
united nations
educational, scientific

the
i
international centre for theoretical physics

international atomic

SMR/1325-5

Workshop on

Nuclear Data for Science 82, Technology: Accelerator
Driven Waste Incineration

10-21 September 2001

Miramare - Trieste, Italy

A Brief Overview of

Nucleon-Induced Reactions

B.V. Carlson
Centro Tecnico Aerospacial

Sao Jose Dos Campos, Brazil

strada costiera, II - 34014 trieste italy - tel. +39 04022401 I I fax +39 040224163 - scLinfo@ictp.trieste.it - www.ictp.trieste.it





A Brief Overview of Nucleon-Induced Reactions

B.V. Carlson*

Depto. de Fisica, Instituto Tecnologico da Aerondutica,

Centro Tecnico Aeroespacial, 12228-900 Sao Jose dos Campos, SP, Brazil.

Lecture given at the:

Workshop on Nuclear Data for Science & Technology:

Accelerator Driven Waste Incineration

Trieste, 10-21 September 2001

LNS

*brett@fis.ita.br





Abstract

The basic features of low to intermediate energy nucleon-induced reactions are
discussed within the contexts of the optical model, the statistical model, preequilibrium
and intranuclear cascade models. The calculation of cross sections and other scattering
quantities are described .
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1 Introduction
A nuclear reaction is initiated when a nucleon or nucleus collides with another nucleon or
nucleus. Reactions are characterized in first place by the incoming nuclei and the outgoing
reaction products. Examples of the usual notation for this are 14C(n,n)14C, for the elastic
scattering of neutrons on 12C, 56Fe(p,t)54Fe, for the pickup by a proton of two neutrons from
56Fe, and 235U(n,n') for inelastic neutron scattering from 235U.

A complete description of a nuclear reaction involves other observable quantities beside
the incoming nuclei and the outgoing reaction products. Among these are the relative energy
of the incoming and outgoing nuclei and the scattering angle of the outgoing products. When
the nuclei/nucleons involved have spin and/or excited states, their polarizations and/or
excitation energies can also be observed.

The characteristics of the reactions induced by a given pair of incident nucleons/nuclei
can be summarized in distributions of the occurrence of the reaction products, called cross
sections. Quantitatively, the cross section ov for the production of a product p is defined as

number of particles p produced per unit time
p number of incident particles per unit time per unit area

Cross sections have the dimension of area. The information obtained from cross sections often
depends quite strongly on the internal structure of the initial and final nuclei. In fact, the
comparison of experimental scattering observables with those obtained from various nuclear
models can teach us a great deal about the structure of individual nuclei. After having
used such a comparison to determine the model parameters appropriate for a given system,
one hopes to use the same parameters to predict cross sections in other energy ranges or in
neighboring systems.

2 Resonances
At low energies and for all but the lightest nuclear systems, nuclear reactions occur on two
very distinct time scales. Direct reactions occur promptly, on a time scale of the same mag-
nitude as the time it takes the projectile nucleus to pass by the target nucleus. Compound
nuclear reactions, which involve the formation of a quasi-bound intermediate complex, occur
on a time scale that is at least several orders of magnitude larger. A naive application of the
uncertainty relation, AEAt > ft, would lead one to expect their energy scales to be inversely
related. This is indeed the case. The contributions of direct reactions to the cross sections
vary smoothly with energy. Compound nuclear reactions make contributions to the cross
sections that fluctuate rapidly with energy.

The difference in the energy dependence of the direct and compound nucleus contributions
to the cross section is clearly seen in Fig. 1, which displays the total neutron cross section on
58 Ni at extremely low incident neutron energy. One observes a direct reaction cross section
- the result of elastic scattering of the neutron, in this case - that varies slowly with energy,
except where it is punctuated by a faster variation due to the presence of a compound nuclear
state of 59Ni of about the same energy. At such low energies, separation of the direct and
compound nucleus cross sections is a fairly straightforward (although often grueling) task.
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Figure 1: The total cross section for neutrons incident on 58Ni at low incident energy, taken from the data
of Ref. 1

2.1 Formalities
To formally separate the direct and compound nucleus contributions to the scattering, one
begins by partitioning the Hilbert space of states into a component V containing the prompt
states and an orthogonal component Q that contains the closed channels of the intermedi-
ate compound complex. [2] As a concrete example, one may consider V to be the subspace
consisting of a nucleon scattering on 58Ni, while Q consists of the ground and excited states
of the nucleus 59Ni (and other processes, such as 7 emission or, in heavier nuclei, fission).
The projection operators, P and Q, onto the subspaces V and Q, respectively, which have
the properties

P = Q = Qt

(2)

are then used to decompose the state vector of the system, \t, and its Schrodinger equation,

(E-H)V = 0. (3)

The prompt component of the state vector is P\&, while the slower component is Qty, with

(4)

We can multiply the Schrodinger equation on the left by P or by Q and use the decomposition
of the wave vector to write the equation as two coupled equations,

(E - (5)



and

(E-HQQ)QV = VQPPV, (6)

where

HPP = HOP + VPP = PH0P + PVP, VPQ = PHQ, etc.,

and we have assumed that the contributions to the Hamiltonian of the internal degrees of
freedom and the kinetic energy, both contained in HQ, do not couple the V and Q subspaces.
We may formally solve the first of these, Eq.(5), as

in which the (+) denotes an incoming wave boundary condition, the vector (f)^~) satisfies the
Schrodinger equation in the V subspace,

(E - Hpp)<t>^ = 0 , (8)

with an incoming wave in channel c alone (and none in the Q subspace) and Pfyc and
are the components of the full wave vector that evolve from this incoming wave. The solution
P\I/C, when substituted into the second coupled equation, Eq. (6), yields

(E - HQQ - WQQ)Q*C = VQP<f>i^ , (9)

where

WQQ ~ VQPEW-HPP
VPQ •

We can decompose the "P-subspace Greens function into its real and imaginary parts as

1 P.P.
E — Hpp

-iir5(E-HPp), (11)

where P.P. represents the principal part. The open channels in the V subspace thus make
a negative imaginary contribution to WQQ, which results in singularities in the wave vector
in the lower half of the complex E plane.

Eq. (9) can be solved to obtain the Q-subspace component of the wave vector as

w vQ
£J — HQQ — WQQ

which then permits the expression of the P-subspace component of the wave vector as

VPQ
 1 VQP^ . (12)
t HQ WQQ

„ VPQ

— Hpp tj — HQQ — WQQ
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2.2 Practical matters

At low relative energies, a collision between charged nuclei or a nucleus and a charged
nucleon is dominated by the Coulomb force, which keeps the two beyond the range of nuclear
interaction. Only neutrons can enter sufficiently close to a nucleus at such energies to feel
the effects of the nuclear force.

Several factors also simplify the description of low-energy neutron scattering. The cen-
tripetal barrier keeps all but the 1=0 s-wave contribution effectively out of the reach of the
nuclear interaction for energies greater than about 50 keV. In addition, with few exceptions,
nuclei have no excited states at energies lower than about 20 keV. The prompt component
of neutron scattering then reduces to s-wave elastic scattering in this energy range.

The 1=0 wave function satisfying an incoming wave boundary condition takes the form

^o(r) = ^ ( e - ^ - 5 o e ^ ) r -> oo. (13)

where the wavenumber is k = y 2/i£'cm/7i2, fi is the reduced mass and Ecm the center-of-mass
energy.

The wave vector of Eq. (12) yields an 1=0 S-matrix So that can be approximated in a
multi-level Breit-Wigner form (among others) as

where (j)a and fa are the initial and final channel phase shifts and the amplitude g^c charac-
terizes the coupling of the compound state ji to the channel c, with Y^ — ^ g^c.

The first term in this expression is the direct scattering amplitude associated with scat-
tering in the V subspace alone. The second term describes the slower processes that result
from coupling through the states of the Q subspace. The first term varies slowly as a function
of energy while the second term varies rapidly. The resonance energies e^ are not identical
to the energies of the compound nuclear states due to the energy shift given by the real
part of Eq. (11). The amplitudes g^c can be positive and negative and, after extracting an
appropriate penetration factor, are distributed normally (with few exceptions).

Once the S-matrix is known, the cross sections can be calculated. For the case of s-wave
scattering on a spin zero target, the cross sections directly related to the elastic channel
S-matrix element, So,aa, axe the total, elastic and absorption ones,

and aabs = — (1 - \S0,aa\
2) = 7^0 ,

where To is the s-wave transmission coefficient. The reaction cross section and the transmis-
sion coefficient To are non-zero when the elastic S-matrix element So,aa is smaller than one in
magnitude. This occurs when flux is passed through the long-lived compound-nucleus states
to other channels, such as 7 emission or fission. The cross section for these take the form

I c 1 ̂
CLC 7 f) I O .c t t I •



One can easily verify that the total flux is conserved,

At extremely low energies, below the resonance region, the elastic cross section is observed
to approach a constant value, o\v This value is used to calculate another quantity of physical

interest, the scattering radius, R! = JG^/ATT.

Although only s-wave resonances have been discussed here, p-wave resonances are also
observed quite frequently (the sharp peaks in Fig. 1) and even d-wave resonances are ob-
served in some cases. Due to the centripetal barrier, their partial widths are much smaller
than those of s-wave resonances. However, when the appropriate penetration factor is ex-
tracted from the amplitudes g^ of these resonances, they too are distributed normally. The
interested reader can find a much more detailed description of nuclear resonance reactions
in Refs. [3] and [4].

3 The optical model

At higher energies, the density of compound nucleus states becomes so large that the indi-
vidual contributions can no longer be resolved. It then becomes impossible to distinguish the
slow energy dependence of the direct contribution from the rapid variations of the compound
nucleus one. An example of this is given in Fig. 2, where the total cross section for neutrons
incident on 58Ni is again shown, but now at higher energies. The fluctuations in the cross
section, called Ericson fluctuations, [6] do not permit the determination of the contribution
to the cross section of each individual compound nuclear state. Instead, only the average
properties of the compound nucleus contribution to the cross section can be determined. It
is in this context that the optical potential plays a crucial role in the separation of the two
contributions.

The principal objective of the optical model is to describe just the prompt, direct reactions
in a nuclear collision. To separate the direct reactions from the compound-nucleus ones
(theoretically), one assumes that the compound-nucleus reactions do not contribute to the
average wave function and scattering amplitudes, due to their rapid fluctuations in energy.
Note that the compound-nucleus reactions still DO contribute to the average cross sections,
which are, for the most part, proportional to the squares of the amplitudes. The energy-
averaged amplitudes, however, are associated with the scattering amplitudes for the prompt
component of the scattering. The optical model potential is defined as the potential which
furnishes the energy-aver aged scattering amplitudes.

In a wider context, the optical potential can be considered an effective potential that takes
into account all of the physical processes one does not want to take into account explicitly.
The most important of these are the rapidly fluctuating compound-nucleus contributions
to the scattering. But direct processes are also included at times. One example of this is
the use of an effective spherical optical model potential to take into account the coupling
to excited states of the target. Another example is the deuteron optical potential, which
usually contains the contribution of direct deuteron breakup.

As well as being fundamental for the calculation of direct reaction observables, optical
model calculations are also used to produce the transmission coefficients essential for the
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Figure 2: The total cross section for neutrons incident on 58Ni in a small incident energy range close to 5
MeV, taken from the data of Ref. 2

analysis of compound nucleus cross sections within the Hauser-Feshbach statistical theory.
They are thus one of the first and most important steps in the evaluation of nuclear cross
sections.

3.1 Formalities

Returning to the P-subspace wave vector of Eq. (12), one can write its energy average as

,(4-\ 1 /

since

£QQ = E - HQQ - WQQ

(16)

(17)

is the only rapidly varying function of the energy in the expression. The average wave
vector can be written in a Schrodinger-equation-like form by multiplying both sides of the
expression, Eq. (16), by £ ( + ) - HPP,

(E - HPP
VQQ

(18)

Using Eq. (16) again to rewrite the wave vector (fry* as

.M 1
-HPP)-WPQ(l/eQQ)VQP

(19)



substituting this in Eq. (18) and performing a bit of algebra, one finally obtains the optical
model equation,

\E - HPP - VPQ \ VQP] (P%) = 0. (20)
L ( 1 / e ) +WQQ J

The optical potential can thus be written as

! VQP. (21)
+ WQQ

To conclude the formal development of the optical model, one must evaluate the average
value (1/CQQ). The simplest way of doing this is to average the quantity l/eQQ over a
normalized Lorentzian density,

f fg> (22)F f .
EO-HQQ-WQQ

where

>Eo) = ^ (E - Eoy + (A/2)2 • ( 2 3 )

Assuming the quantity 1/eQQ to have no poles in the upper half of the complex E plane (due
to causality, it should have them only in the lower half-plane), one can perform the integral
by closing the contour and calculating residues in the upper half plane to obtain

' l X ' (24)\eQQ/ E + iA/2-HQQ-WQQ'

and hence

^ QP. (25)

The optical potential is obviously energy-dependent, non-local and complex due to the
energy-averaged propagator (E — HQQ + iA/2)"1 in the second term. Its imaginary part is
negative, resulting in a potential that is absorptive. The flux of particles leaving the scat-
tering region is smaller than the incident flux, with the remaining fraction of the flux being
absorbed by the potential. It is through its imaginary part that the optical potential takes
into account the flux that is lost from the states of the V subspace to the states of the Q
subspace.

3.2 Neutron optical scattering at low energy
As argued above, the prompt component of neutron scattering at low energies reduces to
s-wave elastic scattering in this energy range. The optical model equation for the s-state
wave function ipo is

(Ecm-T-Uopt)^ = 0. (26)
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To solve this equation numerically, one develops the solution, ipojntir), starting from
r = 0, using the condition that the wave function vanishes at the origin, ^o,mt(r = 0) == 0
and one of many possible numerical methods (Cowell, Numerov, modified Numerov, Runge-
Kutta, etc.). The equation is solved numerically out to a radius rm, beyond which the optical
potential can be neglected. For values of the radius equal to or larger than this matching
radius, the solution to the differential equation that satisfies the incoming wave boundary
condition takes the form

7/, (r\ _ }_(p-ikr _ qJkr\ r > r (r>7\
Y^.extyi) — cy Ve £>0e ) i cL rm • \* *)

One requires, at the matching radius rm, that this external wave function and its derivative be
the continuous extensions of the numerical wave function obtained in the the internal region
and of its derivative. This results in two equations, whose solution yields the amplitude of
the internal wave function and the S-matrix element, So-

Once the S-matrix is known, the optical cross sections can be calculated. For the case
of s-wave scattering on a spin zero target, these are again the total, elastic and absorption
cross sections,

oe\ — — So — 1 , (28)

and aabs = 7^(1 ~

where To is the s-wave transmission coefficient. The absorption cross section and the trans-
mission coefficient TQ are non-zero when the S-matrix element So is smaller than one in
magnitude. This occurs when flux is absorbed by the long-lived compound-nucleus states.
Care must be taken, however, when comparing the optical model absorption cross section
to the experimental reaction cross section. A part of the flux absorbed by the compound
nucleus can later be re-emitted in the elastic channel, in which case it should rightly be
considered part of the elastic cross section.

Of the three optical cross sections, only the total one can be compared directly with
experimental data, as it is the only one that is linear in the scattering amplitude (here the
S-matrix element So). The S-matrix element can be written in general as the sum of an
average and a fluctuating part, S = S + S/j. The average elastic cross section then has the
form

7T
5 - 1

2
(29)

The first term alone gives the elastic cross section of the optical model. The average value
of the fluctuating term is calculated within the statistical model.

In the resonance region, s-wave and p-wave strength functions can be defined. The s-wave
strength function, so> relates the average neutron partial width (FQ) and spacing Do of the
resonances to the optical model absorption. One has, approximately,

(30)
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where Eo is usually taken to be 1 eV. The factor \jEcm, the s-wave penetrability, cancels the
energy dependence of the neutron partial width, so that the strength function varies slowly
with the incident neutron energy. The p-wave strength function, si, relating the average
partial width and spacing of the I = 1 resonances is defined analogously in terms of the
p-wave S-matrix elements and penetrability.

Adjustment of the optical model parameters at low energy to reproduce the s-wave and
p-wave strength functions, the scattering radius and the total cross section is known as the
SPRT method. [7] A good fit to these observables is important in determining the low energy
behavior of the optical cross sections and the transmission coefficients, which is important,
in turn, in determining the behavior of compound nucleus cross section calculations near
threshold.

3.3 The phenomenological optical potential
The formal derivation of the optical potential might suggest that it could be calculated
directly. Although a good deal of work has indeed been done in this direction, the resulting
potentials are often difficult to calculate and still not sufficiently precise. They also have
the drawback of being non-local, which can greatly complicate solution of the corresponding
Schrodinger equation. [8, 9, 10, 11]

Instead, phenomenological optical model potentials are normally used to compare and fit
to experimental data. With few exceptions, these potentials are taken to be local. However,
the qualitative characteristics of the geometry and the general trend of the energy dependence
of the phenomenological potentials are quite similar to those found in microscopic potentials.
Both types of potentials are, after all, trying to describe the same physical processes.

In the empirical potentials, the functional form is usually determined by a limited set
of parameters that are adjusted to obtain a best fit with the experimental data. Over the
years, a standard form of the phenomenological optical model potential has evolved, which
permits the parametrization of the scattering of a light particle (neutron, proton, deuteron,
triton, 3He or alpha) from a given nucleus. This is

Uopt(r) = +Vc(r) a Coulomb term,

— (V + iW) fv,w{?) a complex volume term, (31)

+(Vs — iWs)gv8,wa(
r) a complex surface term,

—dso I • s(VS0 + iWS0) hvso,wso{
r) a complex spin — orbit term,

where the spin-orbit constant is dso = (h/m^c)2 « 2 fm2, mn being the pion mass.
The Coulomb term is usually taken to be the interaction of a projectile point charge

Zp with a uniformly charged target sphere of radius Rc and total charge Zt. Although this
potential neglects the surface diffusivity of the nuclear charge distribution, it is a reasonable
approximation in the case of the scattering of light particles from nuclei.

The real and imaginary volume terms are normally taken to be of Wood-Saxon form,

fi(r) = T - * g v , i = V,W, (32)
1 + exp [(r - Rj/O]

where Ri and a* are the radii and the diffusivities, respectively, of the two terms. The Wood-
Saxon form factor can be thought of as a smoothed step function, falling from one for values
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of the radius r smaller than the radius Ri to zero for values of r greater than Ri, in a few
multiples of the diffusivity â .

The real volume potential reflects the average interaction of the projectile with the nucle-
ons of the target nucleus. The Wood-Saxon form factor it uses is quite similar in form to the
nucleon density of a saturated nucleus (A > 30 ). (For lighter nuclei, a Gaussian geometry
is sometimes used.) The strength of the real volume potential is roughly proportional to the
mass of the projectile and decreases with the incident energy, in qualitative agreement with
the results of calculations of the nuclear mean field. [12]

The imaginary volume potential takes into account the loss of projectile particles due to
collisions with the nucleons of the target. It is zero at low energies, for which the projectile
does not have sufficient energy to excite single nucleon modes. At higher energies, it increases
slowly with the incident energy, as the phase space available for single nucleon excitation
increases. At even higher energies, both the real and imaginary volume potentials for nucleon
scattering are fairly well described by the impulse approximation, in which the the target
density is simply folded with the nucleon-nucleon cross section. [13, 14]

The real and imaginary surface terms of the optical potential are taken to be either the
derivative of a Wood-Saxon,

9i(r) =-Aa—fiir) i = V,W, (33)

or a Gaussian. In either case, the potential peaks at a radius Ri and falls to zero within
a few multiples of the diffusivity â . A derivative Wood-Saxon form factor with diffusivity
aws is almost indistinguishable from a Gaussian form factor with diffusivity CLQ = 2.21aws-

The imaginary surface term of the optical potential takes into account the absorption
due to the coupling to the quasi-bound compound nucleus states and to the excitation of
low-energy collective modes, which have their couplings concentrated in the nuclear surface.
Similar many-body effects can also be invoked to justify the presence of a real surface term.
However, given the imaginary surface term, the existence of the real term can be shown to
follow directly, by using a dispersion relation based on the causality of the optical potential
(no singularities in the energy upper half plane). [15] The dispersion relation shows that an
energy-dependent imaginary potential W(r, E) necessarily leads to a contribution AV(r, E)
to the real potential. If the imaginary term is a surface one, the real term resulting from the
dispersion relation will be a surface one as well.

Both the real and imaginary spin-orbit terms of the optical potential are taken to have
a Thomas form factor,

Hr) =-\frfi{r) i = VS0,WS0. (34)

Like the surface imaginary term, the Thomas form factor yields potentials which peak at a
radius near Ri and fall to zero in a few multiples of the diffusivity â .

The Thomas form factor, as well as the spin-orbit potential itself, can be derived (for spin
1/2 particles) by performing a reduction of a Dirac equation with Wood-Saxon potentials
to an equivalent Schrodinger equation. [12] The spin-orbit interaction and the Thomas form
factor can then be interpreted as but another manifestation of the volume interaction of the
incident particle with the nucleons of the target nucleus.
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The phenomenological optical potential is thus parametrized in terms of a set of potential
strengths and corresponding geometrical parameters. These parameters have been adjusted
for many systems and values of the relative energy. Several attempts have been made to
adjust a single set of parameters to a wide range of systems by introducing a dependence on
the target charge and mass as well as that on the relative energy. The potentials obtained
using such sets of parameters are called global optical potentials. Many individual and global
optical parameter sets can be found in an old compilation by Perey and Perey.[16] However,
the best modern reference for optical potential parameters is the Reference Input Parameter
Library (RIPL), available both online and in CD from the Internationational Atomic Energy
Agency. [17]

For nucleons, typical values of the potential strengths are

V « (45 - 55) MeV - (0.2 - 0.3)E,
Ws « (2 - 7) MeV + (0.3 - 0.5)£ E < 8 - 10 MeV, (35)
Vso « (4 - 10) MeV.

Above 8 - 1 0 MeV, Ws is usually constant or slightly decreasing. Vs and Wso can normally
be taken to be zero as can W below about 10 MeV. Above about 10 MeV, W is constant
or slightly increasing. At sufficiently high energies, typically about 300 MeV, the optical
potential strength V changes sign, becoming repulsive. As mentioned above, for heavier
particles, the real volume potential V scales approximately linearly with the mass.

The radii Ri characteristically take on values close to that of the radius of the target
matter distribution. They are often parameterized in terms of reduced radii r» and the

i /^
target mass as Ri = TiAt' , with the reduced radii in the range r* « 1.2 - 1.3 fm. The
diffusivities normally take on values in the range a, « 0.4 - 0.7 fm, except in the case of a
Gaussian surface form factor, for which the typical values are slightly larger.

Not all of the optical model parameters are uniquely determined by the experimental
data. It has been observed, for example, that fairly wide ranges of the parameters V, Rv,
Ws, and as result in equally good fits to the experimental data if the values of VR?V and
Wsas remain constant. These are known as potential ambiguities.

3.4 Partial wave expansion in the single-channel optical model
When angular momenta greater than the s-wave contribute to the scattering, the wave
function and the scattering matrix are determined most conveniently when decomposed in
angular momentum partial waves. The partial wave expansion of the scattering wave function
of a particle of spin s [18] can be written as

* = IT E *' ^l^)yi:{r)yi:\k), (36)
KT Ijn

in terms of the spin-angular functions

yi:{r) = »' £ (sulm\jn) Ylm(r) \su) , (37)
mv

where / and j are the orbital and total angular momenta and \sv) is an eigenvector of the
particle spin. In the expansion of the wave function, o\ is the Coulomb phase, f denotes
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the angular variables and k the direction of the incident momentum. (The S-matrix element
in partial wave / for pure Coulomb scattering of the projectile from the target would be
e2m.) The factor ilel(Tlil)l(r)/kr could have been written as simply ipj(r) in the partial wave
expansion. The form used above simplifies manipulations.

When the partial-wave expansion of the wave function is substituted in the optical Schro-
dinger equation, one can extract an independent equation for the wave function ipj in each
partial wave. The incoming-wave boundary condition requires that asymptotically the wave
function take the form of an incoming plane wave and an outgoing scattering wave. To be
consistent with this and satisfy the differential equation, the wave function ifr\ must have the
asymptotic form,

Mi?) -> \ (#f (0 - H?(r)e*« S{) e-* , (38)

where Hf are the linear combinations of the regular and irregular Coulomb wave functions
that asymptotically contain only incoming (Hf) or outgoing (Hf) waves. Sj is the nuclear
part of the S-matrix element and e2lCTl the Coulomb part.

The S-matrix elements, 5/, are obtained in the same manner as So is obtained in the
case of low-energy neutron scattering. In the internal region, the differential equation for
each partial wave is solved numerically out to the radius, rm. The numerical solution and its
derivative are matched there to the wave function in the external region, given by Eq. (38),
and to its derivative, to obtain the ampitude in the internal region, a/, and the S-matrix
element, £/.

The only novelty to the solution here is deciding with which partial wave to stop the
calculation, for / and j extend to infinity. The calculation is normally stopped when the
nuclear S-matrix elements are sufficiently close to one. This occurs when the centripetal
barrier no longer permits the projectile to enter the range of nuclear interaction with the
target. For partial waves of larger /, the scattering reduces to pure Coulomb scattering (or
for neutrons, no scattering at all), as is evident from Eq. (38).

When the asymptotic form of the partial wave function, ^/ , of Eq. (38), is substituted in
the partial wave expansion of the total wave function, Eq. (36), one can extract the partial
wave expansion of the scattering amplitude,

/(*) = yT E ( ^ % - l) y^(r)y^(k). (39)
LlK Ijn

For spin-1/2 particles, the scattering amplitude is a 2x2 matrix (corresponding to the two
projections of the spin) with two distinct amplitudes.

The differential elastic cross section for an unpolarized incident beam is obtained by
averaging the squared magnitude of the scattering amplitudes over the initial values of the
projectile spin and summing over the final ones. The general expression that results is

For particles of spin-1/2 and greater, one can define vector and tensor spin observables in
terms of other combinations of the amplitudes.
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The fraction of flux absorbed from each partial wave is given by the transmission coeffi-
cient, T]7, defined as

= I- SJ\2

When the S-matrix element is unitary, no flux is absorbed and the transmission coefficient
is zero. When absorption is complete, the transmission coefficient is one. These quantities
are essential for calculating statistical cross sections. Quite often, optical model calculations
are a mere preliminary to statistical model calculations and are performed only to obtain
the transmission coefficients.

The total flux lost in the scattering is related to the absorption cross section through the
equation

• d a , (42)

where it is understood that the probability current,

j= -?- (V W - (W f)#) , (43)

is integrated over a surface which tends to infinity. The absorption cross section can be
expressed in terms of the transmission coefficients as

£ (44)

For charged particles, integration of the differential elastic cross section of Eq. (40) leads
to an infinite result, due to the infinite range of the Coulomb interaction. For neutrons, it
yields the elastic cross section,

ij

This is often called the shape elastic cross section to distinguish it from the compound elastic
one.

For neutrons, a total cross section can also be defined as the sum of the elastic and
absorption cross sections,

Otot = (Tel + (Tabs = ^ E ( 2 ^ + *) U " R e Sl) ' (46)

The total cross section takes into account all flux lost from the incident plane wave. Com-
paring the expression for the total cross section with that of the scattering amplitude, A(9)1

one sees that the optical theorem is explicitly verified by the partial wave expansion,

4TT
= —lmA(6 = 0°). (47)
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Figure 3: Various experimental measurements of the n+58Ni total cross section, identified by their EXFOR
access numbers, are shown together with two optical model calculations.

As observed earlier, when it exists, the total optical cross section is the average of an
amplitude and can thus be compared directly with the energy-averaged experimental data.
This is done in Fig. 6, where a selection of the experimental measurements of the n +58 Ni
total cross section is shown together with optical model calculations using the parameters
of A. Prince[19] and those used in the exercises. Although there is a great deal of dispersion
in the low energy data, the calculations follow its trend.

The optical elastic and absorption cross sections involve the average of a squared am-
plitude and cannot be compared directly with the energy-averaged experimental data. The
compound elastic cross section is part of the optical reaction cross section rather than the
elastic cross section. The experimental elastic cross section can thus greatly exceed the op-
tical component of the cross section. This is illustrated in Fig. 7, in which a selection of the
experimental measurements of n +58 Ni are compared to optical model calculations using
the parameters of Prince[19]. At energies sufficiently high for the elastic compound nucleus
cross section to have dropped to zero (which usually occurs at an energy of the order of a
few MeV), the differential and integral (when it exists) optical elastic cross sections can be
compared with the energy-averaged experimental data. Note that the elastic cross section
for neutron-induced scattering can also be compared to the experimental data at extremely
low incident energies, where it is customarily expressed as a scattering radius B!.

At high energies, the absorption cross section can also be compared to experimental
reaction cross section data. However, the reaction cross section cannot be measured directly,
making the data for such a comparison scarce.
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3.5 The generalized optical potential

The single-channel or spherical optical model treates the target nucleus as if it were spherical.
But nuclei are often deformed. Even those that are spherical are often susceptible to shape
oscillations. Deformed and vibrational nuclei possess low-lying collective states that are
easily excited in a collision. As these excitations are prompt reaction modes, one would
expect their description to lie within the scope of a generalized optical model. The standard
extension of the optical model takes into account the expected deviation from spherical
symmetry by modifying the radii Ri of the terms in the optical model potential.

A vibrational nucleus possesses a spherically symmetric ground state. Its excited states
undergo shape oscillations about the spherical equilibrium mode. [20] To take these into ac-
count, the radii of the terms in the potential are expressed in terms of the creation and
annihilation operators of nuclear phonons and the amplitudes of their respective shape os-
cillations. One usually expands the optical potential to first or second order in the creation
and annihilation operators, thereby taking into account the direct excitation of one- and
two-phonon states.

The nucleus 58Ni serves as an example of a typical vibrational nucleus. Two neutrons
from a doubly magic configuration, it has a spherically symmetric J — 0+ ground state
and a J = 2+ excited state at EX=1A54 MeV that can be considered a one-quadrupole-
phonon vibrational state. At about twice the energy of the one-phonon state, in particular,
at EX=2A59, 2.776, and 2.943 MeV, one finds a trio of states with J = 4+ , 2+ , and 0+,
respectively, which can be interpreted as the two-phonon states. The fact that the first two
these (but not the third) decay almost exclusively to the J = 2+ excited state corroborates
such an interpretation, but also shows its limitations.

A statically deformed nucleus possesses rotational excited states. [20] In this case the
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radii Ri of the optical potential are replaced by an angle-dependent form expressing the
static deformation, yielding a potential that depends on the orientation of the target. When
the deformation of the nucleus is large, expansion of the optical potential in a Taylor series
is not a good approximation. It is better to expand it directly in multipoles of the relative
angle between the projectile and the orientation of the target.

The nucleus 238U provides an excellent example of a statically deformed nucleus with
rotational excitations. Its 0+ ground state possesses static quadrupolar e hexadecapolar
deformations with (32 = 0.198 and /34 = 0.057. Its first four excited states, at Ex — J^—
0.044 MeV-2+, 0.148 MeV-4+, 0.307 MeV-6+, and 0.518 MeV-8+, iniciate a rotational band
that can be traced to at least the 28+ state at £^=4.516 MeV. Each of these states decays
exclusively to the next lower state in the rotational band.

In the generalized optical potential, the introduction of target degrees of freedom leads
to a potential that depends on the relative orientation of the target with respect to the
projectile. The system is no longer invariant under independent rotations of the target or
the projectile and their individual angular momenta are not conserved. However, in all cases,
the system continues invariant under a simultaneous rotation of the projectile and target.
The total angular momentum thus continues to be a conserved quantity.

The partial wave expansion proceeds in the coupled-channels optical model much as it
did in the single-channel one. There are several new features however. The first of these is
that the excited states and their angular momentum must now be taken into account. The
wave function in a partial wave of total angular momentum J and parity TT is then not a
scalar, as it is in the spherical model (for projectiles of spin 0 or 1/2), but a matrix. The
differential equation that must be solved is also a matrix one. Although the only solution
that is normally of interest is the one in which the target is in its ground state in the incoming
wave, the complete matrix solution is needed to invert the matching equations and obtain the
S-matrix, which is now a matrix, Si'j'c>jjC, labeled by the orbital and total angular momenta
of the projectile, / and j , and by the target state c. The calculation is thus much more time
consuming than in the spherical case.

To obtain the partial wave expansion of the scattering amplitude, one repeats the pro-
cedure used earlier: substitute the asymptotic form of the partial wave function, \&j in the
partial wave expansion of the total wave function and compare the result to the expected
form of the asymptotic wave function. Once the scattering amplitude is known, calculating
cross sections is a simple matter. The differential cross sections for an unpolarized incident
beam and target are obtained by averaging the squared magnitude of the scattering ampli-
tudes over the initial values of the projectile and target spin and summing over the final
values. The differential cross section for a collision, in which the target of spin Ia initially in
its ground state a is scattered to a final (ground or excited) state c, is given by

l)(2Ja
uMa

where v, v1 and Ma, Mc are the initial and final projections of the projectile and target spins,
respectively. The elastic optical angular distribution is forward peaked when the scattering
involves partial waves above the s-wave. The inelastic angular distributions need not be.

Due to the infinite range of the Coulomb force, the integrated elastic cross section is
finite only when at least one of the two colliding particles is neutral. In the particular case
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of neutrons incident on a nucleus, integration of the differential cross section yields,

(49)

The integrated inelastic cross sections exist for for both neutral and charged particles. They
take the form

1
^1'5'cJLja c T̂  a. (50)

In the coupled-channel problem, it is also possible to define an absorption cross section,
which can be related to the total flux lost from all channels, elastic and inelastic, as

= — f
V J

(51)

where the probability current in channel c,

h
(52)

is integrated over a surface which tends to infinity, with \tc the component of the wave
function that asymptotically occupies state c. Using the asymptotic form of the partial
waves, the expression for the absorption cross section can be reduced to

1 7T
(53)

where the coupled-channels transmission coefficients have been introduced. These are denned
in terms of the S-matrix SJ as[21]

TJ = 1J - (54)

The total flux lost from the elastic channel can also be related to a reaction cross section
through the restriction of Eq. (51) to the ground state component,

ar = — fja-da.
v J

(55)

This expression can be reduced to a form similar to that of Eq. (53), but involving only the
squared magnitudes of the ground state S-matrix elements. Comparison of the form of the
reaction and absorption cross sections reveals a simple relation between the two,

(56)

In other words, the elastic channel loses flux to both the prompt inelastic channels and the
long-lived compound states. The reaction cross section takes both of these into account.
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identified by their EXFOR access numbers, are shown together with two optical model calculations.

For neutral particles, the neutron in particular, the elastic cross section is finite. A total
cross section can then be defined as the sum of the elastic and reaction cross sections,

1 7T
(57)

The total cross section takes into account the occurence of scattering of any type. It is a
measure of the flux lost from the incident plane wave state.

Just as in the case of the elastic cross section, care must be taken when comparing
inelastic optical model cross sections with experimental data. At low energies, these cross
sections are dominated by their compound nucleus contribution, as shown in Figs. 8 and 9,
for neutron-induced excitation of the first excited state in 58Ni and 238U, respectively. One
observes that the direct process plays a very minor role in the excitation of these states
in the first few MeV above threshhold. In Fig. 8, the 58Ni data are compared to optical
model calculations using the parameters of A. Prince[19] and those of another set, both with
a phonon amplitude of /32=0.2. Note the strong influence of the optical model parameters
on the direct component of the inelastic 58Ni excitation. The Prince parameters yield an
inelastic cross section that is almost twice that of the other set of parameters, although both
use the same phonon amplitude. The 238U data of Fig. 9 is compared to an optical model
calculation using the parameters of Young and Arthur[22], which fits the higher energy data
quite well. One notes that the direct excitation cross section of the 238U 2+ state reaches a
value of almost 500 mb. In general, the inelastic excitation of a rotational band can be quite
large, demanding a coupled channels method for its precise calculation.

The optical model and optical potential continue to be subjects of intense research. One
can find out more about the directions this research is taking in the proceedings of a recent
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conference [23].

4 The Statistical Model

The statistical model describes the emission of the flux that is absorbed into the long-lived
compound-nucleus states during a collision. The contribution of this flux to the average
cross section is given by the average of the fluctuation term in the cross section, the second
term in the following expression,

/ \ n

{Vac) = ^J

7T

,ca|

Beginning with a convenient but general form of the S-matrix of Eq. (14), (the form given
here has been simplified), one can use the observation that the amplitudes g^c and the matrix
elements V^v coupling compound nuclear states (not included explicitly in Eq. (14)) can be
treated, to a good approximation, as normally distributed random variables to calculate the
average cross section explicitly. However, the calculation is extremely complex and requires
sophisticated mathematical techniques for an exact resolution[24]. We will content ourselves
here with simpler approximate solutions.

4.1 The Weisskopf-Ewing and Hauser-Feshbach models

The typical time scale for a direct reaction is of the order of 10 22 s while a low-energy
compound nucleus reaction takes place on a time scale of 10~18 s or more. The extreme
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difference in the two time scales suggests that the formation and decay of the compound nu-
cleus can be considered independent processes, with the decay ocurring from a configuration
of equilibrium. Mathematically, this can be expressed as the factorization hypothesis, put
forth by N. Bohr[25], which states that the compound nucleus cross sections can be written
as the product of a factor describing the creation of the compound nucleus and a factor de-
scribing its decay. The symmetry in the corresponding factors, g^a and g^ of the resonance
expansion S-matrix of Eq. (14) suggests that the creation and decay factors should have a
similar form. One can thus postulate that compound nucleus cross sections may be written
as

<£ = ^Uc, (58)

for an appropriate definition of the dimensionless quantity fc. Summing over the decay
channels of the compound nucleus, one obtains the total cross section for formation of the
compound nucleus, which will be used at the moment to define a factor Ya that depends
only on the entrance channel as

h.2
a

Substituting in Eq. (58), one finds

which immediately yields
fl _ n YaYc

aac =

To determine the absorption/emission factor Yc, one now uses the fact that the compound
nucleus formation cross section is identical to the optical model absorption cross section.
Two applications of this expression are widely used. These are the Weisskopf-Ewing and
Hauser-Feshbach models of statistical emission.

In the Weisskopf-Ewing model[26], only energy, charge and mass conservation are taken
into account. The quantity Yc is then proportional to the absorption cross section summed
(rather than averaged) over the projections of the projectile spin,

Yc = (2sc + l)—aabs(Ec) = (2sc + l)- t-|Ecaa6s( JE'c), (59)

where \ic is the reduced mass in channel c and Ec the center-of-mass energy in the channel.
The cross section must be averaged over the projectile spin projections in the initial channel,

In the Hauser-Feshbach model[27], angular momentum and parity conservation are taken
into account as well. In this case, comparison with Eqs. (44) and (53) show that the quantity
Yc is a sum over the transmission coefficients that furnish the same total angular momentum
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J and parity TT of the compound nucleus. When using spherical optical model transmission
coefficients, the general expression for the absorption/emission factor is

J+Ic j+Sc

YC(J,*)= E E f(l,*)Tf, (61)
j = \J-Ic\ I = \j-8C\

where /(/,TT) selects the correct values of the partial-wave parity and Ic is the angular
momentum of the initial (final) nucleus before formation (after decay) of the compound
nucleus. In the case of absorption/emission of a nucleon from a level with Ic = 0, this
expression reduces to a single transmission coefficient. The cross section is obtained by
summing over all projections of the total angular momentum and averaging over the initial
spins,

fi 1 * MJK)Y(J-K)

When using coupled-channels transmission coefficients, it is quite common to use just
the diagonal elements of the transmission matrix and neglect the off-diagonal ones. An
analysis by Engelbrecht and Weidenmiiller [28] has shown that a more correct procedure is
to perform the compound-nucleus calculation in a basis in which the transmission coefficients
are diagonal and transform the resulting cross sections back to the non-diagonal basis

4.2 Further considerations
The factorization hypothesis assumes that no correlations exist between the formation and
decay of the compound nucleus. In terms of the resonance expansion of the S-matrix, Eq.
(14), this is equivalent to the hypothesis that the entrance channel amplitude g^a is uncor-
related with the exit channel amplitude, g^c. This obviously cannot be the case for elastic
scattering, in which the entrance and exit channels are identical. To take this correlation
into account, a correction factor, known as a width fluctuation correction, is introduced into
the Hauser-Feshbach partial wave cross section, which then takes the form,

The elastic enhancement factor, Wa, varies between 3, when the absorption is small (Ta «
1) and 2, when the absorption is strong (Ta « 1). The absorption/emission factors, Yc,
must be modified, when the width fluctuation correction is included, in order to preserve
the relation between the summed fluctuation cross sections and the absorption cross section.
This effect is denoted by the use of Vc in the modified expression. The width fluctuation
correction leads to an elastic fluctuation cross section that is larger than the Hauser-Feshbach
one, although not necessarily by a factor of 2 to 3, since the correction applies only to terms
with exactly the same quantum numbers. The effect of the correction on other channels is
most noticeable at low energies, in particular, at the threshold of the the first inelastic level,
in cases where the only other open channel is 7 emission. In this case, the corrected cross
section lies below the Hauser-Feshbach one. Methods for estimating the width fluctuation
correction may be found in Refs. [29, 30, 31, 32] and are discussed and compared in Ref.
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[33]. The method of Ref. [24] precludes such a correction by furnishing an exact expression
for the cross section.

The emission factors Yc in the Weisskopf-Ewing and Hauser-Feshbach expressions above
are required for all open channels. Taking neutron emission from a compound nucleus of
total excitation energy £'*as an example, one need calculate the factor Yc for each excited
state of energy ec of the residual nucleus for which the energy E = E* — ec — Sn is positive,
Sn being the neutron separation energy. In practice, ground state emission factors at the
energy E are usually used instead, ignoring any other differences between the ground and
excited state emission factors.

At low excitation energies, individual states of a nucleus can be distinguished. However,
state/level densities increase exponentially with the excitation energy, making their enumer-
ation an impossible task. Thus, above a set of discrete levels, one uses the emission factor of
a group of levels, weighted by the appropriate state/level density. For the Weisskopf-Ewing
model,

YC(E* -6c-S)=^ YC(E* -ec- S)uc{ec)dec, (63)

where S is the separation energy and CJC(^C) the density of states of the residual nucleus at
an energy of ec. Similarly, for the Hauser-Feshbach model,

YC(E* -ec-S, J, n) => YC(E* -ec-S, J, n)pc(ec, Ic)dec, (64)

where pc(sClIc) is the density of levels of the residual nucleus of angular momentum Ic at
energy ec. As state and level densities vary quite rapidly with excitation energy, they play an
extremely important role in statistical reactions and must be determined with care[34, 35].

Quite often, a compound nucleus, at the excitation energy under consideration, can emit
more than one particle. When this is the case, the emissions are considered to be sequential
and independent. It is then necessary to accumulate the distribution of residual nuclei when
calculating the decay of each of the compound nuclei in the decay chain. It is usually
necessary to calculate all possible paths in the chain. For example, a nucleus with one unit
of charge and two units of mass less than the original compound nucleus can be populated
by emission of a proton followed by a neutron, emission of a neutron followed by a proton
or emission of a deuteron.

Finally it should be noted that compound nucleus angular distributions may also be cal-
culated. In general, they are not isotropic, since angular momentum is conserved. However,
they are symmetric about 90°, reflecting the loss of memory of the initial momentum.

5 Preequilibrium models

Up to this point, nuclear reactions have been considered to occur on two distinct time scales.
This point of view is valid at low energies, but becomes less so as the incident energy increases.
Due to the two-body nature of the nuclear interaction, a nucleon-nucleus interaction may
be decomposed as a series of nucleon-nucleon interactions. Taking the entrance channel of a
rrnucleon-nucleus composite system to be a 1 (projectile) particle, 0 (target) hole state, one
can consider the result of a collision as leading to either another lp-Oh state or to a set of
2p-lh states, in each of which the incident particle has excited one of the target particles,
creating a particle-hole pair. At energies up to about 20 to 30 MeV, the wavelength of a
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nucleon is still about 5 to 6 fm, so that the projectile nucleon - target nucleus interaction
would not excite an individual particle-hole state, but a complicated linear combination
of particle-hole states. Further interaction of any of the particles or holes could create,
scatter or destroy such particle-hole pair configurations. But in all cases, one can classify
the complex configurations in terms of the number of particles p and number of holes h.
One notes that, since the total number of particles is conserved, the difference between the
number of particles and number of holes, p — /i, remains constant throughout a collision.
The quantity n = p + /i, called the exciton number, thus serves as an unambiguous label of
the configuration of the system within this picture (see, however, Ref. [36] ).

At low energy, where the lifetime of the compound nucleus is long (that is, the emission
rates are small), one expects the compound system to usually reach equilibrium before
decaying. As the incident energy increases, emission rates increase as well, and the likelihood
of preequilibrium particle emission increases. As the preequilibrium configurations do not
share the excitation energy among as many degrees of freedom as the equilibrium ones do,
particles emitted from preequilibrium configurations tend to have more energy than those
emitted from equilibrium. They may also preserve some memory of the direction of the
incident nucleon, resulting in forward peaked angular distributions.

One may use the exciton picture to refine the decomposition of the space of states into
a prompt component P and a compound nucleus component Q, Eq. (2), as

p =p1+ p 3 + p5 + p 7 + ...5 (65)

Q = Q3 + Q5 + Q7 + - . . (66)

The decomposition of the direct reaction space P contains the elastic component Pi and a
series of components with increasing exciton number in which it is assumed that one (and
only one) of the nucleons continues in the continuum. Progression along the stages of the
P chain could result either from additional interactions of the continuum nucleon with the
target or from interactions within the target. The decomposition of the compound nucleus
space begins with the three-exciton configuration Q3, since the incident nucleon must collide
with at least one nucleon, forming a particle-hole pair configuration, in order to be captured
into a quasi-bound state. Transitions between the chains may also occur at any stage.
However, it is assumed that all transitions change the exciton number by at most two.

Reactions that occur in the direct reaction space P are known as multistep direct re-
actions. Those that occur in the compound nuclear space Q are known as multistep com-
pound reactions. The first multistep direct models were developed by Feshbach, Kerman
and Koonin[37] and by Tamura, Udagawa and Lenske[38] and later by Nishioka, Wei-
denmiiller, and Yoshida[39]. The first multistep compound model was developed by Agassi,
Weidenmiiller and Mantzouranis[40] and redeveloped using more rigorous methods in Ref.
[42]. Similar models were also proposed in Refs.[37] and [41]. Before discussing the multi-
step models, however, it is worthwhile examining the original 'classical' exciton model, which
bears a very strong resemblance to the multistep compound model.

5.1 The exciton and model
The exciton model was originally proposed by Griffin[43] and later cast in the form of a
time-dependent master equation by Cline and Blann[44]. In their formulation, energy is
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conserved, but angular momentum is not. The equation governing the time development of
the fraction of the cross section P(n) in the n exciton configuration is written as

^ - A_(n + 2) P(n + 2) + A0(n) P(n) + A+(n - 2) P{n - 2) - \{n) P{n) (67)
at

where A(n) is the total rate of transitions out of the n exciton configuration,

A(n) = A_(n) + A0(n) + A+(n) + Ae(n),

with Ac(n) being the total rate of particle emission from the n exciton configuration. The
quantities A_(n), Ao(n), and A+(n) are the average rates for internal transitions from the
n exciton configuration with a change of exciton number by -2, 0, or +2. The average
rate of transitions that do not change the number of excitons cancels exactly in this simple
formulation of the model, but in more general models. Although the transition rates are
labeled by the exciton number n, for brevity, they in fact depend on the particle and hole
numbers, p and /i, as well as the total excitation energy E. Since the energy and the difference
between the particle and hole numbers, p — h, are conserved, no ambiguity is introduced by
this simplification.

Using Fermi's golden rule, the internal transition rates can, in principal, be calculated by
summing over all squared residual interaction matrix elements leading from the initial to the
final configuration. In practice, this sum is written as the product of the average squared
matrix element of the residual interaction |M|2with the density of available states. One has,
for the transitions that change the exciton number by two,

u)(n,E)\+(ri) = u(n + 2,E)\-(n + 2)
\M\2 rE

= J—M de(u>(2,l,e)u>(l,0,e)u(p-l,h,E-e) (68)
a Jo

. + w ( l , 2, e)u(0,1, e)o;(p, h-l,E- e)),

while for the transitions preserving the exciton number,

^ /
\M\2 rE

uj(n,E)X0(n) = ^—^ / de (u{2,0,e)uj(2,0,e)uj(p- 2, h,E - e)
a Jo

+CJ(1, 1, e)u(l, 1, s)u(p -l,h-l,E-e)

. + o;(0,2, e)u(0, 2, e)cu(p, h-2,E-e)). (69)

In each case, the ratio of the integral on the right hand side with the density of states on
the left hand side furnishes the density of available states. For the exciton number changing
transitions, the density of available states counts the average number of ways by which any
single exciton of the initial particle-hole configuration can be converted to three excitons
(or vice versa), assuming the energy-conserving transition between any of the single exciton
states and any of the three-exciton states to occur with equal likelihood. Similarly, the
density of available states for transitions that do not change the exciton number counts the
average number of ways in which any two excitons may scatter from one another, again
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assuming equal likelihood for all energy-conserving transitions. Expressions for the density
of available states were given by Williams[45] and later corrected for the Pauli principle by
Cline[46].

Although several different expression for the average matrix element, |M|2, are in use,the
most common one is that proposed by Kalbach-Cline[47],

| M | 2 = '

where A is the mass number of the system and / M is a parameter, which is usually taken to
be about fM = 230 MeV3 .

The particle emission rate Ae(n) in the simple exciton model is the sum of the inte-
grated proton and neutron differential emission rates, ^-(n, ev) dsv, which can be written
in terms of the Weisskopf-Ewing emission factors of Eq. (59) [44, 48] (no angular momentum
conservation), as

d\ev _ Yv(n)Ru

\n,sv)dev =dev hcu(n,E)

where \iv is the reduced mass of the emitted neutron/proton, ev its outgoing kinetic energy,
Bv its separation energy, and av{ev) the cross section for the inverse absorption process.
The factor Yv{n) denotes the generalization of the expression in Eq. (63) to the case in
which the residue density of states is an exciton one. A factor Rv is also included to take
into account the fact that neutrons and protons have not been distinguished in the process.
Emission of more composite particles, such as alphas, may also be taken into account by
taking the factor Rv as an exciton-number-dependent probability for striking the preformed
composite[49] and by modifying the density of final states accordingly.

The densities of states are often taken to be the Williams densities[50],

w ( P A E ) - p\h\(p+h-l)\

where the Pauli blocking correction is

These are obtained by counting all configurations consistent with the Pauli principle having
a total energy E, assuming an equally-spaced set of single particle states. The parameter
g is the single-particle state density, which is usually taken to be g = ^ a , with a the level
density parameter. The differential emission rates differ from the usual Weisskopf-Ewing
compound nucleus emission ones in the factor Rv and in the use of exciton state densities
rather than compound nucleus ones.

The time evolution equations, Eq. (67), form a set of coupled linear differential equations,
whose solution may be written in the form of a vector as,

P(t)=exp[-A-1t] Po,
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where the matrix A"1 is given by

(A"1) = A(rc) Smin - A_(n + 2) 8m,n+2 - A0(rc) 5m,n - A+(n - 2) <5m,n-2,

and the vector PQ describing the initial exciton configuration of the system is usually taken
to be,

P0(n) = (7oSPiPOShthQl

where <To is the spin-averaged absorption cross section, which is proportional to the spin-
averaged Weisskopf-Ewing absorption factor of Eq. (59), here consistent with the the neglect
of angular momentum. In the case of nucleon-induced reactions, the initial configuration is
the two particle, one hole one.

The differential and total emission cross sections may be obtained by integrating the
emission rates over all time,

i : ( e ) 5I / ^ ( n e ) P ( n t ) d t ^ ^ ( n e ) A P ( ^ )
v ~ Jo

It is interesting to rewrite this in a form more similar to the Weiskopf-Ewing expression for
the statistical emission cross section, Eq. (60). To do this, one removes the factor of h and
the density of states uo(n,E) from the denominator of the emission rate, Eq. (70), passing
them to the matrix A, resulting in

p-(ev) = aOv = —±— J2 R»Yv(n) nn,my0(m), (71)

where

( l l " 1 ) = 27TO;(n, E)Tn 6m^n — 7Tn)n+2 ^m,n+2 ~ ^n,n ^m,n — 7Tn,n-2 ^m,n-2, (72)

where the 7rnjm are given in Eqs. (68) and (69) and

27ro;(n, E) Tn = 7rn.n+2 + 7rn)n + 7rn^2 + J2 RcYc{n). (73)

When the emission factors Yc(n) are very small compared to the internal transition factors
7rn?n±2 and 7rnjn, the smallest eigenvalue of the matrix II approaches ^C)n RcYcip)- The corre-
sponding eigenvector is (1,1,1,...), corresponding to equal occupation of all configurations.
The cross section then reduces to

When the sum over the exciton state densities reproduces the total density of states, this
expression is equal to the Weisskopf-Ewing expression for statistical decay of Eq. (60), with
the exception of the factor Rv. The equilibrium limit of statistical emission is thus contained
in the exciton model.

The exciton model has been generalized to include angular momentum[51] and to distin-
guish between protons and neutrons[52, 53, 54]. Both generalizations are fairly straighfor-
ward. The generalization including angular momentum requires that the densities of states
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be replaced by angular-momentum dependent level densities and that the Weisskopf-Ewing
emission factors be replaced by the corresponding Hauser-Feshbach ones of Eqs. (61) and
(64). The transition rates have the same form as those in Eqs. ( 68) and (69), but with
the densities of states replaced by level densities and the average matrix elements by the
appropriate average reduced matrix elements.

The generalization of the exciton model to distinguish between protons and neutrons
requires that one use densities of states (or levels) that distinguish between proton and
neutron particles and holes. The number of transition rates increases greatly in this case
because of the number of different types of transitions that must be distinguished but, again,
may be written in a form similar to those of Eqs. (68) and (69). The transition rates that
do not change the total exciton number no longer cancel here, due to transitions between
proton and neutron particle-hole pairs. Both generalizations lead to better agreement of the
exciton model calculations with the experimental data.

Much work has been done to generalize the exciton model to permit its use in calculating
angular distributions, as well as spectra[51, 55, 56, 57, 58, 59]. Due to lack of space and
time, these cannot be discussed here.

5.2 The multistep compound model
The exciton model does not distinguish between bound and unbound single-particle states.
One of the principal differences between this model and the multistep compound one is that
the multistep compound model does make this distinction and includes in its state/level
densities only those states/levels in which all of the single-particle states are bound. One
can thus obtain a multistep compound model by taking the expressions above for the exciton
model, Eqs. (68) and (69) defining the transition rates and Eqs. (73), (72), and (71) defining
the exciton configuration widths, the transition matrix and the cross sections, respectively,
and substituting state/level densities which include only bound single-particle states[60, 61].

The other principal difference between the exciton model and the multistep compound
one is that the latter requires an interaction to occur for a nucleon to be absorbed or emitted
from the composite system. In the case of an emission factor, the transition must raise one
of the nucleons to an unbound, continuum state, so that it can leave the system. In the case
of an absorption factor, the transition must lower the initially unbound nucleon to a bound
configuration. These factors may be obtained in analogy with the internal transition factors
of Eqs. (68) and (69)

Fc+(n) = \MC\2 f de(u>(l,l,e-ec)u(l,O,e)u(p-l,h,E-e)
Jec

. + w(0 , 2, e - SC)UJ(0, 1, e)u(p, h-l,E-e)),

rE
Yc0(n) = \MC\2 / de (w(l, 0, e - sc)co{2,0, e)u(p -2,h,E-e)

Jec

+o;(0, M - ec)uj(l, 1, e)u){p - 1, h - 1, E - e) ,

and

Fc_(n) = \MC\2 [ de(u>(0,0,e-ec)u{2,l,e)u>(p-2,h-l,E-e)
J
[
ec
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The emission factors in Eqs. (73), (72), and (71) defining the exciton configuration widths,
the transition matrix and the cross sections, respectively, are then

Yc(n) = Yc+(n) + Yc0(n) + Yc.{n).

The absorption factors describe the inverse process to emission and may be obtained by rein-
terpreting the above expressions. In particular, the absorption factor for creating the initial
2p— lh configuration is lo-(3) = |M0|

2o;(2, l,£o)- The coefficients \MC\2 may be determined
by adjusting the sum J2n Yc(n) to the absorption cross section times the final state/level
density or by fitting the cross section. The multistep compound emission/absorption factors
were first derived in Ref. [37]. Explicit expressions for them and a general discussion of
multistep compound processes may be found in Ref. [62].

A nucleon that undergoes a transition to the continuum can return to a bound-state
configuration due to another transition before escaping the nucleus. This adds a compo-
nent, proportional to the product of an emission and an absorption factor, to the multistep
compound transition matrix, Eq. (72). This term, called the external mixing component,
permits transitions (through the continuum) that change the exciton number by up to 4. It is
derived and discussed in Ref. [40], but is usually not included in actual multistep compound
calculations.

Although it was not done here, the expressions for the multistep compound model can
be obtained using the decomposition of the space of states into the chains of prompt and
compound nucleus exciton configurations given in Eq. (66). One manner to derive these
expressions is to assume the ensembles of individual interactions coupling the prompt config-
urations to the compound ones and the compound ones among themselves to be independent
random variables. Approximate evaluations of the multistep process based on these assump-
tions may be found in Refs. [40] and [37] and a much more rigorous, but mathematically
sophisticated, derivation in Ref. [42].

5.3 The multistep direct model

To obtain expressions for multistep direct reactions, one again uses the decomposition of the
space of states into the chains of prompt and compound nucleus exciton configurations. In
this case, one must analyze the coupling along the chain of prompt configurations and,of
course, their coupling to the compound nucleus states. One can again assume the ensemble
of interactions coupling the prompt configurations among themselves and those coupling the
prompt configurations to the compound nucleus states to be independent random variables,
when evaluating the contributions to the cross sections.

When the generalized optical model was discussed earlier, the scattering amplitude was
assumed to have been obtained from a direct solution of the coupled-channels equations. This
is indeed the best method for calculating the cross sections of strongly coupled levels. In
general, however, only very few levels are strongly coupled. The excitations of the multistep
direct model, in particular, are assumed to be individually weak, but large in number. In
this case, it is advantageous to rewrite the Schrodinger equation as a Lippmann-Schwinger
equation,

(E-H0-V)\rl>>=0 —+ \i(; >={(/)>+—J—
hi — h
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where (E — H0)\(j) > = 0, and approximate the wavefunction |^ > using back-substitution on
the right-hand side.

For the analysis of multistep direct reactions, the most convenient form of the Hamilto-
nian is one in which the interaction V is decomposed into a set of spherical optical potentials
Von? with Von common to the states of the n-exciton configuration, and a set of two-body
interactions v that couple the states in different configurations. The set of interactions that
couple states within an exciton configuration are neglected here. The set of spherical optical
potentials Vo is then placed with i?o, leaving only the interactions v to couples configurations
in the right-hand term of the Lippmann-Schwinger equation. With the appropriate incoming-
wave boundary conditions on the wave functions, the Lippmann-Schwinger equation then
becomes

|^(+) > = |0<+> > +gM(E')v\rl>M >,

where g^\E') = (Er — H0 — VQ + ir))~l is the Green's function with an outgoing-wave
boundary condition, evaluated at an energy consistent with the gain or loss of energy in the
collision. Back-substituting in the second term on the right-hand side and explicitly labelling
the exciton configurations yields

where sums over all intermediate states (E3 in the two-step amplitudes) and final states (E3

in the one-step amplitudes and E$ in the two-step amplitudes) have been left implicit.
The terms on the first line of the above expression show the progression of the initial

flux through the states of higher and higher exciton configurations. The term on the second
line describes flux that has been excited to the states of the 3-exciton configuration and
then transferred back to the 1-exciton state. This term is a correction to the 1-exciton wave
function that takes into account the flux that has been lost to the states of the 3-exciton
configuration. It will be neglect here, as is done in most numerical calculations of multistep
direct reactions.

To calculate cross sections, one must now extract the scattering amplitudes from the
asymptotic behavior of the components of the wave function, square them and sum over all
intermediate and (some) final states. For the one- and two-step processes above, one finds
for the scattering amplitudes,

ME, Q <- Eit a) = < ̂ ( ^ K s ^ ^ a K I ^ >
where the < (j)^\ are solutions to the spherical optical Hamiltonian with outgoing wave
boundary conditions and the sum over intermediate states in the two-step amplitude has
been again left implicit. These furnish cross sections of the form

n 0) >

2m5 k

2

5
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where CJ(1, 1,EX) and u(2,2,Ex) are the lp-lh and 2p-2h densities of states at energy Ex.
The one-step cross section leading to the three exciton configuration does not require the
hypothesis that the matrix elements are statistically independent, as it is a simple sum of
cross sections. The statistical hypothesis has been used to obtain the two-step cross section
to the five exciton configuration in order to reduce the coherent intermediate sum of the
amplitudes to an incoherent one.

Tamura, Udagawa and Lenske [38] performed some of the first multistep direct calcu-
lations using forms of the cross sections similar to those above. They, however, did not
use simple exciton configuration densities. Instead, they calculated a lp-lh response func-
tion by diagonalizing the compound nucleus Hamiltonian in the lp-lh subspace. They then
convoluted the lp-lh response with itself to obtain the 2p-2h response function.

Feshbach, Kerman and Koonin, however, argued that the two-cross section could be
reduced to a convolution of one-step ones[37],

dMdE
fix <-Ei,Qi)

The simplicity of this expression and the facility with which it may be extended to higher
numbers of interactions has made it the most popular form of the multistep direct reaction
theory. Although there still exists some controversy over the validity of the approximation, it
has been widely used and has usually shown good agreement with experimental data[64, 65].

As the density of lp-lh and 2p-2h states is fairly sparse, it is feasible to perform mi-
croscopic multistep direct calculations that explicitly include all states. By distinguishing
protons and neutrons, it is also possible to include charge exchange as well as inelastic tran-
sitions in the multistep direct cascade. Both of these have been done in Ref. [65] and result
in a generally excellent agreement with the experimental data.

Finally, it should be noted that the intermediate stages in the multistep direct chain can
also feed the multistep compound process. As such transitions enter the multistep compound
chain at a higher exciton number than those that enter it directly from the nuclear ground
state, they tend to decrease the multistep compound preequilibrium emission rather than
increase it. Most preequilibrium multistep compound emissions come from the first few
stages in the chain. A composite system formed with a higher exciton number has a greater
chance of evolving to equilibrium before decaying than one formed with a smaller exciton
number.

6 The intranuclear cascade model

The statistical equilibrium and preequilibrium models discussed up to this point assume
that all the states collected in a configuration, be it an exciton one or the entire compound
nucleus, are somehow mixed with one another so that their energy is distributed statistically.
Although this might be a good approximation at low energies, it certainly does not remain so
as the energy increases. At sufficiently high energies, the velocity of an incident nucleon could
be over four times that of the fastest nucleon in the nucleus. In such cases, models which
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go to the other extreme and assume no configuration mixing at all become relevant. Among
models of this type are the intranuclear cascade model itself[66, 67, 68, 69], as well as the
hybrid model[70, 71, 72] and the hybrid Monte-Carlo simulation[73, 74] of M. Blann. Here,
the intranuclear cascade model and the hybrid Monte-Carlo simulation will be discussed.

6.1 The intranuclear cascade model
The intranuclear cascade model uses the Monte Carlo method to simulate a nuclear reac-
tion. A typical calculation assumes the target to initially be a cold Fermi gas of nucleons in
a potential well. All hadrons (nucleons and pions) move classically according to the average
mean nuclear potential. The interaction probability per unit length for a particle is taken to
be the inverse of its mean free path, averaged over the Fermi motion of the target nucleons.
Interactions occur as in the center-of-mass system of the two particles in free space. Inter-
actions are incoherent and uncorrelated. Pauli blocking is usually included. All particles
that have interacted are treated exactly the same, their trajectories being followed and their
chances for interacting calculated.

In a typical calculation, once the geometrical parameters have been defined, the primary
nucleon is propagated into the nucleus, its probability for having interacted calculated at
each step. When an interaction occurs, the momentum of the primary particle changes,
together with that of the secondary. Usually, the primary nucleon is followed until it leaves
the nucleus. The secondaries are then followed and allowed to interact, each in its turn,
until they either leave the nucleus or loses sufficient energy to become bound again. When
all particle energies are below a particular level, a preequilibrium stage may be substituted
for the intranuclear cascade. When all remaining particles are bound (or nearly so), a
Weisskopf-Ewing statistical model is used to calculate further emissions and activation cross
sections.

The intranuclear cascade model generally shows reasonably good agreement with the
experimental data, except at energies below about 100 to 200 MeV. The model describes
nucleon and pion emission fairly well but does not provide as reliable a description of ac-
tivation cross sections. It also cannot describe cluster emission (such as alphas). Little by
little, however, improvements are being made in the model and the agreement between its
calculations and the experimental data is growing. A detailed discussion of the model and
its possibilities may be found in Ref. [69].

6.2 The hybrid Monte Carlo simulation
The hybrid Monte-Carlo simulation uses the Monte Carlo method to simulate a nuclear
reaction in the energy space of exciton configurations, rather than in geometrical space as
does the intranuclear cascade model. It treats only the 2p-lh configurations, which have been
shown to be a good approximation to the distribution that results from a nucleon-nucleon
collision in nuclear matter[75]. For each particle in a 2p-lh configuration, an energy above
the Fermi energy is attributed randomly. If the particle energy is above the binding energy,
it may either escape or rescattef to form another 2p-lh pair, which it does, again randomly.
If it escapes, the remaining energy of the lp-lh pair is divied randomly between the particle
and the hole and the new particle is tested for escape or rescattering. This goes on until all
particles are bound. Hole scatterings are then considered and do indeed contribute to the
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particle emission. The hybrid Monte-Carlo model has recently been extended to calculate
angular ditsributions[74].

7 Final remarks
These lectures have tried to sketch the standard models used to describe nucleon-induced
reactions. For lack of time, only the most basic applications could be addressed and, even
then, only in their simplest form. Because of these limitations, the contributions of many
resarchers have not been recognized. The views and conclusions of others have no doubt
been distorted and misrepresented. The author would like to offer his apologies to all.
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