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Granular surface flows are common in industrial practice and natural systems, however, theoret-
ical description of such flows is at present incomplete. Two prototype systems involving surface
flow are compared: heap formation by pouring at a point and rotating cylinders. Continuum
models for analysis of these flows are reviewed, and experimental results for quasi-2d systems
are presented. Experimental results in both systems are well described by continuum models.

I. INTRODUCTION

Granular flows have been the subject of considerable
recent work [1-5] driven by both technological needs
[6, 7] and the recognition that many aspects of the ba-
sic physics are poorly understood [8]. Surface flows of
granular materials, that is flows confined to a surface
layer on a static granular bed, are important in indus-
trial practice and nature. Industrial examples appear in
the transportation, processing and storage of materials in
systems such as rotary kilns, tumbling mixers, and feed-
ing and discharge of silos. Examples in nature include
the formation of sand dunes, lava flow, avalanches, and
transport of sediments in rivers. Although considerable
progess has been made, theoretical description of surface
flows is incomplete at present. Several approaches, based
on different assumptions about the physics of the flows,
have been proposed [9-19]. A few experimental studies
are also available [9, 13, 19-30]. Most work is focussed
on two systems: heap formation and rotating cylinders
shown schematically in Fig. 1. In the case of a heap, the
surface flow is generated by pouring at a point.

An important feature of surface granular flows is the
interchange of particles between the flowing layer and the
fixed bed. In the case of a rotating cylinder the inter-
change rate is determined by kinematics since the veloc-
ity of the fixed bed at the bed-layer interface is known.
The situation in the case of heap flow is more compli-
cated. Bouchaud et al. [12] proposed a phenomenologi-
cal model (BCRE model) in which the interchange rate is
determined by the local surface angle. A variation of this
model proposed by Boutreux et al. [16] (BRAG model)

Tkhakbar@iitb.ac.in

(@) (b)

FIG. 1: Schematic view of surface flow systems: (a) Heap
flow (b) Rotating cylinder flow. (c) Coordinate system
used in the analysis.

has been broadly validated by continuum models [18, 19]
and experiments [19], as we show below. Continuum
models developed previously, for both heaps and rotat-
ing cylinders, are all based on depth-averaged hydrody-
namic equations and differ primarily in the constitutive
equations used. All the models contain parameters which
must be evaluated from experiments. However, in most
cases, these parameters have not been determined and
comparisons of model predictions to experiments have
not been reported. Hence the validity of the models is
not known.

Here we present here a common continuum based



framework for the analysis of both heap flow and rotating
cylinder flow. The treatment closely follows that given
in refs. [19] and [30]. Model predictions are compared
to experimental results and to predictions of previous
models. The general continuum model is presented first.
Results for the heap formation and rotating cylinder flow
are given next followed by conclusions.

II. GENERAL ONTINUUM MODEL

Consider a flowing layer on the surface of a granular
bed assuming the flow is nearly uni-directional in the
layer and curvature effects are small. The depth averaged
equations for flow in the layer are then, the continuity
equation

O 6o+ L tou) = (vlly=or (1)

and the z-momentum balance equation

2 (3loua)) + 2= (34p2)) = — g (3(r2e))
+ szly:O + (P’Uwvy)lyzo + (p)g(s Sil’lﬂ. (2)

In the above equations, v, and v, are the velocity com-
ponents, Ty and 7, the shear stress and normal stress,
p the bulk density of solids, 8(z,t) is the angle made by

the interface with the horizontal, and (-) = (1/4) fc;s -dy
denotes an average across the layer.

A number of assumptions are required to simplify
egs. (1) and (2). Here we take the bulk density in the
layer (p) to be nearly constant (since the dilation of the
flowing particles is not too large in the relatively slow
flows being considered), and the velocity profile in the
layer to be linear and of the form

Vg = 2u(:r,t)%, (3)

where v = (v,) is the depth averaged velocity in the
layer. The variation of the normal stress () in the
flow direction (z) is neglected considering that changes in
the layer thickness are small. Based on recent empirical
evidence [30], the shear stress is taken to be

Ov,

Tayly=0 = —cpdd < By

2
) —pgdcosBtanBs;  (4)

where ¢ &~ 1.5 is a parameter of the model, d is the par-
ticle diameter and tan 3, is the effective coefficient of
dynamic friction, with S, taken to be the static angle
of repose. Using the above assumptions, the governing
equations reduce to

g6 0

5+ 5o (6w =T, 5)
] 40 , o, ul sin(8 — Bs)
52 (5“) + :9;5; (6U ) = '—Cd—é— + g(sm—COS,Bs s (6)

where I' = —vy|y=¢. Further, assuming the static friction
forces at the heap-layer interface to be fully mobilized,
the Mohr-Coulomb criterion yields

Tayly=0 = —pgd cos B tan Gy, (7N

where tan 3,, is the effective coefficient of static friction.
The experimental technique for measurement of 3, is
discussed below.

Using eq. (4) and the assumptions given above, eq. (7)
yields

U= ;76/2’ (8)

with the shear rate (4 = dv, /dy) given by

. [gcosBsin(Bn — 8:)]"°
T= cd cos By, cos s )

(9)

Finally, the dynamics of the interface motion is given by

oh

B =Tcosf, _3_@ = —sin g, 8_w =cosf3, (10)

Ox oz

where (h(z,t),w(z,t)) gives the parametric equation for
the interface (Fig. 1). This completes the formulation
of the model and all variables (u, 4, 8, I, h, w) can be
calculated using (eqs. 5,6,8-10) and appropriate initial
and boundary conditions.

A similar analysis is given by Douady et al. [18]. An
important difference is that Douady et al. [18] do not
include a constitutive equation for stress in the flowing
layer (equivalent to eq. 4). Instead, the shear rate in the
flowing layer is assumed to be constant as opposed to
(eq.- 9). The application of these results to the case of
heap flow and rotating cylinder flow is considered in the
following sections.

III. HEAP FORMATION

Consider a quasi-steady flow (84/9t,5u /0t ~ 0) and a
slowly varying interface angle (08/0z =~ 0) during heap
formation. Using eq. (8) and the above approximations,
the continuity equation (eq. 5) becomes

. 06
Y5, =T (11)

and the momentum balance equation (eq. 6) together
with eq. (7) simplifies to

726@ — _gSin(IBm —IB)

Or oS Bm (12)
Combining egs. (11) and (12) yields
_ gSin(ﬂm - ﬁ)

r= Y cos Bm (13)
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FIG. 2: Variation of the maximum angle of repose (8,,)
with mass flow rate (i) for 2 mm steel balls. Filled
symbols: open heap system [19]. Open symbols: rotating
cylinder system for three cylinder sizes [30].

which, for the case when §,, =~ §, reduces to

L=V(n-5), (14)

where V. = g¢/%cosBy. Thus, the continuum model
yields a source term similar to the BRAG model; the
scaling of V' is also similar to the BRAG model.

We further simplify the above equations for two dif-
ferent geometries of heap formation: closed, as shown in
Fig. 1a, and open in which the end wall (E, Fig. 1a) is
removed. Consider the open system first. In this case, at
steady state, all the material entering the system leaves
at the far edge of the heap and no particles are absorbed
or eroded. This implies that I' = 0, which on substi-
tuting into eq. (13) yields 8 = B, = constant. Using
these results in eqgs. (11) and (12) shows that the aver-
age velocity (u) and thickness () of the flowing layer are
also constant in open systems. The mass flow rate in the
system is given by m = pudT, where T is the width of
the layer. "This expression, together with eq. (8), gives
the following relationship between the layer thickness and
mass flow rate

§ = [2m/(Tpi)]">. (15)

Thus, the model indicates that in open systems a non-
accelerating flowing surface layer with a uniform thick-
ness is obtained, and the interface angle is equal to the
maximum angle of repose.

Experimental results of Khakhar et al. [19] based on
flow visualization studies validate the above predictions,
and sample results are given below. Fig. 2 shows the
variation of the maximum angle of repose with mass flow
rate in the system for 2 mm steel balls in an open heap
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FIG. 3: Variation of the layer thickness (4) with mass
flow rate (1) for 2 mm steel balls in an open heap system.
The solid line is a best fit of the form & o m!/2.

system (filled symbols). The data indicate that §,,, and
thus the coeflicient of static friction at the heap-layer
interface (tan f3,,), is not a constant but increases with
the local flow rate. An increase in surface angle with
flow rate was also reported by Lemieux and Durian [29].
Zhang and Cambell [31] found the Mohr-Coulomb crite-
rion with a constant coeflicient of friction to be valid in
their 2d simulations of sheared spheres in a gravity field.
In contrast, Daerr and Douady [27] reported an exponen-
tial decrease in the coefficient of static friction with layer
thickness for particles initially at rest on a plane surface.
Fig. 3 shows the variation of the layer thickness (§) with
mass flow rate. The solid line is a fitted curve of the form
& oc /2. This indicates agreement with theoretical pre-
dictions (eq. 15) if the product g7 is independent of mass
flow rate.

Consider next the application of the quasi-steady-
state model results to heap formation in a closed system
(Fig. 1a). At steady state we must have I' = constant
for the heap to rise uniformly. Integrating eq. (11), the
layer thickness profile is obtained as

§ = [6% +20(L — 2) /4] (16)

where d7 is the layer thickness at the end of the layer,
z = L, and L is the length of the interface (Fig. 1a). The
rise velocity is related to the mass flow rate by

I'=7m/(TLp), (17)
and the interface angle calculated from eq. (14) is
B =pm—-T/V. (18)

Experimental results of Khakhar et al. [19] for closed
systems show that the rise velocity (I") varies nearly lin-
early with mass flow rate in agreement with eq. (17),
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FIG. 4: Variation of the (a) layer thickness (§) and (b)
surface angle (5) with distance from the edge of the heap
(L — z) for flow of 2 mm steel balls in a closed system.
Symbols are experimental data and error bars indicate
the standard deviation over six measurements. Solid line
in (a) is a fit of eq. (16) and in (b) is the prediction of
eq. (17).

and the density, which is found to be constant, is p = 3.2
g/cm?®. Fig. 4 shows the variation of both layer thickness
(9) and interface angle (5) with length along the bed-
layer interface (L — z) for a fixed mass flow rate. The
solid line in Fig. 4a is a fit of eq. (16) to obtain d; and
4. There is a good match between the fitted line and the
experimental data, which suggests that the shear rate, 4,
is constant. Similar results are obtained for all flow rates
studied. Using experimental results for the rise velocity
(T) and the interface length (L), we obtain ¥ = 20+£2s~!
from eq. (16), where the standard deviation indicated is
calculated. for all 10 flow rates studied. Using the value
of the bulk density obtained above, we find from eq. (15)
that the shear rate for the open system is ¥ = 22+ 3
s~1. The value of the shear rate predicted from eq. (9) is
4 = 2045 s7! for the range of mass flow rates considered.
Thus the shear rates for the open and closed systems are
the same within experimental error, and predictions of
theory are in reasonable agreement with experimental
values.

IV. ROTATING CYLINDER

The simplest case corresponds to rotating cylinder
flow, for 50% fill fraction. Assuming a nearly flat in-

terface, the source term is given by I' = wz. Subsituting
into the continuity equation (eq. 5) and integrating we
obtain

ud =2 (L? - 2?). (19)

2
Using eq. (5) the momentum balance equation (eq. 6)
simplifies to

du _ 3gsin(B — B;) cdu?
YT 4 cos f3s -3 2 T (20)

We consider two different limiting solutions to egs. (19)
and (20) below.

Firstly, consider the case when shear rate () is nearly
constant. Using eq. (8), the flux equation (eq. 19) gives
the layer thickness profile as

5= (%)1/2 (L? - 22)"/?, (21)

which is symmetric for all rotational speeds (w). Eq. (21)
corresponds to the model of Makse [17], in which the
shear rate is assumed to be a fitting parameter. In the
present case the shear rate is obtained from eq. (9). The
mean velocity in this case is given by

1/
w= (%)1 ’ (L% - 22)"2. (22)

Substituting these results in eq. (20), and using the
Mohr-Coulomb condition (eq. 7) yields eq. (13) with
I' = wz. This allows for calculation of the angle (5)
along the interface. Thus the assumption of a constant
shear rate is consistent with the model, and gives a com-
plete description of the flow in terms of @(£), 6(¢) and
B(&), where £ is the dimensionless distance along the in-
terface in the flow direction. However, it is not apparent
from the analysis, under what conditions the solution is
valid.

Consider next the case when the shear rate is not con-
stant along the layer. We obtain a solution here for the
case when acceleration (du/dz) is small. Scaling is used
to determine conditions when this approximation is valid.
Eliminating & using eq. (19), the scaled momentum bal-
ance becomes

— . _4
ad_u = 3 sin(6—Bs) _ 12¢5 o +
d¢  AFr  cospfs (1-¢2)?
where @ = u/wL, £ = z/L and the dimensionless pa-
rameters are the Froude number, Fr = w?L/g, and the
size ratio, s = d/L. The first term on the right hand
side of eq. (23) is the net driving force, that is the grav-
itational force less the frictional resistance to flow. This
term is independent of the flow velocity (@). The second
term is the ‘viscous’ resistance due to collisional stresses,
and the third term arises as a result of in-flow and out-
flow of particles from the layer. Both these terms de-
pend on the flow velocity. Typical experimental Froude

2¢a?
1-¢2

(23)



numbers for experiments in rotating cylinders are in the
range O(107%) to O(1072). In these cases the driving
force term (O(1/Fr)) is much larger than the acceler-
ation term (O(£/VsFr) based on eq. 22), particularly
near the midpoint of the layer ({ = 0). The collisional
stress term is of the same magnitude as the net driving
force term since the flow velocity increases to balance the
two. Thus for £1/Fr/s <« 1 the acceleration term may
be neglected.

For negligible acceleration (di/df{ = 0), the scaled
mean flow velocity is obtained from eq. (23) as

_ 1-¢2\'? 2 1/2]*?
U= ( 508 ) [§+ (&° +9csA/Fr) ] ,  (29)
where A = sin(8 — 8;)/ cos B;. Using eq. (19), scaled the
layer thickness profile is

_ 3es(1 - &£2) 12
o= [5 +(&+ 903A/Fr)1/2] ’ (25)

where § = §/L. The above solution is valid only if A > 0,
that is if # > Bs. For 8 < B,, we have @ = § = 0, thus
there is no steady flow possible if the interface angle is
less the static angle of repose. This is consistent with
the definition of the static angle of repose. Note that the
layer profile is not symmetric about £ = 0, and for any
€ > 0 we have §(—=¢) > 6(¢), that is, the upper part of the
layer (¢ < 0) is thicker than the lower part. The source
of the asymmetry is the in-flow /out-flow term in the mo-
mentum balance (third term on the right hand side of
eq. 23). In the upper part of the layer (£ < 0) the flow
is retarded by material entering the layer from the bed
(T < 0) and the reverse is true in the lower part of the
layer. Thus, the layer is thicker in upper part because of
the lower velocity relative to the lower part of the layer
(£ > 0), resulting in a skewed profile. Further, eq. (25)
indicates that the profile becomes more skewed with in-
creasing Froude number (Fr) and decreasing size ratio
(s). In the limit, Fr/s < 1, the scaled layer thickness
profile becomes

1/4
5o (csj‘r) (1- e, (26)

which is identical to the result obtained assuming a con-
stant shear (eq. 21) when eq. (9) is used to calculate the
shear rate. This implies that a profile symmetric about
the layer midpoint (£ = 0) is obtained at very low Froude
numbers and relatively high size ratios, and in this limit
the shear rate is nearly constant, as shown below.

The shear rate obtained using eq. (8) and the expres-
sions for mean velocity and layer thickness for negligible
acceleration (egs. 24,25) is

WO = o [+ (€ + 9esa/Fr)?] . (27)

In the limit, Fr/s < 1, we obtain ¥ = w(A/csFr)!/?,
which is eq. (9) in scaled form.
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FIG. 5: Variation of the layer thickness at the midpoint
(6(0)) with (sFr/A)}/* for (a) steel balls, (b) glass beads
(c) and sand particles in cylinders of different sizes and
at different rotational speeds. Symbols are experimental
data for different sized particles: o d =1 mm, Ao d =2
mm, ¢ d=4mm, vd=04mmand X d = 0.8 mm.
The solid line is a fit of eq. (27) and the values of the
parameter ¢'/4 are indicated.

Calculation of the layer thickness profile requires an
estimate for the parameter A which depends on the in-
terface angle profile (8(£)). From eq. (14), using I’ = wzx
and eq. (9), we obtain interface angle profile in terms of
the scaled variables as

Frcos B
BE) = fm—— g
In simplifying the preceding equation we assume (3, =
B = fs, as above. Eq. (28) indicates that the interface
angle decreases monotonically with distance along the
interface and at £ = 0, 8 = B,,. Thus in the rotating
cylinder flow the maximum angle of repose can be ex-
perimentally obtained by measuring the interface angle
at the midpoint of the layer. For (Fr/s)¢ sufficiently
large and £ > 0, we get 8 < 0, that is, for small size ra-

[5 + (€2 + chA/Fr)l/Q] £ (28)
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FIG. 6: Variation of the shear rate (§) along the flow
direction for 2 mm steel balls in cylinder of radius R =
16 cm. Symbols show data for three different Froude
numbers (Fr): o Fr =2x 1073, o Fr =22 x 1073, ¢
Fr = 64 x 1072, Solid lines are the predictions of the
eq. (27).

tios and large Froude numbers the layer profile may turn
up at the end. Conversely, when (Fr/s) < 1, eq. (28)
yields 8 = (., and the interface profile is nearly flat.
Neglecting terms O({Fr/s), which is consistent with the
approximation in the momentum balance equation, the
parameter A is

,Bm - ﬁs

A=Fra (29)

The above result implies that we may take A to be nearly
constant and based on the interface angle at the midpoint
of the layer. This approximation was used in the analy-
sis given by Khakhar et al. [13], but without the above
justification.

Consider next a comparison of the theoretical results
to experimental data. A few key numbers are reported,
as they convey a sense of qualitative agreement. How-
ever, for full details the reader is referred to [30] and
[19]. The model parameters required are §s, 8, and c,
as in the case of the heap. Data of Orpe and Khakhar
[30] for the first two parameters are shown in Fig. 2 for
2 mm steel balls in rotating cylinders of 3 sizes and for
different rotational speeds of the cylinders. The data
correlates reasonably well with the mass flow rate at the
midpoint of the layer calculated from m = pwL?T/2,
where T is the cylinder length and the same density as
in the heap experiments (p = 3.2 g/cm?®) is used. Data
spanning nearly two decades of flow rate fall on a single
curve, although with some scatter. The maximum angle
of repose increases with mass flow rate, and the measured
values are similar to those from heap experiments which
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FIG. 7: Layer thickness profiles for (a) 2 mm steel balls
and (b) 0.8 mm sand. Symbols denote experimental data
for three different froude numbers (Fr): o Fr = 2 x
1073, o Fr = 22 x 1073, o Fr = 64 x 10~3. Solid
lines are predictions of eq. (25) and dashed lines are the
predictions of the model of Khakhar et al. [13]. The error
bars give the standard deviation over 6 measurements
and the bar indicates the scaled diameter of a particle
(s =d/R).

are also shown in the same figure. The static angle of
repose is the angle at 1 = 0.

Orpe and Khakhar [30] had obtained ¢ =~ 1.5 by fit-
ting the theory of Khakhar et al. [13] to experimental
layer thickness profiles. We obtain a new estimate of
the parameter based on the layer thickness at the mid-
point of the layer (£ = 0), which, from eq. (25), is
8(0) = (csFr/A)Y/4. Fig. 5 shows experimental data for
8(0) versus (sFr/A)*/* for experimental data for 90 ex-
periments comprising steel balls, glass beads and sand
of different sizes in cylinders of different sizes and for
different rotational speeds. The data falls on a straight
line for each material (although with some scatter) and
a least squares fit gives ¢ = 1.9 for steel balls, ¢ = 1.6
for glass beads and ¢ = 1.4 for sand. Since the model
is essentially exact at £ = 0, the good fit implies that
the proposed constitutive equation for stress is reason-
able, and the shear rate in the layer is well-described by
eq. (27) at £ = 0. However, the variation of the shear
rate with distance (£) is underpredicted by the theory
(eq. 27) as shown in Fig. 6.

Predictions of the model for the layer thickness pro-
file are compared to experimental data in Fig. 7 for sand
particles and steel balls for different Froude numbers in
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FIG. 8: Variation of the interface angle (8) along the
flow direction for 2 mm steel balls in cylinder of radius
R = 16 cm. Symbols show data for two different Froude
numbers (Fr): 0 Fr =2 x 1073 and © Fr = 64 x 1073,
Solid lines are the predictions of the eq. (28).

a cylinder of radius 16 cm, using the value of ¢ obtained
above and experimental values for 8, and ;. The agree-
ment is good except at the highest F'r and low s, and the
all the qualitative features of the data are reproduced. At
low F'r and relatively high s studied, the profile is nearly
symmetric (steel balls at the lowest F'r), and the profiles
become more skewed with increasing F'r and decreasing
s. The deviation at the high Froude numbers and low size
ratio are due to neglect of the acceleration term. Similar
agreement is obtained for the other cases studied as well.
The predictions of the model of Khakhar et al. [13] are
shown in the figure as dashed lines. These nearly coincide
with the results from the present model, except for the
highest F'r for sand, indicating that the approximations
made are reasonable for the parameter values of interest.
It is remarkable that such a simple theory is able to de-
scribe the behavior of the system over such a wide range
of parameters: materials include steel balls, glass beads
and sand; varying shapes with steel balls being spherical,
glass beads, nearly spherical and sand being irregularly
shaped; size ratios in the range s € (0.005,0.05) and
Froude numbers in the range Fr € (2 x 102,64 x 1073).

Consider finally the predictions of the model for shape
of the interface. Fig. 8 shows a comparison between the
measured interface angles (3,) and the angles predicted
from eq. (28). The experimentally measured values of 3,,
are used in the calculation. There is reasonable agree-
ment between the theory and experiment except at the
highest Fr, but significant deviations are obtained at
lower Fr. Notice that the surface angle becomes neg-
ative for both experiments and theory at high Fr. This
corresponds to a turning up of the interface at the end of
the layer producing the characteristic S-shape (see layer

YR

FIG. 9: Layer shape profiles for different materials in
cylinders of different sizes for F'r = 64 x 1072, (a) Steel
balls and glass beads with s = 0.0125, o steel balls with
R =16 cm, A steel balls with R = 8 cm, ¢ glass beads
with B = 16 cm. (b) Sand and glass beads with s =
0.00475, o sand with R = 16 cm, A sand with R = 8 cm,
¢ glass beads with R = 16 cm.

shape profiles in Fig. 9). Similar behaviour is obtained
for glass beads and sand.

An implication of the scaling shown in Fig. 5 is that
the flow in the layer primarily depends on the Froude
number and size ratio and material poperties have a sec-
ondary effect. This indeed is observed in experiments.
Fig. 9 shows superimposed layer shape profiles for cylin-
ders of different sizes and different materials such that
Fr and s are constant in each case. The profiles are
nearly identical indicating good scaling. Such scaling is
explored in more detail in ref. [30].

V. CONCLUSIONS

A theoretical framework serves to unify the behaviour
of surface flows for two prototypical systems: heap flow
and rotating cylinder flow. The model is based on a
stress constitutive equation and failure criterion which
contain three material parameters: 85, B,, and ¢. Ana-
lytical results for both systems give a complete descrip-
tion of the systems in terms of the layer thickness profiles
(6(x)), average velocity of flow (u(z)) and the interface
angle profile (8(z)). In open heap systems a layer of uni-
form thickness with a uniform flow velocity is obtained,
whereas in the closed heap system 62 oc z. The inter-



face angle is constant and equal to the maximum an-
gle of repose in the open system, whereas it decreases
with distance from the pouring point in the closed sys-
tem. Results for the rotating cylinder are obtained for
the case when the acceleration of particles in the layer
is small (£y/Fr/s <« 1). The layer profile is found to
be asymmetric about the midpoint of the layer (¢ = 0)
with the upper part of the layer (¢ < 0) being thicker.
The skewness increases with increasing Froude numbers
and decreasing size ratios. The scaled shear rate (§/w)
decreases with increasing Froude number and size ratio,
and for a given case it increases with distance along the
layer. The layer interface angle decreases with distance
in the flow direction. For high £Fr/s and £ > 0 the
layer turns up, whereas when £F'r/s is small a nearly flat
interface is obtained.

Quasi-2d experiments carried out for open and closed
heaps and rotating cylinders of different sizes, by and
large, validate the predictions of the theory. Deviations
from experimental data appear in the shear rate profile
and the interface angle profile in the rotating cylinder
flow. Both these factors are most likely due to end wall
effects which are discussed below.

The theory presented here is based on two stress consti-
tutive equations: one for the shear stress in the flow layer
and the second for the shear stress at the bed layer inter-
face. The model has three material parameters (8s, fm
and ¢), and all three parameters can be obtained from rel-
atively simple experimental measurements. Experiments
support the validity of equations (granular layer flowing
on the surface of a static heap), and these equations can
be applied to more complex geometries.

The experimental results presented here are all based
on quasi-2d systems with gaps ranging from 5-25 particle
diameters. Thus, wall effects are important and unavoid-
able in the experimental technique used (flow visualiza-
tion). Rotating cylinder experiments [30] indicate that
the walls have an insignificant effect on the flow (that is
the mean velocity and layer thickness profiles) but sig-
nificantly affect the interface angles. Thus, the accuracy
of the measured values of the parameters 8; and S, is
in question. It is not surprising that the theory does not
give good predictions of the shear rate and interface angle
profiles because both these depend strongly on B,,(m).
Clearly, for a more accurate determination of material
parameters experiments on 3d systems are necessary.
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