
united nations
educational, scientific

and cultural
organization

the

international centre for theoretical physics

international atomic
energy agency

Research Workshop on "Challenges in Granular Physics"
7 -11 August 2001

301/1322-1

"Inelastic Hard Spheres with Random Restitution Coefficient: a New
Model for Heated Granular Fluids"

A. BARRAT
(and E. TIZAC)

Universite Paris-Sud
Orsay
France

Please note: These are preliminary notes intended for internal distribution only.

strada costiera, I I - 34014 trieste italy - tel.+39 04022401 I I fax +39 040224163 - scijnfo@ictp.trieste.it - www.ictp.trieste.it





Inelastic hard spheres with random restitution coefficient: a new model for heated
granular fluids

A. Barrat and E. Trizac
Laboratoire de Physique Theorique*, Bdtiment 210, Universite de Paris-Sud

91405 Orsay Cedex, France

We consider a vertically shaken granular system interacting elastically with the vibrating bound-
ary, so that the energy injected vertically is transferred to the horizontal degrees of freedom through
inter-particle collisions only. This leads to collisions which, once projected onto the horizontal
plane, become essentially stochastic and may have an effective restitution coefficient larger than 1.
We therefore introduce the model of inelastic hard spheres with random restitution coefficient a
(larger or smaller than 1) to describe granular systems heated by vibrations. In the non-equilibrium
steady state, we focus in particular on the single particle velocity distribution f(v) in the horizon-
tal plane, and on its deviation from a Maxwellian. We use Molecular Dynamics simulations and
Direct Simulation Monte Carlo (DSMC) to show that, depending on the distribution of a, different
shapes of f(y) can be obtained, with very different high energy tails. Moreover, the fourth cumulant
of the velocity distribution (which quantifies the deviations from Gaussian statistics) is obtained
analytically from the Boltzmann equation and successfully tested against the simulations.

I. INTRODUCTION

Granular matter can exist in many very different states, all of which are currently subject of a large interest [1].
On the one hand, dense granular matter can be studied at rest, and in particular many open problems concern the
transmission of forces through a sandpile. On the other hand, since thermal energy is negligible with respect to
gravitational or kinetic energy, any dynamical behaviour has to be a response to a certain external energy input: for
example, tapping leads to compaction [2], while a strong, continuous energy input by vibrations produces granular
gases in continuous motion, for which kinetic energy is much larger than the gravitational one [3-8]. These vibrated
systems are out of equilibrium but the energy input can compensate the dissipation due to inelastic collisions between
grains and therefore lead to stationarity. While many experiments study the appearance of patterns or inhomo-
geneities, others, on which we will here concentrate, focus on the velocity distributions and its deviations from the
Maxwell-Boltzmann distribution (which would correspond to a system with neither dissipation -i.e. elastic collisions-
nor energy injection).

II. SYSTEM STUDIED AND MODELISATION

We want to study a three-dimensional system of grains on a plate, which is shaken vertically (i.e. along the z
direction): the energy is therefore injected by a vibrating elastic boundary only in the z direction (Figure 1). It is
partly transferred to the other degrees of freedom, and also dissipated, through the inelastic collisions between grains.
The velocities and their distribution are then studied in the horizontal (xy) plane.

1 vibrating boundary

FIG. 1. Schematic view of the system under consideration: the grains are subject to gravity, and submitted to the vibration
of an horizontal plate.

A. Usual theoretical approach

The grains are modeled as smooth inelastic hard spheres (IHS) undergoing binary momentum-conserving collisions
with a constant normal restitution coefficient a < 1: a collision between two spheres 1 and 2, with velocities vi and



v2, dissipates a fraction (1 — a) of the component of the relative velocity v12 = Vi — v2 along the center-to-center
direction a. Once the dissipation has been described in this way, the problem is how to represent the energy injection.
A possibility, used and studied by various authors [9-13], consists in submitting the spheres to a random force, i.e. to
random "kicks" at a given frequency between collisions. Energy input then acts in all space directions.

B. A new model

However, as previously noted, the real energy input occurs only in the vertical direction, and is not transferred
between but through collisions to the horizontal plane. Indeed, a three-dimensional inelastic collision between two
spheres globally dissipates energy, but its projection onto the xy plane can in fact gain energy (see fig 2 for an example).
Therefore, the effective restitution coefficient of the projected collision can be larger than 1. This observation leads to
the following effective (projected) simple model [14]:

• two-dimensional hard spheres (of diameter a) in the xy-plane

• binary momentum-conserving collisions

• random normal restitution coefficient a ( < l o r > l ) with distribution p(a) (the means over p(a) will be denoted
by an overline), uncorrelated with the velocities of the particles.

After collision
Before collision

FIG. 2. Example of a globally dissipative collision leading to an energy increase in the horizontal plane.

Since, in a binary collision with restitution coefficient a, the energy change is proportional to (a2 — 1), we shall
consider distributions with a2 = 1 in order to ensure a stationary, constant temperature regime (at each collision,
energy changes, but it is conserved on average). Since the average energy is constant, the granular temperature is
also a constant determined by the initial velocity distribution. We will therefore study the distribution of rescaled
velocities c = v/vo, using analytical and numerical tools.

III. KINETIC THEORY

The Molecular chaos approximation factorizes the two-point distribution function:

/ ( 2 )(vi ,v2 , | r i2 |=<M) =
contact

(i)

where x accounts for excluded volume effects (for elastic hard spheres, \ coincides with the density dependent pair
correlation function at contact). We are then able to write the (Enskog-)Boltzmann equation in the steady state,
averaged over the distribution of restitution coefficients:

j dv2dada{vl2 • &)p(a) {a~2f(v*)/(v|) - /(vi)/(v2)} = 0 (2)

The prime on the integration symbol is a shortcut for Jd&0(\12 • &) (& is the center-to-center direction and G is
the Heavyside function), and we consider collisions which yield (vi, V2) as postcollisional velocities, for precollisional
velocities (v^v^):



V? = Vl - i ( l + i ) (Vi2 • (T)(T

v$ = v2 + - ( I + - J ( V 1 2 - < T ) < T • (3)

From now on, we will be concerned with the study of the rescaled velocities c = v/vo and of their distribution:

f ( t ) P ( h ( 4 )

where n is the density and the thermal velocity v0 is by definition related to the temperature T(t) through yt>o(£) =
T(t) = ^ J dv^v2f(v,t) (d is the space dimension).

It is usual to look for solutions in the form of a Sonine expansion [15] around the Maxwell-Boltzmann distribution
d / 2 2

P(c) = (5)
P=I

where the polynomials {Sp} are orthogonal for the Gaussian weight $.
Using the methods exposed in [11], we obtain the leading non Gaussian correction {a\ = 0 from the definition of

temperature) <22, which is related to the fourth cumulant:

a =

16 ( l - 3 a 2 + 2 a4)

9 + 24d + 32 (d - l ) a

We will compare this result to numerical simulations in the next section, for d = 2. For the high energy tail, no
analytical results have been obtained and we will investigate this issue numerically.

IV. NUMERICAL SIMULATIONS

A. Methods

We use two complementary approaches

• the Direct Monte Carlo Simulation method (DSMC) [16] generates a Markov chain with the same probabilities
of transition as the Boltzmann equation: it produces therefore an "exact" numerical solution of the Boltzmann
equation.

• Molecular Dynamics (MD) integrate the exact equations of motion of the hard spheres, with no reference to
the Boltzmann equation: we consider iV spheres of diameter cr, in a box of linear size L in dimension d (here
d = 2), with periodic boundary conditions [17,18]; the comparison with DSMC allows to test the molecular
chaos approximation.

B. Results

The first results show the validity of the Sonine expansion and of the theoretical values for ci2: figure 3 shows a
comparison between DSMC results and the theoretical expansion: the agreement is perfect at small <22, and satisfying
at low velocities (note that the Sonine expansion is a low-velocities expansion) for larger a^.
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FIG. 3. Comparison of the P(c)/<&(c) measured in DSMC (symbols) with the Sonine expansion with the calculated a2 (lines),
for two different p(a): flat distribution of a2 G [0.5,1.5] (a2 = 0.04), and flat distribution of a2 G [0,2] (a2 = 0.18).
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FIG. 4. Velocity distribution P(c), for a flat distribution of a2 G [0,2], for MD and DSMC. MD: 50103 particles (30 %
packing fraction); DSMC: 500 103 particles. A Gaussian is also shown for comparison. Inset: distribution of normalized impact
parameters in MD

Moreover, figure 4 shows that MD and DSMC simulations are in perfect agreement (shown only for a particular
choice of p(a), but checked for other choices of p(o)). Moreover, the curves obtained in MD simulations with small
or large packing fractions (up to 40%) are indistinguishable (not shown). Important deviations from the Maxwell-
Boltzmann distribution are obtained, but the inset shows that the distribution of impact parameters in Molecular
Dynamics simulations is flat: this is a hint that no violation of molecular chaos is observed and that the factorization
of the 2-particle correlation function Eq. (1) holds. In MD simulations, inhomogeneities and/or violations of molecular
chaos could a priori appear, contrarily to DSMC. The fact that no such phenomenon is observed is in contrast with the
phenomenology at constant a [19] or with randomly driven IHS [20]: for a constant dissipative restitution parameter,
colliding particles emerge with more parallel velocities than in the elastic case a = 1 and, when they recollide, their
velocities are still more parallel. The possibility of having a > 1 seems to have removed this mechanism for the
creation of velocity correlations violating molecular chaos, and to produce an efficient randomization of the velocities.
This validates the theoretical approach based on the Boltzmann equation.

Let us now turn to the study of the large velocity tails: figure 5 shows fits to stretched exponentials (over 6 orders



of magnitude)

P(c) oc exp(-cB)

with a wide range of possible values for B. In particular, a convenient choice of p(a) is compatible with B = 1.6,
which has been found in some experiments [6,7] (close to B = 3/2 obtained in [11] for randomly driven IHS fluids).
The possibility to obtain such different values of B may question the relevance of this exponent as an intrinsic quantity
for granular gases in steady states.
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FIG. 5. Fits to stretched exponential forms exp(—cB of the velocity distributions, for a flat distribution of a2 £ [0, 2] and
[0.5,1.5].

V. CONCLUSIONS AND PERSPECTIVES

We have introduced the idea of a random restitution coefficient in the IHS model, in order to account for the
fact that, for a vertically vibrated layer of granular material, the energy is injected only along the vertical axis, and
transferred through collisions in the horizontal directions: the projection in 2 dimensions of a 3-dimensional collision
can correspond to a gain in the two-dimensional energy, and therefore to an effective restitution coefficient larger than
1, even if the genuine a is necessarily smaller than 1, i.e. corresponds to a dissipative collision.

We have subsequently studied this model in 2 dimensions, with a probability distribution p(a) for the restitution
coefficient. We have focused on the velocity distributions, and in particular on the deviation from the Maxwellian:

• at low velocities, the Sonine expansion technique is used: we obtained analytically the expression of the fourth
cumulant a^ and tested it against Molecular Dynamics (MD) and Monte Carlo Direct Simulations (DSMC). The
theoretical predictions for a<z are quite accurate, with a slight overestimation for ci2 that probably corresponds
to the approximations made during the calculation (nonlinear terms O(a|) and higher order Sonine polynomials
neglected); Moreover, the comparison between numerical data and the second order Sonine expansion shows a
remarkable agreement for small values of a,2.

• the high energy tails, studied with DSMC simulations, can be fitted by functions of the form exp(—AcB), with
B < 2 depending on p(a). It would certainly be interesting to have theoretical predictions concerning B. Note
that once a functional form has been chosen for p(a), very different tails can be observed depending on the
range of variation for a. This feature might question the relevance of the exponent B as an intrinsic quantity
for granular gases in steady states.

The comparison of MD and DSMC results shows a remarkable agreement (even with a packing fraction as high
as 40% in MD), and the study of the impact parameter in MD shows no violation of molecular chaos. This is to
be compared with the situation of free cooling [19] but also with MD results on heated inelastic hard spheres with
constant restitution coefficient [20], in which microscopic precollisional velocity correlations develop and molecular
chaos is violated. A thorough investigation of short scale velocity correlations would require the computation of various
precollisional averages involving moments of the relative velocities, and has not been performed. Our results however
suggest that the dynamical correlations inducing recollisions [21] and responsible for the violation of molecular chaos
may not be a generic feature of driven granular gases exhibiting a non equilibrium stationary state.



In the model introduced here, the random restitution coefficient is uncorrelated with the relative velocities of the
particles; this somehow unrealistic feature could be improved in more refined models. Such correlations, which seem
difficult to quantify from first principles, might affect the high energy tail or induce precollisional velocity correlations.
It would be very interesting to be able to link a realistic energy injection mechanism with a precise distribution of
restitution coefficients.

Finally, a hydrodynamic study of the present random a model, in which the conservation of the energy is valid on
average only, while density and momentum are conserved locally, is left for future investigations.

* Unite Mixte de Recherche UMR 8627.
[1] See e.g. H.M. Jaeger, S.R. Nagel, Science 255, 1523 (1992); Granular Matter: An Interdisciplinary Approach, A. Mehta,

Ed. (Springer-Verlag, New York, 1994); H.M. Jaeger, S.R. Nagel, and R.P. Behringer, Rev. Mod. Phys 68, 1259 (1996);
Proceedings of the NATO Advanced Study Institute on Physics of Dry Granular Media, Eds. H. J. Herrmann et al, Kluwer
Academic Publishers, Netherlands (1998).

[2] Knight, J. B., Fandrich, C. G., Lau, C. N., Jaeger, H. M. and Nagel, S. R. Phys. Rev. E 51, 3957 (1995); Nowak, E. R.,
Knight, J. B., Povinelli, M., Jaeger, H. M. and Nagel, S. R., Powder Technol. 94, 79-83 (1997); Nowak, E. R., Knight, J. B.,
Ben-Nairn, E., Jaeger, H. M. and Nagel, S. R., Phys. Rev. E 57, 1971-1982 (1998); Jaeger, H. M. in Physics of Dry Granular
Media (eds. Herrmann, H. J., Hovi, J.-P. and Luding, S.) 553-583 (Kluwer Academic, Dordrecht, The Netherlands, 1998).

[3] E. Clement and J. Rajchenbach, Europhys. Lett 16, 133 (1991).
[4] S. Warr, G.T.H Jacques and J.M. Huntley, Powder Tech 81, 41 (1994); S. Warr, J.M. Huntley and G.T.H Jacques, Phys.

Rev. E 52 5583 (1995).
[5] J.S. Olafsen and J.S. Urbach, Phys. Rev. Lett 81, 4369 (1998); Phys. Rev. E 60, R2468 (1999).
[6] W. Losert, D.G.W. Cooper, J. Delour, A. Kudrolli and J.P. Gollub, Chaos 9, 682 (1999) and cond-mat/9901203.
[7] F. Rouyer and N. Menon, Phys. Rev. Lett. 85 3676 (2000).
[8] A. Kudrolli and J. Henry, Phys. Rev. E 62 R1489 (2000).
[9] D.R. Williams and F.C. MacKintosh, Phys. Rev E 54, R9 (1996).

[10] A. Puglisi, V. Loreto, U. Marini Bettolo Marconi and A. Vulpiani, Phys. Rev. E 59, 5582 (1999).
[11] T.P.C. van Noije and M.H. Ernst, Gran. Matter 1, 57 (1998).
[12] T.P.C. van Noije, M.H. Ernst, E. Trizac and I. Pagonabarraga, Phys. Rev. E 59, 4326 (1999).
[13] R. Cafiero, S. Luding and H.J. Herrmann, Phys. Rev. Lett. 84, 6014 (2000).
[14] A. Barrat, E. Trizac and J.N. Fuchs, cond-mat/0101158, Eur. Phys. J. E (2001).
[15] L. Landau and E. Lifshitz, Physical Kinetics, Pergamon Press (1981).
[16] G. Bird, "Molecular Gas Dynamics" (Oxford University Press, New York, 1976) and "Molecular Gas Dynamics and the

Direct Simulation of Gas flows" (Clarendon Press, Oxford, 1994).
[17] See e.g. H.J. Herrmann, in "Disorder and granular media", edited by D. Bideau and A. Hansen (Elsevier Science Publisher,

1993).
[18] M.P. Allen and D.J. Tildesley "Computer simulations of liquids" (Clarendon Press, Oxford, 1987).
[19] S. Luding, GAMM 99 proceedings, June 1999.
[20] I. Pagonabarraga, E. Trizac, T.P.C. van Noije and M.H. Ernst, in preparation.
[21] J.R. Dorfman and H. van Beijeren, The Kinetic Theory of Gases, in Statistical Mechanics, Part B: Time-Dependent

Processes, ed. B.J. Berne (Plenum Press, New York, 1977), ch. 3.



Heated granular fluids: the random
restitution coefficient approach

(Eur. Phys. J. B 5, 161 (2001))

Alain Barrat and Emmanuel Trizac

Laboratoire de Physique Theorique, Orsay (France)

o Collective behaviour of granular gases —• 11

— "T = 0" media (particles of large mass)

- dissipative collisions, unlike molecular gases

—> vibrated layers of grains: important out of

equilibrium but stationary model system where

vibration compensates the energy loss due to friction

and inelasticity

o focus on velocity statistics and deviations from

Maxwell-Boltzmann distribution (observed in

experiments).



The system

• • • ' •
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t l
4 vibrating boundary

vertical (z) energy input but study of

the horizontal (xy) velocities

o Usual approach: inelastic hard spheres (IHS) with

• constant normal restitution coefficient a

• global energy injection through a random force

=̂> Brownian "kicks" between collisions
e.g. Williams et al, Puglisi et al, van Noije et al, Cafiero et al

o But . . . restricting to the horizontal plane:

—> projected 3D dissipative collisions lead to 2D

energy dissipation or injection at each collision

—> stationary effective dynamics with a random

restitution coefficient a

a > 1 energy injection

a < 1 energy dissipation



Horizontal energy changes
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Example of globally dissipative collision which leads to an

energy gain in the horizontal plane
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A new model

o Definition

smooth hard spheres in the xy plane

binary momentum-conserving collisions

random normal restitution a, distribution p(a)

+ constraint to ensure a stationary state:

a2 = / a2p{a) da = 1

o Study velocity distributions

• analytically (kinetic theory)

• numerically Monte Carlo (DSMC)

Molecular Dynamics (MD)



Kinetic theory

o Molecular chaos approximation:

/(2)(vi,v2,|r12|=a,t) = x

contact

Boltzmann equation; in the steady state:

where in a collision 1-2

o Look for solutions in the form of a Sonine expansion

/(v) = M(y)
oo

P=\

the polynomials {Sp} are _L for the Gaussian weight

o Result: leading non Gaussian correction (a\ = 0)

(kurtosis^fourth cumulant)

a - ( V 4 )

«2 = (v4)
— 1 = ^ 1 -16^1-3 «2+2

9 + 24 d + 32(d-l)a"+ (8d-ll)a2 - 30a-4

in dimension d



Numerical Simulations

Two complementary approaches

o Direct Monte Carlo Simulation method (DSMC)

Generate a Markov chain with the same probabilities

of transition as the Boltzmann equation

—> "exact" numerical solution of the Boltzmann eq

o Molecular Dynamics (MD)

Integrate the exact equations of motion

(with periodic boundary conditions)

—> tests the molecular chaos approximation
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Velocity statistics I
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Velocity statistics
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Velocity statistics
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important deviations from Maxwell-Boltzmann

no violation of molecular chaos
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High energy tails

o Analytical predictions ??

O FitS tO Stretched exponentials (over 6 orders of magnitude)

/(v) oc exp(-uB)

iou
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—> may question the relevance of exponent B as an

intrinsic quantity for granular gases in steady states.



Perspectives

o Connection between p(a) and experimentally

relevant energy injection mechanisms ?

Correlations a <-* Vimpa c t ? (discarded here)

o Hydrodynamics of the random a model ?

(energy is globally conserved, whereas density and

momentum are locally conserved)
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