
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Regression by Linear Models

= Qutput is linear combination of prototype functions.

For a data set x(®), (), oo =1, ..., P:

Special case: Regression function is linear in w: f(w;x) = f(x)w

y(a)(x(a)) — Z fi(x*Nw; +n (2)
y = Fw+n, y=(*)
AED) M) (™)
F1(xP) fo(x®P) o fa(x®)
F= . ) )
fl(x(P)) fz(x(P)) ... fM(x(P))

design matrix

Statistics Tutorial — Martin Stetter
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Maximum Likelihood Solution for Linear Models

Gaussian noise: ML provides least squares solution:
-1
wil — (FTF) FTy
Estimate of noise variance:

52 — (Rx)T (Rx)
" trace(Rx) ’

R = I — F(FTF)~'F = residual generating matrix.
Variance of parameter w;:

o} = (62 (FTF) )

J3

35
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Generalization/unification of linear models and gaussian mixture models.
— Approximate regression function by linear superpositions of Gaussians:

adial Basis Functions for Regression

M
fe(x) = > wky ¢(xlu;, Gy), do=1, k=0, ..,K
=0

f(x) = Wox), ¢=1(d0,¢1, ...,d0u)=(4;)

e Optimize parameters u;,G; of yl\f Yk~ fe
1

Gaussians by use of input values

x(*) only (like Mixture of Gaussians).

e Use optimal Gaussians as model d,=1
functions of a linear model:
W7 = (7®)"'oTY.

Bo; = ¢j(:v(°‘)); Y., = yl(ca). TL o O
j=0,...M; k=1, .. K. RBF as a Neural Network.
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Multilayer Perceptrons (MLP)
A \fl Yy == fK

Can be viewed as a generalization of @ .......... @

RBF Networks

— to several layers,

— to nonlinear transfer functions,

— to arbitrary weights.

Dynamics for two layers:
Two-layer MLP (bias omitted).

Total:

M d M
fe(W,U;x) = h (Z Wkj g (Z Uji wz)) = h() _ wrjg(as)) = h(ax).

-

a; = 3% ujuws, 2z =g(a;) Synapticinput and output of hidden node j.
ar = ZJ.M:O wkizi, fr = h(ax). Synaptic input and output of output node .

_/
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Error-Backpropagation:

Recipe from minimization of cost function E (e.g. E = 3", (yx — f&)?):

e Apply input x(*), calculate PSPs a; and activities z;, fx (forward
propagation).

e Calculate output errors §, = OE/day (€.9. 6k = h'(ar)(fx — y&))-
¢ Propagate errors back trough the net: 6; = ¢'(a;) >, wk ;6.

¢ Modify weights according to Awg; = —dx2;.

Statistics Tutorial — Martin Stetter
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Independent Component Analysis (ICA)

Mix: x=As )

P18 =p(s)ps,)

e Problem: Measure x = A s. Mixing matrix A and sources s unknown.

e Goal: Estimate both A and s from the fact (or assumption), that s has
independent components.

39
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fSqution (sketch): \

e Formulate generative model for the pdf of the observed data:
q(x) = det W p(Wx) = detW [T, pi(W x);).
(Can be viewed as a special case of density estimation).

¢ Maximum likelihood:
E(W) =-%1og][, ¢(x*) = -5, 3. log pi(Wx(®);) —log det W
= min.

¢ Resulting update rule (nat. gradient):
AW =(I1-0(y)y")W; y=Wx; ;=&

Mixture 1 Mixture 2 Estim. source 1 Estim. source 2

Statistics Tutorial — Martin Stetter
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Further Reading

e C. M. Bishop, Neural Networks for Pattern Recognition. Clarendon
Press, Oxford, 1995.

e C. W. Gardiner, Handbook of Sochastic Methods. Springer, Berlin,
1988.

o W. Bialek, F. Rieke, R. R. de Ruyter van Steveninck and D. Warland,
Spikes. MIT Press, Cambridge, 1998.




