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Neuromodulation -1 - Can it be defined?

* Spatial distribution: neuromodulators often arise from brain nuclei that
project widely to large numbers of brain regions

* Time course of action: the actions of neuromodulators are often considered to
be slower than those of classic neurotransmitters

* Functionality: absence of presence of neuromodulators in given behavioral
situations; modulation of existing neural function

* Neuromodulators have a large variety of effects: they change intrinsic
neural properties; modulate synaptic events; modulate learning and many others.

* Some neurotransmitters, like GABA or Acetylcholine can be regarded as
neurotransmitters or as neuromodulators depending on the nature of the
receptors they act on.



Neuromodulation - 3 - Observations

Modulation of signal-to-noise ratio (noradrenaline)

NA present NA absent
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Other commonly observed neuromodulatory effects:

* Cholinergic agonists can evoke oscillatory activity in hippocampal slices
* Oscillatory activity in the hippocampus of behaving rats depends on cholinergic inputs
* Pyramidal cells in hippocampus and cortex are often depolarized by ACh and NA
* Synaptic potentials can be modulated (increased or decreased) by ACh or NA
* Long term potentiation is modulated by ACh and NA

and many others..

* Rats are impaired in long-term and short term memory experiments when certain
neuromodulatory effects are blocked
* Rats show attentioanl deficits when cholinergic modulation is decreased

etc ...



Neuromodulation - 4 - An example: cholinergic modulation
of associative memory in olfactory cortex
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Odor responses of olfactory cortex pyramidal cells
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Wilson, D.A. J. Neurophys. 84(6): 3036-42 (2000)
Wilson, D.A. AChemS meeting, 2001



Piriform cortex circuitry

Afferent Input from OB mitral cells (LOT)

III

Association
Fibers

Haberly, L.B. Chenu Senses, 10: 219-38 (1985)



Piriform cortex =? associative memory network
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Associative memory function

Output

Synapses are strengthened
according to some "Hebbian
learning rule

Output

Incomplete input pattern is
reconstructed



Hasselmo M.E. Neural Computation. 5(1): 32-44 (1993).
Hasselmo M.E. and Bower J.M. J. Neurophysiol 67: 1222-1238 (1992).



Choinergic suppression of association fibers recorded In
a brain slice preparation
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Ciolinergic suppression of association fibers during learning
reduces interference between ©Yerlapping patterns

Learning Pattern A
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Hasselmo M.E. Neural Computation. 5(1): 32-44 (1993).
Hasselmo M.E. and Bower J.M. J. Neurophysiol. 67: 1222-1238 (1992).
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A behavioral aside...

Behavioral paradigm that measures perceptual similarities between odorants

paired with selective lesions of the cholinergic neurons projecting to the
olfactory system



Scented dish with reward

*A1, A2 and X are tested in randomized order

Linster, C. and Smith, B.K (1999) Physiology and Behavior, 66 (4): 701-707.



Blocking of cholinergic modulation in the behaving animal:
* Injection of antagonists block cholinergic receptors
* Lesioning of brain nuclei which contain cholinergic neurons
* Selective, local, lesions of cholinergic neurons
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Saporin lesions only the cholinergic neurons in the horizontal limb of the
diagonal band of Broca
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a, b: Immunostaining for ChAT staining of HDB in control brain
c: Immunostaining for ChAT in the HDB of a lesloned rat.
d: Parvalbumin Immunostaining in the HDB of a lesloned rat
e: AChE histochemlstry in the PC of a control rat.
f: AChE histochemlstry in the PC of an HDB-lesioned rat

Linster et al. Behavioral Neuroscience (in press)



Lesions of cholinergic neurons increase generalization
between similar odorants

Aliphatic aldehydes
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BUT

a computational model incorporating sparse synapses from the olfactory
posterior piriform cortex (PC), activation of pyramidal cells in post

an the spread of activation from anterior regions.

•The cholinergic suppression of association fibers during learning impairs the
recruitment of neurons that do not receive direct afferent input.

Learning without ACh Learning with ACh

,0: O
Cholinergic
Suppression

Afferent Input



If selective cholinergic suppression of pre-strengthened

then (1) odor evoked activity spreads from anterior to

learning and (2) associative interference is reduced.
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Linster, C. and Hasselmo, M.E. (1997) Computation and Neural Systems, Bower, J.M. (ed), Plenum Press.
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Potentiated fibers are proportionally more suppressed tian
unpotentiated fibers

4>

.s
CO

o

250

200

150

100

50

0

LTP experiment

SOfMCCh

i

tetanus

Baseline LTP LTP
reference suppression

LTP
wash

250

1 150

1 100

50

0

Control experiment

SOfMCCh

i
w

Baseline Control Control Control
reference suppression wash

o
asa

§•
CO

50i

40

30

20

10

0

.1

Control LTP

g 120

OS

O

Control
LTP



ON

In t ie model, selecti¥e suppression of previously strengtMenei synapses cam
reduce tie overlap between similar input patterns

No suppression Strong suppression SelectiYe suppression

Before
learning

After
learning

®

# •. s

o* . • . .

*rl "••••

® ®

^ I.

®

m
@ s a

....«

o
. 1

» •

•"*•»•;•••••••••

@
& a @

@ @ ®

QfS

#„„„,

• • : .

@ ©

„„% ®

8 * B

@
® 8

: . . • . . :

@

Anterior

Posterior

Odor A OdorB Odor A OdorB Odor A OdorB

3 0.85i

2 0.75"

f 0.65"
^ 0.55

J 0.45"
I 0.35
j? 0.25

95

Anterior neurons
Posterior neurons
All neurons



Chem. Senses 26: 585-594, 2001 t/®

Neuromodulation and the Functional Dynamics of Piriform Cortex

Christiane Linster and Michael E. Hasselmo1
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Acetylcholine and norepinephrine have a number of effects at the cellular level in the piriform cortex. Acetylcholine causes a
depolarization of the membrane potential of pyramidal cells and interneurons, and suppresses the action potential frequency
accommodation of pyramidal cells. Acetylcholine also has strong effects on synaptic transmission, suppressing both excitatory
and inhibitory synaptic transmission. At the same time as it suppresses synaptic transmission, acetylcholine enhances synaptic
modification, as demonstrated by experiments showing enhancement of long-term potentiation. Norepinephrine has similar
effects. In this review, we discuss some of these different cellular effects and provide functional proposals for these individual
effects in the context of the putative associative memory function of this structure.

Introduction
Numerous anatomical studies have described the structure
of the olfactory system [for a review see Haberly (Haberly,
1985)]. Anatomical data demonstrate neuromodulatory
innervation of these regions, including cholinergic and
GABAergic innervation arising from the horizontal limb of
the diagonal band (HDB) (Luskin and Price, 1982; Brashear
et al, 1986; Zaborszky et al., 1986) and noradrenergic inner-
vation arising from the locus coeruleus (McLean et al,
1989) [for a review see Shipley and Ennis (Shipley and
Ennis, 1996)].

A number of studies have shown an important role for
neuromodulatory effects in olfactory memory function.
These include data showing impairments of odor memory
induced by the muscarinic cholinergic antagonist scopol-
amine, as well as lesions of the cholinergic and GABAergic
neurons in the HDB (Hunter and Murray, 1989; Ravel et al.,
1992,1994; Paolini and McKenzie, 1993,1996; Roman et al.,
1993). In addition, numerous studies have shown the import-
ance of norepinephrine for olfactory learning (Pissonnier et
al, 1985; Rosser and Keverne, 1985; Brennan et al, 1990;
Guanef al, 1993; Sullivan et al., 1989, 1991, 1992).

Here we provide a review of physiological data on cellular
effects of these neuromodulators, a description of com-
putational models analyzing the behavioral role of these
neuromodulators, and some behavioral data testing hypo-
theses derived from these computational models. The
piriform cortex provides an excellent region for analysis of
neuromodulatory effects, as its structure resembles a class
of neural network models termed 'associative memories'

(Haberly, 1985; Haberly and Bower, 1989; Hasselmo et al,
1990). This provides a clear computational framework for
analyzing the functional role of the changes in network
dynamics induced by neuromodulatory agents (Figure 1).

Studying neuromodulatory effects in olfactory
cortex
Acetylcholine and norepinephrine have a number of effects
at the cellular level in the piriform cortex. Acetylcholine
causes a depolarization of the membrane potential of pyra-
midal cells (Tseng and Haberly, 1989; Barkai and Hasselmo,
1994) and interneurons (Gellman and Aghajanian, 1993),
and suppresses the spike frequency accommodation of
pyramidal cells (Tseng and Haberly, 1989; Barkai and
Hasselmo, 1994), as well as increasing the excitability of
olfactory cortex cells in vivo (Zimmer et al, 1999). Like
norepinephrine, acetylcholine also has strong effects on
synaptic transmission, suppressing both excitatory synaptic
transmission (Collins et al, 1984; Mclntyre and Wong,
1986; Williams and Constanti, 1988; Hasselmo and Bower,
1992; Hasselmo et al, 1997; Linster et al, 1999) and inhib-
itory synaptic transmission (Patil and Hasselmo, 1999). At
the same time as it suppresses synaptic transmission, acetyl-
choline enhances synaptic modification, as demonstrated by
experiments showing enhancement of long-term potenti-
ation (Hasselmo and Barkai, 1995; Patil et al, 1998). In this
review, we discuss some of these different cellular effects and
provide functional proposals for them in the context of the
putative associative memory function of this structure.

i Oxford University Press 2001. All rights reserved.
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586 C. Linster and M.E. Hasselmo

Selective cholinergic suppression of excitatory synaptic
transmission

The piriform cortex is an excellent structure for studying the
neuromodulation of synaptic transmission, as it has a clear
laminar segregation of different types of synapses. As
shown in Figure 1, the afferent fibers arising from the
olfactory bulb terminate in the most superficial layer of
piriform cortex, layer la, whereas the fibers arising from
other pyramidal cells within the cortex terminate in the
deeper layers, including layers Ib and III. Cutting brain
slices perpendicular to the surface of the cortex allows
separate stimulation of synaptic potentials in the two layers,
with stimulating electrodes in layer la or Ib (Figure 2).
Recording can take place either intracellularly, from the
pyramidal cell bodies tightly clustered in layer II, or
extracellularly, from the layer being stimulated.

Previous research had demonstrated cholinergic modu-
lation of excitatory transmission in tangential slices of the
piriform cortex (Williams and Constanti, 1988). However,
the use of transverse slices allowed demonstration of
striking differences in the effect of neuromodulators on
the different synaptic pathways. As shown in Figure 3A
(Hasselmo and Bower, 1992), perfusion of acetylcholine
through the slice chamber causes a suppression of synaptic
potentials elicited with stimulation in layer Ib (intrinsic
fibers) while having a weaker effect on synaptic potentials
elicited with stimulation in layer la (afferent fibers). This
selectivity is supported by additional studies performed in

vivo (Figure 3B), showing that stimulation of the horizontal
limb of the diagonal band causes suppression of synaptic
potentials evoked with stimulation in caudal piriform cortex
and entorhinal cortex, which presumably activates primarily
intrinsic fibers (Linster et al, 1999). In contrast, stimulation
of the horizontal limb actually enhances potentials elicited
by stimulation of afferent input fibers in the lateral olfactory
tract (Linster et al, 1999) (Figure 3C).

The cholinergic suppression of excitatory transmission
might appear somewhat paradoxical, as acetylcholine has
been shown to be important for learning. Why would a
substance that is important for learning cause suppression
of excitatory transmission? The importance of this selective
suppression of transmission has been analyzed in computa-
tional models, and recent experiments have tested behavioral
predictions of these computational models. Here we will
first describe the behavioral experiment, and then show a
schematic model of how suppression of transmission could
play a role in this experiment.

The basic experiment is shown in Figure 4. The experi-
ment tested the learning of odor pairs presented at separate
odor ports. Initially, the rat must learn to respond to odor A
when presented with the odor pair A-B. Then, in a separate
phase of the experiment, the rat must learn to respond
to odor C when presented with odor pair A-C, and during
the same period must learn to respond to odor D when
presented with odor pair D-E. In a counterbalanced design,
rats received injections of scopolamine, methylscopolamine
or saline after learning of A-B and before learning of A-C

Piriform cortex cross-section

B
Computational model

Afferent fibers.
Layer la

Excitatory
afferent
connections

Afferent input

A .

Excitatory
intrinsic
connections
B u

Neuron
-•— activation

Inhibitory
feedback

Neuron output g(a,)

Figure 1 Overview of the anatomical structure of the piriform cortex compared with the basic components of computational models of associative memory
function. (A) Left: a segment of piriform cortex shows the LOT entering along the surface and a pyramidal cell with its apical dendrite extending up through
layer I. Right: the expanded diagram shows how afferent fibers from the LOT synapse on pyramidal cell distal dendrites in the superficial layer, layer la,
whereas excitatory intrinsic fibers arising from other pyramidal cells within the cortex terminate on proximal dendrites in layer Ib. Pyramidal cell bodies are
tightly packed in layer II. (B) The afferent and intrinsic connections correspond to the broadly distributed input and intrinsic connections of computational
models of associative memory.
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Neuromodulation and the Functional Dynamics of Piriform Cortex 587

and D-E. This allowed analysis of how scopolamine influ-
enced the learning of overlapping odor pairs (A-C) versus
non-overlapping odor pairs (D-E).

This behavioral task was designed to test hypotheses
arising from computational models of the piriform cortex
(Hasselmo and Bower, 1992). The basic hypothesis is
demonstrated in Figure 5. Figure 5A demonstrates the
putative mechanisms for encoding the correct response to
individual odor pairs. When presented with odor pair A-B,
the response to odor A is rewarded. This association
between the odor pair and the correct response can be

Stimulating
electrodes

Recording
electrodes

Internal
connections

Figure 2 Schematic representation of brain slice preparation of piriform
cortex. Stimulating electrodes can be placed either among afferent fibers
from the LOT in layer la or among intrinsic and association fibers in layer Ib.
Extracellular recording electrodes can be used to record synaptic potentials
from either layer la or layer Ib. Intracellular or patch electrodes can be used
to record from pyramidal cells in layer II.

Afferent fibers

Intrinsic fibers

cholinergic suppression

Gholinergic suppression

B

10 ms

encoded as strengthened synaptic connections between the
population of neurons representing these two odors and the
population of neurons activated during the response to odor
A. The strengthening of synapses follows a Hebb rule, in
which synapses are only strengthened in the presence of
both pre- and post-synaptic activity. A direct association
between activity evoked by sensory input and that evoked by
motor responses is possible in the piriform cortex, as it has
been shown that select populations of neurons in the piri-
form cortex fire during multiple different components of
odor discrimination tasks, including odor sampling and
response generation (Schoenbaum and Eichenbaum, 1995).
Once this association has been encoded, the next time the
odor pair is encountered, activity will spread along the pre-
viously strengthened connections, allowing activation of the
response to odor A for correct retrieval.

This association works well for single odor pairs, but can
run into difficulties of proactive interference for overlapping
odor pairs. As illustrated in Figure 5B, if the rat has been
trained to respond to odor A in the pair A-B, then it could

Figure 3 (A) Experimental data showing selective cholinergic suppression
of excitatory intrinsic synaptic potentials in the piriform cortex: Stimulation
of afferent fibers in layer la or intrinsic fibers in layer Ib elicits synaptic
potentials recorded with intracellular electrodes in pyramidal cell bodies in
layer II (Control). Perfusion of the slice chamber with the cholinergic agonist
CCh causes a strong decrease in the magnitude of synaptic potentials
elicited with layer Ib stimulation, while having a much weaker effect on
synaptic potentials elicited with layer la stimulation. (B) Effect of stimulation
of the HDB on the population EPSP in layer la of the piriform cortex in
response to stimulation of the LOT recorded in vivo. Graph on the left side:
responses to baseline pulse (baseline response) and test pulse 50 ms after
HDB stimulation (test response, At = 50 ms). The population EPSP observed
in layer la of the PC after stimulation of the LOT has a first negative peak
(A1), followed by a second negative inflection (B1). A1 is generated by the
monosynaptic EPSP in layer la and B1 is thought to reflect the disynaptic
EPSP due to activation of the intrinsic fibers within the piriform cortex. At 50
ms after the tetanus in the HDB, component B1 is greatly enhanced. There
is no effect on the monosynaptic component A l . Each trace is the average
of 10 stimulations. The lines with arrows to the left of the potential indicate
the measurements of the amplitude of the A1 and B1 components used for
the analysis. Graph on the right side: responses to the baseline pulse and the
test pulse 50 ms after HDB stimulation and 30 min after the injection of
0.5 mg/kg scopolamine. Scopolamine abolishes or greatly reduces the
enhancement of component B1 after HDB stimulation. Each trace is
the average of 10 stimulations. A and B are from the same animal. (C) Effect
of stimulation of the HDB on the population EPSP in layer la in response to
stimulation of layers ll-lll in the posterior piriform cortex recorded in vivo.
Graph on the left side: responses to the baseline pulse (baseline response)
and the test pulse 50 ms after HDB stimulation (At = 50 ms). In these
experiments, we considered only the first peak of the response, which
represents the monosynaptic population EPSP and could be reliably
obtained at a short latency. The line with an arrow indicates the measure-
ment of the peak of the response used in the analysis; the pointed lines
show the measurement of the onset slope. After stimulation of the HDB, the
first positive peak was reduced in most animals. Graph on the right side:
Responses to the baseline pulse and the test pulse 50 ms after HDB stimula-
tion and 30 min after the injection of 0.5 mg/kg scopolamine. Scopolamine
abolished or greatly reduced the suppression of the first peak after HDB
stimulation. Each trace is the average of 10 stimulations. A and B are from
the same animal. From Linsteref a/. (Linster eta/., 1999).
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588 C. Linster and M.E. Hasselmo

Phase 1: Simultaneous Odor Discrimination

Before Phase 2: Drug Injection

Group 1; Saline
i Group 2; Methylscopolamine

Group 3: Seopolamine

Phase 2: Overlapping and Novel Odor Discriminations

Figure 4 Schematic representation of the behavioral experiment. Phase 1:
in phase 1, the rats learned a simultaneous odor discrimination task, in
which two different odors were independently and simultaneously pre-
sented from both odor ports. Of the two odors, one odor was arbitrarily
labeled the positive odor (A+B-). The rats indicated their choice with a nose
poke to the odor port with the positive odor. Phase 1 ended when all the
rats learned the A+B- discrimination to criterion (18 out of 20 consecutive
trials correct). Phase 2: the animals were then tested on the two novel
experimental odor pairs (overlapping and non-overlapping) under the
influence of drugs. For four consecutive sessions, the rats were presented
with 32 trials of A-C+ and 32 trials of D+E- intermixed in a pseudorandom
order. At the beginning of each of the experimental sessions, they were
presented with 16 'reminder' A+B-trials. These reminder trials only served
as an opportunity for the experimenter to observe any attentional impair-
ments and adjust the trial onset accordingly. The dependent measure was
percentage of correct responses.

be more difficult to train the rat to respond to odor C in
odor pair A-C. This problem of proactive interference arises
because the presentation of odor A causes activity to spread
along previously modified synapses to activate the previ-
ously learned response to odor A. This can result in in-
correct responses, and undesired encoding of an association
between odor C and the response to odor A. Thus, trans-
mission across previously modified synapses interferes with
the encoding of a new response.

Figure 5C shows how the selective cholinergic suppression
of excitatory synaptic transmission can prevent this diffi-
culty. Recall that acetylcholine does not suppress afferent
input from the olfactory bulb. Thus, during encoding of
odor pair A-C, acetylcholine does not block the sensory
input activity. However, it does block the spread of activity
along excitatory intrinsic connections within the cortex,
preventing interference due to activation of the previous

V. Learning initial odor pair (AB)

Learning AB

Sensory Input B A B
Recall

B A

i
odor A

k
odor A

k
Nosepoke: "A"Response

J 5 Overlapping odor pair (AC) without ACh

Sensory Input

n
Response odorC

Lateral inhibition Undesired connection

^ Overlapping odor pair (AC) with ACh

Learning AC Recall
Sensory Input AC AC AC

? f T T f f

Response

odor C Nosepoke: None or *AM

•
odor C odorC Nosepoke: "C"

Figure 5 Overview of the potential role of cholinergic modulation learning
of odor pairs in an example network. Each circle represents a population of
neurons, with the thickness of lines representing the strength of synaptic
connections between these populations. The shading of each neuron
represents its activity level. (A) During initial learning of an odor pair
response (Learning AB), the input of odors A and B (top row) is associated
with the correct response to odor A (bottom row). This causes strength-
ening of connections from the input populations to the odor response
population. During recall, activation of these sensory populations causes
activity to spread across strengthened connections, activating the correct
response (nosepoke to A). (B) Subsequent learning of an overlapping odor
pair can suffer from proactive interference. In this case, during Learning of
A-C+, sensory input activates populations A and C, and the correct
response to .odor C. However, activity spreads across previously modified
connections to activate the population representing a nosepoke to A. This
can result in strengthening of an 'undesired connection' and lateral
inhibition, causing reduction of learning of the response to odorC. During
recall, input of odors A and C then evokes no nosepoke or a response to
odor A. This is analogous to what might happen under the influence of
seopolamine. (C) With acetylcholine causing suppression of excitatory
intrinsic transmission in the network, this prevents the spread of activity
across previously modified synapses, allowing the response activity to only
be influenced by the input of odor C. This allows accurate encoding of the
new response to odors A and C, such that during recall the input of odors A
and C results in nosepoke to C alone.

response to odor A. With this suppression of previous
retrieval, the network can more effectively encode the new
response to odor C. Thus, comparison of Figures 5B and 5C

30



Neuromodulation and the Functional Dynamics of Piriform Cortex 589

shows the prediction for effects of scopolamine in this
experiment. Scopolamine will block effects of acetylcholine
on intrinsic synaptic transmission, enhancing the type of
proactive interference illustrated in Figure 5B.

The results of the experiment support this hypothesis, as
shown in Figure 6 (De Rosa and Hasselmo, 2000). Injections
of scopolamine caused a stronger impairment of the ability
to respond to odor C in the overlapping odor pair A-C,
in comparison to its weaker impairment of the ability to
respond to odor D in the non-overlapping odor pair D-E.
Thus, scopolamine appears to enhance proactive inter-
ference, consistent with its blockade of the cholinergic
suppression of excitatory synaptic transmission at intrinsic
synapses in the piriform cortex. This model is further
supported by experimental data showing that electrical
stimulation of the olfactory cortex can modulate the activity
of neurons in the HDB, thus providing a pathway for
regulation of cholinergic activity (Linster and Hasselmo,
2000) (Figure 7). Similar effects have been obtained in an
experiment performed in human subjects, in which scopol-
amine caused greater impairments in the encoding of
overlapping versus non-overlapping word pairs (Kirchhoff
etal., 2000).

Cholinergic modulation of long-term potentiation

To prevent interference, the suppression of excitatory
synaptic transmission should take place during the encoding
of new information. This strict temporal correlation of
suppressed transmission and modification can be obtained
if the same modulator causes suppression of transmission
and enhancement of synaptic modification. Experimental
data support this role for acetylcholine. In addition to the
suppression of transmission described above (Hasselmo and

Effect of scopolamine on odor pair learning
1.01

A C D-E

Figure 6 Experimental results from the study of scopolamine effects on
behavior. The proportion of correct responses is shown for overlapping odor
pairs A-C and non-overlapping pairs D-E in both control (saline) and
scopolamine conditions. Note that scopolamine causes a greater decrease in
performance for overlapping odor pairs A-C than for the non-overlapping
odor pairs, supporting the hypothesis that blockade of acetylcholine
enhances proactive interference due to spread of activity across previously
modified synapses. From De Rosa and Hasselmo (De Rosa and Hasselmo,
2000).

Bower, 1992; Linster et al, 1999), acetylcholine causes
enhancement of long-term potentiation in the piriform
cortex (Hasselmo and Barkai, 1995; Patil et al, 1998).

This was initially shown (Hasselmo and Barkai, 1995) by
studying the effect of 5 Hz stimulation in two conditions:
(i) during continuous infusion of the cholinergic agonist
carbachol (CCh) and (ii) during perfusion of normal ACSF
(artificial cerebrospinal fluid). A larger magnitude of long-
term potentiation was obtained when the stimulation took
place during cholinergic modulation. An example of data
from this study is shown in Figure 8. This enhancement of
long-term potentiation could result from a number of
different effects of cholinergic modulation, including the
depolarization of pyramidal cells and the suppression of
spike frequency accommodation. Spike frequency accom-
modation occurs in piriform cortex pyramidal cells in
response to long current injections. During the current
injection, neurons initially fire spikes at a high frequency,
which gradually decreases until spiking stops later in the
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Figure 7 Effect of electrical stimulation of the PC on unit activity in the
HDB. (A) Peristimulus time histogram of the effect of electrical stimulation
(300 uA, 0.1 ms) of the PC on the spiking activity of an individual neuron
recorded in the HDB. The neuron shown in this graph responded to the
electrical stimulation with a single increase in spike rate. The histogram
shows the summed numbers of action potentials (binsize = 2 ms) recorded
during 100 successive sweeps. Stimulation occurred at time = 0 and is
indicated by the dotted line. (B) The neuron shown in this graph responded
with two periods of increased spiking to the electrical stimulation. (C) Dot
raster showing the occurrence of action potentials during the 30 individual
trials which were part of the summed histogram shown in B. Stimulation
occurred at time = 0 and is indicated by the dotted line. From Linster and
Hasselmo (Linster and Hasselmo, 2000).
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injection due to activation of calcium-sensitive potassium
currents. Cholinergic modulation suppresses the calcium-
sensitive potassium current, allowing a more sustained

Control LIP LTPin20|iM
Carbachol

LTPin20jj.M
Carbachol and
50uMAPV

Figure 8 Cholinergic modulation of the long-term potentiation of
intracellularly recorded EPSPs in the piriform cortex. Each pair of traces
shows EPSPs recorded before and after 5 Hz stimulation in different
conditions. Left: during perfusion of normal control solution, 5 Hz
stimulation causes only a small increase in the magnitude of the potential.
Middle: during perfusion of 20 filvi CCh, the same stimulation paradigm
elicits a much larger change in the size of the EPSP. Right: perfusion of
20 nM CCh with 50 \iM APV blocks the induction of long-term potentiation
by 5 Hz stimulation.

spiking response to current injection. In computational
models, this enhanced spiking response causes greater
post-synaptic depolarization, which enhances the activation
of NMDA receptors and the rate of Hebbian synaptic
modification.

This enhancement of long-term potentiation would be
particularly effective if it applied to dendrites on which there
is a convergence of afferent input and active intrinsic syn-
apses. This would enhance the accuracy of encoding of new
afferent input. Experiments in our laboratory have demon-
strated that cholinergic modulation enables associative long-
term potentiation (Patil et al, 1998) between the afferent
fibers and the intrinsic association fibers (Figure 9A). In
these experiments, a strong stimulation was presented to
layer la of the piriform cortex (bursts of four pulses at
100 Hz at 200 ms intervals). This tetanic stimulation was
accompanied by a weaker stimulation in layer Ib, given at
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Figure 9 Schematic representation of the brain slice preparation of the piriform cortex and the experimental protocol. (A) Stimulating electrodes were
placed among afferent fibers from the LOT in layer la and among association fibers in layer Ib under visual guidance. Extracellular recording electrodes were
placed at the boundary of the two layers. (B) Potentials recorded in response to stimulation of layer la (afferent fibers) and layer Ib (association fibers) at the
boundary of layers la and Ib. (C) Potentiation trains in layer la consisted of 10 sets of four pulses (100 Hz) (S) at 200 ms intervals. During pairing of strong
(S) and weak (W) stimuli, weak test pulses in layer Ib were delivered at 200 ms intervals between the second and third pulses of the four pulse burst. In
experiments using multiple pairings, three consecutive pairings of weak and strong stimuli were delivered at 5 min intervals. (D) Experimental protocol. Weak
stimuli in layer Ib were delivered continuously throughout the experiment at 30 s intervals. Baseline responses to layer Ib test pulses were recorded at the
beginning of the experiment. Approximately 20 min after the beginning of CCh application a single or three pairings of potentiation trains with weak stimuli
were delivered (S+W). After washout, the response to test stimuli in ACSF was recorded for at least 60 min. For analysis, 10 consecutive trials were averaged
5 min after the beginning of the experiment {Baseline), 20 min after the beginning of CCh perfusion (CCh) and 40-45 min after the beginning of washout
(Recovery). From Patil ef al. (Patil et al., 1998).
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Figure 10 Summary of results at 50 u,M CCh. (A, B) Time course of an experiment using a single pairing (A) and multiple pairings (B) of strong and weak
stimuli. Onset slopes of potentials elicited by layer Ib test pulses are shown as a percentage of the baseline. At the beginning of the experiment, the maximal
response to layer Ib stimulation was recorded. The stimulation strength was then adjusted to evoke —50% of the maximal response. After bath application
of CCh, the response amplitude to test stimuli decreased and stabilized after —20-30 min. Pairing of strong and weak stimuli (arrow) resulted in an increase
in the response to test stimuli in layer Ib. After washout, the response to test stimuli in layer Ib is significantly higher than the baseline recorded at the
beginning of the experiment. At the end of the experiment, stimulation strength is adjusted to the maximal response strength recorded at the beginning of
the experiment. (C) Average responses recorded in experiments using (i) single pairings in 50 u.M CCh (n = 10); (ii) multiple pairings in 50 u.M CCh (n = 10);
and (iii) multiple pairings in 50 p.M CCh and 10 u.M scopolamine (n = 7). Onset slopes are given as a percentage of the baseline. Error bars indicate standard
errors. CCh: average response 20-30 min after application of 50 \iM CCh; Recovery: average response recorded 40-45 min after the beginning of washout.
(D) Potentials in response to layer Ib stimulation. Each trace is an average of five recorded potentials. The response was recorded in ACSF before application
of potentiating stimulus (dashed line) and 60 min after beginning of washout (solid line). From Patil etal. (Patil etal., 1998).

5 Hz between the second and third pulse of the four pulse
burst in layer la (Figure 9B). Under both normal saline or
CCh, neither the tetanus in layer la nor the weak stimulation
alone produced changes in the population excitatory
post-synaptic potential (EPSP) observed in response to
stimulation of layer Ib. However, under bath application of
50 (iM CCh, the pairing of the weak stimulation in layer Ib
with the tetanic stimulation in layer la produced a
significant increase of the population EPSP in response to
layer Ib stimulation (Figure 10).

In previous work, this enhancement of associative
long-term potentiation was obtained with selective blockade
of inhibitory synaptic transmission (Kanter and Haberly,
1993). Cholinergic modulation could provide this same
effect through modulation of inhibitory synaptic poten-
tials. Recordings from piriform cortex pyramidal cells have

Control

30 msec

Figure 11 Effect of cholinergic modulation on inhibitory post-synaptic
potentials evoked by layer Ib stimulation recorded in voltage clamp mode.
Stimulation of layer Ib when the cell was held at -60 mV elicited a fast
excitatory post-synaptic current followed by fast and slow inhibitory
post-synaptic currents (IPSCs) (Control). Perfusion of the slice chamber with
CCh (50 p.M) suppressed both IPSC components (Carbachol). From Patil and
Hasselmo (Patil and Hasselmo, 1999).
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Figure 12 Suppression of synaptic potentials by norepinephrine recorded
in a brain slice preparation of the olfactory cortex. (A) Evoked synaptic
potentials in layer la recorded before (Control), during (Norepinephrine)
and after (Washout) perfusion with 10 u.M norepinephrine. (B) Evoked
synaptic potentials in layer Ib recorded before (Control), during (Norepin-
ephrine) and after (Washout) perfusion with 10 |xM norepinephrine.
Norepinephrine has a greater effect on intrinsic synaptic potentials. From
Hasselmo et al. (Hasselmo et al., 1997).
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demonstrated cholinergic modulation of inhibitory synaptic
potentials, as illustrated in Figure 11 (Patil and Hasselmo,
1999). In these experiments, perfusion of the cholinergic
agonist CCh caused suppression of inhibitory synaptic
potentials recorded with sharp electrode techniques as well
as inhibitory synaptic currents recorded with whole cell
patch clamp (Patil and Hasselmo, 1999). This modulation of
inhibitory transmission appears to be stronger for trans-
mission in layer Ib than for that in layer la.

Noradrenergic modulation in the piriform cortex

Noradrenergic modulation appears to have some effects
similar to those of acetylcholine, providing a similar en-
hancement of the network response to external afferent
input relative to intrinsic transmission. In particular,
noradrenergic modulation causes selective suppression of
excitatory intrinsic synaptic transmission, as shown in
Figure 12 (Hasselmo et al, 1997).

Network simulations demonstrate that the noradrenergic
suppression of transmission could result in an enhancement
of response to afferent input relative to internal activity.
This can be referred to as enhanced signal-to-noise ratio—
an effect that has been studied in a number of other cortical
regions (Sara, 1985; Servan-Schreiber et al, 1990). Simu-
lations of the piriform cortex illustrate how modulation
of synaptic transmission influences the response to afferent
input, as shown in Figure 13. Thus, the net effects of
norepinephrine may result in enhanced encoding of sensory
input. This could provide cellular mechanisms for the
important role of norepinephrine observed in early ol-
factory learning [reviewed by Sullivan et al (Sullivan et al,
1992)].

Summary
In summary, the piriform cortex provides an excellent
structure for analysis of neuromodulatory effects on cortical

Signal-to-Noise Ratio

Figure 13 Effect of noradrenergic suppression of feedback excitation and
feedback inhibition on pyramidal cell response to afferent input. (A)
Membrane potentials and action potentials of 16 pyramidal cells are shown.
Pyramidal cells receiving afferent input are indicated (horizontal arrows).
Stimulus onset and offset are indicated by vertical arrows. Background
activity and response to afferent input are shown in the absence
(Modulation OFF) and in the presence (Modulation ON) of 60% suppression
of feedback excitation and 40% suppression of feedback inhibition. (B)
Average activities of 50 pyramidal cells in network during 120 ms back-
ground activity (Spont) and in response to input. Pyramidal cells receiving
input are indicated by arrows. (C) The signal-to-noise ratio as a function of
feedback excitation and inhibition in the spiking network model. For each
point in parameter space, 50 networks were constructed and presented
with random input patterns. The signal-to-noise ratio was computed as the
number of spikes generated by neurons receiving input divided by the total
number of spikes during the time of input presentation (120 ms).
Suppression of feedback excitation and feedback inhibition is varied from 0
to 100% in 20% steps. The maximal signal-to-noise ratio occurred when
feedback excitation was suppressed by 60% and feedback inhibition was
suppressed by 40%. From Hasselmo ef a/. (Hasselmo ef a/., 1997).

processing, allowing analysis of selective effects on excitat-
ory and inhibitory synaptic transmission, and computa-
tional modeling of these effects in the framework of
associative memory function. This allows explanation of
some existing behavioral data on cholinergic and noradren-
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ergic modulation, and generation of further hypotheses to
guide additional behavioral experiments.
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Computational modeling of neural substrates provides an excellent the-
oretical framework for the understanding of the computational roles of
neuromodulation. In this review, we illustrate, with a large number of
modeling studies, the specific computations performed by neuromodula-
tion in the context of various neural models of invertebrate and vertebrate
preparations. We base our characterization of neuromodulations on their
computational and functional roles rather than on anatomical or chem-
ical criteria. We review the main framework in which neuromodulation
has been studied theoretically (central pattern generation and oscilla-
tions, sensory processing, memory and information integration). Finally,
we present a detailed mathematical overview of how neuromodulation
has been implemented at the single cell and network levels in model-
ing studies. Overall, neuromodulation is found to increase and control
computational complexity.

1 Introduction

Organisms, from invertebrates to mammals, exhibit diverse behaviors when
coping with their environments. Correspondingly, the nervous systems of
these organisms can differ significantly in their organization and cellular
components. Despite such cross-species variability, computational models
of nervous systems have shown that complex computations can emerge
from the interaction of relatively simple circuits of neurons. A typical con-
nectionist model, for example, involves a transfer function computing the
output of the neuron given the sum of its inputs and a synaptic learning
rule determining how the strength of synaptic connections is updated. With
this type of simple model, a variety of behavioral functions have been mod-
eled, providing insights into how complex phenomena, such as perception,
memory, and motor control, can be explained in terms of simple neural
mechanisms. Simple models, however, often fail to capture important as-
pects of neural processing such as neuromodulation (Cooper, Bloom, &

Neural Computation 10,771-805 (1998) © 1998 Massachusetts Institute of Technology
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Roth, 1991; Harris-Warrick & Marder, 1991; Hasselmo, 1995; Kaczmarek &
Levitan, 1987).

In addition to the classic excitatory and inhibitory neurotransmission,
such as those mediated by glutamate or GAB A, a large number of biophys-
ical processes serve to modify the response of a neuron to a given input
signal or to alter the input signals before their arrival. These modulatory ef-
fects often involve substances such as acetylcholine (ACh), norepinephrine
(NE), histamine, serotonin (5-HT), dopamine (DA), and a variety of neu-
ropeptides. Although these substances are known to act at different types
of receptors, originate from different structures, and have different spatial
distributions and time courses of action, they have at least one of the follow-
ing three functional effects: modulation of intrinsic neural properties (such
as input-output function, or threshold), modulation of afferent properties
(such as strengthening some neural inputs rather than others), or modula-
tion of efferent properties (such as presynaptic modulation of release). At
the behavioral level, such modulations can profoundly affect the function
of the nervous tissue involved.

Much is now known about the detailed action of neuromodulatory sub-
stances and their agonists and antagonists at the level of small circuits,
single neurons, single synapses, or single channels. On the other hand, psy-
chopharmacologists have examined the effects of many drugs that affect
various neuromodulatory systems on behaviors such as perception, learn-
ing and memory, and motor control. Because of the wider use of modeling
techniques and growing interest in systems neuroscience, the computational
role of neuromodulation in information processing is receiving increased
attention in both the modeling and experimental communities. As we will
suggest, the study of neuromodulation may help bridge the gap between
elementary neural principles and behavior.

Computational models provide a formal framework in which the func-
tion of a neuron or a group of neurons can be expressed rigorously. In gen-
eral, neural dynamics is represented as a set of equations with variables and
parameters. Variables are determined by both the level of description of the
model (concentration, membrane potential, firing rate, etc.) and the function
under study. Parameters are potential neuromodulatory factors. They are
diffuse (nonspecific to each neuron) and are assumed to change more slowly
than variables, so that keeping them constant (or very slowly varying) wi}l
not perturb the function of the network. In this formalism, neuromodulation
appears as a means of changing the way the function is achieved, without
changing the function itself. However, not all parameters have a biologi-
cal meaning. Some are abstract place holders used to make up for the lack
of knowledge about the details of a particular phenomenon (the learning
rate, for example), others ensure the ad hoc goodness of fit ("tuning") of the
model to certain experimental data that are not the primary targets of the
model ("time constants" of synaptic alpha functions for example). More-
over, not all the parameters that have putative biological correlates have
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identified neuromodulatory roles in situ. For example, some chemical time
constants might characterize complex biophysical mechanisms that are nor-
mally severely constrained ("regulated"), and consequently have no neu-
romodulatory function. Furthermore, not all neuromodulatory phenomena
can be represented by simple parameter changes.

The purpose of this article is to highlight, through a targeted review of
the modeling literature, some of the basic computational roles assigned to
neuromodulation and present their possible neural implementation. Due
to the diversity and ubiquity of neuromodulatory phenomena, we will not
provide a comprehensive review of all neuromodulatory systems in terms of
their anatomical loci, detailed biochemical pathways, and individual phys-
iological effects. Nor will we attempt to define it; rather, we will review
neuromodulation according to the computational framework provided by
a chosen set of modeling studies. Our intent is not to be exhaustive. Many
models not mentioned here have discussed how specific neuromodulations
can be implemented and how they affect particular aspects of the neural
system they consider. We include here a selection of studies that have dealt
explicitly with neuromodulation and will help readers understand a specific
computational role of neuromodulation.

In the first section, we characterize neuromodulation on the basis of its
spatial origin (extrinsic or intrinsic), its functional coupling with neural
computation (tuning versus regulation), and its time course. We then re-
view in more detail the computational role of neuromodulation in three im-
portant classes of models that address issues pertaining to oscillations and
synchrony in small and large networks, sensory processing, and memory
function. Finally, in the appendix, we give a detailed mathematical account
of the way neuromodulation has been implemented in the various modeling
frameworks reviewed.

2 Characterizing Neuromodulation

Neuromodulations can be described by their spatial and temporal charac-
teristics, and in the computational framework chosen here, they can also be
characterized by their level of coupling with the specific neural computa-
tions under consideration.

2.1 Extrinsic and Intrinsic Neuromodulation. A first class of neuro-
modulatory signals may originate from an area extrinsic to the neural sub-
strate whose computation is under study, so that lesioning the neuromodu-
latory center does not usually perturb the function itself, but only modifies
its quality. The computational functions of such extrinsic neuromodulation
are expected to be somewhat global, because they usually influence many
functionally different sites simultaneously. A second class consists of neuro-
modulations that originate in the relevant substrate itself or in a distant site
but are controlled locally within the substrate. In such systems, neuromod-
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ulation is an integral part of the computation. Cotransmission (Brezina,
Orekhova, & Weiss, 1996; Chan-Palay & Palay, 1984; Kupfermann, 1991;
Marder, Christie, & Kilman, 1995), presynaptic receptions (Marder, 1996;
Starke, Gothert, & Kilbinger, 1989), glial modulation (Hansson & Ronnback,
1994), and volume transmission (Fuxe & Agnati, 1991; Ridet, Rajaofetra, Teil-
hac, Geffard, & Privat, 1993) are examples of such phenomena. The func-
tions of such intrinsic modulations are more specific to the substrate under
consideration (Katz & Frost, 1996).

2.2.2 Extrinsic Neuromodulation. In many models, the origin of the mod-
ulation is known but does not depend in general on the computation of the
substrate being modulated. Rather, it depends on the parallel activity of
functionally distinct systems, extrinsic to the substrate. Such is the case
of most neuromodulatory centers releasing specific neuroactive substances
that modify the cellular and synaptic properties of their targets. Most of
the actions of dopamine (Cooper, 1991) and norepinephrine (van Dongen,
1981) enter in this category. Here, we illustrate this point with a recent model
of sequence learning in hippocampal region CA3 showing that computa-
tions may crucially depend on the extrinsic modulation by G ABAergic and
cholinergic inputs from the septum (Wallenstein & Hasselmo, 1997b).

In this large multicompartmental model, CA3 intemeurons receive ex-
ternal periodic (4—10 Hz) inhibitory GABAergic signals from the septum
(itself not modeled), while pyramidal cell and interneuron excitability is
increased by steadily lowering their leak potassium conductance, simulat-
ing the cholinergic influences of the septum. In this modulatory regime,
intemeurons spontaneously fire gamma (30-100 Hz) bursts of action po-
tentials at the theta (4-10 Hz) frequency externally imposed by the septum
(Wallenstein & Hasselmo, 1997a). This pattern of firing in turn entrains the
pyramidal cell network at theta frequency, yielding an overall network be-
havior compatible with much in vivo and in vitro experimental data. The
emerging theta-gamma pattern of interneuronal GABAergic activation re-
sults in a periodic activation of GABAB receptors on pyramidal cells: G AB AB
activation is greatest at the start of each theta cycle and decreases smoothly
until the end of each cycle. Because GABAB receptors primarily control
synaptic activation at intrinsic (CA3 recurrent collaterals) rather than ex-
trinsic (sensory) pyramidal inputs, their net effect is to modify periodically
the balance between internal and external information processing. Sensory
inputs dominate at early phases of the theta cycle; intrinsic inputs domi-
nate at later phases. This pattern of modulation is shown to be crucial to the
computations of CA3 in that it allows for the development of place fields
and for the learning and recall of sequence information modeled as a path
learned by a rat running on a linear track. Without GABAB modulation,
the network still functions, but it is qualitatively impaired, yielding place
fields that do not develop and making significant errors during the recall of
learned sequences.
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In this example, extrinsic neuromodulation acts as a separate clocking
device whose net effect is to improve the nature of information processing
in the CA3 region of the hippocampus. Both the timing of the modulatory
signal (theta frequency) and its pharmacological consequences (GABAB re-
ceptor activation) are important and generate testable predictions as to what
might happen if either is modified. Other models have viewed extrinsic
modulation as a signal influencing synaptic mechanisms. Such is the case
of the reward signal entering the weight modification rule, between the
ventral tegmental area (VTA) and cortex (Montague, Dayan, & Sejnowski,
1996), discussed in the following sections, or the direct change of synaptic
efficacy triggered by an external center (Linster & Gervais, 1996; Linster &
Masson, 1996; Raymond, Baxter, Buonomano, & Byrne, 1992).

2.1.2 Intrinsic Neuromodulation. In some interesting instances, it is not
possible to isolate the neuromodulatory phenomenon from the system it
modulates. In such cases, neuromodulation is intrinsic to the network whose
computation is under study. Unfortunately, to our knowledge, there are no
direct modeling studies of such phenomena. Some experimental evidence
for intrinsic neuromodulation is reviewed elsewhere (Katz & Frost 1996).
We briefly mention two examples.

In the stomatogastric ganglion (STG) of the lobster, an afferent axon
(SNAX1) has been characterized as both a participant in the rhythmidty
of the gastric mill network and as a conveyor of modulatory information
(Nusbaum, Weimann, Golowasch, & Marder, 1992). SNAX1 receives (in-
hibitory) synaptic inputs from the STG and is capable of initiating action
potentials (intrinsically, within the STG and not near the cell body, a few
centimeters away), which generate excitatory postsynaptic potentials (EP-
SPs) on the STG elements, therefore participating in the generation of the
rhythm. However, because SNAX1 is also electrically coupled with key neu-
rons of the central pattern generator, its level of depolarization (whether or
not action potentials are present) modulates the activity of the network.

Similarly, in the tritonia, dorsal swim interneuron DSI (a serotonergic cen-
tral pattern generator (CPG) neuron), is known to enhance synaptic trans-
mission presynaprically at synapses made by a key CPG neuron (Katz &
Frost, 1995b; Katz & Frost, 1996; Katz, Getting, & Frost, 1994). DSI elicits
both a fast, neurotransmitter-like EPSP, and a slow neuromodulatory-like
EPSP (Katz & Frost, 1995a), both pharmacologically separable. DSI therefore
modulates the oscillatory pattern it is contributing to.

It is, of course, possible to envision dual extrinsic and intrinsic neuromod-
ulations, whereby the former would express state or stimulus dependency
and the latter would be activity dependent. In the computational framework
of modeling studies, extrinsic neuromodulations can be easily implemented
by choosing appropriate sets of parameters (tuning), whereas intrinsic neu-
romodulations require that the neuromodulatory mechanisms be regulated
by the computations under consideration.

41



776 Jean-Marc Fellous and Christiane Linster

2.2 Regulation and Tuning. Choosing a computational framework to
study neuromodulation inherently places it within a larger continuum.

2.2.2 Regulation. At one extreme, when neuromodulation is tightly cou-
pled with neural computations, it becomes regulatory, an integral part of
the computations. Such is the case of second messenger systems described
in a Markovian kinetics formalism (Destexhe, Mainen, & Sejnowski, 1994b)
or of activity-dependent regulation of maximal conductances (LeMasson,
Marder, & Abbott, 1993), which we briefly discuss next.

Using a single-compartment model of the lateral pyloric neuron of the
stomastogastric ganglion of the crab (Buchholtz, Golowasch, Epstein, &
Marder, 1992), LeMasson et al. (1993) elegantly illustrate how neurons can
maintain a given firing behavior in the face of perturbations such as changes
in extracellular K+ concentrations or sudden shifts in certain membrane
current maximal conductances. This is achieved by making the intrinsic
properties of the neuron (maximal conductances) dependent on the intra-
cellular calcium concentration, and hence indirectly on previous activity.
This feedback regulation ensures that conductances are stable and that the
firing pattern of the cell (silent, bursting, or tonically firing) is preserved.
The authors propose that this regulation, because it happens on a relatively
slow timescale, could correspond physiologically to calcium regulation of
channel synthesis, insertion, or degradation. Interestingly, in this particular
model, the same mechanism that regulates the firing pattern in the face of
certain perturbations may also change it in the face of other perturbations,
such as external patterns of stimulation, therefore increasing the complexity
of the input-output relationship of the cell.

2.2.2 Tuning. At the other extreme, when neuromodulation is entirely
decoupled from the network under study, its actual implementation be-
comes a matter of parameter tuning. Such is the case of the choice of particu-
lar parameter sets that yield different bursting modes in invertebrate pattern
generators (Epstein & Marder, 1990) or different cell frequency adaptation
characteristics in piriform cortex (Barkai & Hasselmo, 1994), as we discuss
next.

In slices, piriform cortex pyramidal cells can generally be classified into
strongly adapting or weakly adapting cells, depending on their response
to long constant depolarizing current pulses (Barkai & Hasselmo, 1994).
This difference in firing frequency adaptation may influence the compu-
tations at hand. Carbachol, a muscarinic receptor agonist, has been found
to decrease the spike frequency adaptation of pyramidal cells and, in ef-
fect, switches strongly adapting cells into weakly adapting ones. On the
basis of the experimental finding that carbachol primarily modulates two
membrane potassium currents, IK (AHP) and IK (M) (Madison, Lancaster,
& Nicoll, 1987), Barkai and Hasselmo used a compartmental model and
found that different values of the maximal conductances of these two cur-
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of the delay introduced. This firing behavior is in marked contrast to some
of their neural targets, such as the striatum or prefrontal cortex, whose
neural activity may be tonically increased during the whole delay period
(Goldman-Rakic, Lidow, Smiley, & Williams, 1992). Moreover, the increase
of VTA activity after reward appears to be present only during learning,
and not once the animal has acquired the task. These data suggest that the
transient actions of DA after reward delivery may be specifically involved
in learning. The precise duration of the postsynaptic effects of the release
of dopamine in the prefrontal cortex during such a task is not known, but
it might be as short as 100-200 ms (Jay, Glowinski, & Thierry, 1995). Inso-
far as one considers that the performance of the delayed response task is
a slow process (lasting up to 4 sec), a 150-ms phasic involvement of the
dopaminergic system appears as a fast modulatory process influencing a
slow sequence of neural computations.

In a model of VTA activity, Montague et al. (1996) propose a way in
which DA neuron may transiently affect learning. Their model suggests
that DA signals 8(t) carry a composite information about external reward
r(t), and internal fluctuations between present V(t) and immediately past
V(t — 1) sensory cortical signals. This DA signal is used to modulate the
rate of change of the synaptic weights, which link cortical signals x(t) to
dopaminergic neurons. Mathematically, this modulation is expressed as a
transient change of learning rate, which tends to reduce the amount of
excitation forwarded to the dopaminergic neurons, as learning develops,
compatible with experimental data (Schultz et al., 1993), and following the
general idea of temporal difference learning (Sutton & Barto, 1990):

Aw] = r)Xi&(t) if t = x. 0 if not.

with

and

Interestingly, this model chooses to label weights explicitly with space (i,
origin of cortical activity) and time (T, relative to the start of each trial). In
this paradigm, each weight codes for the occurrence of a particular cortical
signal, at a particular time within the experiment.

The spatial diffusion of the DA signal is expressed by the fact that the
same S(t) affects all synaptic weights equally (it is not indexed by z) and by
the fact that it is built on the basis of the sum of all cortical inputs, rather
than specialized cortical inputs only (V rather than Vi).

During the initial stages of learning, when weights are uniformly dis-
tributed, DA activity closely follows the temporal patterns of reward. Dur-
ing learning, if the time of reward is fixed (such as in the instructed spatial
task; Schultz et al., 1993), the weights that code for the particular time (rr)
of the reward will be strengthened, so that 8(zr) eventually vanishes. If the
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time of reward is variable, as in a delayed spatial task, the activity of DA
neurons will become small, but nonzero, around the mean of the times when
reward was delivered. After learning, in both cases, DA activity becomes
particularly significant when the initial target sensory cue is presented. DA
neurons therefore learn to respond to the target sensory cue predictive of
the reward rather than to the reward itself.

In this model, the timing characteristics of the modulation are crucial.
Its short duration is directly related to the precision with which the pre-
diction of reward is made. Phasic modulation is also important in other
modeling studied involving GABAB receptors (Wallenstein & Hasselmo,
1997b) and in other experimental systems involving norepinephrine and
locus coeruleus response to attentional signals and novelty (Aston-Jones,
Rajkowski, Kubiak, & Alexinsky, 1994; Rajkowski, Kubiak, & Aston-Jones,
1994; Sara, Vankov, & Herve, 1994).

3 Computational Aspects of Neuromodulation

3.1 Modulation of Oscillation and Synchrony. Neural computation is
dynamic and modular and requires that functionally distinct structures
communicate in a coordinated fashion. Experimental and theoretical evi-
dence suggests that the generation and synchronization of oscillatory ac-
tivity may be used to this effect (Gray, 1994). Invertebrate studies have
been crucial in furthering our understanding of how both intrinsic mem-
brane properties and synaptic interactions may contribute to the creation
and modulation of rhythmic firing (Calabrese & De Schutter, 1992; Harris-
Warrick & Marder, 1991). Vertebrate studies of the cortex have built on
these results and have proposed ways in which oscillations may synchro-
nize across functionally distinct structures (Gray, 1994). In this context, the
neuromodulation of the generation and synchronization of oscillations is
bound to play an important computational role.

3.2.2 Central Pattern Generators: Creating and Modulating Rhythmiciiy. A
long tradition of experimental work in invertebrates has led to a detailed
knowledge of the effects of various substances on the behavior of individual
neurons and small networks of neurons (see for reviews, Calabrese & De
Schutter, 1992; Marder, 1996; Marder & Selverston, 1992). Most of these
effects can be modeled by changes in the maximal conductance of one or
more membrane currents. In these systems, attention is given to neurons
whose putative function is to provide, through their rhythmic firing, timing
signals necessary for one or several rhythmic motor behaviors (Pearson,
1993), such as chewing in the crustaceans or hormone release during egg-
laying behavior in Aplysia. These cells are often referred to as conditional
bursters because of their ability to fire rhythmically, either intrinsically or
under the influence of a small network of connected cells. Two examples can
be found in the pyloric network of the crustacean stomatogastric ganglion
and in the Aplysia bursting neuron R15.
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In the STG of the lobster, various modulatory substances such as dopa-
mine, pilocarpine, serotonin, or proctolin can elicit rhythmic burst firing.
The mechanisms involved, even though they result in similar bursting be-
haviors, are by no means simple and depend on the particular substance ap-
plied. For example, tetrodoxin (TTX) may block the effects of serotonin and
octopamine but have no effects on the bursting evoked by dopamine and
pilocarpine. One possibility is that each of these neuromodulatory effects
is mediated by a particular change in the mix of membrane conductances
of the cells (Harris-Warrick & Flamm, 1987), which may be studied theo-
retically using the Hodgkin-Huxley (HH) formalism (Hodgkin & Huxley,
1952; Rinzel & Lee, 1987).

Epstein and Marder (1990) provide a model for the conditional burst-
ing of the anterior burster (AB) neuron of the lobster STG and investigate
the effects of the change of a selected set of maximal conductance on the
oscillatory properties of the model. They are able to show that two differ-
ent mixes of fast sodium, leakage, and voltage-dependent calcium maximal
conductances were able to model the bursting behaviors of the AB neu-
ron under various neuromodulatory conditions and show why TTX has a
different effect on two of these oscillatory modes. Kepler, Marder, and Ab-
bott (1990) showed that, in addition to being intrinsically modulated, the
frequency of the modeled AB cell might also depend on the state of fol-
lower neurons, provided that both neurons are coupled via gap junctions.
Unfortunately, the effects of isolated membrane conductances are often not
accessible experimentally. To study the putative effect of pharmacologi-
cal agents (expressed as continuous maximal conductance changes) on the
oscillatory properties of this cell, researchers may then use different mod-
eling techniques, such as exhaustive parameter searches (Bhalla & Bower,
1993; Foster, Ungar, & Schwaber, 1993) or dynamical systems theory (Guck-
enheimer, Gueron, & Harris-Warrick, 1993; Guckenheimer, Harris-Warrick,
Peck, & Willms, 1997). Further experimental and theoretical studies focused
on other STG neurons (Golowasch, Buchholtz, Epstein, & Marder, 1992).
These models essentially consider neuromodulation to be extrinsic to the
oscillatory circuit, and implement it using parameter tuning. Interestingly,
further work has attempted to show how maximal conductances may also
be changed by intrinsic phenomena. LeMasson et al. (1993), for example,
show how intracellular calcium concentrations can be used to implement
the activity-dependent modulation of certain maximal conductances (Tur-
rigiano, Abbott, & Marder, 1994). Their model shows that depending on the
nature of the perturbations imposed onto the cells, this modulation can be
regulatory (maintaining the behavior of the cells when extracellular [K+] is
modified) or truly modulatory, by enriching the behavioral repertoire of the
cell in response to external patterns of stimulations.

Most modeling studies of the extrinsic effects of neuromodulatory sub-
stances have addressed the problem at the level of maximal conductances
by tuning them to different values. Very few have actually modeled the
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explicit effect of these substances on the conductances (Brezina et al., 1996;
Butera, Clark, Canavier, Baxter, & Byrne, 1995). A different line of research
in Aplysia, however, has achieved this.

Burster neuron R15 in Aplysia has been studied in much detail, and its
electrophysiological and biochemical properties have been investigated in-
tensively (reviewed in Adams & Benson, 1985; Lechner, Baxter, Clark, &
Byrne, 1996). Numerous mathematical models have been developed to ex-
plain the cellular basis of single-cell oscillatory activity and bursting. Some
models went further and studied the extrinsic modulation of oscillatory
dynamics by substances such as DA and 5-HT (Bertram, 1993,1994; Butera
et al., 1995), while others focused on the role of intrinsic modulation by
calcium-dependent processes in conditioning (Gingrich & Byrne, 1987; Ray-
mond et al., 1992).

A first series of studies used a simplified HH framework to model the
effect of 5-HT as modifications in the conductance of a subthreshold K+

current (Bertram, 1993, 1994). As for the models of the AB neuron, these
models show that changes in maximal conductance can modify the firing
properties of R15 from silent to bursting and beating and that the sensitivity
of the cell to synaptic inputs is increased. In a separate study Butera et al.
(1995) show that even though the apparent effects of DA and 5-HT on the
firing properties of R15 are similar, its subsequent responses to depolarizing
inputs differ. Effects of 5-HT and DA were implemented as a change in the
conductance of two opposing currents: an anomalous delayed rectifier cur-
rent and a slow inward Ca2+ current. Unlike the models mentioned above,
this change is directly related to the concentration of extrinsic neuromodu-
lators (see the appendix). Their dynamics are such that both 5-HT and DA
can hyperpolarize the cell into silence. However, the subsequent response
to a brief depolarizing current pulse elicits a burst of spikes if the cell was
silenced with 5-HT and occasional single spikes if it was inhibited by DA,
as observed experimentally. Because they make the concentration of these
neuromodulatory substances explicit, the authors are able to show that al-
though the effects of 5-HT and DA can be modeled as changes in maximal
conductances, they cannot be understood without taking into account the
indirect effects of other currents and second messenger systems (such as
Ca2+ or cAMP). In turn, these indirect effects lead to further modeling that
shows their functional importance.

Indeed, the roles of intracellular cAMP and Ca2+ are known to be im-
portant in activity-dependent neuromodulation in the context of associa-
tive classical conditioning in aplysia (reviewed in Abrams & Kandel, 1988;
Byrne, 1987). In a study using detailed representations of membrane param-
eters, Gingrich and Byrne have shown that intrinsic regulation of cAMP by
Ca2+ in an aplysia single sensory neuron can simulate the neural analogues
of nonassociative learning and classical conditioning (Gingrich & Byrne,
1987). A subsequent study showed that a circuit of six neuron-like elements
(including central pattern generators), some of which have synapses mod-
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ifiable according to an activity-dependent neuromodulation learning rule,
can account for simple features of operant conditioning as well (Raymond
et al , 1992).

3.2.2 Modulation of Rhythmicity in the Cortex: Toward Information Process-
ing. Current research in the vertebrate cortex has indicated the functional
importance of oscillation and synchronization (Gray, 1994; Singer, 1993).
Experimental and theoretical evidence suggest their role in odor coding in
the olfactory bulb, in feature integration in the visual cortex, in synaptic
plasticity in hippocampus, in attentive behaviors in somatomotor cortex
(Gray, 1994), and in the gating of sensory information during awake and
sleep states in the thalamocortical circuit (McCormick, 1992). Unfortunately,
the computational role of neuromodulation in the generation and synchro-
nization of these rhythms has rarely been studied from a modeling point of
view. However, an interesting line of research in the thalamocortical loop is
setting the stage for modeling work in other systems.

In the past decade, tremendous breakthroughs have been achieved in the
understanding of synchronized oscillations in the thalamocortical circuit
(see de Carvalho, 1994; McCormick, 1992, for reviews). Their neuromodu-
lation has been studied in vitro and in vivo, and their cellular mechanisms
explored both experimentally and theoretically through computer simula-
tions. The functional significance of the neuromodulation of this system
is summarized next. In slow-wave sleep, with low cholinergic, serotoner-
gic, noradrenergic, and histaminergic modulation, the thalamocortical sys-
tem presents slow, spontaneous basal intrinsic and circuit oscillations (delta
waves and spindle waves). During this state, cholinergic inhibition of tha-
lamic interneurons is absent, resulting in massive inhibition of incoming
sensory information, which is consequently only poorly transmitted to the
cortex. The increase of cholinergic activation (but decrease of noradrener-
gic, serotonergic, and histaminergic activation) characteristic of rapid eye
movement (REM) sleep results in an abolition of oscillatory activity and
an increase of endogenous (without sensory inputs) phasic activity (ponto-
geniculate-occipital [PGO] waves), thought to be at the origin of the pseu-
dosensorial perceptions experienced during dream states. Finally, the tonic
activation of all neuromodulatory systems (including cholinergic, noradren-
ergic, serotonergic, and histaminergic) results in complex patterns of activ-
ity and sets the stage for awake attentive cognitive processing. The precise
nature of the sensory processing in the thalamus and its modulation by neu-
romodulatory centers are limited by the lack of understanding of the nature
of the sensory codes themselves. However, understanding how oscillations
are generated and how they propagate in a synchronized manner across
the thalamic networks might help shed some light on the computations
achieved by this structure.

A line of experimental and theoretical work shows that the behavioral-
dependent rhythmic firing patterns of thalamocortical (TC) relay cells de-
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pend on only a small number of membrane currents (McCormick & Hugue-
nard, 1992) and a functionally intact group of inhibitory thalamic reticular
(RE) cells. RE cells are capable of oscillating on their own in vivo, and a cru-
cial role for their neuromodulations by NE or 5-HT has been proposed on
experimental (McCormick & Wang, 1991) and theoretical (Destexhe, Con-
treras, Sejnowski, & Steriade, 1994a) grounds. By deactivating a potassium
leak current, this extrinsic neuromodulation is able to depolarize RE cells
so that GABAergic inhibitory postsynaptic potentials (IPSPs) received from
other RE cells deinactivate the low-threshold Ca membrane current IT- This
current triggers a rebound burst at the single-cell level, which generates net-
work oscillations in the frequency range of spindle waves (Destexhe et al.,
1994a). Through their influence on intracellular levels of G-protein (a sec-
ond messenger), NE or 5-HT has the potential of switching a silent network
of RE cells between quiescent and oscillatory states.

Interestingly, the inclusion of TC cells in this network has prompted the
study of a form of intrinsic activity-dependent neuromodulation (Destexhe,
Bal, McCormick, & Sejnowski, 1996). In a model of synchronized oscilla-
tions and propagating waves in thalamic slices Destexhe et al. (1996) show
how the activity-dependent modulation (which they term upregulation) of a
mixed cationic current //, in TC cells contributes to the waning phase of the
characteristic waning and waxing pattern of spindle oscillations. Whereas
neuromodulation is often expressed as a change in maximal conductances,
previous work on the STG has indicated how serotonin-mediated shifts in
the voltage dependence of the activation curve of 4 could also contribute to
the pattern of oscillations of an intrinsically oscillating cell (Golowasch et al.,
1992; Harris-Warrick, Coniglio, Levini, Gueron, & Guckenheimer, 1995). In
the STG model, shifts were artificially introduced and their effects studied.
In this model, however, a different formalism is proposed and introduces
an activity-dependent shift of the activation of the 4 current:

h = G([O] + K[OL])(V - Erev) with

Pu+2Ca2+ +-+Pb

O + Pb +->OL,

where C, O, and OL axe closed and opened forms of the h channel and Pu and
Pi are unbound and bound forms of a slow intracellular regulating factor,
which could be cAMP. The kinetics are such that the transition from OL to
a closed state is very improbable, leading effectively to a locking of the OL
fraction of the channels into the open state. This effect is responsible for a
bounded shift of the activation curve of Zj, toward depolarized values, as
the intracellular calcium concentration is increased during bursting activ-
ity. Moreover, because K is chosen greater than 1, the binding of calcium
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also triggers an increase in conductance. Both effects have been observed
experimentally (Hagiwara & Irisawa, 1989).

Because of the dependence of fj, kinetics on Ca, deactivation of I/, occurs
only during low-frequency firing when Ca does not accumulate. During
bursts, the accumulation of calcium shifts the activation curve of 4 to-
ward more depolarized states and keeps I/, active. During a burst, there-
fore, OL (and consequently I/,) increases, leading to a progressive after-
depolarization (ADP). The ADP eventually counteracts the ly-mediated
rebound bursts, and the spindle oscillatory episodes are terminated. The
subsequent slow return of //, to its basal value results in an 8-10 sec refrac-
tory period during which further oscillations cannot be initiated. Evoked
or spontaneous activity may ultimately restart the spindle episode, after a
total waning phase of 15-25 sec, including the refractory period.

In addition to contributing to the waning phase of spindle oscillation, the
modulation of Ij, also enables the synchronization of several independent
colliding spindle waves into a single propagating wave (but see Contreras,
Destexhe, Sejnowski, & Steriade, 1997, for in vivo data). Other forms of I/,
modulations have been proposed elsewhere in the thalamus (Wallenstein,
1996) and in the STG of the lobster (Golowasch et al , 1992; Harris-Warrick
et al., 1995).

In the pirif orm cortex and olfactory bulb, oscillatory dynamics are modu-
lated by noradrenergic and cholinergic afferents (Biedenbach, 1966; Bressler
& Freeman, 1980). Liljenstroem and Hasselmo (1995) investigate the effects
of cholinergic modulation on pirif orm cortex oscillatory dynamics. These in-
clude cholinergic suppression of neuronal adaptation, cholinergic suppres-
sion of intrinsic fiber synaptic transmission, and cholinergic enhancement
of interneuron activity. Their model provides a basis for understanding the
involvement of acetylcholine modulation in cortical EEG oscillations (Wil-
son & Bower, 1992). They demonstrate that the suppression of neuronal
adaptation could explain the appearance of evoked gamma oscillations af-
ter potentials. They also find that such suppression of adaptation, when
coupled with the other cholinergic effects mentioned above, was particu-
larly effective in switching the network into spontaneous theta oscillations.
These results are related to others in the hippocampus (Traub, Miles, &
Buzsaki, 1992; Traub, Whittington, Colling, Buzsaki, & Jefferys, 1996; Wang
& Buzsaki, 1996) that do not involve neuromodulation explicitly. The puta-
tive functional significance of neuronal adaptation, and its consequence on
rhythmicity, is made apparent in later studies on learning and memory in
the hippocampus and will be discussed separately.

3.2 Modulation of the Processing of Sensory Signals: Filtering and
Signal-to-Noise Ratio. Processing of sensory information often relies on
preprocessing functions like filtering, contrast enhancement, and noise re-
duction. Many of these functions can be modulated, enabling the sensory

50



Computational Models of Neuromodulation 785

system to respond differently to various components of complex incoming
sensory streams.

In fie visual domain, one example of such a function is the temporal
transformation that some lateral geniculate nucleus (LGN) cells perform
on their retinal input (Mukherjee & Kaplan, 1995). The experimental data
show that the temporal response of these cells is variable and is related to
their ability to burst. Such cells can behave as either relays, responding at
the same frequency as their retinal inputs by firing tonically (in alert/awake
state), or as bandpass filters, responding optimally at frequencies of 2-8 Hz
by firing in a bursting mode (in sleep states), presumably failing to transmit
sensory information accurately. In a biophysical model, Mukherjee and Ka-
plan (1995) show that LGN cell responses can vary from low-pass, with no
apparent bursting properties, to bandpass, with frequent burst discharges,
depending on the value of their resting membrane potential, and provided
that the low-threshold calcium T current is kept active. The authors propose
that the LGN acts as a temporal filter, which can be dynamically tuned by
attentional signals from the brainstem and the visual cortex, through their
modulatory effects on LGN cells' resting membrane potential. In a sepa-
rate connectionist model, Jackson, Marrocco, and Posner (1994) model such
modulatory signals by the putative effects of NE release, expressed as a
combination of self-feedback excitation and lateral inhibition. The compu-
tational role of such modulation is to achieve contrast enhancement, such
that small initial differences in the incoming signal are amplified, and con-
sequently direct attention.

In their model of the olfactory bulb, Linster and Gervais (1996) showed
that the modulation of two families of intemeurons might sensitively im-
prove odorant signal detection. On the one hand, the modulation (increase)
of lateral inhibition mediated by the periglomerular intemeurons may re-
sult in the sparsification of the mitral activation patterns of complex odors,
which otherwise would involve a large, undifferentiated population of mi-
tral cells. On the other hand, under conditions when mitral cell responses
are close to noise levels, a global modulation (decrease) of the inhibition me-
diated by glomerular intemeurons may result in an enhancement of their
responses. In an extension of this model, Linster and Hasselmo (1997) show
that such modulation of inhibition could depend on the global activity of the
mitral cells. They introduce a modulator neuron (a putative NE or ACh cell)
that receives inputs from all mitral cells and that feeds back on periglomeru-
lar cells while simultaneously modulating the connection strength between
granule cells and mitral cells. The modulation of inhibition in the glomerular
layer ensures a constant average number of active mitral cells, irrespective
of the complexity of the input patterns, while modulation of granule cells
inhibition ensures a constant average mitral cells spiking probability. To-
gether, these modulations decrease the overlap between pairs of output
patterns, making discrimination between overlapping input patterns easier
and more reliable.
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Addressing similar questions in a model of olfactory processing in the
honeybee, Linster and Masson (1996) showed that modulation of inhibition
in the antennal lobe may serve for feature extraction of complex and fluctu-
ating chemical signals. This modulation is expressed through the synaptic
strength of inhibitory synapses, the biological basis of which has yet to be
investigated experimentally. Changes of the balance between excitation and
inhibition during the presentation of a stimulus allow the network to act
as a short-term memory, displaying the neural activity patterns elicited by
the stimulus even after its offset, compatible with experimental data (Sun,
Fonta, & Masson, 1993). Expanding on this idea, Linster and Smith (1997)
constructed a model of reinforcement learning in the honeybee olfactory
system. In this model, modulation of lateral inhibition is introduced via an
external modulatory neuron that receives reinforcement signals. This neu-
ron makes plastic synapses onto the circuit under consideration. The au-
thors show that such extrinsic modulation accounts for various behavioral
phenomena, such as blocking, unblocking, and overshadowing.

Sensory processing may also involve computations aimed at separating
a sensory signal from the background noise. When seen at a system level,
the modulation of the signal-to-noise ratio appears as a powerful compu-
tational tool by selectively enhancing a signal in a specific pathway, while
leaving it undifferentiated with noise in others. A line of modeling work
has shown that the cellular mechanisms involved in the known effects of
catecholamines on signal detection performance (Clark, Geffen, & Geffen,
1987a, 1987b) may be modeled by a modulation of the slope (gain) of the sig-
moid function of a network of leaky-integrator neurons (Servan-Schreiber,
Printz, & Cohen, 1990). Changes of this gain at the level of an individ-
ual neuron do not affect its signal-detecting capabilities, while increases of
this gain in a feedforward chain of neurons augment the signal-to-noise
ratio of the whole chain. The model accounts for experimental observations
pertaining to the cellular effects of norepinephrine, which show that NE-
mediated blockade of Iahp may result in the selective diminution of weak
EPSPs and the increase of the depolarization associated with trains of EP-
SPs, thereby increasing signal- to-noise ratio (Madison & Nicoll, 1986). The
model is then used in a backpropagation network to model the improve-
ment in signal detection measured experimentally in human subjects per-
forming a continuous performance task. In this task, subjects are submitted
to pharmacological challenges that release catecholamines from synaptic
terminals or prevent their reuptake. In an extension of this model, Cohen
and Servan-Schreiber (1992) simulate several schizophrenic deficits in selec-
tive attention and language processing assessed by tasks such as the Stroop
task, the continuous performance test, and a lexical disambiguation task.
They successfully show that even though these tasks are seemingly differ-
ent, the deficits exhibited by schizophrenics can be understood as a general
disturbance of the internal representation of contextual information. Such
disturbances are implemented as a decrease in the gain of the sigmoid func-
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tion of modeled prefrontal cortex units, simulating the possible functional
effects of the loss of dopaminergic modulation observed in schizophrenic
patients. This theoretical work has been followed by experimental work that
confirmed and refined the hypothesis advanced (Cohen, Braver, & O'Reilly,
1996).

In a separate experimental and theoretical study in piriform cortex, Has-
selmo and coworkers show that noradrenergic enhancement of the signal-
to-noise ratio may also be due to a modulation of synaptic transmission
rather than a modulation of input-output function, as was first proposed
by Servan-Schreiber et al. (1990). They found that NE, like ACh, may sup-
press excitatory neurotransmission at intrinsic (collateral) fibers and may
also depress feedback inhibition. In a model of piriform cortex, they show
that these two effects can act synergistically to increase signal-to-noise ratio
(Hasselmo, Linster, Patil, Ma, & Cekic, 1997).

Finally, another interesting body of research has pointed to the role of
noise itself as a means of modifying the signal-to-noise ratio (Bulsara, Jacobs,
Zhou, Moss, & Kiss, 1991; Levin & Miller, 1996; Longtin, 1993; Longtin,
Bulsara, Pierson, & Moss, 1994; McNamara & Wiesenfeld, 1989). To our
knowledge, no explicit links to neuromodulation have yet been made.

3.3 Modulation of Memory Function. A large class of memory models
is based on the assumption that memories are stored as patterns of synap-
tic strengths mediating the spread of activation in a network. Learning is
achieved according to a synaptic modification rule (or equation) that re-
lates synaptic strength and presynaptic and postsynaptic activities (Brown,
Kairiss, & Keenan, 1990; Hasselmo, 1995; Zador, Koch, & Brown, 1990). In
this framework, memory function is defined by the synaptic learning rule
and the dynamics of individual neurons.

3.3.1 Modulation of the Synaptic Learning Rule. In their model of the re-
sponse of dopamine neurons to reward and conditioned stimuli (Schultz
et al., 1993), Montague, Dayan, and Sejnowski (1996) propose a learning
rule in which the postsynaptic activity is augmented by an external reward
signal of neuromodulatory origin. In addition, plasticity is made sensitive
to temporal differences (Sutton & Barto, 1990) in the postsynaptic activ-
ity, rather than to the postsynaptic activity itself. This formulation of the
Hebbian learning rule makes time explicit in that some synapses represent
early events and others represent later ones. The authors show that after
learning a delayed matching-to-sample task, dopaminergic neurons act as
a temporal predictor of reward, compatible with experimental data. In this
context, dopamine centers have the role of computing and sending diffuse
modulatory error signals to the cortex, and hence influence its computation
of action in the time domain. The same approach has been used elsewhere
(Montague, Dayan, Person, & Sejnowski, 1995) to show how an identified
interneuron in the honeybee brain, VUMmxl, could predict reward values
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of spatial location during foraging. In this model, VUMmxl cells influence
flight in a manner that accounts for the previous learning of the landscape
and its rewarding regions. A similar implementation of VUMmxl modula-
tion can be found elsewhere (Linster & Smith, 1997).

One of the problems with most learning-rule-based neural models of
memory function is the fact that learning and recall may interfere in unde-
sirable ways. Unless care is taken to prevent this, the presentation of a new
pattern during learning may elicit an erroneous response from the network.
This spurious activity perturbs (if not prevents) learning. In a series of exper-
imental and theoretical studies, Hasselmo and coworkers have shown how
selective cholinergic modulation of some synapses, but not others, might
provide an elegant solution to this problem.

Experimental data from field recordings in the piriform cortex suggest
that cholinergic, noradrenergic, and GABAergic modulation might selec-
tively suppress intrinsic but not afferent excitatory synaptic transmission in
the piriform cortex (Hasselmo & Bower, 1992; Hasselmo et al , 1997; Tang &
Hasselmo, 1994). In a mathematical model of associative memory, Hasselmo
(1993) shows that this selective suppression may prevent previously learned
patterns from interfering with the storage of new patterns, especially when
previous and new patterns are coded by overlapping populations of neurons
(Hasselmo, 1993). This modulation is expressed as a decrease in glutamate
release in the activation rule, coupled with a rescaling of the learning rate in
the learning rule. In further experimental and theoretical studies, Barkai and
Hasselmo (1994) present a detailed biophysical model of a single pyramidal
cell in piriform cortex. They show that in addition to its effects on synaptic
transmission observed with field potentials, intracellular recordings show
that cholinergic modulation of single cells also results in the suppression of
neuronal adaptation and in marked depolarization from resting potential.
Their single-cell model shows these effects as changes in the maximal con-
ductance of two potassium currents. These results lead to a detailed model
of autoassociative memory in the piriform cortex, including 240 pyramidal
cells as well as feedforward and feedback interneurons (Barkai et al., 1994).
Results from intracellular recordings (suppression of neuronal adaptation
and depolarization) and field recordings (suppression of intrinsic synaptic
transmission) are included in the model. During learning, the overall effects
of cholinergic modulation are to enhance pyramidal cell activity, increasing
learning performance. After learning, cholinergic modulation is suppressed
and sets the stage for recall. ACh therefore ensures that learning and recall
do not interfere and controls the computations of the network.

3.3.2 Modulation of Neural Dynamics. In a large associative network of
Fitzhugh-Nagumo-like cells, Abbott (1990) shows that a simple modulation
(of putative neuromodulatory origin) of the dynamics of the slow variable
(see the appendix) may switch the network from implementing a nonse-
lective short-term latching memory to behaving as a long-term associative
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memory. This change in mode of operation of the network increases its com-
putational capabilities without changing its learning rule or architecture.
Repetitive firing can also be the result of intrinsic cellular properties such as
cholinergically or serotonergically induced afterdepolarization. Models of
associative memory based on this phenomenon have shown that repetitive
firing can be temporally organized into nested theta and gamma oscillations
in order to learn and maintain several memory items active in a short-term
memory buffer (Jensen, Idiart, & Lisman, 1996; Lisman & Idiart, 1995).

Building on their work in the piriform cortex, Hasselmo and Schnell
(1994) show that the dynamics of learning and recall in the hippocampus can
also be regulated by overall network activity. In their model of hippocampal
layers CA1 and CA3, the total activity of CA1 pyramidal cells feeds back to
the cholinergic system (presumably in the septum) and regulates choliner-
gic neuromodulation. This model involves a closed and autonomous system
that has a clear function and in which neuromodulation is regulated by its
target. The septum modulates the function of the hippocampus, which in
return regulates the septum in a diffuse, activity-dependent manner. These
ideas have been incorporated in a model of corticohippocampal classical
eye-blink conditioning (Gluck & Myers, 1993) as a septally driven mod-
ification of the learning rate of the hippocampus autoassociative module
(Myers et al , 1996). In this model, septal neuromodulation controls the rela-
tive amount of time spent by the hippocampus in learning new stimuli and
the time necessary to transfer information to neocortical regions.

Finally, in a model of hierarchical associative memory, Cartling (1996)
shows that different levels of coupling between activity and excitability
may change the dynamics of memory recall. In a Hopfield-like architecture,
activity may be chaotic (memories fail to be retrieved), oscillatory (memo-
ries are retrieved cyclically, one after the other), or tonic (only one memory
item is eventually retrieved) as the coupling is decreased. Neuromodula-
tion is implemented as a change in the shape of the sigmoid transfer func-
tion linking membrane potential to firing rate. This change is regulated by
overall network activity and depends on intracellular calcium concentra-
tions. However, while some experimental and theoretical work shows that
a decrease of cholinergic modulation is associated with stable network dy-
namics (Hasselmo & Schnell, 1994), this model assumes that an increase of
cholinergic modulation yields stable states.

3.4 Neuromodulation for Input Selection and Information Integra-
tion. In complex neural networks, information flows along many divergent
routes. Much experimental and theoretical work has assigned to neuromod-
ulation the role of selecting the input to particular neural systems, thereby
controlling the flow of information. Neuromodulation can act as a routing
mechanism and control whether synaptic inputs will activate a particular
circuit. The general flow of information between functionally distinct cir-
cuits is therefore determined by their modulatory state. Neuromodulation
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can also act within a circuit to control what subsets of the available infor-
mation will be processed.

At the single-cell level, the combined actions of different neuromodula-
tory systems on cellular or synaptic mechanisms may determine whether
the cell will be responsive to a given pattern of synaptic stimulation, there-
fore enabling or disabling processing.

In Aplysia, for example, while both DA and 5-HT silence the bursting
neuron R15, only the serotonergic modulation will allow brief depolariza-
tion to elicit a sustained bursting response. A modeling study of this system
has proposed that the underlying mechanism is rooted in the modulation
by DA and 5-HT of two distinct currents (Butera et al., 1995). The authors
show that DA prevents input signals from eliciting R15 firing, while 5-HT
enhances its response, effectively amplifying synaptic inputs. Together these
two neuromodulatory systems control when input signals to R15 may be
forwarded to later processing stages.

Similarly, at the network level in the vertebrate, experimental and the-
oretical evidence suggest that ACh levels, together with other neuromod-
ulatory systems, may control the flow of sensory information through the
thalamus to the cortex (see sections 3.1.2 and 3.2).

Modeling studies in piriform cortex and hippocampus show that neuro-
modulation within a circuit may control the nature of the information pro-
cessed. In a series of experimental and modeling studies (see section 3.2),
it was shown that selective cholinergic (Hasselmo & Bower, 1992), nora-
drenergic (Hasselmo et al., 1997), or GABAergic (Tang & Hasselmo, 1994)
suppression of intrinsic (recurrent) but not extrinsic (sensory) inputs pro-
motes learning, while the absence of such suppression allows for memory
recall. In this system, the selection of the information that is processed there-
fore depends on a rich class of neuromodulatory conditions, itself related
to the behavioral state of the animal.

Finally, modulation of signal-to-noise ratio (see section 3.2) can also be
considered as a form of input selection. By selectively enhancing certain neu-
ral inputs (the signal) and decreasing others (the noise), the system makes
a de facto selection, which may change with neuromodulatory and behav-
ioral conditions. This observation is at the basis of several models of selective
attention involving the noradrenergic locus coeruleus (Aston-Jones et al.,
1994; Rajkowski et al., 1994; Usher, Cohen, Servan-Schreiber, Rajkowski, &
Aston-Jones, 1995) and of the DA-mediated control of cognitive processing
in the prefrontal cortex and its relation to schizophrenia (Cohen et al., 1996).

4 Conclusion: Neuromodulation Increases and Controls Complexity

Our review has shown that neuromodulation may play a significant compu-
tational role in a large spectrum of systems, from invertebrate central pattern
generators to vertebrate cortical memory networks. In all cases, neuromod-
ulation appears to be a powerful tool destined to increase and/or control the
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computational complexity of a given network, without necessarily increas-
ing the structural or dynamical complexity of the network itself. Spatially
diffuse and slow neuromodulations of current conductances may trigger
drastic changes of rhythmic patterns in central pattern generators, as well
as in the thalamus, probably changing the nature of the downstream com-
putations and increasing the complexity of the computations achieved by
the whole circuit. Spatially selective and phasic neuromodulatory controls
of specific neuronal input pathways help complex recurrent memory net-
works function properly.

Our review has also revealed two major limitations to the study of neu-
romodulation. Overcoming them requires the design of new theoretical and
experimental tools, which undoubtedly will be beneficial.

The first stems from the observation that most modeling studies reviewed
consider neuromodulation as an enhancing addition to a basic modeL Of-
ten it is reduced to ad hoc parameter variations. We believe, however, that
such an approach will no longer suffice as efforts are made to make compu-
tational models more biologically plausible in both their design and their
function. Neuromodulation should be an integral part of the models. Only
then will comprehensive theories of neuromodulation emerge and new neu-
ral computational principles may be discovered.

Second, in actual biological systems, neuromodulation has multiple si-
multaneous or sequential (cascade) effects on neural information process-
ing. However, their experimental study almost always consists of individ-
ual modulations, keeping others constant. Moreover, in most cases, neuro-
modulation is present or absent and is rarely studied as a continuous phe-
nomenon. It is not generally known whether the effects of different kinds of
neuromodulation are truly independent and if not, how they interact, nor
is it known whether various levels of a single neuromodulation may yield
drastically different neural behaviors. If some models propose interesting
ways in which various modulatory phenomena might coexist, most of the
models reviewed here still assume that multiple neuromodulatory effects
are independent. As first proposed elsewhere (Harris-Warrick & Marder,
1991; Marder, Hooper, & Eisen, 1987), it is likely that accounting for the
simultaneous effects of several neuroactive substances on a single network
may increase its computational complexity in relevant and interesting ways,
giving further insight into its function in the larger context of behavior.

Overall, computational and experimental models of neuromodulation
appear to be powerful tools for the understanding of the computation of
single cells as well as large neural networks.

Appendix: The Mathematical Tools

Uppercase letters are constants unless otherwise noted; lowercase letters
are variables. The appendix is organized by levels of modeling, from more
detailed to more abstract.
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A.1 Markovian Chemical Kinetics Models.

w i t h

R are rate constants, and s are concentrations (fraction of channels in state
S). s£ is an open state.

At the most elementary level of modeling, neuronal processes can be
described as chemical reactions, provided that their kinetics are quantita-
tively determined. In this framework, neuromodulatory phenomena are not
distinguishable from others.

Destexhe et al. (1994a) expresses intracellular phenomena, membrane
mechanisms, synaptic transmission, and neuromodulation with a single set
of kinetic equations. In the model proposed, the neuromodulation by second
messenger G-protein gated K+ channel (GABAB, 5HT, M2 (ACh), «2 (NE),
D2 (DA), histamine, opioid, and somatostatin receptors) is expressed by the

v_

appropriate formulation of rate constants of the type Rij = R,y(v) = Aye B?
for voltage-dependent gating and Rij = [L]Rij for ligand-activated gating.

Using a simplified formulation of this model, Destexhe et al. (1994a)
model the putative role of NE and 5-HT in modulating rhythmic activity
in thalamic reticular cells. G-protein activation is taken as a consequence
of both NE and 5-HT neuromodulation. It is implemented as a modulating
factor to the activation dynamics of a leak potassium current according
to gKieak - Gneak • m, with ^f = K[S]m - K'(l - m), [S] representing the
concentration of second messenger present in the cell.

A.2 Hodgkin-Huxley Models. For a multicompartment model (x in-
dexes compartments):

dv ^ . Eieak - V ^-v Vx - V

i = G m V ( v - E ) wi th *1 =
L~Wm

 m d dn =

dt () it
= m d = _

dt rm(v) it rn(v)

m and n are activation and inactivation variables, respectively. Eventual
synaptic potentials are modeled by:

Uyn = gsyniv ~ E ^

where W is the synaptic weight.
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In the Hodgkin-Huxley formalism, neuromodulation is often expressed
as a change in the maximal conductance of some particular membrane cur-
rents. At this level of modeling, it also may be implemented as a variation
of the dynamics of some currents, variations in intracellular concentrations
of some substances, and variation in synaptic transmission.

When the actual pharmacology of the channels is known, it is possi-
ble to express the conductances as functions of other intracellular quanti-
ties, including concentrations of neuromodulatory substances. For example,
Butera et al. (1995) propose a scheme of interaction between dopamine and
serotonin that yields expressions for conductances of the type:

G = G1j-^L-)x(l + — K'

dt V [5HT] + K'7 [cAMP]

In some cases it is possible to obtain only an experimental curve quantita-
tively measuring the influence of a modulatory substance on given conduc-
tances. Bertram (1993) models two serotonin-sensitive conductances using
a fit to their experimental values. The fit chosen takes the form:

G = G(s) =A+ 1 e_C(Ds_F) withs e [0,1],

where s represents the concentration of serotonin applied. A similar formu-
lation is used to describe the influence of two neuromodulatory substances
(small cardioactive peptides, and myomodulins) on several currents in in-
vertebrate neuromuscular circuits (Brezina et al., 1996).

In other cases, maximal conductances can be made dynamically depen-
dent on intracellular quantities such as calcium (LeMasson et al., 1993) with

dG - r-
T—=f([Ca])-G and f([Ca]) =j , — J Vl—J/ - — _,, VL-"» 1/ — .[Ca]-C

at l + e ± ^r

Barkai et al. (1994) and Barkai and Hasselmo (1994) have access only
to a qualitative experimental description of the effects of two potassium
conductances on the firing adaptation of cortical cells. They therefore model
these effects by choosing two parameter sets that yield adapting or weakly
adapting model cells:

(G,R)e{(Gi,Ri),(G2,R2)}.
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In a different system Epstein and Marder (1990) consider intermediate
values, extrapolated linearly from the experimental ones following:

G = G(a) = uG\ + (1 — ot)Gi,

where a is a dimensionless parameter.
When values for maximal conductances are not accessible experimen-

tally, a theoretical search might be fruitful. In some cases, the set of conduc-
tances under neuromodulatory influence is known or hypothesized, and
the dynamics of the network are under investigation. Dynamical systems
theory (Guckenheimer et al., 1993) maps conductances values to possible
network dynamics. The study of their stability leads them to experimental
predictions about conductance values and their effects. In other cases, the
dynamics of the network is known, but the set of conductances under neu-
romodulatory influences is unknown. Exhaustive search (Bhalla & Bower,
1993; Foster et al., 1993) allows for a systematic exploration of the parame-
ter space constituted by all the maximal conductances hypothesized to be
functional. Some regions of this space yield the dynamics under study. The
location and shape of these regions predict what conductances are likely to
be important (i.e., under neuromodulatory control) and what their possible
values are.

Neuromodulation can also be expressed as a change in the dynamics
(rather than maximal conductance) of some particular membrane currents.
Such is the case of a variation in an inactivation time constant (Mukherjee
& Kaplan, 1995) such as,

rn(v) = Tnfn(v) with fn e

or of a variation in the voltage dependence of the steady-state activation
curve L™ (v), as for Ih (Destexhe et al., 1996; Golowasch et al., 1992).

Neuromodulation can also be expressed through changes in the intra-
cellular concentration of some substances such as cAMP (Raymond et al.,
1992) rather than as changes in maximal conductance of some membrane
current.

Finally, neuromodulation can be expressed at the level of synaptic trans-
mission. Such is the case for the presynaptic modulation of synaptic trans-
mission by the activation of GABAB receptors (Wallenstein & Hasselmo,
1997b).

In this model, the concentration of [GABA]O in the synaptic cleft is first
calculated as a function of the number of local active inhibitory synapses
(npre) and a local diffusion term leading to:

where C and D are constants. At any point in time, [GABA]O is then used
to decrease synaptic currents, with igyn = i^ — A.[GABA]0 where A is a
constant.
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Other models have viewed modulation as signal influencing synaptic
mechanisms. Such is the case of the reward signal entering the weight mod-
ification rule, between VTA and cortex (Montague et al., 1996), or the direct
change of synaptic efficacy triggered by an external center (Linster & Has-
selmo, 1997; Linster & Smith, 1997; Raymond et al., 1992).

A.3 Fitzhugh-Nagumo Models.

dv
C—-f(v)-w + Iinject

dw
r -— = v - Dw

dt

v is the fast (voltage-like, C small) variable; w is the slow (recovery-like)
variable.

In this simplified framework (as for BonHoeffer-van der Pol or Morris-
Lecar systems), individual concentrations and current conductance are not
accessible, and fast Hodgkin-Huxley-type timescales are relaxed to pseudo-
steady-state values. Neuronal behavior is assessed macroscopically through
overall activity.

In a model of associative learning, Abbott (1990) proposes that neuro-
modulation may serve as a mechanism for initiating and terminating learn-
ing. Using the following formulation for the slow variable,

dw
x -— = av - (1 - a)w

dt

he shows that depending on the value of a and the strength of the exter-
nal inputs (Unject), single cells may settle in regions of hyperpolarization,
depolarization, oscillations, or bistability. At the network level, for values
of a yielding oscillation, the network behaves like an associative memory
(phase-locked oscillations, patterned according to synaptic coupling). For
values of a yielding bistability, a putative consequence of neuromodula-
tion, the network behaves like a nonselective latching short-term memory,
maintaining the activity elicited initially by the input pattern, and allowing
Hebbian plasticity to take place.

Interesting approaches to neuromodulation have also focused on the role
of noise. Longtin (1993) uses stochastic resonance theory to show that the
introduction of noise can have modulatory effects on the signal-to-noise
ratio of a neuronal system, measured on the basis of the transfer of the
oscillatory inputs to the output. The formulation used to illustrate this point
introduces noise in v and a periodic forcing on w:

dv
C— = V(V - A)(l - V) - W + Iinject + £(0

r— =v-Dw- [B + Rsia(o)t)],
dt
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where f (t) is a white noise (gaussian distributed) function, and B+R sin (art)
is a sub threshold oscillatory forcing. Experimental evidence has recently
been found in support of the role of noise in improving information pro-
cessing (Levin & Miller, 1996).

In this framework, neuromodulation can also be expressed as a change
of electrical coupling between two cells, as in the STG (Kepler et al., 1990).
It can be expressed as a shared current following:

knject = W(v/ - v) and /(v) = Gv-(G + a)V

We also should mention attempts at modeling NE-mediated decrease in
K+ current effects on the oscillatory behavior of a small thalamo-cortical
model (Wallenstein, 1993). The effects were modeled by current injection in
a Bonhoeffer-van der Pol modeling framework.

A.4 Leaky Integrator Models.

T-j- = - V + ^ WiS(Vi) + Iinject

where S() is usually nonlinear (the sigmoid function), and v is the average
membrane potential.

This representation allows for qualitative descriptions of the overall ef-
fects of average pools of neurons on behavior. Neuromodulation can be
expressed by a change in firing threshold or a significant modification of
synaptic weights (Linster & Masson, 1996) with:

v < 0mm =>• S(v) = 0 and v > 9max =$• S(v) = 1

<W < v < 6»max => S(v) = av.

Neuromodulation can also be expressed by introducing a multiplicative
factor to the upper and lower bounds of the sigmoid function or by decreas-
ing weights by a fraction (Liljenstrom & Hasselmo, 1995):

W
mm, max nun, max ^ •

It can also be expressed as a dependence of the sigmoid function on other
quantities such as the inrracellular calcium concentration. Cartling (1996)
models neuromodulation as a change in neuronal adaptability (coupling
between activity and excitability). It is expressed as a multiplicative factor
(a) to the intracellular Ca concentration (c) with activity-dependent second-
order dynamics:

S(v) = S(v, c) = MAX(tanh(Av -ac-8),0)
, dc K Cl x K"-c

with — = — — S(v,c)l ——,
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where c is the intracellular calcium concentration and a is the adaptability.
Neuromodulation is measured by a, which depends on the total activity

of the network:

a = Amax(l - n) with — = C(l - n) J^ am.

a; is the size of the population having v; as state variable.

A.5 Connectionist Models.

In case of modifiable synapses:

^ = vx(t)y(t),

where x(t) represents the presynaptic activity, and y(t) represents the post-
synaptic activity. S() is analogous to the sigmoid function of leaky integrator
models.

Neuromodulation in connectionist models has been expressed in two
general ways. The first expresses neuromodulation in the sigmoid function,
the second in the dynamics of the synaptic weights.

Neuromodulation can be implemented as a modification of the slope
(gain) of the sigmoid function (Cohen & Servan-Schreiber, 1992; Servan-
Schreiber et al., 1990) in a small network (chain) of connectionist elements,
following:

With G € t G m iS ( 0 ) = 1 + e-(Go+B)

Other modifications to the sigmoid function can be made to express other
neuromodulatory properties, such as suppression of neuronal adaptation
(Liljenstrom & Hasselmo, 1995). Using a nonmodulated sigmoid function,

Sfa) = C

activity-dependent neuromodulation is expressed as:

where T is a fixed time window and t is time.
A second modeling approach consists of introducing neuromodulatory

effects to the learning rule. Montague et al. (1996) modeled the activity of
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dopamine cells in the VTA by augmenting the postsynaptic activity with an
external reward signal:

S(o) = o

Aw = r,x(t)(r(t)+y(t)),

where r(t) is the external reward signal.
Hasselmo (1993) selectively modifies the learning rate of certain synapses

to include the effects of ACh with

^ = »7(1 -c)x(f)y(f) withe e [0,1],

where c measures the amount of cholinergic suppression. Myers et al. (1996)
adopt a similar approach in their model of cholinergic influence on cortico-
hippocampal interaction during eye-blink conditioning.

Both sigmoid and synaptic modulation can coexist and have been mod-
eled by Hasselmo and Schnell (1994). The synaptic modulation is expressed
using:

Wi = (1 - cCWi)wi and - ^ = nil + cCn - C,)x(t)y(t)

and replacing 9 with (1 - cTmax)0 in the normal ramplike sigmoid function:

o < 9 => S(o) - 0

o > 6 => S(o) -o-0.

Finally we should mention the modeling of morphological changes in
Alzheimer "s disease (Horn, Ruppin, Usher, & Herrmann, 1993) express-
ing modulation of activity by random synaptic deletion, and appropriate
compensation with:

o = cj^ WiS(0i) with | A| = (1 - d)N and S(o) = Step(o - T).
ieA

c is the compensation factor, d is the deletion factor, and c = 1 + jz^ with
k e [0,1].
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