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What is the goal of sensory coding?

To recover a useful description of the environment
from the signals originating from sensory receptors.



Minimum description length (MDL)
principle

Ockham's Razor:

Pluralitas non est ponenda sine neccesitate
i.e., "keep it simple"

Information-theoretic version:

Choose the representation of the data requiring the
fewest number of bits

Minimum entropy coding
• Redundancy reduction (Barlow, 1961)
• Sparse coding (Field, 1994)



World Image Model



a l i c e w a s b e g i n n i n g t o g e t v e r y t i r e d o f s i t t i n g b y h e r s i s t e r o n
t h e b a n k a n d o f h a v i n g n o t h i n g t o d o o n c e o r t w i c e s h e h a d p e e p
e d i n t o t h e b o o k h e r s i s t e r w a s r e a d i n g b u t i t h a d n o p i c t u r e s o r
c o n v e r s a t i o n s i n i t a n d w h a t i s t h e u s e o f a b o o k t h o u g h t a l i c e w
i t h o u t p i c t u r e s o r c o n v e r s a t i o n s s o s h e w a s c o n s i d e r i n g i n h e
r o w n m i n d a s w e l l a s s h e c o u l d f o r t h e h o t d a y m a d e h e r f e e l v e r y
s l e e p y a n d s t u p i d w h e t h e r t h e p l e a s u r e o f m a k i n g a d a i s y c h a i
n w o u l d b e w o r t h t h e t r o u b l e o f g e t t i n g u p a n d p i c k i n g t h e d a i s i
e s w h e n s u d d e n l y a w h i t e r a b b i t w i t h p i n k e y e s r a n c l o s e b y h e r
t h e r e w a s n o t h i n g s o v e r y r e m a r k a b l e i n t h a t n o r d i d a l i c e t h i
n k i t s o v e r y m u c h o u t o f t h e w a y t o h e a r t h e r a b b i t s a y t o i t s e l f o

h d e a r o h d e a r

alice was b e g in n ing t o g e t very t i r e d o f s i f t i n g b y her s i s t e r o n t h e b a n
k and o f h a v ing n o th ing t o d o o n c e o r t w i c e she h a d p e e p e d in t o the b o
0 k her s i s t e r was r e a d ing but i th a d n o p i c t u r e s o r c o n ver s a t i o n s in i
t and w h a t i s the u s e o f a b o o k th ough t alice with o u t p i c t u r e s o r c o n v e r
s a t i o n s s o she was c o n s i d e r ing in her o w n m in d a s w e 1 1 a s she c ould for
the h o t d a y m a d e her f e e 1 very s l e e p y and s t u p i d w h e t h e r t h e p l e a s u r
e o f m a k ing a d a i s y c h a in w ould b e w o r th the t r ou b I e o f g e t t ing u p
and p i c k i n g t h e d a i s i e s w h e n s u d d e n l y a w h i t e r a b b i t with p in k e y e
s r a n c 1 o s e b y her the r e was n o th ing s o very r e m a r k a b l e in that n o r d i
dalic e th in k i t s o very m u c h ou t o f the w a y t o he a r the r a b b i t s a y t o i t s e
1 f o h d e a r o h d e a r

alice was beginning toget verytiredof sitting by hersister ontheban k and of having
nothingtodo onceor twice shehad peeped intothe book hersister was read ing but
ithad no pictures or conversation s in it and what is theuseof a book thoughtalice
without picture., or conversation s so shewas consider ing L. her ow n mind asw^ll
asshecould for the hot day made her feel very sleepy and stupid whether the plea
sure of making ad a is y ch a in wouldbe wor th the trouble of gettingupand p i c king
the d a is ies when suddenly a whiterabbit with p in k eyes r an close by her therewas
nothing so very remark able in that n or did alice think it so very much outoftheway
to hear therabbit saytoitself ohdear ohdear
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What Does the Retina Know about Natural Scenes?

Joseph J. Atick*
A. Norman Redlich
School of Natural Sciences, Institute for Advanced Study,
Princeton, NJ 08540 USA
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Pairwise statistics are insufficient to
characterize localized structure.
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Palrwise statistics are Insufficient to
characterize orlentei structure.

Oriented lines and edges require
at least a three-point statistic to
characterize
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Pairwlse statistics are insufficient to
characterize multiscale structure .
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SIMPLE RECEPTIVE-HELD 2D SPATIAL STRUCTURE
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Coding Strategies

'Feedforward" transform

image output

Inference

image

analysis

P(I IH)
synthesis
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hypothesis
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Image Model

= X. ai §i(x>y)
V

External
world

Internal
model

1(1)) = I a, (J>) x U.{ P(ai) da
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Maximizing the log-likelihood

Gradient ascent rule for

1

Approximate by taking a single sample at posterior maximum:

A(f)i(x) ex - [/(£) - I{x)]a\
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Energy function
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Network implementation
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Learnei basis functions (12x12 pixels)
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Scale Space (or "phase space")

space (x)

Pixel
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input i "feedforward" response reconstruction

r
ai "sparsified" response
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Sparse Codes and Sp kes

Bruno A. Olshausen
Center for Neuroscience and Dept. of Psychology

U.C. Davis

baolshausen@ucdavis.edu
http://redwood.ucdavis.edu/bruno



Main Points

The structure of natural scenes.

• Efficient coding as a model for sensory processing.

• Dynamics of time-varying images and neural activity.

• Spikes trains act as a sparse code in time.



Dynamics

Dynamics are important because

• Images that fall upon the retina are constantly changing due to motion
of the eye, head, and body, as well as the motions of objects in the world.

• V I receptive fields are functions of both space and time.

• Cortical neurons emit spikes.



Space-time receptive fields of simple cells

G. DeAngelis, I. Ohzawa and R. Freeman — Receptive-field dynamics
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Space-time image model

T(rp n, f\ — \ \ n(ir\ rh-fr 11 t f'\ -4- U(T ?/ i\ (A)

i t'

(5)

Goal; Find a set of space-time basis functions { ^ } for representing natural
images such that the time-varying coefficients di(t) are as sparse and
statistically independent as possible over both space and time.



Space-time image model
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van Hateren & Ruderman's model

"sub-movie"
I(x,y,t)

, y,t) = • v t) (6)

Use ICA to find bases which maximize statistical independence of ai.

Nothing is said about statistical dependencies of a unit with itself over
time, because the coefficients are not a function of time.



Objective function

E = -^- |I(t) - *(t) * &{t)Y dt+ > / 5(o<(t)) dt (7)

Dynamics:

di(t) oc XNQf

r(t) - I(t) - *

Learning:
, 2/, r) oc a^r)* r(x, y, r) (8)



Network implementation (non-causal)
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Network implementation (causal)
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Basis function properties

Speed vs. direction
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Conclusions

The basis functions that best describe time-varying natural images in
terms of sparse, statistically independent events are spatially localized,
oriented, and bandpass, translating as a function of time, similar to V I
space-time receptive fields.

Making the basis set overcomplete enables a continuous, time-varying
image to be re-represented as a sparse code in time, similar to neural
spike trains.

A single principle may account for both the receptive field properties of
neurons and the spiking nature of neural activity.



Sparse codes and spikes

Bruno A. Olshausen
Dept. of Psychology and

Center for Neuroscience, UC Davis
1544 Newton Ct.
Davis, CA 95616

baolshausenOucdavis.edu

To appear in Probabilistic Models of Perception and Brain Function, R.P.N. Rao,
B.A. Olshausen, M.S. Lewicki, Eds., MIT Press, 2001.
http://www.cs.Washington.edu/homes/rao/book.html

1 Introduction

In order to make progress toward understanding the sensory coding strategies em-
ployed by the cortex, it will be necessary to draw upon guiding principles that provide
us with reasonable ideas for what to expect and what to look for in the neural cir-
cuitry. The unifying theme behind all of the chapters in this book is that probabilistic
inference—i.e., the process of inferring the state of the world from the activities of
sensory receptors and a probabilistic model for interpreting their activity—provides a
major guiding principle for understanding sensory processing in the nervous system.
Here, I shall propose a model for how inference may be instantiated in the neural
circuitry of the visual cortex, and I will show how it may help us to understand both
the form of the receptive fields found in visual cortical neurons as well as the nature
of spiking activity in these neurons.

In order for the cortex to perform inference on retinal images, it must somehow im-
plement a generative model for explaining the signals coming from optic nerve fibers
in terms of hypotheses about the state of the world (Mumford, 1994). I shall propose
here that the neurons in the primary visual cortex, area VI, form the first stage in this
generative modeling process by modeling the structure of images in terms of a linear
superposition of basis functions (figure 1). One can think of these basis functions as
a simple "feature vocabulary" for describing images in terms of additive functions. In
order to provide a vocabulary that captures meaningful structure within time-varying
images, the basis functions are adapted according to an unsupervised learning proce-
dure that attempts to form a representation of the incoming image stream in terms
of sparse, statistically independent events. Sparseness is desired because it provides

1
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a simple description of the structures occurring in natural image sequences in terms
of a small number of vocabulary elements at any point in time (Field, 1994). Such
representations are also useful for forming associations at later stages of processing
(Foldiak, 1995; Baum, 1988). Statistical independence reduces the redundancy of the
code, in line with Barlow's hypothesis for achieving a representation that reflects the
underlying causal structure of the images (Barlow, 1961; 1989). *

I shall show here that when a sparse, independent code is sought for time-varying
natural images, the basis functions that emerge resemble the receptive field properties
of cortical simple-cells in both space and time. Moreover, the model yields a represen-
tation of time-varying images in terms of sparse, spike-like events. It is suggested that
the spike trains of sensory neurons essentially serve as a sparse code in time, which in
turn forms a more efficient and meaningful representation of image structure. Thus,
a single principle may be able to account for both the receptive properties of neurons
and the spiking nature of neural activity.

The first part of this chapter presents the basic generative image model for static
images, and discusses how to relate the basis functions and sparse activities of the
model to neural receptive fields and activities. The second part applies the model to
time-varying images and shows how space-time receptive fields and spike-like repre-
sentations emerge from this process. Finally, I shall discuss how the model may be
tested and how it would need to be further modified in order to be regarded as a fully
neurobiologically plausible model.

2 Sparse coding of static images

2.1 Image model
In previous work (Olshausen & Field, 1997), we described a model of VI simple-cells
in terms of a linear generative model of images (figure la). According to this model,
images are described in terms of a linear superposition of basis functions plus noise:

I(z> V) = Y, <k Hx, V) + v{x, y) . (1)
i

An image I(x,y) is thus represented by a set of coefficient values, aj, which are
taken to be analogous to the activities of VI neurons. Importantly, the basis set
is overcomplete, meaning that there are more basis functions (and hence more a;'s)
than effective dimensions in the images. Overcompleteness in the representation is
important because it allows for the joint space of position, orientation, and spatial-
frequency to be tiled smoothly without artifacts (Simoncelli et al., 1992). More
generally though, it allows for a greater degree of flexibility in the representation, as
there is no reason to believe a priori that the number of causes for images is less than
or equal to the number of pixels (Lewicki & Sejnowski, 2000).

1 Although it is not possible in general to achieve complete independence with the simple linear
model we propose here, we can nevetheless seek to reduce statistical dependencies as much as possible
over both space (i.e., across neurons) and time.
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a.

External
world

c.

Figure 1: Image model, a, Images of the environment are modeled as a linear super-
position of basis functions, fc, whose amplitudes are given by the coefficients a*, b,
The prior probability distribution over the coefficients is peaked at zero with heavy
tails as compared to a Gaussian of the same variance (overlaid as dashed line). Such
a distribution would result from a sparse activity distribution over the coefficients, as
depicted in c.

With non-zero noise, v, the correspondence between images and coefficient val-
ues is probabilistic—i.e., some solutions are more probable than others. Moreover,
when the basis set is overcomplete, there are an infinite number of solutions for the
coefficients in equation 1 (even with zero noise), all of which describe the image with
equal probability. This degeneracy in the representation is resolved by imposing a
prior probability distribution over the coefficients. The particular form of the prior
imposed in our model is one that favors an interpretation of images in terms of sparse,
independent events:

P(a) = (2)

(3)

where S is a non-convex function that shapes P(a,i) so as to have the requisite "sparse"
form—i.e., peaked at zero with heavy tails, or positive kurtosis—as shown in figure 16.
The posterior probability of the coefficients for a given image is then

P(a|I,0) oc (4)

(5)

(6)
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a.

I

Figure 2: A simple network implementation of inference. The outputs a; are driven
by a sum of two terms. The first term takes a spatially weighted sum of the current
residual image using the function fa(x) as the weights. The second term applies
a non-linear self-inhibition on the outputs according to the derivative of S, that
differentially pushes activity towards zero. Shown at right is the derivative of the
sparse cost function 5(aj) = /?log(l + (aj/cr)2), (3 — 2.5, a = 0.3.

where <& is the basis function matrix with columns fa and XN is the inverse of the
noise variance a%. 9 denotes the entire set of model parameters # , Ajv, and S.

Since the relation between images and coefficients is probabilistic, there is not a
single unique solution for choosing the coefficients to represent a given image. One
possibility, for example, is to choose the mean of the posterior distribution P(a|I , 9).
This is difficult to compute, though, since it requires some form of sampling from the
posterior. The solution we propose here is to choose the coefficients that maximize
the posterior distribution (MAP estimate)

a = argmaxP(a|I,0) (7)

which is accomplished via gradient ascent on the log-posterior:

a oc V a logP(a|I ,0)

= - V . r a i - S a p + y^Cool (8)

(9)

where e is the residual error between the image and the model's reconstruction of the
image, e = I — <&a. When 5 is a non-convex function appropriate for encouraging
sparseness, such as /?log(l + (aj/o-)2), or f3\ai/a\q, q < 1, its derivative, S", provides a
form of non-linear self-inhibition for coefficient values near zero. A recurrent neural
network implementation of this differential equation (9) is shown in figure 2.
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2.2 Learning
The basis functions of the model are adapted by maximizing the average log-likelihood
of the images under the model, which is equivalent to minimizing the model's estimate
of code length, C:

C = -(logP(l\9)) (10)

where
P{1\9) = ] P{I\a,9)P{a\9)da. . (11)

C provides an upper bound estimate of the entropy of the images, which in turn
provides a lower bound estimate of code length.

A learning rule for the basis functions may be obtained via gradient descent on £:

A * ex - | § (12)

= A w ( ( e a r ) P ( a W ) ) . (13)

Thus, the basis functions are updated by a Hebbian learning rule, where the residual
error e constitutes the pre-synaptic input and the coefficients a constitute the post-
synaptic outputs. Instead of sampling from the full posterior distribution, though,
we utilize an simpler approximation in which a single sample is taken at the posterior
maximum, and so we have

A $ o c ( e a T ) . (14)

The price we pay for this approximation is that the basis functions will grow with-
out bound, since the greater their norm, \<f>i\, the smaller each <2j will become, thus
decreasing the sparseness penalty in (8). This trivial solution is avoided by rescaling
the basis functions after each learning step (14) so that their L2 norm, $ = |</i>i|i,2,
maintains an appropriate level of variance on each corresponding coefficient a*:

new old
9i — 9i

where o is the scaling parameter used in the sparse cost function, S. This method,
although an approximation to gradient descent on the true objective £, has been
shown to yield solutions similar to those obtained with more accurate techniques
involving sampling (Olshausen & Millman 2000).

2.3 Does VI do sparse coding?
When the model is adapted to static, whitened2 natural images, the basis functions
that emerge resemble the Gabor-like spatial profiles of cortical simple-cell receptive
fields (figure 3). That is, the functions become spatially localized, oriented, and band-
pass (selective to structure at different spatial scales). Because all of these properties

2 Whitening removes second-order correlations due to the I / / 2 power spectrum of natural images,
and it approximates the type of filtering performed by the retina (see Atick k Redlich, 1992).
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Figure 3: Basis functions learned from static natural images. Shown is a set of
200 basis functions which were adapted to 12 x 12 pixel image patches, according
to equations (14) and (15). Initial conditions were completely random. The basis
set is approximately 2x's overcomplete, since the images occupy only about 3/4 of
the dimensionality of the input space. (See Olshausen & Field, 1997, for simulation
details.)

emerge purely from the objective of finding sparse, independent components for nat-
ural images, the results suggest that the receptive fields of VI neurons have been
designed according to a similar coding principle. The result is quite robust, and has
been shown to emerge from other forms of independent components analysis (ICA).
Some of these also make an explicit assumption of sparseness (Bell & Sejnowski, 1997;
Lewicki & Olshausen, 1999) while others seek only independence among the coeffi-
cients, in which case sparseness emerges as part of the result (van Hateren & van der
Schaaf, 1998; Olshausen & Millman, 2000).

We are comparing the basis functions to neural receptive fields3 here because they
are the feedforward weighting functions used in computing the outputs of the model,
Ui (see figure 2). However, it is important to bear in mind that the outputs are not
computed purely via this feedforward weighting function, but also via a non-linear,
recurrent computation (9), the result of which is to sparsify neural activity. Thus, a
neuron in our model would be expected to respond less often than one that simply
computes the inner product between a spatial weighting function and the image, as
shown in figure 4 a.

How could one tell if VI neurons were actively sparsifying their activity according
3It should be noted that term 'receptive field' is not well-defined, even among physiologists.

Oftentimes it is taken to mean the feedforward, linear weighting function of a neuron. But in
reality, the measured receptive field of a neuron reflects the sum total of aE dendritic non-linearities,
output non-linearities, as well as recurrent computations due to horizontal connections and top-down
feedback from other neurons.
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Figure 4: Effect of sparsification. a, An example 12 x 12 image and its encoding
obtained by maximizing the posterior over the coefficients. The representation ob-
tained by simply taking the inner-product of the image with the best linear predicting
kernel for each basis function is not nearly as sparse by comparison, b, Shown is one
of the learned basis functions (row 6, column 7 of figure 3) together with its cor-
responding "receptive field" as mapped out via reverse correlation with white noise
(1440 trials), c, The response obtained by simply convolving this function with the
image is non-linearly related to the actual output chosen by posterior maximization.
Specifically, small values tend to get suppressed and large values amplified (the solid
line passing through the diamonds depicts the mean of this relationship, while the
error bars denote the standard deviation).
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to the model? One possibility is to measure a neuron's receptive field via reverse
correlation, using an artificial image ensemble such as white noise, and then use this
measured receptive field to predict the response of the neuron to natural images via
convolution. If neural activities were being sparsified as in the model, then one would
expect the actual responses obtained with natural images to be non-linearly related
to those predicted from convolution, as shown in figure Ac. The net effect of this
non-linearity is that it tends to suppress responses where the basis function does not
match well with- the image, and it amplifies- responses where the basis function does
match well. This form of non-linearity is qualitatively consistent with the "expansive
power-function" contrast response non-linearity observed in simple cells (Albrecht &
Hamilton, 1982; Albrecht &: Geisler, 1991). Note however that this response property
emerges from the sparse prior in our model, rather than having been assumed as an
explicit part of the response function. Whether or not this response characteristic is
due to the kind of dynamics proposed in our model, as opposed to the application
of a fixed pointwise non-linearity on the output of the neuron, would require more
complicated experiments to resolve.

The above method assumes that the analog valued coefficients in the model (or
positively rectified versions of these quantities) correspond to spike rate. However,
recent studies have demonstrated that spike rates, which are typically averaged over
epochs of 100 ms or more, tend to vastly underestimate the temporal information con-
tained in neural spike trains (Rieke et al., 1997). In addition, we are faced with the
fact that the image on the retina is constantly changing due to both self-motion (eye,
head and body) and the motions of objects in the world. The model as we have cur-
rently formulated it is not well-suited to deal with such dynamics, since the procedure
for maximizing the posterior over the coefficients requires a recurrent computation,
and it is unlikely that this will complete before the input changes appreciably. In
the next section we show how these issues may be addressed, at least in part, by
reformulating the model to deal directly with time-varying images.

3 Sparse coding of time-varying images

3.1 Image model

We can reformulate the sparse coding model to deal with time-varying images by ex-
plicitly modeling the image stream I(x, y, t) in terms of a superposition of space-time
basis functions <f>i(x, y, r). Here we shall assume shift-invariance in the representation
over time, so that the same basis function <j>i(x, y, r ) may be used to model structure
in the image sequence around any time t with amplitude a,i(t). Thus, the image model
may be expressed as the convolution of a set of time-varying coefficients, Oj(t), with
the basis functions:

I{x,y,t) = Y,Hai(if)<l>i(x,y,t-1?) + i>{x,y,t) (16)
i t'

<l>i{x,y,t) + v{x,y,t) (17)
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The model is illustrated schematically in figure 5.

A A A A
v A Y v

ifi(x,y,t-t')

\ \
l(x,y,t)

Figure 5: Image model. A movie I(x,y,t) is modeled as a linear superposition of
spatio-temporal basis functions, (j>i(x, y, r ) , each of which is localized in time but may
be applied at any time within the movie sequence.

The coefficients for a given image sequence are computed as before by maximizing
the posterior distribution over the coefficients

a = arg max P(a|I, 9) (18)

which is again achieved by gradient descent, leading to the following differential equa-
tion for determining the coefficients:

oc
x,y

e(x,y,t) = I(x,y,t)-Y^ai

(19)

(20)

where * denotes correlation. Note however that in order to be considered a causal
system, (j>(x, y, r ) must be zero for t > 0. For now though we shall overlook the issue
of causality, and in the discussion we shall consider some ways of dealing with this
issue.

This model differs from the ICA (independent components analysis) model for
time-varying images proposed earlier by van Hateren and Ruderman (1998) in an
important respect: namely, the basis functions are applied to the image sequence
in a shift-invariant manner, rather than in a blocked fashion. In van Hateren and
Ruderman's ICA model, a block of size 12x12 pixels and 12 samples in time was
extracted at random from a larger movie, and a set of basis functions were sought
that maximize independence among the coefficients (by seeking extrema of kurtosis)
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averaged over many such blocks. There is no explicit representation of time among
the coefficients, since an image block is described via

i<l>i(x,y,t). (21)

The coefficients are computed by multiplying the rows of the pseudo-inverse of #
with blocks extracted from the image stream (akin to convolution). Thus, while
the activities aj may be independent of each other, there is nothing forcing them to
be independent of themselves over time because there is no notion of time attached
to the coefficients of this model. As we shall see in section 3.3, a shift-invariant
representation in which the coefficients are sparsified gives rise to a qualitatively
different form of behavior than one in which the outputs are obtained via passive
convolution.

3.2 Learning
The objective function for adapting the basis functions is again the code length £,

C = -( logP(I |0)) (22)

P(I\9) = /*P(I|a,0)P(a|0)da (23)

where now the image likelihood and prior are defined as

P(I|a,0) = J_e-¥l'(*>^)-£^(*)*<M*,2/,*)l2 (24)

P(a|0) = n — e~SMt)) (25)
z

and 6 refers to the model parameters fc, A#, and S().
By using the same approximation to the true gradient of C discussed in the pre-

vious section, the update rule for the basis functions is then

A<f>i{x, y, T) OC Oi(r) * e{x, y, r) (26)

Thus, the basis functions are adapted over space and time by Hebbian learning be-
tween the time-vary ing residual image and the time-varying coefficient activities.

3.3 Results from natural movie sequences
The model was trained on moving image sequences obtained from Hans van Hateren's
natural movie database (http://hlab.phys.rug.nl/vidlib/vidjdb). The movies were
first whitened by a filter that was derived from the inverse spatio-temporal amplitude
spectrum, and lowpass filtered with a cutoff at 80% of the Nyquist frequency in space
and time (see also Dong & Atick, 1995, for a similar whitening procedure). Training
was done in batch mode by loading a 128 x 128 pixel, 64 frame sequence into mem-
ory and randomly extracting a spatial subimage of the same temporal length. The
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coefficients were fitted to this sequence by maximizing the posterior distribution via
eqs. (19) and (20). The statistics for learning were averaged over ten such subimage
sequences and the basis functions were then updated according to (26), again subject
to rescaling (15). After several hours of training on a 450Mhz Pentium, the solution
reached equilibrium.

The results for a set of 96 basis functions, each 8x8 pixels and of length 5 in time,
are shown in figure 6. Spatially, they share many of the same characteristics of the
basis functions obtained previously with static images (figure-3). The main difference
is that they now also have a temporal characteristic, such that they tend to translate
over time. Thus, the vast majority of the basis functions are direction selective
(i.e., their coefficients will respond only to edges moving in one direction), with the
high spatial-frequency functions biased toward lower velocities. These properties are
typical of the space-time receptive fields of VI simple-cells (Jones & Palmer, 1989;
DeAngelis et a l . 1995), and also of those obtained previously with ICA (van Hateren
& Ruderman, 1998).

_ i .— • . . a t M l . . - . - . «Jl . . . " * — ~ .

" • ' • ' : : : : ; • : J J - : - . : " I - : ; . : :

Figure 8: Space-time basis functions learned from time-varying natural images.
Shown are a set of 96 basis functions arranged into two rows of 48. Each ba-
sis function is 8 x 8 pixels in space and 5 frames in time. Each column shows
a different basis function, with time proceeding downwards. The translating
character of the functions is best viewed as a movie, which may be viewed at
tttp://redwood.ucdavis.edu/bruno/bfmovie/bfmovie.html.

Because the outputs of the model are sparsified over both space and time, the
model yields a qualitatively different behavior than linear convolution, as in ICA.
Figure 7 illustrates this difference by comparing the time-varying coefficients obtained
by maximizing the posterior to those obtained by straightforward convolution (similar
to the linear prediction discussed in the previous section). The difference is striking
in that the sparsified representation is characterized by highly localized, punctate
events. Although still analog, it bears a strong resemblance to the the spiking nature
of neural activity. At present though, this comparison is merely qualitative.
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Figure 7: Coefficients computed by convolving the basis functions with the image
sequence (left!) vs. posterior maximization (right) for a 60 frame image sequence
(bottom).

4 Discussion
We have shown in this chapter how both the spatial and temporal response properties
of neurons may be understood in terms of a probabilistic model which attempts to
describe images in terms of sparse, independent events. When the model is adapted
to time-varying natural images, the basis functions converge upon a set of space-
time functions which are spatially Gabor-like and translate with time. Moreover,
the sparsified representation has a spike-like character, in that the coefficient signals
are mostly zero and tend to concentrate their non-zero activity into brief, punctate
events. These brief events represent longer spatiotemporal events in the image via the
basis functions. The results suggest, then, that both the receptive fields and spiking
activity of VI neurons may be explained in terms of a single principle, that of sparse
coding in time.

The interpretation of neural spike trains as a sparse code in time is not new. Most
recently, Bialek and colleagues have shown that sensory neurons in the fly visual
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system, frog auditory system, and the cricket cereal system, essentially employ about
one spike per "correlation time" to encode time-varying signals in their environment
(Rieke et al., 1997). In fact, the image model proposed here is identical to their
linear stimulus reconstruction framework used for measuring the mutual information
between neural activity and sensory signals. The main contribution of this paper,
beyond this previous body of work, is in showing that the particular spatiotemporal
receptive field structures of VI neurons may actually be derived from such sparse,
spike-like representations of natural images. •

This work also shares much in common with Lewicki's shift-invariant model of
auditory signals, discussed in the preceding chapter. The main difference is that
Lewicki's model utilizes a much higher degree of overcompleteness, which allows for
a more precise alignment of the basis functions with features occurring in natural
sounds. Presumably, increasing the degree of overcompleteness in our model would
yield even higher degrees of sparsity and basis functions that are even more spe-
cialized for the spatio-temporal features occurring in images. But learning becomes
problematic in this case because of the difficulties inherent in properly maximizing
or sampling from the posterior distribution over the coefficients. The development of
efficient methods for sampling from the posterior is thus an important goal of future
work.

Another important yet unresolved issue in implementing the model is how to
deal with causality. Currently, the coefficients are computed by taking into account
information both in the past and in the future in order to determine their optimal
state. But obviously any physical implementation would require that the outputs be
computed based only on past information. The fact that the basis functions become
two-sided in time (i.e., non-zero values for both negative and positive time) indicates
that a coefficient at time io is making a statement about the image structure expected
in the future (i > to)- This fact could possibly be exploited in order to make the model
predictive. That is, by committing to respond at the present time, based only on what
has happened in the past, a unit will be making a prediction about what is to happen
a short time in the future. An additional challenge in learning, then, is to adapt an
appropriate decision function for determining when a unit should become active, so
that each unit serves as a good predictor of future image structure in addition to
being sparse.
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• Abstract It has long been assumed that sensory neurons are adapted, through
both evolutionary and developmental processes, to the statistical properties of the
signals to which they are exposed. Attneave (1954) and Barlow (1961) proposed that
information theory could provide a link between environmental statistics and neural
responses through the concept of coding efficiency. Recent developments in statistical
modeling, along with powerful computational tools, have enabled researchers to study
more sophisticated statistical models for visual images, to validate these models em-
pirically against large sets of data, and to begin experimentally testing the efficient
coding hypothesis for both individual neurons and populations of neurons.

INTRODUCTION

Understanding the function of neurons and neural systems is a primary goal of
systems neuroscience. The evolution and development of such systems is driven
by three fundamental components: (a) the tasks that the organism must perform,
(b) the computational capabilities and limitations of neurons (this would include
metabolic and wiring constraints), and (c) the environment in which the orgamsm
lives. Theoretical studies and models of neural processing have been most heavily
influenced by the first two. But the recent development of more powerful models
of natural environments has led to increased interest in the role of the environment
in determining the structure of neural computations.

The use of such ecological constraints is most clearly evident in sensory sys-
tems, where it has long been assumed that neurons are adapted, at evolutionary,
developmental, and behavioral timescales, to the signals to which they are exposed.

0147-006X/01/0621-1193$14.00 1193
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Because not all signals are equally likely, it is natural to assume that perceptual
systems should be able to best process those signals that occur most frequently.
Thus, it is the statistical properties of the environment that are relevant for sen-
sory processing. Such concepts are fundamental in engineering disciplines: Source
coding, estimation, and decision theories all rely heavily on a statistical "prior"
model of the environment.

The establishment of a precise quantitative relationship between environmental
statistics and neural processing is important for a number of reasons. In addition to
providing a framework for understanding the functional properties of neurons, such
a relationship can lead to the derivation of new computational models based on
environmental statistics. It can also be used in the design of new forms of stochastic
experimental protocols and stimuli for probing biological systems. Finally, it can
lead to fundamental improvements in the design of devices that interact with human
beings.

Despite widespread agreement that neural processing must be influenced by
environmental statistics, it has been surprisingly difficult to make the link quanti-
tatively precise. More than 40 years ago, motivated by developments in information
theory, Attneave (1954) suggested that the goal of visual perception is to produce
an efficient representation of the incoming signal. In a neurobiological context,
Barlow (1961) hypothesized that the role of early sensory neurons is to remove
statistical redundancy in the sensory input. Variants of this "efficient coding" hy-
pothesis have been formulated by numerous other authors (e.g. Laughlin 1981,
Atick 1992, van Hateren 1992, Field 1994, Riecke et al 1995).

But even given such a link, the hypothesis is not fully specified. One needs also to
state which environment shapes the system. Quantitatively, this means specification
of a probability distribution over the space of input signals. Because this is a diffi-
cult problem in its own right, many authors base their studies on empirical statistics
computed from a large set of example images that are representative of the relevant
environment. In addition, one must specify a timescale over which the environment
should shape the system. Finally, one needs to state which neurons are meant to
satisfy the efficiency criterion, and how their responses are to be interpreted.

There are two basic methodologies for testing and refining such hypotheses of
sensory processing. The more direct approach is to examine the statistical proper-
ties of neural responses under natural stimulation conditions (e.g. Laughlin 1981,
Rieke et al 1995, Dan et al 1996, Baddeley et al 1998, Vinje & Gallant 2000). An
alternative approach is to "derive" a model for early sensory processing (e.g. Sanger
1989, Foldiak 1990, Atick 1992, Olshausen & Field 1996, Bell & Sejnowski 1997,
van Hateren & van der Schaaf 1998, Simoncelli & Schwartz 1999). In such an ap-
proach, one examines the statistical properties of environmental signals and shows
that a transformation derived according to some statistical optimization criterion
provides a good description of the response properties of a set of sensory neurons.
In the following sections, we review the basic conceptual framework for linking
environmental statistics to neural processing, and we discuss a series of examples
in which authors have used one of the two approaches described above to provide
evidence for such links.
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BASIC CONCEPTS

The theory of information was a fundamental development of the twentieth century.
Shannon (1948) developed the theory in order to quantify and solve problems
in the transmission signals over communication channels. But his formulation of
a quantitative measurement of information transcended any specific application,
device, or algorithm and has become the foundation for an incredible wealth of
scientific knowledge and engineering developments in acquisition, transmission,
manipulation, and storage of information. Indeed, it has essentially become a
theory for computing with signals.

As such, the theory of information plays a fundamental role in modeling and
understanding neural systems. Researchers in neuroscience had been perplexed by
the apparent combinatorial explosion in the number of neurons one would need to
uniquely represent each visual (or other sensory) pattern that might be encountered.
Barlow (1961) recognized the importance of information theory in this context and
proposed that an important constraint on neural processing was informational (or
coding) efficiency. That is, a group of neurons should encode as much information
as possible in order to most effectively utilize the available computing resources.
We will make this more precise shortly, but several points are worth mentioning
at the outset.

1. The efficiency of the neural code depends both on the transformation that
maps the input to the neural responses and on the statistics of the input.
In particular, optimal efficiency of the neural responses for one input
ensemble does not imply optimality over other input ensembles!

2. The efficient coding principle should not be confused with optimal
compression (i.e. rate-distortion theory) or optimal estimation. In
particular, it makes no mention of the accuracy with which the signals are
represented and does not require that the transformation from input to
neural responses be invertible. This may be viewed as either an advantage
(because one does not need to incorporate any assumption regarding the
form of representation, or the cost of misrepresenting the input) or a
limitation (because such costs are clearly relevant for real organisms).

3. The simplistic efficient coding criterion given above makes no mention of
noise that may contaminate the input stimulus. Nor does it mention
uncertainty or variability in the neural responses to identical stimuli. That
is, it assumes that the neural responses are deterministically related to the
input signal. If these sources of external and internal noise are small
compared with the stimulus and neural response, respectively, then the
criterion described is approximately optimal. But a more complete solution
should take noise into account, by maximizing the information that the
responses provide about the stimulus (technically, the mutual information
between stimulus and response). This quantity is generally difficult to
measure, but Bialek et al (1991) and Rieke et al (1995) have recently
developed approximate techniques for estimating it.
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If the efficient coding hypothesis is correct, what behaviors should we expect
to see in the response properties of neurons? The answer to this question may be
neatly separated into two relevant pieces: the shape of the distributions of individual
neural responses and the statistical dependencies between neurons.

Efficient Coding in Single Neurons

Consider the distribution of activity of a single neuron in response to some natu-
ral environment.1 In order to determine whether the information conveyed by
this neuron is maximal, we need to impose a constraint on the response values
(if they can take on any real value, then the amount of information that can be
encoded is unbounded). Suppose, for example, that we assume that the responses
are limited to some maximal value, Rmax. It is fairly straightforward to show that
the distribution of responses that conveys maximal information is uniform over
the interval [0, Rmax]- That is, an efficient neuron should make equal use of all
of its available response levels. The optimal distribution depends critically on the
neural response constraint. If one chooses, for example, an alternative constraint
in which the variance is fixed, the information-maximizing response distribution
is a Gaussian. Similarly, if the mean of the response is fixed, the information-
maximizing response distribution is an exponential.^

Efficient Coding in Multiple Neurons

If a set of neurons is jointly encoding information about a stimulus, then the
efficient coding hypothesis requires that the responses of each individual neu-

. ron be optimal, as described above. In addition, the code cannot be efficient if
the effort of encoding any particular piece of information is duplicated in more
than one neuron. Analogous to the intuition behind the single-response case, the
joint responses should make equal use of all possible combinations of response
levels. Mathematically, this means that the neural responses must be statistically
independent. Such a code is often called a factorial code, because the joint prob-
ability distribution of neural responses may be factored into the product of the
individual response probability distributions. Independence of a set of neural re-
sponses also means that one cannot learn anything about the response of any one
neuron by observing the responses of others in the set. In other words, the condi-
tional probability distribution of the response of one neuron given the responses
of other neurons should be a fixed distribution (i.e. should not depend on the

the time being, we consider the response to be an instantaneous scalar value. For
example, this could be a membrane potential, or an instantaneous firing rate.
2More generally, consider a constraint of the form s[<p(x)] — c, where x is the response,
<p is a constraint function, s indicates the expected or average value over the responses to a
given input ensemble, and c is a constant. The maximally informative response distribution
[also known as the maximum entropy distribution (Jaynes 1978)] is V(x) oc e~x<^^, where
X is a constant.
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Figure 1: Illustration of principal component analysis on Gaussian-distributed data in two di-
mensions, {a) Original data. Each point corresponds to a sample of data drawn from the source
distribution (i.e. a two-pixel image). The ellipse is three standard deviations from the mean in
each direction, (b) Data rotated to principal component coordinate system. Note that the ellipse
is now aligned with the axes of the space, (c) Whitened data. When the measurements are repre-
sented in this new coordinate system, their components are distributed as uncorrelated (and thus
independent) univariate Gaussians.

response levels of the other neurons). The beauty of the independence prop-
erty is that unlike the result for single neurons, it does not require any auxilliary
constraints.

Now consider the problem faced by a "designer" of an optimal sensory system.
One wants to decompose input signals into a set of independent responses. The
general problem is extremely difficult, because characterizing the joint histogram
of the input grows exponentially with the number of dimensions, and thus one
typically must restrict the problem by simplifying the description of the input
statistics and/or by constraining the form of the decomposition. The most well-
known restriction is to consider only linear decompositions, and to consider only
the second-order (i.e. covariance or, equivalently, correlation) properties of the
input signal. The solution of this problem may be found using an elegant and
well-understood technique known as principal components analysis (PCA)^. The
principal components are a set of orthogonal axes along which the components
are decorrelated. Such a set of axes always exists, although it need not be unique.
If the data are distributed according to a multi-dimensional Gaussian, then the
components of the data as represented in these axes are statistically independent.
This is illustrated for a two-dimensional source (e.g. a two-pixel image) in Figure 1.

3The axes may be computed using standard linear algebraic techniques: They correspond
to the eigenvectors of the data covariance matrix.
4 A multidimensional Gaussian density is simply the extension of the scalar Gaussian density
to a vector. Specifically, the density is of the form V(x) oc exp[-xT A~rx/2], where A
is the covariance matrix. All marginal and conditional densities of this density are also
Gaussian.
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After transforming a data set to the principal component coordinate system, one
typically rescales the axes of the space to equalize the variance of each of the
components (typically, they are set to one). This rescaling procedure is commonly
referred to as "whitening," and is illustrated in Figure 1.

When applying PCA to signals such as images, it is commonly assumed that
the statistical properties of the image are translation invariant (also known as
stationary). Specifically, one assumes that the correlation of the intensity at two
locations in the image depends only on the displacement between the locations,
and not on their absolute locations. In this case, the sinusoidal basis functions
of the Fourier transform are guaranteed to be a valid set of principal component
axes (although, as before, this set need not be unique). The variance along each of
these axes is simply the Fourier power spectrum. Whitening may be achieved by
computing the Fourier transform, dividing each frequency component by the square
root of its variance, and (optionally) computing the inverse Fourier transform. This
is further discussed below.

Although PCA can be used to recover a set of statistically independent axes
for representing Gaussian data, the technique often fails when the data are non-
Gaussian. As a simple illustration, consider data that are drawn from a source
that is a linear mixture of two independent non-Gaussian sources (Figure 2). The
non-Gaussianity is visually evident in the long tails of data that extend along two
oblique axes. Figure 2 also shows the rotation to principal component axes and
the whitened data. Note that the axes of the whitened data are not aligned with
those of the space. In particular, in the case when the data are a linear mixture of
non-Gaussian sources, it can be proven that one needs an additional rotation of the
coordinate system to recover the original independent axes.5 But the appropriate
rotation can only be estimated by looking at statistical properties of the data beyond
covariance (i.e. of order higher than two).

Over the past decade, a number of researchers have developed techniques for
estimating this final rotation matrix (e.g. Cardoso 1989, Jutten & Herauult 1991,
Comon 1994). Rather than directly optimize the independence of the axis compo-
nents, these algorithms typically maximize higher-order moments (e.g. the kurto-
sis, or fourth moment divided by the squared second moment). Such decomposi-
tions are typically referred to as independent component analysis (ICA), although
this is a bit of a misnomer, as there is no guarantee that the resulting compo-
nents are independent unless the original source actually was a linear mixture of
sources with large higher-order moments (e.g. heavy tails). Nevertheless, one can
often use such techniques to recover the linear axes along which the data are most
independent. Fortuitously, this approach turns out to be quite successful in the
case of images (see below).

5Linear algebraically, the three operations (rotate-scale-rotate) correspond directly to the
singular value decomposition of the mixing matrix.
6The problem of blind recovery of independent sources from data remains an active area
of research (e.g. Hyvarinen & Oja 1997, Attias 1998, Penev et al 2000).
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Figure 2 Illustration of principal component analysis and independent component analysis
on non-Gaussian data in two dimensions, (a) Original data, a linear mixture of two non-
Gaussian sources. As in Figure 1, each point corresponds to a sample of data drawn from
the source distribution, and the ellipse indicates three standard variations of the data in each
direction, (b) Data rotated to principal component coordinate system. Note that the ellipse
is now aligned with the axes of the space, (c) Whitened data. Note that the data are not
aligned with the coordinate system. But the covariance ellipse is now a circle, indicating
that the second-order statistics can give no further information about preferred axes of the
data set. (d): Data after final rotation to independent component axes.

IMAGE STATISTICS: CASE STUDIES

Natural images are statistically redundant. Many authors have pointed out that of
all the visual images possible, we see only a very small fraction (e.g. Attneave
1954, Field 1987, Daugman 1989, Ruderman & Bialek 1994). Kersten (1987)
demonstrated this redundancy perceptually by asking human subjects to replace
missing pixels in a four-bit digital image. He then used the percentage of correct
guesses to estimate that the perceptual information content of a pixel was approxi-
mately 1.4 bits [a similar technique was used by Shannon (1948) to estimate the
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redundancy of written English]. Modern technology exploits such redundancies
every day in order to transmit and store digitized images in compressed formats.
In the following sections, we describe a variety of statistical properties of images
and their relationship to visual processing.

Intensity Statistics

The simplest statistical image description is the distribution of light intensities in a
visual scene. As explained in the previous section, the efficient coding hypothesis
predicts that individual neurons should maximize information transmission. In a
nice confirmation of this idea, Laughlin (1981) found that the contrast-response
function of the large monopolar cell in the fly visual system approximately satisfies
the optimal coding criterion. Specifically, he measured the probability distribution
of contrasts found in the environment of the fly, and showed that this distribution
is approximately transformed to a uniform distribution by the function relating
contrast to the membrane potential of the neuron. Baddeley et al (1998) showed that
the instantaneous firing rates of spiking neurons in primary and inferior temporal
visual cortices of cats and monkeys are exponentially distributed (when visually
stimulated with natural scenes), consistent with optimal coding with a constraint
on the mean firing rate.

Color Statistics

In addition to its intensity, the light falling on an image at a given location has a
spectral (wavelength) distribution. The cones of the human visual system represent
this distribution as a three-dimensional quantity. Buchsbaum & Gottshalk (1984)
hypothesized that the wavelength spectra experienced in the natural world are well
approximated by a three-dimensional subspace that is spanned by cone spectral
sensitivities. Maloney (1986) examined the empirical distribution of reflectance
functions in the natural world, and showed not only that it was well-represented
by a low-dimensional space, but that the problem of surface reflectance estimation
was actually aided by filtering with the spectral sensitivities of the cones.

An alternative approach is to assume the cone spectral sensitivities constitute a
fixed front-end decomposition of wavelength, and to ask what processing should
be performed on their responses. Ruderman et al (1998), building on previous work
by Buchsbaum & Gottschalk (1983), examined the statistical properties of log cone
responses to a large set of hyperspectral photographic images of foliage. The use
of the logarithm was loosely motivated by psychophysical principles (the Weber-
Fechner law) and as a symmetrizing operation for the distributions. They found
that the principal component axes of the data set lay along directions corresponding
to {L+M+S, L+M—2S, L—M}, where {L,M,S} correspond to the log responses
of the long, middle, and short wavelength cones. Although the similarity of these
axes to the perceptually and physiologically measured "opponent" mechanisms is
intriguing, the precise form of the mechanisms depends on the experiment used to
measure them (see Lennie & D'Zmura 1988).
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Figure 3 (a) Joint distributions of image pixel intensities separated by three different
distances, (b) Autocorrelation function.

Spatial Correlations

Even from a casual inspection of natural images, one can see that neighbor-
ing spatial locations are strongly correlated in intensity. This is demonstrated in
Figure 3, which shows scatterplots of pairs of intensity values, separated by
three different distances, and averaged over absolute position of several different
natural images. The standard measurement for summarizing these dependencies
is the autocorrelation function, C(Ax, Ay), which gives the correlation (average
of the product) of the intensity at two locations as a function of relative position.
From the examples in Figure 3, one can see that the strength of the correlation
falls with distance.7

By computing the correlation as a function of relative separation, we are assum-
ing that the spatial statistics in images are translation invariant. As described above,

7Reinagel & Zador (1999) recorded eye positions of human observers viewing natural
images and found that correlation strength falls faster near these positions than generic
positions.
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the assumption of translation invariance implies that images may be decorrelated
by transforming to the frequency (Fourier) domain. The two-dimensional power
spectrum can then be reduced to a one-dimensional function of spatial frequency
by performing a rotational average within the two-dimensional Fourier plane. Em-
pirically, many authors have found that the spectral power of natural images falls
with frequency, /, according to a power law, 1/P, with estimated values for p typ-
ically near 2 [see Tolhurst (1992) or Ruderman & Bialek (1994) for reviews]. An
example is shown Figure 4.

The environmental causes of this power law behavior have been the subject of
considerable speculation and debate. One of the most commonly held beliefs is
that it is due to scale invariance of the visual world. Scale invariance means that the
statistical properties of images should not change if one changes the scale at which
observations are made. In particular, the power spectrum should not change shape
under such rescaling. Spatially rescaling the coordinates of an image by a factor of
a leads to a rescaling of the corresponding Fourier domain axes by a factor of IIa.
Only a Fourier spectrum that falls as a power law will retain its shape under
this transformation. Another commonly proposed theory is that the 1/f2 power
spectrum is due to the presence of edges in images, because edges themselves
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Figure 4 Power spectrum of a natural image (solid line) averaged over all orientations,
compared with 1/f2 (dashed line).
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have a 1/f2 power spectrum. Ruderman (1997) and Lee & Mumford (1999) have
argued, however, that it is the particular distribution of the sizes and distances of
objects in natural images that governs the spectral falloff.

Does the visual system take advantage of the correlational structure of natural
images? This issue was first examined quantitatively by Srinivasan et al (1982).
They measured the autocorrelation function of natural scenes and then computed
the amount of subtractive inhibition that would be required from neighboring
photoreceptors in order to effectively cancel out these correlations. They then
compared the predicted inhibitory surround fields to those actually measured from
first-order intemeurons in the compound eye of the fly. The correspondence was
surprisingly good and provided the first quantitative evidence for decorrelation in
early spatial visual processing.

This type of analysis was carried a step further by Atick & Redlich (1991,
1992), who considered the problem of whitening the power spectrum of natural
images (equivalent to decorrelation) in the presence of white photoreceptor noise.
They showed that both single-cell physiology and the psychophysically measured
contrast sensitivity functions are consistent with the product of a whitening filter
and an optimal lowpass filter for noise removal (known as the Wiener filter). Similar
predictions and physiological comparisons were made by van Hateren (1992) for
the fly visual system. The inclusion of the Wiener filter allows the behavior of
the system to change with mean luminance level. Specifically, at lower luminance
levels (and thus lower signal-to-noise ratios), the filter becomes more low-pass (in-
tuitively, averaging over larger spatial regions in order to recover the weaker signal).
An interesting alternative model for retinal horizontal cells has been proposed by
Balboa & Grzywacz (2000). They assume a divisive form of retinal surround in-
hibition, and show that the changes in effective receptive field size are optimal for
representation of intensity edges in the presence of photon-absorption noise.

Higher-Order Statistics

The agreement between the efficient coding hypothesis and neural processing in
the retina is encouraging, but what does the efficient coding hypothesis have to say
about cortical processing? A number of researchers (e.g. Sanger 1989, Hancock
et al 1992, Shonual et al 1997) have used the covariance properties of natural
images to derive linear basis functions that are similar to receptive fields found
physiologically in primary visual cortex (i.e. oriented band-pass filters). But these
required additional constraints, such as spatial locality and/or symmetry, in order
to achieve functions approximating cortical receptive fields.

As explained in the introduction, PCA is based only on second-order (covari-
ance) statistics and can fail if the source distribution is non-Gaussian. There are a
number of ways to see that the distribution of natural images is non-Gaussian. First,
we should be able to draw samples from the distribution of images by generat-
ing a set of independent Gaussian Fourier coefficients (i.e. Gaussian white noise),
unwhitening these (multiplying by 1/f2) and then inverting the Fourier transform.
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Fig! (ai) Sample of 1/f Gaussian noise; (fe) whitened natural image.

Such an image is shown in Figure 5a. Note that it is devoid of any edges, con-
tours, or many other structures we would expect to find in a natural scene. Second,
if it were Gaussian (and translation invariant), then the Fourier transform should
decorrelate the distribution, and whitening should yield independent Gaussian
coefficients (see Figure 5). But a whitened natural image still contains obvious
structures (i.e. lines, edges, contours, etc), as illustrated in Figure 5b. Thus, even if
correlations have been eliminated by whitening in the retina and lateral geaicukte
nucleus, there is much work still to be done in efficiently coding natural images.

Field (1987) and Daugman (1989) provided additional direct evidence of the
non-Gaussianity of natural images. They noted that the response distributions of
oriented bandpass filters (e.g. Gabor filters) had sharp peaks at zero, and much
longer tails than a Gaussian density (see Figure 6). Because the density along any
axis of a multidimensional Gaussian must also be Gaussian, this constitutes direct

Figure 6 Histogram of
responses of a Gabor filter
for a natural image, com-
pared with a Gaussian distri-
bution of the same variance.

500
Filter Response
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evidence that the overall density cannot be Gaussian. Field (1987) argued that the
representation corresponding to these densities, in which most neurons had small
amplitude responses, had an important neural coding property, which he termed
sparseness. By performing an optimization over the parameters of a Gabor function
(spatial-frequency bandwidth and aspect ratio), he showed that the parameters that
yield the smallest fraction of significant coefficients are well matched to the range
of response properties found among cortical simple cells (i.e. bandwidth of 0.5-1.5
octaves, aspect ratio of 1-2).

Olshausen & Field (1996; 1997) reexamined the relationship between simple-
cell receptive fields and sparse coding without imposing a particular functional
form on the receptive fields. They created a model of images based on a linear
superposition of basis functions and adapted these functions so as to maximize the
sparsity of the representation {number of basis functions whose coefficients are
zero) while preserving information in the images (by maintaining a bound on the
mean squared reconstruction error). The set of functions that emerges after training
on hundreds of thousands of image patches randomly extracted from natural scenes,
starting from completely random initial conditions, strongly resemble the spatial
receptive field properties of simple cells—i.e. they are spatially localized, oriented,
and band-pass in different spatial frequency bands (Figure 7). This method may
also be recast as a probabilistic model that seeks to explain images in terms of

Figure 7 Example basis functions derived using sparseness criterion (see Olshausen &
Field 1996).
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components that are both sparse and statistically independeat (Olshausen & Field
1997) and thus is a member of the broader class of ICA algorithms (see above). Sim-
ilar results have been obtained using other forms of ICA (Bell & Sejnowski 1997,
van Hateren & van der Schaaf 1998, Lewicki & Olsfaausen 1999), and Hyvarinen &
Hoyer (2000) have derived complex cell properties by extending ICA to operate
on subspaces. Physiologically Vinje & Gallant (2000) showed that responses of
neurons in primary visual cortex were more sparse during presentation of natural
scene stimuli.

It should be noted that although these techniques seek statistical independence,
the resulting responses are never actually completely independent. The reason is
that these models are limited to describing images in terms of linear superposition,
but images are not formed as sums of independent components. Consider, for
example, the fact that the light coming from different objects is often combined
according to the rales of occlusion (rather than addition) in the image formation
process. Analysis of the form of these statistical relationships reveals nonlinear
dependencies across space as well as across scale and orientation (Wegmann &
Zetzche 1990, Simoncelli 1997, Simonceili & Schwartz 1999).

Consider the joint histograms formed from the responses of two nonoverlapping
linear receptive fields, as shown in Figure 8a. The histogram clearly indicates that
the data are aligned with the axes, as in the independent components decomposition
described above. But one cannot determine from this picture whether the responses
are independent. Consider instead the conditional histogram of Figure Sb, Each
column gives the probability distribution of the ordinate variable r2, assuming
the corresponding value for the abscissa variable, r,. That is, the data are the

100

-100
101

-100 100 40 80

Figure 8 (a) Joint histogram of responses of two nonoverlapping receptive fields, depicted
as a contour plot, (b) Coaditioaal histogram of the same data. Brightness corresponds to
probability, except that each column has been independently rescaled to fill the full range
of display intensities (see Baccigrossi & Simoncelli 1999, Simoncelli & Schwartz 1999).
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same as those in Figure 8a, except that each column has been independently
normalized. The conditional histogram illustrates several important aspects of
the relationship between the two responses. First, they are (approximately) decor-
related: The best-fitting regression line through the data is a zero-slope line through
the origin. But they are clearly not independent, because the variance of r2 exhibits a
strong dependence on the value of r^ Thus, although r2 andr! are uncorrelated, they
are still statistically dependent. Furthermore, this dependency cannot be eliminated
through further linear transformation.

Simoncelli & Schwartz (1999) showed that these dependencies may be elim-
inated using a nonlinear form of processing, in which the linear response of
each basis function is rectified (and typically squared) and then divided by
a weighted sum of the rectified responses of neighboring neurons. Similar "divisive
normalization" models have been used by a number of authors to account for non-
linear behaviors in neurons (Reichhardt & Poggio 1973, Bonds 1989, Geisler &
Albrecht 1992, Heeger 1992, Carandini et al 1997). Thus, the type of nonlinear-
ity found in cortical processing is well matched to the non-Gaussian statistics of
natural images. Furthermore, the weights used in the computation of the normal-
ization signal may be chosen to maximize the independence of the normalized
responses. The resulting model is surprisingly good at accounting for a variety of
neurophysiological observations in which responses are suppressed by the pres-
ence of nonoptimal stimuli, both within and outside of the classical receptive field
(Simoncelli & Schwartz 1999, Wainwright et al 2001). The statistical dependency
between oriented filter responses is at least partly due to the prevalence of extended
contours in natural images. Geisler et al (2001) examined empirical distributions
of the dominant orientations at nearby locations and used them to predict psy-
chophysical performance on a contour detection task. Sigman et al (2001) showed
that these distributions are consistent with cocircular oriented elements and related
this result to the connectivity of neurons in primary visual cortex.

Space-Time Statistics

A full consideration of image statistics and their relation to coding in the vi-
sual system must certainly include time. Images falling on the retina have impor-
tant temporal structure arising from self-motion of the observer, as well as from
the motion of objects in the world. In addition, neurons have important tempo-
ral response characteristics, and in many cases it is not clear that these can be
cleanly separated from their spatial characteristics. The measurement of spatio-
temporal statistics in natural images is much more difficult than for spatial statis-
tics, though, because obtaining realistic time-varying retinal images requires the
tracking of eye, head, and body movements while an animal interacts with the
world. Nevertheless, a few reasonable approximations allow one to arrive at useful
insights.

As with static images, a good starting point for characterizing joint space-
time statistics is the autocorrelation function. In this case, the spatio-temporal
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autocorrelation function C(Ax, Ay, At) characterizes the pairwise correlations
of image pixels as a function of their relative spatial separation (Ax, Ay) and
temporal separation At. Again, assuming spatio-temporal translation invariance,
we find that this function is most conveniently characterized in the frequency
domain.

The problem of characterizing the spatio-temporal power spectrum was first
studied indirectly by van Hateren (1992), who assumed a certain image velocity
distribution and a 1/f2 spatial power spectrum and inferred from this the joint
spatio-temporal spectrum, assuming a 1/f2 spatial power spectrum. Based on this
inferred power spectrum, van Hateren then computed the optimal neural filter
for making the most effective use of the postreceptoral neurons' limited channel
capacity (similar to Atick's whitening filter). He showed from this analysis that
the optimal neural filter matches remarkably well the temporal response properties
of large monopolar cells in different spatial frequency bands. He was also able to
extend this analysis to human vision to account for the spatio-temporal contrast
sensitivity function (van Hateren 1993).

Dong & Atick (1995a) estimated the spatio-temporal power spectrum of natural
images directly by computing the three-dimensional Fourier transform on many
short movie segments (each approximately 2-4 seconds in length) and averaging
together their power spectra. This was done for an ensemble of commercial films
as well as videos made by the authors. Their results, illustrated in Figure 9, show
an interesting dependence between spatial and temporal frequency. The slope
of the spatial-frequency power spectrum becomes shallower at higher temporal

a. b.

0.1 1.0

Spatial Frequency f (cycles/degree)

1.0 10.0

Temporal Frequency GO (HZ)

Figure 9 Spatiotemporal power spectrum of natural movies, (a) Joint spatiotemporal power
spectrum shown as a function of spatial-frequency for different temporal frequencies (1.4, 2.3,
3.8,6, and 10 Hz, from top to bottom), (b) Same data, replotted as a function of temporal frequency
for different spatial frequencies (0.3,0.5,0.8,1.3, and 2.1 cy/deg., from top to bottom). Solid lines
indicate model fits according to a power-law distribution of object velocities (from Dong & Atick
1995b).
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frequencies. The same is true for the temporal-frequency spectrum—i.e. the slope
becomes shallower at higher spatial frequencies. Dong & Atick (1995a) showed
that this interdependence between spatial and temporal frequency could be ex-
plained by assuming a particular distribution of object motions (i.e. a power law
distribution), similar in form to van Hateren's assumptions. By again applying the
principle of whitening, Dong & Atick (1995b) computed the optimal temporal
filter for removing correlations across time and showed that it is closely matched
(at low spatial frequencies) to the frequency response functions measured from
lateral geniculate neurons in the cat.

Although the match between theory and experiment in the above examples
is encouraging, it still does not answer the question of whether or not visual
neurons perform as expected when processing natural images. This question was
addressed directly by Dan et al (1996) who measured the temporal frequency
spectrum of LGN neuron activity in an anaesthetized cat in response to natural
movies. Consistent with the concept of whitening, the output power of the cells in
response to the movie is fairly flat, as a function of temporal frequency. Conversely,
if one plays a movie of Gaussian white noise, in which the input spectrum is
flat, the output spectrum from the LGN cells increases linearly with frequency,
corresponding to the temporal-frequency response characteristic of the neurons.
Thus, LGN neurons do not generically whiten any stimulus, only those exhibiting
the same correlational structure as natural images.

The analysis of space-time structure in natural images may also be extended to
higher-order statistics (beyond the autocorrelation function), as was previously
described for static images. Such an analysis was recently performed by van
Hateren & Ruderman (1998) who applied an ICA algorithm to an ensemble of
many local image blocks (12 x 12 pixels by 12 frames in time) extracted from
movies. They showed that the components that emerge from this analysis resemble
the direction-selective receptive fields of VI neurons—i.e. they are localized in
space and time (within the 12 x 12 x 12 window), spatially oriented, and direc-
tionally selective (see Figure 10). In addition, the output signals that result from
filtering images with the learned receptive fields have positive kurtosis, which sug-
gests that time-varying natural images may also be efficiently described in terms
of a sparse code in which relatively few neurons are active across both space and
time. Lewick & Sejnowski (1999) and Olshausen (2001) have shown that these
output signals may be highly sparsified so as to produce brief, punctate events
similar to neural spike trains.

DISCUSSION

Although the efficient coding hypothesis was first proposed more than forty years
ago, it has only recently been explored quantitatively. On the theoretical front,
image models are just beginning to have enough power to make interesting predic-
tions. On the experimental front, technologies for stimulus generation and neural
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KF

BCf

ICF

Figure 10 Independent components of natural movies. Shown axe four space-time basis
functions (rows labeled "IC") with the corresponding analysis functions (rows labeled
"ICF'), which would be convolved with a movie to compute a neuron's output (from van
Hateren & Ruderman 1998).

recording (especially multiunit recording) have advanced to the point where it is
both feasible and practical to test theoretical predictions. Below, we discuss some
of the weaknesses and drawbacks of the ideas presented in this review, as well
as several exciting new opportunities that arise from our growing knowledge of
image statistics.

The most serious weakness of the efficient coding hypothesis is that it ignores
the two other primary constraints on the visual system: the implementation and the
task. Some authors have successfully blended implementation constraints with
environmental constraints (e.g. Baddeley et al 1998). Such constraints are often
difficult to specify, but clearly they play important roles throughout the brain. The
tasks faced by the organism are likely to be an even more important constraint.
In particular, the hypothesis states only that information must be represented ef-
ficiently; it does not say anything about what information should be represented.
Many authors assume that at the earliest stages of processing (e.g. retina and VI), it
is desirable for the system to provide a generic image representation that preserves
as much information as possible about the incoming signal. Indeed, the success of
efficient coding principles in accounting for response properties of neurons in the
retina, LGN, and VI may be seen as verification of this assumption. Ultimately,
however, a richer theoretical framework is required. A commonly proposed exam-
ple of such a framework is Bayesian decision/estimation theory, which includes
both a prior statistical model for the environment and also a loss or reward function
that specifies the cost of different errors, or the desirability of different behaviors.
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Such concepts have been widely used in perception (e.g. Knill & Richards 1996)
and have also been considered for neural representation (e.g. Oram et al 1998).

Another important issue for the efficient coding hypothesis is the timescale
over which environmental statistics influence a sensory system. This can range
from millenia (evolution), to months (neural development), to minutes or seconds
(short-term adaptation). Most of the research discussed in this review assumes the
system is fixed, but it seems intuitively sensible that the computations should be
matched to various statistical properties on the time scale at which they are rele-
vant. For example, the 1/f2 power spectral property is stable and, thus, warrants a
solution that is hardwired over evolutionary time scales. On the other hand, sev-
eral recent results indicate that individual neurons adapt to changes in contrast
and spatial scale (Smirnakis et al 1997), orientation (Muller et al 1999), and
variance (Brenner et al 2000) on very short time scales. In terms of joint response
properties, Barlow & Foldiak (1989) have proposed that short-term adaptation acts
to reduce dependencies between neurons, and evidence for this hypothesis has re-
cently been found both psychophysically (e.g. Atick et al 1993, Dong 1995,
Webster 1996, Wainwright 1999) and physiologically (e.g. Carandini et al 1998,
Dragoi et al 2000, Wainwright et al 2001).

A potential application for efficient coding models, beyond predicting response
properties of neurons, lies in generating visual stimuli that adhere to natural image
statistics. Historically, visual neurons have been characterized using fairly simple
test stimuli (e.g. bars, gratings, or spots) that are simple to parameterize and control,
and that are capable of eliciting vigorous responses. But there is no guarantee that
the responses measured using such simple test stimuli may be used to predict neural
responses to a natural scene. On the other hand, truly naturalistic stimuli are much
more difficult to control. An interesting possibility lies in statistical texture mod-
eling, which has been used as a tool for understanding human vision (e.g. Julesz
1962, Bergen & Adelson 1986). Knill et al (1990) and Parraga et al (1999) have
shown that human performance on a particular discrimination task is best for tex-
tures with natural second-order (i.e. 1/f2) statistics, and degraded for images that
are less natural. Some recent models for natural texture statistics offer the possi-
bility of generating artificial images that share some of the higher-order statistical
structure of natural images (e.g. Heeger & Bergen 1995, Zhu et al 1998, Portilla
& Simoncelli 2000).

Most of the models we have discussed in this review can be described in terms
of a single-stage neural network. For example, whitening could be implemented by
a set of connections between a set of inputs (photoreceptors) and outputs (retinal
ganglion cells). Similarly, the sparse coding and ICA models could be implemented
by connections between the LGN and cortex. But what comes next? Could we at-
tempt to model the function of neurons in visual areas V2, V4, MT, or MST using
multiple stages of efficient coding? In particular, the architecture of visual cortex
suggests a hierarchical organization in which neurons become selective to progres-
sively more complex aspects of image structure. In principle, this can allow for
the explicit representation of structures, such as curvature, surfaces, or even entire
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objects (e.g. Dayan et al 1995, Rao & Ballard 1997), thus providing a principled
basis for exploring the response properties of neurons in extra-striate cortex.

Although this review has been largely dedicated to findings in the visual domain,
other sensory signals are amenable to statistical analysis. For example, Attias &
Schreiner (1997) have shown that many natural sounds obey some degree of self-
similarity in their power spectra, similar to natural images. In addition, M S Lewicki
(personal communication) finds that the independent components of natural sound
are similar to the "Gammatone" filters commonly used to model responses of neu-
rons in the auditory nerve. Schwartz & Simoncelli (2001) have shown that divisive
normalization of responses of such niters can serve as a nonlinear whitening oper-
ation for natural sounds, analogous to the case for vision. In using natural sounds
as experimental stimui, Rieke et al (1995) have shown that neurons at early stages
of the frog auditory system are adapted specifically to encode the structure in the
natural vocalizations of the animal. Attias & Schreiner (1998) demonstrated that
the rate of information transmission in cat auditory midbrain neurons is higher for
naturalistic stimuli.

Overall, we feel that recent progress on exploring and testing the relationship
between environmental statistics and sensation is encouraging. Results to date have
served primarily as post-hoc explanations of neural function, rather than predicting
aspects of sensory processing that have not yet been observed. But it is our belief
that this line of research will eventually lead to new insights and will serve to guide
our thinking in the exploration of higher-level visual areas.
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would be severely compromised, or
not even possible, given a rigid mole-
cule. Subtle motions can have surpris-
ingly large effects on reaction rates or
assembly. Biological molecules are per-
fectly placed to take advantage of these
subtle motions. The step-by-step opti-
mization provided by evolution allows
a moderately active protein to be im-
proved, through small changes modi-
fying structure and flexibility, to yield a
machine ideally tailored to fulfill its
function.

This process is easy for evolution but
far more difficult for biotechnological
design. We design our machines in one
step, instead of through many small
random optimization steps, and we ex-
pect to get it right with a minimum of
tweaking and redesign. Thus, to antici-
pate all of the subtle effects of motion,
our design techniques must be accu-
rate enough to predict conformation
and flexibility of molecules at scales far
smaller than the radius of an atom.

All biological molecules are flexible to
some extent and are battered into differ-
ent conformations by the constant
pressure of surrounding water and the
kinetic energy of their own atoms. At
physiological temperatures, biological
molecules constantly flex. Most of the
interactions holding a protein together
are conserved—covalent bonds remain
connected, hydrogen bonds and salt
bridges link portions of the chain—but
entire elements of secondary structure
flex, bending slightly or separating mo-
mentarily from the globule. These mo-
tions are often termed "breathing."
Breathing is essential in the function of
myoglobin, a deep red protein that
stores oxygen in muscle cells. Oxygen
is bound to myoglobin in a pocket that
is completely buried within the protein.
Looking at the static structures provid-
ed by x-ray crystallography, there are no
channels leading into or out of the pock-
et. For the oxygen to enter and exit, the
molecule must breathe, transiently
forming channels that allow passage.

Many proteins use a carefully de-
signed change of shape to regulate their
action. These allosteric ("other shape")
proteins are composed of several sub-
units, each of which performs identical
functions. In the simplest model of their
action, each subunit may adopt two
conformations, one functionally active,
the other less active. Regulation is per-
formed by propagation of the shape
change from one subunit to its neigh-
bors. For instance, phosphofructoki-

nase, a key enzyme in sugar metabo-
lism, uses allosteric regulation to modi-
fy its action. Phosphofructokinase is
composed of four identical subunits (a
tetramer), each containing a reactive site
for the sugar molecules. The tetramer
also contains binding sites for the ener-
gy molecule adenosine triphosphate
(ATP) in the cleft between subunits.
When ATP binds to this second site, it
forces the entire enzyme complex into a
different shape, which is less active than
the original form. In the cell, this regula-
tion is used as a negative-feedback loop.
ATP is one of the final products of the
sugar-breaking process that the enzyme
performs. When ATP is plentiful, it
binds to the regulatory site in phospho-
fructokinase, shutting down its own
synthesis. The enzyme that performs
the opposite reaction, shown in Figure
8, is also allosterically regulated.

Many protein chains rely on "in-
duced fit" to mediate their function.
The chain may remain in a partially
unfolded conformation that only com-
pletely folds when it binds to its target.
Induced fit may be used to create door-
ways that allow ligands to enter pro-
tein cavities that are shielded from the
surrounding environment. HTV-1 pro-
tease is an example. The active site is a
cylindrical tunnel, with the cleavage
machinery at its center. Somehow, a
polypeptide must be threaded through
this tunnel in order for the cleavage re-
action to occur. This problem is solved
through the use of two flexible flaps
that cover the top of the tunnel. When
free in solution, these flaps are disor-
dered, opening a path to the active site.
When the protease wraps around its
target, the flaps close, forming a stable
structure that positions the polypep-
tide accurately for cleavage.

Flexible linkages are common in the
molecular world. Protein chains may
be made more flexible through addi-
tion of many molecules of the amino
acid glycine, which are less hindered
in bond rotation because of the lack of
a side chain, or through addition of
many charged residues, which favor
exposure to solvent over forming a
compact globule. The rigid kink formed
by proline, surprisingly, is also com-
monly found in flexible regions, be-
cause it does not fit comfortably with-
in compactly folded structures. The
immune system contains many exam-
ples of flexible linkages that enhance
multivalent binding, as shown in
Figure 9.

Prospects
Biological molecules are examples of
solved problems in nanotechnology—
lessons from nature that may be used to
inform our own design of nanoscale ma-
chines. The entire discipline of bio-
technology has emerged to harvest this
rich field of biological wealth. We rou-
tinely edit and rewrite the information in
DNA to build custom proteins tailored
for a given need. Today, for instance, bac-
teria are engineered to produce hor-
mones, genes for disease resistance are
added to agricultural plants, and cells are
cultured into artificial tissues.

Principles of protein structure and
function also yield insights for nanotech-
nological design and fabrication. The di-
versity of protein structure and function
shows the power of modular, informa-
tion-driven synthesis, as well as the limi-
tations imposed by modular design once
a dedicated modular plan is chosen. Pro-
teins demonstrate that extended, comple-
mentary interfaces are essential prerequi-
sites for molecular self-assembly. The
prevalence of protein complexes proves
that error-prone synthesis may be accom-
modated through the use of subunits and
symmetry to build large objects accurately
and economically. And contrary to our
macroscopic experience, motion and flex-
ibility may be assets, not liabilities.

The principles observed in the mo-
bile, organic shapes of biological mole-
cules may be applied to the controlled
rectilinear forms of diamondoid lattices,
fullerines or whatever nanoscale primi-
tives are ultimately successful. We must
not be too impatient, however. Nature
has had some three or four billion years
to perfect her machinery; so far, we
have had only a few decades.

Bibliography
Crane, H. R1950. Principles and problems of bio-

logical growth. Scientific Monthly 70:376-389.
Drexler, K. E. 1992. Nanosystems, Molecular Ma-

chinery, Manufacturing and Computation. New
York John Wiley & Sons.

Goodsell, D. S. 1996. Our Molecular Nature: The
Body's Motors, Machines and Messages. New
York Springer-Verlag.

Goodsell, D. S., and A. J. Olson. 1993. Soluble pro-
teins: Size, shape and function. Trends in Bio-
chemical Sciences 18:65-68.

Goodsell, D. S., and A. J. Olson. 2000. Structural
symmetry and protein function. Annual Re-
views in Biophysics and Biomolecular Structure 29:
105-153.

Larsen, T. A., A. J. Olson and D. S. Goodsell. 1998.
Morphology of protein-protein interfaces.
Structure 6:421-427.

Protein Data Bank is available on-line at
http://www.rcsb.org/pdb

2000 May-June 237

82



Vision and the Coding of Natural Images

The human brain may hold the secrets to the best
image-compression algorithms

Bruno A. Olshausen and David J. Field

Peer out your window. Unless you
are particularly lucky, you might

think that your daily view has little
affinity with some of the more spectac-
ular scenes you have taken in over the
years: the granite peaks of the high
Sierra, the white sands and blue waters
of an unspoiled tropical island or just a
beautiful sunset. Strangely, you would
be wrong. Most scenes, whether gor-
geous or ordinary, display an enor-
mous amount of similarity, at least in
their statistical properties. By charac-
terizing this regularity, investigators
have gained important new insights
about our visual environment—and
about the human brain.

This advance comes from the efforts
of a diverse set of scientists—mathe-
maticians, neuroscientists, psycholo-
gists, engineers and statisticians—who
have been rigorously attacking the
problem of how images can best be en-
coded and transmitted. Some of these
investigators are interested in devising
algorithms to compress digital images
for transmission over the airwaves or
through the Internet. Others (like our-
selves) are motivated to learn how the
eye and brain process visual informa-
tion. This research has led workers to
the remarkable conclusion that nature
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has found solutions that are near to op-
timal in efficiently representing images
of the visual environment. Just as evo-
lution has perfected designs for the eye
by making the most of the laws of op-
tics, so too has it devised neural circuits
for vision by obeying the principles of
efficient coding.

To appreciate these feats of natural
engineering, one first needs a basic un-
derstanding of what neuroscientists
have learned over the years about the
visual system. Most of what is known
comes from studies of other animals,
primarily cats and monkeys. Although
there are differences among various
mammals, there are enough similari-
ties that neuroscientists can make some
reasonable generalizations about how
the human visual system operates.

For example, they have known for
many decades that the first stage of vis-
ual processing takes place within the
retina, in a network of nerve cells (neu-
rons) that process information coming
from photoreceptors. The results of
these mostly analog computations feed
into retinal ganglion cells, which repre-
sent the information in "digital" form
(as a train of voltage spikes) and pass it
though long projections that carry sig-
nals outward (axons). Bundled togeth-
er, these axons form the optic nerve,
which exits the eye and makes connec-
tions with neurons in a region near the
center of the brain called the lateral
geniculate nucleus. These neurons in
turn send their outputs to the primary
visual cortex, an area at the rear of the
brain that is also referred to as VI.

Neurons situated along this pathway
are usually characterized in terms of
their receptive fields, which delineate
where in the visual field light either
raises or lowers the level of neural ac-
tivity. Neurons in the retina and lateral
geniculate nucleus usually have recep-
tive fields with excitatory and inhibitory

zones arranged roughly in concentric
circles, whereas neurons in VI typically
have receptive fields with parallel
bands of excitation and inhibition. At
higher stages of visual processing, in-
volving, for example, the areas known
as V2 and V4, receptive fields become
progressively more complex; yet char-
acterizing what exactly these neural cir-
cuits are computing remains elusive.

Although a vast amount of informa-
tion about the inner workings of the
visual system has been gathered over
the years, neuroscientists are still left
with the question of why nature has
fashioned this neural circuitry specifi-
cally in the way that it has. We believe
the answer is that the visual system or-
ganizes itself to represent efficiently the
sorts of images it normally takes in,
which we call natural scenes.

The Uniformity of Nature
Natural scenes, as we define them, are
images of the visual environment in
which the artifacts of civilization do
not appear. Thus natural scenes might
show mountains, trees or rocks, but
they would not include office build-
ings, telephone poles or coffee cups.
(Although we make this distinction,
most of our conclusions apply to artifi-
cial environments as well.) The images
for our studies come from photographs
we have taken with conventional cam-
eras and digitized with a film scanner.
We then calibrate these digitized im-
ages to account for the nonlinear as-
pects of the photographic process. Af-
ter doing so, the pixel values scale
directly with the intensity of light in
the original scene (Figure 1).

Why should a diverse set of images
obtained in this way show any statisti-
cal similarity with one another when
the natural world is so varied? One
way to get an intuitive feel for the an-
swer is to consider how images look
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Figuie 1. Images of the natural environment, such as this view of a log resting on a stony embankment (top), exhibit a surprising degree of sta-
tistical similarity. To investigate these qualities, the authors had first to remove the effects of the photographic process from their images, yield-
ing estimates for the actual brightness (luminance) in each pixel. Because luminance spans an enormous range—it varies from about 100 to
40,000 candles per square meter in this image—linearly scaling these values to the shades that can be printed makes the scene look strangely
dim and stark (lower right). Histograms of pixel intensity (yellow panels) show that the distribution of luminance values is short and wide in a
light region, whereas it is narrow and peaked in a dark area. Summing the results from the three sample regions (white boxes) produces a dis-
tribution skewed toward low values, one that matches the shape of the histogram obtained for the image as a whole.
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Figure 2. White-noise image, created by inde-
pendently assigning the intensity of each pix-
el a random value, contains no statistical or-
der and looks nothing like the natural scenes
one is used to seeing.

when they are totally disordered (see
Figure 2). We created this rather drab
image by assigning the intensity of
each pixel a random value. This
process could have, in theory, pro-
duced a stunning image, one that ri-
vals any photograph Ansel Adams
ever took (just as sitting a monkey
down at a typewriter could, in theory,
produce Hamlet). But the odds of gen-
erating a picture that is even crudely
recognizable are exceedingly slim, be-
cause natural scenes represent just a
miniscule fraction of the set of all pos-
sible patterns. The question thus be-
comes: What statistical properties char-
acterize this limited set?

One simple statistical description of
an image comes from the histogram of
intensities, which shows how many
pixels are assigned to each of the possi-
ble brightness values. The first thing
one discovers in carrying out such an
analysis is that the range of intensity is
enormous, varying over eight orders of
magnitude from images captured on a
moonless night to those taken on a
sunny day. Even within a given scene,
the span is usually quite large, typical-
ly about 600 to one. And in images tak-
en on a clear day the range of intensity
between the deepest shadows and the
brightest reflections can easily be
greater. But a large dynamic range is
not the only obvious property that nat-
ural scenes share. One also finds that
the form of the histogram is grossly
similar, usually peaked at the low end
with an exponential fall-off toward
higher intensities.

Why does this lopsided distribution
arise? The best explanation is that it re-
sults from variations in lighting. Con-

sider the image shown in Figure 1. It
has a broad distribution of reflectances
across the scene but also displays obvi-
ous changes in illumination from one
place to the next. The objects in each
part of the image might have funda-
mentally similar ranges of reflectance,
but because some spots are illuminated
more strongly than others, the pixel
values in each zone essentially get mul-
tiplied by a variable factor. So the in-
tensities in a well-illuminated region
tend to show both a higher mean and a
higher variance than those in a poorly
lighted area. As a result, the distribu-
tion of pixel intensities within a bright
portion of the image is short and fat,
whereas in a dark one it is tall and
skinny. If pixel intensities are averaged
over many such regions (or, indeed,
over the entire image), one obtains a
smooth histogram with the characteris-
tic peak and fall-off.

Such a histogram can. be thought of
as a representation of how frequently a
typical photoreceptor in the eye experi-
ences each of the possible light levels.

In reality, the situation is more compli-
cated, because the eye deals with this
vast dynamic range in a couple of dif-
ferent ways. One is that it adjusts the
iris, which controls the size of the pupil
(and thus the amount of light admitted
to the eye) depending on the ambient
light level. In addition, the neurons in
the retina do not directly register light
intensity. Rather, they encode contrast,
which is a measure of the fluctuations in
intensity relative to the mean level.

Given that these neurons respond to
contrast, how would it make the most
sense for them to encode this quantity?
Theory dictates that a communication
channel attains its highest information-
carrying capacity when all possible sig-
nal levels are used equally often. It is
easy to see why this is so in an extreme
case, say where the signal uses only half
of the possible levels. Like a pipe half
full of water, the information channel
would be carrying only 50 percent of its
capacity. But even if all signal levels are
employed, the full capacity is still not
realized if some of these levels are used
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Figure 3. Contrast-response function (red points) for retinal neurons (the so-called large monopo-
far cells) in the eye of a fly displays an S shape. These responses very nearly match the curve
(black line) that transforms the distribution of contrasts a fly typically encounters (horizontal yel-
low panel) into a flat distribution (vertical yellow panel), accomplishing what specialists in signal
processing call histogram equalization. (Adapted from Laughlin, 1981.)
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pixel 1 pixel 1 pixel 1
Figure 4. Correlation between two adjacent pixels in natural images is typically quite high, as plotting the brightness value of one against the
other reveals (left panel). If the points considered are situated two pixels apart, the correlation is somewhat less obvious (middle panel). If they
are situated four pixels apart, the correlation is weaker still, but it remains easy to discern in a scatter plot (right panel).

only rarely. So if maximizing informa-
tion throughput is the objective, the
neurons encoding contrast should do so
in a way that ensures their output levels
are each used equally often. And there
is indeed evidence that this transforma-
tion—called histogram equalization-
goes on in the eye.

In the early 1980s, Simon Laughlin,
working at the Australian National
University in Canberra, examined the
responses of large mono-polar cells in the
eyes of flies. These are neurons that re-
ceive input directly from photorecep-
tors and encode contrast in an analog
fashion. He showed that these neurons
have a response function that is well
suited to produce a uniform distribu-
tion of output levels for the range of
contrasts observed in the natural envi-
ronment—or at least in the natural en-
vironment of a fly (Figure 3).

Investigators have found- similar re-

10'
spatial frequency
(cycles per image)

Figure 5. Amplitudes of the Fourier compo-
nents in natural images (red line) fall with
spatial frequency (/) by approximately 1//
(black line). This property is also found for
many other natural signals that exhibit a self-
similar (that is, fractal) character.

sponse functions for vertebrates as
well. So it would seem that retinal neu-
rons somehow know about the statis-
tics of their visual environment and
have arranged their input-output func-
tions accordingly. Whether this achieve-
ment is an evolutionary adaptation or
the result of an adjustment that contin-
ues throughout the lifetime of an or-
ganism remains a mystery. But it is
clear that these cells are doing some-
thing that is statistically sensible.

Spatial Structure
Having considered a day in the life of
an individual photoreceptor, the next
logical thing to do is to examine a day in
the life of a neighborhood of photore-
ceptors. That is, how does the light
striking adjacent photoreceptors co-
vary? If you look out your window and
point to any given spot in the scene, it is
a good bet that regions nearby have
similar intensities and colors. Indeed,
neighboring pixels in natural images
generally show very strong correlations
(Figure 4). They tend to be similar be-
cause objects tend to be spatially con-
tinuous in their reflectance.

There are various ways to represent
these correlations. One of the most pop-
ular is to invoke Fourier theory and use
the shape of the spatial-frequency pow-
er spectrum. As Fourier showed long
ago, any signal can be described as a
sum of sine and cosine waveforms of
different amplitudes and frequencies. If
the signal under consideration is an im-
age, the sines and cosines become func-
tions of space (say, of x or y), undulating
between light and dark as one moves
across the image from left to right and
from top to bottom.

When a typical scene is decomposed
in this way, one finds that the ampli-

tudes of the Fourier coefficients fall with
frequency,/, by a factor of approximate-
ly 1//'(Figure 5). This universal property
of natural images reflects their scale in-
variance: As one zooms in or out, there
is always an. equivalent amount of
"structure" (intensity variation) present.
This fractal-like trait is also found in
many other natural signals—height
fluctuations of the Nile River, the wob-
bling of the earth's axis, the shape of
coastlines and animal vocalizations, to
name just a few examples.

Given that natural images reliably
exhibit this statistical property, it is
quite reasonable to expect that the vis-
ual system might take advantage of it.
After all, each axon within the optic
nerve consumes both volume and en-
ergy, so neglecting spatial structure
and allowing high correlations among
the signals carried by these wires

Figure 6. Synthetic image that preserves the
two-point correlations found in natural
scenes appears curiously "natural." But this
image lacks the sharp discontinuities in in-
tensity that are so commonly seen at the
edges of objects.
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response

receptive fields

Gabor functions

Figure 7. Receptive fields of neurons in. the viswal cortex of cats (top) resemble certain, two-dimensional Gabor functions (bottom). The neural cir-
cuitry of the visual system may adopt such forms of response because they are well suited to encode images efficiently. (After Daugman, 1989.)

would constitute a poor use of re-
sources. Might the neurons within the
retina improve efficiency by pre-pro-
cessing visual information before it
leaves the eye and passes down the op-
tic nerve? And if so, what kind of ma-
nipulations would make sense?

Redundancy Redaction
The answer comes from a theory that
Horace Barlow of the University of
Cambridge formulated nearly 40 years
ago. He proposed a simple self-organ-
izing principle for sensory neurons—
namely that they should arrange the
strengths of their connections so as to
encode incoming sensory information
in a manner that maximizes the statis-
tical independence of their outputs
(hence minimizing redundancy). Bar-
low reasoned that the underlying caus-
es of visual signals are usually inde-
pendent entities—separate objects
moving about in the world—and if cer-
tain neurons somewhere in the brain
are to represent these objects properly,
their responses should also be inde-
pendent. Thus, by minimizing the re-
dundancy inherent in the sensory in-
put stream, the nervous system might
be able to form a representation of the
underlying causes of images, some-
thing that would no doubt be useful to
the organism.

Many years passed before Barlow's
theory was put to work in a quantita-
tive fashion to account for the proper-
ties of retinal ganglion cells, first by
Laughlin and his colleagues in Canber-
ra (in the early 1980s) and then a
decade later by Joseph Atick, who was
working at the Institute for Advanced
Study in Princeton. Atick considered
the form of correlations that arise in
natural images—namely, the 1//am-
plitude spectrum. He showed that the
optimal operation for removing these
correlations is to attenuate the low spa-
tial frequencies and to boost the high
ones in inverse proportion to their
original amplitudes. The reason is
quite simple: A decorrelated image has
a spatial-frequency power spectrum
that is flat—the spatial-frequency
equivalent of white noise—which is
just what Atick's transformation yields.

Atick's theory thus explains why
retinal neurons have the particular re-
ceptive fields they do: The concentric
zones of excitation and inhibition es-
sentially act as a "whitening filter,"
which serves to decorrelate the outputs
sent down the optic nerve. The specific
form of the receptive fields that Atick's
theory predicts nicely matches the
properties of retinal ganglion cells in
terms of spatial frequency. And recent-
ly Yang Dan, now at the University of

California, Berkeley, showed that At-
ick's theory also accounts for the tem-
poral-frequency response of neurons in
the lateral geniculate nucleus.

Sparse Coding
The agreement between the theory of
redundancy reduction and the work-
ings of nerve cells in the lower levels of
the visual system is encouraging. But
such mechanisms for decorrelation are
just the tip of the iceberg. After all,
there is more to natural images than
the obvious similarity among pairs of
nearby pixels.

One way to get a feel for the statisti-
cal structure present is to consider what
images would look like if they could be
completely characterized by two-point
correlations among pixels (Figure 6).
One of the most obvious ways that nat-
ural scenes differ from such images is
that they contain sharp, oriented dis-
continuities. Indeed, it is not hard to see
that most images contain regions of rel-
atively uniform structure interspersed
with distinct edges, which give rise to
unique three-point and higher correla-
tions. So one must also consider how
neurons might reduce the redundancy
that comes about from these higher-or-
der forms of structure.

A natural place to look is the primary
visual cortex, which has been the focus
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of many studies since the early 1960s,
when David Htibel and Torsten Wiesel
at Harvard University first charted the
receptive fields of these neurons and
discovered their spatially localized, ori-
ented and "bandpass" properties. That
is, each neuron in this area responds se-
lectively to a discontinuity in luminance
at a particular location, with a specific
orientation and containing a limited
range of spatial frequencies. By the mid-
dle of the 1970s, some investigators be-
gan modeling these neurons quantita-
tively and were attempting to represent
images with these models.

Stjepan Marcelja, a mathematician at
the Australian National University, no-
ticed some of these efforts by neurosci-
entists and directed their attention to
theories of information processing that
Dennis Gabor developed during the
1940s. Gabor, a Hungarian-English sci-
entist who is most famous for invent-
ing holography, showed that the func-
tion that is optimal for matching
features in time-varying signals simul-
taneously in both time and frequency
is a sinusoid with a Gaussian (bell-

shaped) envelope. Marcelja pointed
out that such functions, now common-
ly known as Gabor functions, describe
extremely well the receptive fields of
neurons in the visual cortex (Figure 7).
From this work, many neurosdentists
concluded that the cortex must be at-
tempting to represent the structure of
images in both space and spatial fre-
quency. But the Gabor theory still begs
the question of why such a joint space-
frequency representation is important.
Is it somehow particularly well suited
to the higher-order statistical structure
of natural images?

About 15 years ago, one of us (Field)
began probing this question by investi-
gating the connection between the high-
er-order statistics of natural scenes and
the receptive fields of neurons in the vis-
ual cortex. This was a time when the "lin-
ear-systems" approach to the visual sys-
tem had garnered considerable
popularity. Years of research had provid-
ed many insights into how the visual sys-
tem responds to simple stimuli (like spots
and gratings) but revealed little about
how the brain processes real images.

At the time, most scientists studying
the visual system were under the im-
pression that natural scenes had little
statistical structure. And few believed
that it would be useful even to exam-
ine the possibility. Field's first efforts to
do so using a set of highly varied im-
ages (of rocks, trees, rivers and so
forth) consistently showed the charac-
teristic 1//spectra, prompting some
skeptics to assert that something had
to be wrong with his camera.

The discovery of such statistical con-
sistency in natural scenes prompted
Field to investigate whether the Gabor-
like receptive fields of cortical neurons
are somehow tailored to match this
structure. He did this by examining
histograms obtained after "filtering"
the images with a two-dimensional
Gabor function—a task requiring the
pixel-by-pixel multiplication of inten-
sity values in the image with a Gabor
function defined within a patch, just a
few pixels wide and tall. These his-
tograms tend to show a sharp peak at
zero and so-called "heavy tails" at ei-
ther side. The shape differs greatly
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Figure 8. Filtering an image requires the multiplication of pixel intensities from a small patch with corresponding values for the chosen filter-
ing function. The sum of the products will be small if the function does not match the pattern in this portion of the image, whereas it will be
large (positive or negative) if the similarity is great. Performing these operations with the specified function in all possible positions and re-
placing the central intensity value with the stum, yields a "filtered image" of positive and negative values. The distribution of pixel values for
stich a filtered image (histograms at upper left) will reflect how well the filtering function matches features in the original scene. For example,
a random function will produce a Gaussian histogram, whereas an appropriate two-dimensional Gabor function will produce a histogram with
a sharp peak at zero and so-called heavy tails to either side.
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Figure 9. Optimal basis functions the authors determined with their iterative algorithm can en-
code any image that is the size of each patch (12 by 12 pixels). These empirical functions appear
similar to the Gabor-like receptive fields of cortical cells (Figure 7), suggesting that the brain en-
codes visual inf ontnatiom using the smallest number of active neurons possible.

from the histograms produced after
applying a random filtering function,
which exhibit more of a Gaussian dis-
tribution (Figure 8), as does Gabor fil-
tering a random image (such as the one
shown in Figure 2).

The sharp peak and heavy tails turn
out to be most pronounced when the
particular Gabor filter chosen resem-
bles the receptive fields of cortical neu-
rons. This finding suggests that these
neurons are, in a sense, "tuned" to re-
spond to certain patterns in natural
scenes, features, such as edges, that are
typical of these images but that never-
theless show up relatively rarely. So
when presented with an image, only a
small number of neurons in the cortex
should be active; the rest will be silent.
With such receptive fields, then, the
brain can achieve what neuroscientists
call a sparse representation.

Although studies of histograms are
suggestive, they leave many questions.
Might other filters be capable of repre-
senting images even more sparsely, fil-
ters that do not at all resemble the re-
ceptive fields of cortical neurons? And
is the brain achieving a sparse repre-
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sentation by encoding just a few fea-
tures and ignoring others? We began
to tackle these questions in 1994. At
that time, Olshausen had just complet-
ed his doctoral thesis on computation-
al models for recognizing objects and
was becoming intrigued by Field's
work on natural images. Together we
began developing a way to search for
functions that can represent natural im-
ages as sparsely as possible while pre-
serving all the information present.

Because this task turns out to be
computationally difficult, we limited
the scope of our study to small patches
(typically 12 by 12 pixels in size) ex-
tracted from a set of much larger (512
by 512) natural images. The algorithm
begins with a random set of basis func-
tions (functions that can be added to-
gether to construct more complicated
ones) that are the same size as the im-
age patches under consideration. It
then adjusts these functions incremen-
tally as many thousands of patches are
presented to it, so that on average it
can reconstruct each image using the
smallest possible number of functions.
In other words, the algorithm seeks a

"vocabulary" of basis functions such
that only a small number of "words"
are typically needed to describe a giv-
en image, even though the set from
which these words are drawn might be
much larger. Importantly, the set of ba-
sis functions as a whole had to be ca-
pable of reconstructing any given im-
age in the training set.

As we hoped from the outset, the ba-
sis functions that emerged from this
process resemble the receptive fields of
VI cortical neurons: They are spatially
localized, oriented and bandpass (Fig-
ure 9). The fact that such functions re-
sult without our imposing any other
constraints or assumptions suggests
that neurons in VI are also configured
to represent natural scenes in terms of a
sparse code. Further support for this no-
tion has come very recently from the
work of Jack Gallant and his colleagues
at the University of California, Berkeley,
who showed that neurons in the prima-
ry visual cortex of monkeys do, in fact,
rarely become active in response to the
features in natural images.

Our results also shed new light on
the utility of wavelets, a popular tool for
compressing digital images, because
our basis functions bear a close resem-
blance to the functions of certain
wavelet transforms. In fact, we have
shown that the basis functions our itera-
tive procedure provides would allow
digital images to be encoded into fewer
bits per pixel than is typical for the best
schemes now used—for example,
JPEG2000 (a wavelet-based image-
compression standard now under de-
velopment). Together with Michael
Lewicki at Carnegie Mellon University,
we are currently exploring whether
this work might yield practical bene-
fits for computer users and others who
need to store and transmit digital im-
ages efficiently.

Independence: The Holy Grail?
Our algorithm for finding sparse image
codes is one of a broad class of compu-
tational techniques known as indepen-
dent-components analysis. These methods
have drawn considerable attention be-
cause they offer the means to reveal the
structure hidden in many sorts of com-
plex signals. Independent-components
analysis was originally conceived as a
way to identify multiple independent
sources when their signals are blended
together, and it has been quite success-
ful at solving such problems. But when
applied to image analysis, the results

89



obtained should not really be deemed
"independent components."

Typical images are not simply the
sum of light rays coming from different
objects. Rather, images are complicated
by the effects of occlusion and by varia-
tions in appearance that arise from
changes in iflumination and viewpoint.
What is more, there are often loose cor-
relations between features within a sin-
gle object (say, the parts of a face) and
between separate objects (chairs, for ex-
ample, often appear near tables), and in-
dependent-components analysis would
erroneously consider such objects to be
independent entities. So the most one
can hope to achieve with this strategy is
to find, descriptive functions that are as
statistically independent as possible.
But it is quite unlikely that such func-
tions will be truly independent.

Despite these limitations, this general
approach has yielded impressive re-
sults. In a recent study of moving im-
ages, Hans van Hateren at the Uni-
versity of Groningen obtained a set of
functions that look similar to our so-
lutions in their spatial properties but
that shift with time. These functions
are indeed quite similar to the space-
time receptive fields of the neurons in
VI that respond to movement in a par-
ticular direction.
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, Links to Internet resources for
• further exploration of
"Vision and the Coding of

Natural Images"
are available on the

American Scientist Web site:

http: / / www.amscfcorg/amsci/
artides/00artides/Olshausert,html

Future Directions
Many other investigators are now at-
tempting to formulate schemes for en-
coding more complex aspects of shape,
color and motion, ones that could help
to elucidate the still-puzzling workings
of neurons in VI and beyond. We sus-
pect that this research will eventually
reveal that higher levels of the visual
system obey the principles of efficient
encoding, just as the low-level neural
circuits do. If so, then computer scien-
tists and engineers now focusing on
the problem of image compression
should keep abreast of emerging re-
sults in neuroscience. At the same time,
neurosdentists should pay close atten-
tion to current studies of image pro-
cessing and image statistics.

Some day, scientists may be able to
build machines that rival people's abili-
ty to search through complex scenes
and quickly recognize objects—from,
obscure plant species to never-before-
seen views of someone's face. Such feats
would be truly remarkable. But more
remarkable still is that the principles
used to design these futuristic devices
may mimic those of the human brain.
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Mitochondrial DNA and the Peopling
of the New World

Genetic variations among Native Americans provide further clues
to who first populated the Americas and when they arrived

Theodore G. Schurr
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On the eve of Christopher Coktm-
bus's arrival on San Salvador (now

part of the Bahamas) in 1492, there were
perhaps several tens of millions of peo-
ple inhabiting the Americas. Once it be-
came evident that the inhabitants of this
New World were not, in fact, East Lmdi-

Theodore Schurr is a postdoctoral scientist in the
Department of Genetics at the Southwest Founda-
tion for Biomedical Research. Address: P.O. Box
760549, San Antonio, TX 78245-0549. Internet:
tschxirr@danoin.sfor.org

ans (as Columbus had at first sup-
posed), the existence of the Native
American population became a huge
puzzle to the Renaissance Europeans.
Just who were these people across the
ocean, and where did they come from?
Various theories were proposed in the
centuries that followed, including the
notion that the Native Americans (now
often called Amerindians) were the de-
scendants of the "lost tribes of Israel."
Some scholars even attempted to draw
parallels between the Amerindians and

the contemporary European Jews of the
era. It was not until the 18th century
that scholars hit on the notion, now
well established, that the Amerindians
originated on the Asian continent. (Re-
cent claims—including the putative
"Caucasian" characteristics of the Ken-
newick skeleton—that European stock
may have been present in pre-Co-
lumbian America do not deny the
overwhelming contribution of Asiatic
peoples to the ancestry of modern
Amerindians.)
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Emergence of simple-cell recepiwe
field properties by learning a sparse

code for natural images
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Emergence of simple-ceil
receptiwe field properties
by learning a sparse
code for natural images

Bruno A. Oishausen* & David J. Field

Department of Psychology, Uris Hall, Cornel! University, Ithaca,
New York 14853, USA

THE receptive fields of simple cells in mammalian primary visual
cortex can be characterized as being spatially localized,
oriented1"4 and bandpass (selective to structure at different
spatial scales), comparable to the basis functions of wavelet
transforms5-6. One approach to understanding such response
properties of visual neurons has been to consider their relation-
ship to the statistical structure of natural images in terms of
efficient coding7"12. Along these lines, a number of studies have
attempted to train ansupervised learning algorithms on natural
images in the hope of developing receptive fields with similar
properties13"18, but none has succeeded in producing a full set that
spans the image space and contains all three of the above
properties. Here we investigate the proposal8'12 that a coding
strategy that maximizes sparseness is sufficient to account for
these properties. We show that a learning algorithm that
attempts to find sparse linear codes for natural scenes will
develop a complete family of localized, oriented, bandpass recep-
tive fields, similar to those found in the primary visual cortex. The
resulting sparse image code provides a more efficient representa-
tion for later stages of processing because it possesses a higher
degree of statistical independence among its outputs.

We start with the basic assumption that an image, I(x,y), can be
represented in terms of a linear superposition of (not necessarily
orthogonal) basis functions, <^,(x,y):

The image code is determined by the choice of basis functions, (f>t.
The coefficients, a,, are dynamic variables that change from one
image to the next. The goal of efficient coding is to find a set of 4>t

that forms a complete code (that is, spans the image space) and
results in the coefficient values being as statistically independent
as possible over an ensemble of natural images. The reasons for
desiring statistical independence have been elaborated else-
where9iI2>w, but can be summarized brieiy as providing a strategy
for extracting the intrinsic structure in sensory signals.

One line of approach to this problem is based on principal-
components analysis'4-15'20, in which the goal is to find a set of
mutually orthogonal basis functions that capture the directions of
maximum variance in the data and for which the coefficients are
pairwise decorrelated, {«;«,) — (a,) (a,). The receptive fields that
result from this process are not localized, however, and the vast
majority do not at all resemble any known cortical receptive fields
(Fig. 1). Principal components analysis is appropriate for captur-
ing the structure of data that are well described by a gaussian
cloud, or in which the linear pairwise correlations are the most
important form of statistical dependence in the data. But natural
scenes contain many higher-order forms of statistical structure,
and there is good reason to believe they form an extremely non-
gaussian distribution that is not at all well captured by orthogonal
components12. Lines and edges, especially curved and fractal-like
edges, cannot be characterized by linear pairwise statistics6-21 and
so a method is needed for evaluating the representation that can

* Present address: Center for Neurosctence, UC Davis, Davts, California 95616, USA.
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FIG. 1 Principal components calculated on 8 x 8 image patches extracted
from natural scenes by using Sanger's rule14. The full set, of 64 components
is shown, ordered by their variance (by columns, then by rows). The oriented
structure of the first few principal components does not arise as a result of
the oriented structures in natural images, but rather because these
functions are composed of a small number of low-frequency components
(the lowest spatial frequencies account for the greatest part of the variance
in natural scenes8}. Reconstructions based solely on the first row of
functions will merely yield blurry images. Identical-looking components
are obtained for images with the same amplitude spectrum as natural
images but with randomized phases (that is, W noise).

take into account higher-order statistical dependences in the
data.

The existence of any statistical dependences among a set of
variables may be discerned whenever the joint entropy is less than
the sum of individual entropies, Hi^.aj. -..,«„) < l.iH(ai), other-
wise the two quantities will equal. Assuming that we have some
way of ensuring that information in the image (joint entropy) is
preserved, then a possible strategy for reducing statistical depen-
dences is to lower the individual entropies, H(a,), as much as
possible. In Barlow's terms19, we seek a minimum-entropy code.
We conjecture that natural images have 'sparse structure'—that
is, any given image can be represented in terms of a small number
of descriptors out of a large set8'12—and so we shall seek a specific
form of low-entropy code in which the probability distribution of
each coefficient's activity is unimodal and peaked around zero.

The search for a sparse code can be formulated as an optimiza-
tion problem by constructing the following cost function to be
minimized:

E ~ —[preserve information] — k[sparseness of at} (2)

where X is a positive constant that determines the importance of
the second term relative to the first. The first term measures how
well the code describes the image, and we choose this to be the
mean square of the error between the actual image and the
reconstructed image:

[preserve information] — — )> (3)

The second term assesses the sparseness of the code for a given
image by assigning a cost depending on how activity is distributed
among the coefficients: those representations in which activity is
spread over many coefficients should incur a higher cost than
those in which only a few coefficients carry the load. The cost
function we have constructed to meet this criterion takes the sum
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of each coefficient's activity passed through a nonlinear function
S(x):

[sparseness of a,\ — — V ] S (4)

where a is a scaling constant. The choices for S(x) that we have
experimented with include —e , log(l -fx2) and | x | , and all
yield qualitatively similar results (described below). The reasoning
behind these choices is that they will favour among activity states
with equal variance those with the fewest number of non-zero
coefficients. This is illustrated in geometric terms in Fig. 2.

Learning is accomplished by minimizing the total cost func-
tional, E (equation (2)). For each image presentation, E is
minimized with respect to the «,. The 4>i then evolve by gradient
descent on E averaged over many image presentations. Thus for a
given image, the at are determined from the equilibrium solution
to the differential equation:

where bi-Y,x}(j>i{xj)I{x,y) and Ctj = 2ijV^,(x,y)^i(x,y). The
learning rule for updating the <f> is then:

(6)

where / is the reconstructed image, / (xm,yn) = 'Ziai4>i(xm,yn), and
r\ is the learning rate. One can see from inspection of equations (5)
and (6) that the dynamics of the ai; as well as the learning rule for
the </>;, have a local network implementation. An intuitive way of
understanding the algorithm is that it is seeking a set of <f>t for
which the a, can tolerate 'sparsification' with minimum reconstruc-
tion error. Importantly, the algorithm allows for the basis func-
tions to be overcornplete (that is, more basis functions than
meaningful dimensions in the input) and non-orthogonal5, with-
out reducing the degree of sparseness in the representation. This
is because the sparseness cost function, S, forces the system to
choose, in the case of overlaps, which basis functions are most
effective for describing a given structure in the image.

The learning rule (equation (6)) was tested on several artificial
datasets containing controlled forms of sparse structure, and the

FIG. 2 The cost function for sparseness, plotted as a function of the joint
activity of two coefficients, a,-anday. In this example, S(x) = log(l+x2). An
activity vector that points towards a corner, where activity is distributed
equally between coefficients, will incur a higher cost than a vector with the
same length that lies alongone of the axes, where the total activity is loaded
onto one coefficient. The gradient tends to 'sparsify' activity by differentially
reducing the value of low-activity coefficients more than high-activity
coefficients. Alternatively, the sparseness cost function may be interpreted
as the negative logarithm of the prior probability of the a, (ref. 23), assuming
statistical independence among the a, (that is, a factorial distribution), and
with the shape of the distribution specified by S (in this case a Cauchy
distribution).

808

results of these tests (Fig. 3) confirm that the algorithm is indeed
capable of discovering sparse structure in input data, even when
the sparse components are non-orthogonal The result of training
the system on 16 x 16 image patches extracted from natural
scenes is shown in Fig. 4a. The vast majority of basis functions
are well localized within each array (with the exception of the low-
frequency functions). Moreover, the functions are oriented and
selective to different spatial scales. This result should not come as
a surprise, because it simply relects the fact that natural images
contain localized, oriented structures with limited phase align-
ment across spatial frequency6. The functions <t>, shown are the
feedforward weights that, in addition to other terms, contribute to
the value of each at (refer to term bt in equation (5)). To establish
the correspondence to physiologically measured receptive fields,
we mapped out the response of each at to spots at every position:
the results of this analysis show that the receptive fields are very
similar in form to the basis functions (Fig. 4b), The entire set of
basis functions forms a complete image code that spans the joint
space of spatial position, orientation and scale (Fig. Ac) in a
manner similar to wavelet codes, which have previously been
shown to form sparse representations of natural images8'12-22.
The average spatial-frequency bandwidth is 1.1 octaves (s.d,
0.5) with an average aspect ratio (length/width) of 1.3 (s.d., 0.5),
which are characteristics reasonably similar to those of simple-cell
receptive ields (~1.5 octaves, length/width ~2)5. The resulting
histograms have sparse distributions (Fig. Ad), decreased entropy

Result

a Sparse pixels

b Sparse gratings mmm
MV80S4

Sparse gabors

FIG. 3 Test cases. Representative training images are shown at the left and
the resulting basts functions that were learned from these examples are
shown at the right In a, images were composed of sparse pixels: each pixel
was activated independently according to an exponential distribution,
P(x) =•• e"|ic;/Z. In b, images were composed similarly to a, except with
gratings instead of pixels (that is, 'sparse pixels' in the Fourier domain). In c,
images were composed of sparse, non-orthogonal Gaborfunctions with the
method described by Field12. In all cases, the basis functions were initialized
to random initial conditions. The learned basts functions successfully
recover the sparse components from which the images were composed.
The form of the sparseness cost function was S(x) = —e"* , but other
choices (see text) yield the same results.
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FIG. 4 Results from training a system of 192 basis functions
on 16 x 16-pixel image patches extracted form natural
scenes. The scenes were ten 512 x 512 images of natural
surroundings in the American northwest, preprocessed by
filtering with the zero-phase whitening/lowpass filter
R(f) = fe^f/V'\ fa = 200 cycles/picture (see also ref. 9).
Whitening counteracts the fact that the mean-square error
(or m.s.e.) preferentially weights low frequencies for natural
scenes, whereas the attenuation at high spatial-frequencies
eliminates artefacts of rectangular sampling. The a( were
computed by the conjugate gradient method, halting when
trie change in Ewas less than 1%. The & were'initialized to
random values and were updated every 100 image presen-
tations. The vector length (gain) of each basis function, 4>i,
was adapted overtime so as to maintain equal variance on
each coefficient. A stable solution was arrived at after'
~4,000 updates (~400,000 image presentations). The
parameter X was set so that X/a = 0.14, with a2 set to the
variance of the images. The form of the sparseness cost
function was Six) = log(l +x2) . a, The learned basis func-

' tions, scaled in magnitude so that each function fills the grey
scale, but with zero always represented by the same grey
level (black is negative, white is positive), b, The receptive
fields corresponding to the last row of basis functions in a,
obtained by mapping with spots (single pixels preprocessed
identically with the images). The principal difference may be
accounted for by the fact that sparsifying of activity makes
units more selective in which aspects of the stimulus they
respond to. c, The distribution of the learned basis functions
in space, orientation and scale. The functions were subdi-
vided into high-, medium- and low-spatial-frequency bands
(in octaves), according to the peak frequency in their power
spectra, and their spatia! location was plotted within the
corresponding plane. Orientation preference is denoted by
line orientation, d, Activity histograms averaged over all
coefficients for the learned basis functions (solid line) and
for random initial conditions (broken line). In both cases,
A/a = 0.14, showing that the learned basts functions can
accommodate a higher degree of sparsification. Note that
even the random basis functions have positive kurtosis due
to sparsification. The width of each bin used in calculating the
entropy was 0.04.

(4.0 bits compared with 4.6 bits before training), and increased
kurtosis (20 compared with 7.0) for a mean-square reconstruction
error that is 10% of the image variance.

These results demonstrate that localized, oriented, bandpass
receptive fields emerge when only two global objectives are placed
on a linear coding of natural images: that information be pre-
served, and that the representation be sparse. These two objec-
tives alone are sufficient to account for the principal spatial
properties of simple-cell receptive fields. A number of unsuper-
vised learning algorithms based on similar principles have been

Received 10 November 1995; accepted 25 April 1996.

1. Hubel, D. H. & Wiesel, T, N. J. PhysiaL, Land. 19S, 215-244 (1968).
2. De Vatois, R. L, Albrecht, D. G. &Thore«, L. G. Vision Res. 22,545-559 (1982).
3. Jones, J. P. & Palmer, L A. J. Neurapbysiol. SB, 1233-1258 (1987).
4. Parker, A. j . & Hawken, M.l.J. apt. Sac. Am. AS, 598-605 (1983).
5. Daugman, J. G. Computational Neuroscience (ed. Schwartz, E.5 403-423 (MST Press, Cam-

Bridge, MA, 1990).
8. Field, D. i . in Wavelets, Fractals, and Fourier Transforms (eds Farge, M., Hunt, J. & Vsscillicos,

C.) 151-193 (Oxford Univ, Press, 1993).
7. Srinivasan, M, V., Laughlin, S. S. & Dubs, A. Proc. R. Soc. Lond. B216,427-459 (1982).
8. Reid, D. J. J. opt. Soc. Am. A4,2379-2394 (1987).
9. Atick, j , J. Network a, 213-251 (1992).

10. van Hateren, J. H. Nature 360, 68-70 (1992).
11. RurJerman, D. L Network S, 517-548 (1994).
12. field, D. J. Neur. Comput. 6, 559-601 (1994).
13. Barrow, H. G. in IEEE First Int. Cant on Neural Networte Vol. 4, (eds Caudill, M. & Butler, C.)

115-121 (Institute of Electrical and Electronics Engineers, 1994).
14. Sanger, T. D. in Advances in Neural Information Processing Systems Vol.) (ed. Touretzl<y, D.)

11-19 (Morgan-Kaufmann, 1989).
15. Hancock, P. J. B., Baddeley, R. J. & Smith, L S. Network 3, 61-72 (1992).
16. Law, C. C. & Cooper, L N, Proc. natn. Acad. Sci. U.S.A. 9 1 , 7797-7801 (1994).
17. Fyfe, C. & Baddeley, R. Netwo* 6,333-344 (1995).

NATURE • VOL 381 • 13 JUNE 1996

proposed for finding efficient representations of data23~30, all of
which seem to have the potential to arrive at results like these.
What remains as a challenge for these algorithms, and also for
ours, is to provide an account of other response properties of
simple cells (for example, direction selectivity), as well as the
complex response properties of neurons at later stages of the
visual pathway, which are noted for being highly nonlinear. An
important question, then, is whether these higher-order proper-
ties can be understood by considering the remaining forms of
statistical dependence that exist in natural images. •

18. Schmidhuber, J., Eldracher, M. & Foltin, B. Neur. Comput 8 773-786 (1996).
19. Barlow, H. S. Neur. Comput X, 295-311 (1989).
20. Linsker, R. Computer 105-117 (March, 1988).
21. Olshausen, B. A. & Field, D. 5. Network ?, 333-339 (1996),
22. Daugman, j . G. IEEE Trans, biomed. Engng. 36,107-114 (1989).
23. Harpur, G. F. & Prager, R. W. Network 7,277-284 (1996).
24. Foldiak, P. Biol. Cybernet. 64,165-170 (1990).
25. Zemel, R. S. thesis, Univ. Toronto (1993).
26. Intrator, H. Neur. Comput 4,98-107 (1992).
27. Bell, A. J. & Sejnowski, T. J. Neur. Comput. 7,1129-1159 (1995).
28. Saund, E. Neur. Comput 7, 51-71 (1995).
29. Hinton, G. E., Oayan, P., Frey, B. J. & Neal, R. M. Science 288,1158-1161 (1995).
30. Lu, Z. L, Chubb, C, & Sperling, G. Technical Report MBS 96-15 (Institute for Mathematical

Behavioral Sciences, University of California at Irvine, 1996).

ACKNOWLEDGEMENTS. We thank M. Lewicki for helpfui discussions atthe inception of this work, and
C. Lee, C. Srody, G. Harpur, F. Girosi and M. Riesenhuber for useful input. This work was supported by
grants from NIMH to both authors. Pare of this work was carried out at the Center for Bioiogica! and
Computational teaming atthe Massachusetts Institute of Technology.

CORRESPONDENCE and requests for materials to be addressed to B.A.O. (e-mail: bruno@ai.mit.edu).
The program for running the simulation, as well as the images used in training, are available via
http://redwood.psych.cornell.edu/sparseneVspar5enethtn1l.

609

97


