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Two Views of Modelling

• Given some network of neurons, how does it behave?

- biology, physics

• Given some computational problem, how can it be solved with neurons?

- computer science, engineering

View: To understand how the brain functions we need to understand the
computational problems it solves (Marr).

Problems: e.g. vision, audition, olfaction, linguistic communication, decision
making, movement control,... learning



Three Types of Learning

Imagine an organism or machine that experiences a series of sensory

Supervised learning: The machine is also given desired outputs y\, ?/2, • • -,
and its goal is to learn to produce the correct output given a new input.

Unsupervised learning: The goal of the machine is to build representations
from x that can be used for reasoning, decision making, predicting things,
communicating etc.

Reinforcement learning: The machine can also produce actions a\, a% ...
which affect the state of the world, and receives rewards (or punishments)
r i , r 2 , . . . . Its goal is to learn to act in a way that maximises rewards in the
long term.



Binary Hopfield Networks

McCulloch-Pitts Neurons:

if Ej^i WijXj < 0

if T,j# WijXj > 9

Binary neuron with threshold 0, activities Xi, and connections

Binary Hopfield Networks:

Recurrent network of symmetrically connected McCulloch-Pitts neurons

Q: Can you store information (memories) in these nets?

Q: What happens if you run these dynamics? Stable?



Storing Associative Memories in a Hopfieid Network

Storage Rule:

Hebb learning rule:

n

(possibly with decay)

Activation rule:

Given pattern xm\
Z /
3 n

For random uncorrelated patterns, on average
n = m in which case it's D/2.

Wl3xf « {2xf - 1 ) |
3

> 0
< 0

i.e. xm is a stable pattern (i.e. a memory)

1 if > 0

L 3

= 0 except if

if xf > 0
if xY1 < 0



Asynchronous Hopfield Dynamics Converge

Activation Rule:., v^ u/
xi -* 1 lf 2^ Wijxj

0 otherwise

Define an Energy Function : E(x) = —^ Ezjy i

Activation rule decreases energy: AE = -Axi J2j^i ̂ ijxj < 0

E is bounded below, so Hopfield dynamics converge to a stable fixed point.

Problems and limitations with binary Hopfield networks:

• low capacity; slow recall

• complex basins of attraction; spurious memories

• symmetric connections unphysiological

• no hidden units or internal representations



Perceptrons

xxX

X X
X X

o

The Classification Problem
Data: {(xn, tn)} where xn are input vectors and
tn are class labels:
tn = +1 when xn eCh

tn = - l when xn e C2.

':'.':'r'-- •'
I I - . ' . '

"'-' v^T^
~r l^\ 'J".it v"3 -

w X ' / ' . * ^ - ""*"

Model: yn = gV£wj(j)j(x
n)

y where <j)j(x) are fixed features (weights con-
nected to the pixels of x with a threshold acti-
vation function).

</(*) =
- 1 if z < 0
+ 1 if z > 0

Goal: correct classification, i.e. yn should be equal to tn on both training
data and new data (generalization).

(Rosenbla t t 1962; Widrow-Hof f 1960)



The Perceptron Cost Function

X

y Training Data:
Model: yn =

{(xn, tn)}

We want correct classification:

Goal: minimize the cost function:

Learning Rule:

and
> 0 if tn =
< 0 if tn = - 1

3

= w!jt)+rj(l)J(x
n)tn

For any data set which is linearly separable this learning rule will find a
solution in a finite number of steps.



Linear Separability
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(Mlnsky and Papert, 1969)



Multi-Layer Perceptrons

Activation function for a unit in layer £

y where a(x)
1

>—x
•

is the logistic "sigmoid" function. Note: sigmoid is only one kind of
non-linearity, many others are possible.

Universal approximation property with sufficiently many (oo) hidden units.
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Learning MLPs by Error Backpropagation

1
2 n

Idea, Chain Rule:

i ( n

dEn

dwf
dEn

dyf+l

n

dyf+l)

) ffwij)

Computes gradients efficiently.

(Werbos 1974; Parker 1985; Rumelhart, Hinton & Williams 1986)



Error Functions and Noise Models

Why squared error?

does not make sense for classification

sensitive to outliers

• what if predicting only positive numbers

• what if scales of outputs differ?

seems, and is, ad-hoc

Noise models/generative models: p(t\x, W)

Maximizing log likelihood <̂> minimizing error

lnp(t\x,W) = ]n]lp(tn\xn,W) =
n n

= -E{W)
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Noise Models

• Gaussian

p(tn\xn,W) =

E{W) =

Squared Error

7TCT
1

const

• Exponential

p(tn\xn,W) =
E(W) = -lnp(tn\xn,W) = \\tn-y(xn,W)\-ln\

Absolute Error

Bernoulli

p(tn\xn,W) =
E(W) = -

Cross-Entropy Error

= -tnlny(xn,W)-{l-tn)ln(l-y(xn,W))
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Varieties of MLP

Recurrent Networks Autoencoders

14



Autoencoders and Unsupervised Learning

output
units

input
units

hidden
units

encoder
"recognition"
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Goals of Unsupervised Learning

To find useful representations of the data, for example:

• finding clusters e.g. k-means, MoG, ART

• dimensionality reduction e.g. PCA, Hebbian learning, MDS, LLE, Isomap

• building topographic maps e.g. elastic networks, Kohonen maps

• finding the hidden causes or sources of the data

• modeling the data density

Clustering Dimensionality Reduction

w
•i.v *

f
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Uses of Unsupervised Learning

• data compression

• outlier detection

• classification

• make other learning tasks easier

View: The (sensory) brain is a statistical inference engine .

The brain extracts statistical regularities from data (words, objects, theories)
and builds probabilistic models of the data.

17



Generative Models and Recognition Models

(e.g. objects, illumination, pose)

(e.g. object parts, surfaces)

Assume we have a generative model of
the sensory world.

We invert this model (using Bayes rule)
for perception/recognition/inference.

P ( m =

(e.g. edges)

(retinal image, i.e. pixels)

P(D)

D="sensory data"

E="explanation" = hypothesis about

What's OUt there

A possible role for feedback connections in cortex?

18



Probabilistic Models

A probabilistic model of sensory inputs can be used to:

- make optimal decisions under a given loss function
- make inferences about missing inputs
- generate predictions/fantasies/imagery
- communicate the data in an efficient way

Probabilistic modeling is equivalent to other views of learning:

- information theoretic:
finding compact representations of the data

- physical analogies: minimising free energy of a corresponding
statistical mechanical system

19



(e.g. objects, illumination, pose)

The EM (Expectation-Maximization) Algorithm

How to learn a generative model of
the sensory world...

Start from some model with hidden
causes/explanations, E.

• Do recognition to infer the hid-
den causes given the observed
dataP(E|D). (E-step)

• Assume the inferred causes are
true and refine your model,
i.e. by changing connection
strengths. (M-step)

• Repeat

(e.g. object parts, surfaces)

(e.g. edges)

(retinal image, i.e. pixels)

Proven to converge to a local maxi-
mum of the likelihood.
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Overfitting

M = 0 M = 1 M = 2 M = 3
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• weight decay regularizers:

• early stopping

• averaging over many random runs (bagging)

• cross-validation

• Bayesian methods

E(W) = E(W)
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Bayes Rule and Model Selection

40

20

0

-20

40

20

0

-20

M=0 M=1

40

20

0.

40

20

M=2 M=3

40

20

0

Model Evidence

0 5 10 0 5 10 0 5 10 0 5 10

M = 4 M = 5 M = 6 M = 7

40

20

0

-20

40

20

0

-20 -20

0.8

^0.6

•0.4

0.2

0 5 10 0 5 10 0 5 10 0 5 10
0 1 2 3 4 5 6 7

M

D - data Mi,...,Mn - models

P(Mi\D) =
P{D)

= fp(D\0hl

0 i , . . . , 6n - parameter vectors

Note: we don't try to find a single parameter setting, we average over all
possible parameter settings.
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A Generative Model for Generative Models
mix : mixture,
red-dim: reduced

dimension
dyn : dynamics
disfrib : distributed

representation

hier: hierarchical

nonlin : nonlinear

switch : switching

SBN,
Boltzmann
Machines

Cooperative
Vector

Quantization

Mixture of
Gaussians

(VQ)

Mixture of
HMMs

Mixture of
Factor Analyzers

Factor Analysi
(PCA) Switching

State-space
Models

Linear
Dynamical

Systems (SSMs)

Mixture of
LDSs

Nonlinear
Gaussian
Belief Nets

Nonlinear
Dynamical
Systems
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Summary of Key Ideas

• The brain solves computational problems

• Supervised, unsupervised and reinforcement learning

• Hopfield networks

• Perceptrons, multi-layer perceptrons, and backpropagation

• Error functions and noise models

• Autoencoders and unsupervised learning

• Clustering and dimensionality reduction

• [Overfitting and Bayes Rule]
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