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Abstract

This paper introduces a simple two-species ripple model with avalanch-
ing. The effect of the avalanching term is investigated numerically.

1 Introduction
Aeolian sand ripples are formed by the action of the wind on the sand
bed in the desert or at the seashore. They are a few centimetres in
wavelength with crests perpendicular to the prevailing wind direction.
Early theoretical work on ripple formation (Bagnold 1941, Anderson
1987, 1990) has been followed more recently by models (Hoyle and
Mehta 1999, Prigozhin 1999, Terzidis, Claudin and Bouchaud 1998,
Valance 1999) that treat these ripples as being composed of two lay-
ers of sand grains: the 'bare surface' made up of relatively immobile
grain clusters, and a layer of mobile grains moving on top. There are
important differences in these approaches; in those of Claudin and
Bouchaud (1998) and Valance (1999), for example, the nature of the
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interaction between the flowing and stuck layers differs significantly
from that described in our approach (Hoyle and Mehta 1999), partic-
ularly in the area of nonlocality, which forms an important ingredient
of our model. Recently, these ideas have been used to investigate the
formation of sand dunes via continuum approaches very similar to our
own (Sauermann, Kroy and Herrmann 2001). Finally, laboratory ex-
periments on ripple formation ( Stegner and Wesfreid 1999, Hansen et
al 2001) have recently been devised, which enable the testing of theo-
retical hypotheses on systems more manageable than those provided
by nature.

One of the important ingredients of our earlier model was its inclu-
sion of bistability at the angle of repose. As is well known, a sandpile
can either be static or flowing if its angle of repose is within a given
range; the upper bound of this range is the maximum angle of stabil-
ity, after which the sandpile avalanches - that is, spontaneous flow sets
in. This phenomenon has also been represented in a discrete model
of sandpile avalanches (Mehta and Barker, 2000), where it has been
used for the interpretation of avalanche shapes found in experiment
(Daerr and Douady 1999). Here we consider the effect of 'avalanching'
in a two-species continuum model of sand ripples based on our earlier
model (Hoyle and Mehta 1999). As explained above we use the term
'avalanching' to describe spontaneous flow, when sand grains are shed
very rapidly from the immobile layer into the flowing layer, as the
surface slope approaches the maximum angle of stability 7. Though
this process is less dramatic in ripples than in sandpiles or dunes, and
we do not expect to see discrete avalanche events with large sections
of the sand surface falling away, this rapid grain shedding nonetheless
turns out to have important consequences for the development and
shaping of ripples.

2 Ripple equations

We consider two-dimensional sand ripples comprising a surface defined
by the local height of clusters, h(x, £), covered by a thin layer of flowing
mobile grains whose local density is p(rr,t), where x is a horizontal
space coordinate and t is time. The ripples evolve under the influence
of a constant flux of saltating grains, which impact the sand bed at
an angle /3 to the horizontal, knocking grains out of the bare surface,



causing them to hop along the ripple surface and land in the layer
of flowing grains. Granular relaxation mechanisms then smooth the
ripple surface. We aim for a minimal model capturing the essential
physics of ripple formation; thus the model equations used here are a
simplification of those studied in Hoyle and Mehta (1999). They take
the following form:

— Xp(\hx\ — tanS) — v (\hx\ — tanS) ( tan2 7 —

-/(M),
Pt = Dppxx +

r+oo
+X{phx)x+ p(a)f(x-a,t)da, (1)

J—oo

where D^, Dp, A, ẑ  and x a r e positive constants, 5 is the cmg/e 0/
repose and p(a) is the distribution of hop lengths a for grains knocked
out of the ripple surface by the saltation flux, and where f(x,t) —
ap J(s'm/3 + hx cos/3) with ap the average cross-sectional area of a sand
grain and J > 0 a measure of the saltation flux intensity.

Naturally the flowing grain density can never be less than zero, so
we also impose pt > 0 anywhere that we have p = 0.

The rate of knocking out of grains by the saltation flux is assumed
proportional to the component of the saltation flux perpendicular to
the ripple surface (Hoyle and Woods 1997). The hopping out of the
layer of clusters is modelled by the term —f(x,t) in the equation
for ht, and grains landing in the flowing layer are modelled by the
term /J"^ p{a)f(x ~ Q>,t)da in the equation for pt (Hoyle and Mehta
1999). The hop length distribution p(a) can be measured experimen-
tally (Mitha et al 1986, Ungar and Haff 1987). Here we assume a
normal distribution with mean a and variance a2.

Where the sand bed is shielded from the saltation flux by upwind
ripple peaks it is said to be in shadow. No grains are knocked out
of the surface in these regions and the equation for ht is modified by
neglecting the term —/(#,£).

The remaining terms (Hoyle and Mehta 1999) describe the gran-
ular relaxation mechanisms that smooth the ripple surface (Mehta,
Luck and Needs 1996). The term Dhhxx represents the diffusive re-
arrangement of clusters while the term Dppxx represents the diffu-
sion of the flowing grains. The flux-divergence term x(phx)x models
the flow of surface grains under gravity. The current of grains is



assumed proportional to the density of flowing grains and to their
velocity, which in turn is proportional to the local slope to leading
order (Hoyle and Woods, 1997). The term Xp(\hx\ — tan5) repre-
sents the tendency of flowing grains to stick onto the ripple surface
at slopes less than the angle of repose, 6. The tilt and avalanching
term u(\hx\ — tan8)(tan2 7 — hx2)~ll2 models the tendency of clusters
in the bare surface to shed grains into the flowing layer when tilted
beyond the angle of repose, 6. The rate of shedding of grains becomes
very large as slopes approach the maximum angle of stability 7 - this
is our representation of the phenomenon of avalanching.

The model is renormalised by setting x —> XQX, t —> tot, a —> x$a,
p -* pop, h -* hoh, where x0 = Dh/apJcos/3, <0 = Dh/(apJcos/3)2,
ho — Dh tan7/apJcos/3, po — apJsin/3/Atan<5. The renormalised
equations are

tan/3 / , , , tan<5\ ^ A . t a n J \ , , 9 , -,/9

where the tildes have been dropped and where /(#, t) = /i^+tan /?/ tan 7,
z> = i/to/^o and x = xh>o/Dh.

A steady solution ht = pt = 0 to these equations is h = hc, where
hc is any constant, and p = pc = 1 — v tan 5/ tan /3. The stability of this
solution can be investigated by setting h = hc + he^t+/lkx and p = pc +
~er)t+ikx^ whQj-e h,p <^il are constants and linearising in h and p. To
leading order the growth rate eigenvalues are 77 = — ho tan/3/po tan 7,
which is associated with the relaxation of the flowing grain density p
to its equilibrium value, and 77 = ak2, where

which is associated with ripple growth. For ripples to emerge, we must
have a > 0.

D p ,hof tzm/3 f tanJ\ ^ / tan^\ ^ - l
T P̂xa; + — p- \hx\ - I + V\ \hx\ - (1 - hi) L
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+X(phx)x + — / P(a)f(x - a)da, (2)
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3 Numerical results
The effect of avalanching on ripple profile was studied numerically.
The equations were integrated numerically using periodic boundary
conditions and compact finite differences (Lele 1992, Hurlburt and
Rucklidge 2000). Both shadowing and the requirement for p not to
be less than zero were taken account of in the code. For the run with
avalanching behaviour we chose a = 3.1, a — 0.1, Dp/Dh = 1.0,
ho/Po = 20.0, x = 0.1, v = 0.25, /3 = 10°, 6 = 30°, 7 = 35°.
The length of the integration domain was xmax — 166.6. The an-
gles were chosen to agree with observational evidence (Bagnold 1941,
von Burkalow 1945, Sharp 1963), the ratio /io/po to ensure a thin
layer of flowing grains in comparison to the ripple height, and the
remaining parameters to allow ripple growth. The initial conditions
for the dimensionless variables were /i = 1.0 + 0.1% and p = 1 —
z>tan5/tan/3 + 0.1 (rjp - 0.5), where % and rjp represent white noise
generated by random variables on [0,1) as a model of surface rough-
ness. The output was rescaled back into physical coordinates using
Dh = 1.0 and A = 10.0. We also performed a run with avalanching
switched off, v — 0, but with all other parameters the same.

In the case where avalanching is included ripples developed from
the initial surface roughness, and a process of ripple merger ensued
(similar to that described in previous ripple models - e.g. Prigozhin
1999, Hoyle and Mehta 1999), leading to a final state with one large
ripple in the periodic box. The final large ripple, shown in figure 1,
has a fairly pointed crest with slope 30.9° on the windward side and
—27.5° on the lee side. The stoss (windward) slope is long, dipping
down low before building up to the crest, whereas the lee slope is short
and relatively straight. The density of flowing grains, also shown in
figure 1, has a maximum just before the ripple crest where grains have
avalanched out of the ripple surface.

In the case where avalanching is suppressed ripples take much
longer to grow, but develop somewhat higher surface slopes on the lee
side of the crest (—28.5° compared with —27.5° for the avalanching
ripple), with the high slope being maintained over a greater distance
from the crest. The slopes on the stoss side are almost identical (30.8°
compared with 30.9° for the avalanching ripple) as behaviour on this
slope is dominated by the effect of the saltation flux impacting the
sand bed. The higher slopes on the lee side are to be expected, since



without avalanching, grains on steep slopes are shed much less read-
ily into the flowing layer. Note also that in accordance with this the
maximum density of flowing grains is slightly lower when avalanching
is suppressed. Some shedding does still occur via the sticking term
—Xp(\hx\ — tanS) in the equation for lit, but this is much less efficient
than the avalanching term and also depends on the local density of
flowing grains, so that very few grains will be shed when the flowing
grain density is low. The rapid shedding of grains during avalanching
also leads to a more rapid evolution of the surface profile, and hence
ripples grow more quickly when avalanching is allowed. The final rip-
ple shape (time t = 167.0) of the nonavalanching ripple is shown in
figure 2. Note that shallow waves also remain on the sand surface in
contrast to the case of the avalanching ripple.

4 Conclusion

It is observed in nature (Sharp 1963) that ripple slopes are gener-
ally quite shallow. Our results show that even the subtle avalanching
that occurs in ripples is enough to decrease surface slopes, and the
avalanching term in our model could account for shallow ripples by
maintaining surface gradients away from the maximum angle of sta-
bility 7.

In the current model, even when avalanching is turned off some
shedding still occurs via the 'sticking' term that models the tendency
of flowing grains to stick onto the ripple surface when the slope is
less than the angle of repose. For simplicity we have retained this
term even when the slope exceeds the angle of repose, which has the
effect of turning the sticking term into a shedding term. It would be
interesting to see what would happen if in addition to switching off
avalanching we also switch this term off for slopes greater than the
angle of repose. It is likely that we would then see an even greater
divergence between avalanching and non-avalanching ripples.
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Figure 1: Profiles of the ripple surface height h, ripple surface slope tan l (hx)
and flowing grain density p against horizontal distance x at time t = 107.4
for a ripple subject to avalanching. Parameter values are given in the text.
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Figure 2: Profiles of the ripple surface height h, ripple surface slope tan 1(hx)
and flowing grain density p against horizontal distance x at time t = 167.0 for
a ripple not subject to avalanching. Parameter values are the same as those
for the ripple with avalanching except that the coefficient of avalanching v is
set to zero.


