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FORWARD SWIMMING BACKWARD SWIMMING

! J_.CQMPtiH.WAVE. | |

UNDULATORY SWIMMING in the eellike lamprey constitutes (red) and extension (green) pass from head to tail down the
a relatively simple form of vertebrate locomotion that neuro- body of a fish, propelling it forward through the water (left).
scientists can examine effectively. In response to signals Similar waves traveling from tail to head can drive the crea-
emitted by the brain, wave after wave of muscle contraction ture backward (right).

touch

/

Fig. 1. The tadpole (A) and its responses to
touch (B.C). (B) Tracings from high-speed
video show that when touched on the flank
(arrowhead), the tadpole flexes to the
opposite side, swims off and stops when it
contacts the side of the dish (hatched). (C)

When touched on the flank, it swims for-
wards and to the opposite side. When
touched on the head, it first flexes away,
and then swims off. ((B) and (C) based
on videos made by K. Boothbv and
P. Stonehewer.)
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Integrate-and-fire networks

Paul C. Bressloff
Department of Mathematics

University of Utah

Input

Figure 2.15 (Upper right) Network of pyramidal neurons in mouse cortex, stained by the Golgi
method, which stains only about 10% of the population. (Lower left) Schematic of a generalized
neuron showing one of its inputs to a dendrite. one to the cell body, and one of its*axonal
contacts.
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I. Integrate-and-fire neuron

V(Tm) = h, limV(Tm + 8) = 0
<5->0

a(t)
Tn-1 n T n+1.

t
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Mode-locking

• Periodic input I(t) = Io+ £ sin(oot)

m+1F(Tm+1) = Tm IT

• Let A = 2TC/CO and define a p:q mode-locked
state by

Tm+q = Tm

Distinguish 3 types of mode-locked solution:

(i)
(ii)
(iii)

simple bursting: p = 1, q;
skipping: p> 1, q= 1
mixed state: p,q > 1

2A

14



• Parameter space over
locked state exists and i
Arnold tongue.

a given
stable defines

• For small coupling the Arnold tongues are non-
overlapping such that the given mode4ocked
state is a global attractor of the system.

• Define mean ISI

1
/A\ — lim — "V (Tn+l — Tn\
\ LA I —• 11111 7 II II

such that within Arnold tongue

P

•tect.---- . . . • >

amplitude
e

..**
i;/1.-*

time costant x
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Reliability

Mode-locking provides a mechanism for spike
time reliability.

Consider 1:1 mode-locking: For almost all initial
conditions firing times converge to the solution
Tn = (n - 4>)A with

<? c i T i i / •fr/h -i— fc\ i —C oLLlyZsJUfJ i ifsn J —

\
1

\

•Reliability also
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for weak aperiodic

• Intrinsic noise can lead to a loss of precision
and reliability
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Phase model: single IF neuron

Suppose I(t) = Io + eX(t) for small 8 and periodic
input X(cot) of frequency co. Perform change of
variables

2K r no dU

The phase variable satisfies the equation

o + £K{cot)R{6) (

where coo= 2TI/T0

R(6) = exp([6]T0

V(t)

18



'Rewrite phase equation as

dt
£X(G)R(0)

dt
= Q)

Suppose that AG) = coo - co = 0(8) and let \\f = 0• - (
Since d\|//dt is small we can use averaging theory:

d\ff

dt
= Aco + £H(y/)

where H(\(/) is the phase interaction function

•Phase-locking condition

\ ACD + eH(y/)

19
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II. Network of IF neurons

Ej(t)

J

•

dV
I

dt

Synaptic input:

N

Threshold condition:

V;

n

j is the n firing time of the j neuron

21



J(t) represents synaptic and axonal delays

J(T)

^Example:

Large a (small a) corresponds to fast (slow)
synapses, and xa is the axonal delay

For simplicity assume that V s » V

22



Cable Theory

rRANSFER FUNCTION :fi(X.T)

Figure 2.13
Transfer function (in A) and its convolution (in B) for voltage clamping at the soma
of a passive soma-dendritic model with L = 1 . 5 . Curves have two interpretations:
(l) as the voltage transient, V(X,T), at point A', in response to a voltage transient,
V(0, T), imposed by the voltage clamp at the soma, and (2) as the current transient,
1(0, T), detected by the voltage clamp at A' = 0, for a synaptic current, Ii(X,T),
imposed at point A'. In B, the imposed transient is the one labeled A' = 0. In A, the
imposed transient corresponds to a Dirac delta function. Details of equations and
interpretations can be found in the original publication (Rail and Segev 1985).

23



Phase-locking.

• All neurons have same inter-spike interval T
but the spike trains are shifted by a phase fy

•1
I I- -I

T

In terms of the phase description

f 0. (t) =

I I

Each neuron receives a periodic input

where

P(0)=
m=

24



Phase equation is

for all j = 1,...,N.

•Averaging over one period gives

dfy
dt

where H(6) is the phase interaction function

2K

H(0) = — J R(6' - 0)P(0')de'
0

»Phase-locking equation

25



Pair of inhibitory IF neurons

discrete signal delay

distributed synaptic delay

= 02 " A

Condition for phase-locking is

\

6 8 10 12 14 16 18
a

0 . 2 0 . 4 0 . 60

Stability condition
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•Increasing the coupling between a pair of
inhibitory IF neurons leads to oscillator death
example of a strong coupling instability

coupling
IEI

20

15

10

5

0

a 0

oscillator death

synchrony

1 2 3
Inverse rise time a

•Consider perturbations of synchronous state:

I I i I I i i i

*1i i i i i i i
Stable solution (5T decays)

i i i i i i i i
5T

Unstable solution (5T grows)
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Excitatory/inhibitory pair of IF neurons

•Increasing the coupling between an excitatory/
inhibitory pair of IF neurons leads to bursting

20

coupling
8

o

•Bursting state consists of a time-periodic
modulation in the mean firing rate

230 235 240 245
t (in units of Td)

250
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III. Large populations of IF neurons

Consider synaptic input

N

j=l

with J(t) = 1 for 0 < t < At, and zero otherwise.

•Then
N

where Nj(t,At) is the number of spikes fired by j t h

neuron in interval [t-At,t]

• If Xt(t) is a slowly varying function of time,

N

o

7=1 0

where F(Xj) is the firing rate for constant
synaptic input X;

30



• Recall that for a constant input Io+ eX, an IF
neuron is an oscillator with constant ISI

= log 0

Hence, F(Xt) = -1

F(X)

• Argument holds for more general J(t). For
example, if J(t) = e' then

dXj_

dt

N

7=1

31



• There are two scenarios in which X^t) is
slowly varying with time t:

Slow synapses - J(t) has a broad profile (small
a) so that there is time-averaging of incoming
spike trains over a sliding window

Incoherent states - space-averaging of spike
trains over a large population with a uniform
distribution of firing times

large a
small a

time-averaging

11 ii i n
I I II M i l l
ii m i i i i

space-averagmg

32
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The incoherent state

• Consider a large pool of globally coupled IF
neurons, and define the population activity by

N

7=1 n

The number of neurons that fire in interval
[t, t+At] is then N(t) where

t+At

N(t)= JA(t')dt'

All neurons receive the same synaptic input

= jj(t')A(t-t')dt
o

• Incoherent state defined as A(t) = Ao. The
value for Ao is determined self-consistently from

A)
= log

34



Can derive a MF equation for A(t)

A(t)= j P(t \ s)A(s)ds

where P(t\s) is the probability of firing at time t
given a neuron last fired at time s. In the case of
zero noise

= S(t-s-T(s))\

where T(s) is determined from integrating the IF
equation between s and s+ T(s),

Stability

• Consider perturbations of incoherent state

where A,n = 2mn +An

i) For excitatory coupling, incoherent state is
stable with respect to nth eigenmode provided
that a<(xn where

2

35



ii) Inhibitory network is unstable with respect to
high harmonics, that is, large n eigenmodes,
since we now require a > an

iii) Axonal delays tend to have a destabilizing
effect whereas noise has a stabilizing effect by
suppressing higher harmonics

i 2

<
0
940

1000

. J .. . J .l.u-
960 980 1000 940 960 980 1000

• v
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IV. IF model of orientation tuning

i) Orientation preference changes continuously
as a function of cortical location except at
pinwheels

ii) There exist linear regions bounded by
pinwheels within which iso-orientation domains
form parallel slabs

iii) Linear regions cross OD stripes at right-
angles. Pinwheels tend to align with centers of
OD stripes.

iv) Four pinwheels per hypercolumn

37



The Journal of Neurosdence, August 1995, 75(8) 5449
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Ring model of orientation selectivity

LGN

•X h

t
t

*

t

< •

w
• A

\ \

dt
+ reset

Like orientations excite

Unlike orientations inhibit

n

0

f )[£„ J(t -
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• For small coupling IF neurons are phase-
locked. Increasing the coupling generates an
instability leading to sharp orientation tuning.

firing

0.4

0.35

0.3

0.25

0.2

0.15

0.1

0.05

0

C = 0.95

C = 0.90

0° 45° 90° 135°

orientation (degrees)
180°

Mean firing rate is given by

M

M

m=\

Width of tuning curve is contrast invariant
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• Recurrent mechanism of orientation tuning - an
example of spontaneous symmetry breaking

• Consider the corresponding rate model

dt

• Suppose F(0) = 0 so that X = 0 is a fixed point
solution of the rate equation. Linearize and set

n
(X 4

o

Solutions of eigenvalue equation are .

thw h e r e Wn i s t h e n t h F o u r i e r c o m p o n e n t of W((/))

= Wo + 2^ Wn cos(2n(j))
n>0

• For small coupling 8,.we have XQ < 0 for all n
and so fixed point is stable

41



• Suppose that Wj> Wn for all n ^ 1. Then fixed
point destablilizes at critical coupling £c = 1/W1

due to excitation of eigenmode u

• The growing eigenmode has a single peak at
the orientation <|>0 and leads to the formation of a
tuning curve

• What determines (|)0?

<|>0 is arbitrary in the absence of any biased LGN
input - this reflects hidden rotation symmetry of
the ring

a weakly biased LGN input fixes (|)0 by explicitly
breaking the symmetry

42



• Find fluctuations in the ISIs grow with the
speed of the synapses a

1.5

0 1

0.5

(b)

o
Gao

-•*»•

0.5 1.5
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V. Synaptic waves

• Consider a one-dimensional network of

synaptically coupled excitatory IF neurons:

W(r-r')

Linear evolution

dV(r,t)

di

Nonlinear reset: V(r,t+) = 0 whenever

Synaptic input:

-Tn{rf))dr! )
)

45



• Take W(r) to be an exponential weight
distribution

y W(r) = (2a)-1e
Basic results will not depend on the precise
form of W(r).

W(r)

- o

• For e = Owe can distinguish between two
regimes:

Oscillatory regime (In > 1) — each neuron
independently fires at regular intervals of
period To = ln ( /o / [ / o - l ] )

Excitable regime (Jo < 1) - each neuron
requires an additional stimulus before it can
fire.

46



Solitary pulses: Io = 0

• Define a solitary wave solution as one where
each neuron fires once with T(r) = r/c (up to
an arbitrary constant). Here c is the speed of
the pulse.

• Threshold condition

V(r,T(r)) = l

generates a self-consistency condition for c:

1 = / e*
—oo

oo
/
—oo

dt

which simplifies to

r/c

o

47



For synaptic and axonal delays J{r)

-1
ga c ,—CTa

• For large c and ra = 0, the velocity scales
according to a power law c ~ aa^jg/2. If
ra > 0 then c ~ In ̂ .

• There exists a critical coupling ^s such that
there are no traveling pulse solutions for
g < gs and two solutions for g > gs.

10 20 30 40 50 60 70 80
g

• The lower (upper) solution branch is
unstable (stable) when ra = 0.
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Lurching waves

• For fixed a and e the continuous solitary
pulse can become unstable at a critical value
of the delay rac-

speed c

20 40 60
coupling E

100

• In the regime where the continuous wave is
unstable, ra > raCi lurching pulses propagate
with discontinuous, periodic spatio-temporal
characteristics (Golomb and Ermentrout
1999).

49



Cortical versus thalamic waves

• In computational and experimental studies
of disinhibited neocortical slices, one finds
that neuronal discharges propagate
continuously at a velocity c~ 10 — 15 cm/sec
(Golomb and Amitai 1997). Axonal delays
are relatively small.

• In models of thalamic slices, composed of
excitatory thalamocortical neurons and
inhibitory reticular thalamic neurons, waves
propagate in a lurching manner at a velocity
c ~ 1 cm/sec. Thought to form the basic
mechanism for the generation of 7- to 14-Hz
spindle oscillations during the onset of sleep.

TC

RE
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• Each recruitment cycle has two stages:

I. A new group of inhibitory RE cells is excited
by synapses from TC cells, and this RE group
then inhibits a new group of TC cells.

II. The new recruited TC cells rebound from
hyperpolarization and fire a burst of spikes,
which further recruit more RE cells during
next cycle.

• Can reduce the two-layer thalamic model to
a single-layer excitatory network with a large
effective delay (ra « 100 msec) caused by the
time needed for a TC cell to rebound from
inhibition.
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• In the regime where the continuous wave is
unstable, ra > rac, lurching pulses propagate
with discontinuous, periodic spatio-temporal
characteristics (Golomb and Ermentrout
1999).

1001
A. td=3 ms B. xd=30 ms

95-

90
210 220

t(ms)

/

I
f

f

230 1700 1800
t (ms)

1900

C. ms

>
x
I

10-

52



• The lurching wave can occur in regions
where continuous wave does not exist. For
certain choices of weight kernel W(x) the two
types of wave may co-exist (bistability).

Exp shape

40.0

Urns)

Square shape

40.0-

Continuous
Pulse:
s - stable
us - unstable

not exist

Lurching
Pulse:
m exists
and stable

-bistable
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Neural phase oscillators

A simple model of a spiking neuron is

= / + / (V, U),

where V is cell membrane potential and U is a re-

covery variable. " .

• Using phase-plane analysis one can show how a

Hopf bifurcation occurs as current / increases

Llli
0 20 40 60 t 80 100

20 40 60 , 80

-100 -20 v 20
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Phase resetting curve

• Can perform a change of coordinates ([/, V)

(y, 6) such that dynamics on limit-cycle becomes

dd_a

• A small perturbation temporarily moves neuron off

limit-cycle generating an effective phase-shift R(6)

where 8 is point on limit cycle where disturbance

occurs.

400

14
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Network model

• Network of N neural oscillators with phases

2 = 1 , . . . , N. Each neuron periodically sends spik

to all the neurons in the network:

= Sk + eR(0i)Xi(t)

where eWij is the coupling strength from j —» i.

JLJLJLA

N

n j=

Threshold condition
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Averaging theorem for weak coupling e <C 1

Set 0$) = Clot so that

dt

N

3=1

where P(Q0*) = E n J(^ ~ 27rn/fi0)

Averaging theorem: there exists a change of vari-

ables I/J —> -0 + e6(/0, t, e) that maps to solutions of

where

'

In terms of original phase-variables,

57



Frequency
4-0.2

I 0.1

Class 2

-3.12 Pv -3.10 -2.97 p -2.87
A. A

x=0 (y=O

a

a
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Traveling waves on a chain I

H

6k-1 < 6k
> •

ek+i

H+ H+ H+

[H+(0k+1 - 6k)

• Phase-locked solution 0k(t) = Q.t + Ok for
collective period Q.

Phase-differences 4>k = — 0k.

Traveling wave up chain: 4>k > 0 V k

Traveling wave down chain: </>k < 0 V k
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Traveling waves on a chain II

Conditions for phase-locking are

for k = 1,..., N with eAn = oonjtl - ujn and

boundary conditions

Collective frequency satisfies

Two basic mechanisms for traveling waves:

A. Gradient of frequencies: Ak varies
monotonically with k.

B, Anisotropic coupling: H+ ^ H~,
0.
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Traveling waves on a chain III

• Typically, the phase-lag is slowly-varying
across the chain except in a boundary layer.

0.16

0.14

0.12

n
o.io

0.08

10 15 20 25 30 35

• For large networks one can approximate
phase-locking equations by a singularly
perturbed two-point (continuum) boundary
value problem (Ermentrout and Kopell).

• Can extend analysis to a chain of IF
oscillators with arbitrary coupling:

for a self-consistent collective period T.

(?Hr<>\c4 0 i

. R£V. LETT.
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Kuramoto model

• Mean-field model for a system of weakly-coupled,

near-identical limit-cycle oscillators:

fori

and
1,. . . JV, where K > 0 is the coupling strength

i is natural frequency of ith. oscillator.

• Frequencies UJI are distributed according to, a prob-
ability density g(u) with

i) g(-u) = g{u)

ii) ^(0) > g(u) for all w G [0, oo) (unimodal)

• Can assume g(u) has zero mean by going to a

rotating frame if necessary.
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Order parameter

Introduce complex order parameter

N

N

Geometric interpretation as centroid of phases:

s
/ r t

The radius r{t) measures the phase-coherence and

ip(t) is the average phase.

• Using a trigonometric identity,

dt
Kr
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• Oscillators only couple through mean-field quanti-

ties r, */;

• Coupling tends to synchronize oscillators - each

phase 6j is pulled toward ip with restoring force of

strength Kr (positive feedback)

Numerical results

Suppose g(uj) is a Gaussian.

timet

I. For K < Kc system converges to an incoherent

state in which the phases are distributed uniformly

around the circle: r{t) —> 0 as t —» oo
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II. For K > Kc the incoherent state becomes unsta-

ble and system converges to a partially synchronized

state: r(t) —> r^ < 1 as t —> oo.

• In the partially synchronized state the oscillators
split into two groups:

a) those near center of frequency distribution lock

together and co-rotate with average phase ijj(t)

b) those in tail of distribution run near their natu-

ral frequencies and drift relative to the synchronized

cluster

• Degree of synchrony r^ increases with K
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Problems

Derive expressions for threshold coupling Kc and

for the coherence r^K).

- solved by Kuramoto (1984)

Determine the local stability of the incoherent

and partially synchonized states in the large-AT

limit.

- stability of incoherent state determined by Mirollo

and Strogatz (1991)

- stability of coherent branch close to Kc solved

by Crawford (1994)

Global stability and convergence.

» Finite-size effects: away from the bifurcation point

fluctuations are O(N~ll2) but they can be am-

plified when K « Kc.
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Kc and

• Look for steady-state solutions r(t) =r and -0(t) =

Qt. (Can set fi = 0 by going to a rotating frame).

• Now have a set of independent oscillators whose

motions depend on r as a paramter

— Ktt sin ft, i = 1 , . . . , N

=> self-consistency condition for r.

• Two types of solution:

(a) oscillators with \UJ] < Kr approach a stable

fixed point defined implicitly by

Ui = Kr sin ft \

and are locked at frequency Q in original frame

(b) oscillators with |a;i| > Kr rotate non-uniformly

and drift relative to the locked population.

• POTENTIAL PROBLEM - drifting oscillators ap-

pear to contradict assumption of stationarity
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• SOLUTION - require drifting oscillators to form a

stationary distribution on the circle.

• Let p(6,uj)d9 denote fraction of oscillators with

natural frequency u and phase between 9 and 9 +

d9. Then p(9, u) should be inversely proportional to

angular speed:

with C determined bv the normalization condition

^ p{6, uj)d9 = 1 for each UJ.

Self-consistency condition:

Symmetry condition g(—u)).= g{u) implies that

»7T

and

-7T J\u\>+Kr

c = (cos(6>))iock

eiep(9,u)g(u)dujd9 =
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Hence

r = (cos(6>))iock = / cos(9[uj})g(uj)duj
J-Kr

r/2
= Kr cos2{6)g(Krsm6)de

J-TT/2

• Zero solution r = 0 with P(6,LU) = 1/2TT exists for

all K

• A second branch of partially synchronized solutions

satisfying

K I cos2{6)g(Kr sin 6)d6
J-n/2

bifurcates from r = 0 at critical coupling

Assuming that (/'(0) < 0 then

. V -7n?"(0)
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Stability of incoherent state: continuum limit

• Imagine a continuum of oscillators distributed on

the circle (cf. fluid mechanics). Let p(9,t,u) denote

fraction of these oscillators that lie between 9 and

9 + d6 at time t.

• Continuity (Liouville) equation

where
»7T /»OO

sm{9'-6)p(6', t, w')g(Lu')duj'd&
—7T J —OO

Consider small perturbations of incoherent state:

where e < l and expand 77 as a Fourier series

7/(0, t, u) = c(t, u;)e +c*(t, u)e + higher harmonics 1
i



Landau damping

• Although the incoherent state is neutrally stable

(for K < Kc) one finds that the coherence r(t) ex-

hibits damped oscillations with r(t) —> 0 as t —» oo

timet

• Analogous to Landau damping in a collisionless

plasma

- distribution over velocities (frequencies)

- self-consistent MF equation for electric field (co-

herence) generated by charged particles (phase

oscillators)
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