united nations educational, scientific and cultural

international atomic energy agency the **abdus salam**

international centre for theoretical physics

SMR/1325-6

Workshop on

Nuclear Data for Science & Technology: Accelerator Driven Waste Incineration

10 - 21 September 2001

Miramare - Trieste, Italy

Experimental activities at

high energies

J. Blomgren Uppsala University Sweden

Experimental activities at high energies

Jan Blomgren

Department of neutron research

Uppsala university, Sweden

Lecture given at the:

Workshop on Nuclear Data for Science & Technology:

Accelerator Driven Waste Incineration

Trieste, 10-21 September 2001

Why nuclear data for ADS?

This is possible in principle

Small amounts Large costs

Is industry-scale processing possible?

Acceptable costs Political acceptance Sound handling Small losses Good environment

Still open question

Balance between safety and cost

Unknown cross section \rightarrow exaggerate for safety \rightarrow extra costs

The role of nuclear data:

Improve the balance of safety versus economy

Why neutrons?

Characteri	stic energies	Atoms Nuclei		1 eV 10 MeV
Nuclei con	itain enormous ei	nergies!	!	
Atoms Nuclei	EM forces Strong forces			
Strong/EM forces = $100 - 1000$ Atom/nuclear area = 10^{10}			E M wins	in a real material
We need a	particle with			
No c	ng interaction harge onable life time	C		

Conclusion: neutrons

Which reactions are of interest for waste incineration?

1) Re	eally low energies		(thermal)	
	Capture Elastic scattering Fission	(n,γ) (n,n) (n,f)		Q = + 8 MeV $Q = 0 MeV$ $Q = + 200 MeV$
Best	transmutation reaction	n:	Fission	
	Releases LOTS of energy Releases 2-4 neutrons			pay the bill induce more reactions
Seco	Second alternative:		Capture	
	Releases little energy But it changes the element		Wro	ng type too (photons)
Usele	ess:		Scattering	
	No change, just mode	erates		

2) Low, but not really low, energies

Other channels open $(n,p), (n,\alpha), (n,whatever), \dots$

Most are useless or even detrimental

A few are of interest:

³ He(1	n,p)t	APT = Accelerator-based Production of Tritium		
⁶ Li(n	,α)t	"Classic" tritium production (Savannah, Hanford)		
⁷ Li(n	⁷ Li(n,2n) ⁶ Li Castle Bravo goes berserk!			
First	H-bomb	D-D fusion ("wet")	Big dewar of LD ₂ Not useful as a weapon	
Seco	nd H-bomb	D-T fusion ("dry")	⁶ LiD	
Chai	n reaction	$^{6}\text{Li}(n,\alpha)t$	$t(d,n)\alpha + E$	
But	40 % 60 %	⁶ Li ⁷ Li	(Nature: 7 % ⁶ Li, 93 % ⁷ Li)	
⁷ Li(n,2n) ⁶ Li has a significant cross section				

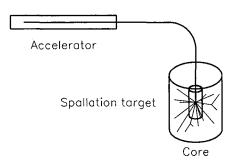
1) Increases the number of neutrons	Both increase
2) Increases the amount of 6 Li	the yield
	-
5 Mt expected, 15 Mt obtained	Biggest US test ever

Why accelerator-driven systems?

Wrong answer:	Safety	
	Critical po	wer reactors EXTREMELY safe
Right answer:	Difficulties critical rea	s to destroy some elements in ctors
Fission on $^{235}U \rightarrow 2.4$	3 neutrons	1.00 should make new fission1.43 neutrons to waste (capture)
Mistake: 1.01 neutron	S	1.01 ¹⁰⁰⁰⁰⁰⁰ (!) after 1 s Impossible to control
Natural solution: delay	yed neutron	us 0.7 % delayed (seconds – minutes)
Slow system:		0.993 prompt neutrons 0.007 delayed neutrons
²³⁵ U very favourable r	nucleus	Many delayed neutrons
Some nuclei have alm	ost no dela	yed neutrons

 \rightarrow Replace delayed neutrons with externally produced!

Which data are of interest for ADS?


Direct measurements or data for theory?

High energies (>20 MeV) 1 element, 1 cross section, 1 energy = 1 week = 1 MEUR

.

\rightarrow Requirements for good cover	age: National budgets Few centuries
Still not a complete solution!	Short-lived elements in reactors Example: 135Xe (Chernobyl!) 9 h halflife → impossible target
Conclusion:	Measure data for theory guidance
Possible consequence:	Measure processes not even taking place (!)

Contraints imposed by ADS

- 1) Proton-induced neutron production (spallation)
- 2) Whatever the neutrons will do

Spallation neutrons $\approx 5 \%$ of the neutrons (rest from fission) Half of spallation neutrons below 20 MeV even before moderation

Three energy ranges:

<20 MeV LOTS of data (3 M) Some work left	Reactors/fission weapons (<8 MeV) Fusion/thermonuclear (14 MeV) "New" isotopes Inconsistencies →Tassan-Got talk
>200 MeV Very few neutrons Theory rather good	(but powerful!) Single interaction → Leray talk
20-200 MeV Bad theory No data	

Lots of work required...

Data classification

Data for theory development

Strong channels

Special, important data

Example: elastic scattering Basis for optical potentials Total/reaction cross section

Elastic scattering (>50 %) (n,xp), (n,xn), (n,xα)

Spallation neutrons (p,xn) Fission → residual activity (n,xp) hydrogen production embrittlement (n,xα) helium production swelling

Residue production \rightarrow Total radioactivity

Overall quantities

The black magic of neutron experiments

How many neutrons are there in the beam?

Charged particles	Interact with electrons Every particle gives a signal \rightarrow just count
Neutrons	Interact with nuclei only No way to get a signal for each neutron
Vicious circle:	Example: measure neutrons by np scattering Detecting protons rather easy Cross sections needed to know the number of incident neutrons = beam intensity Beam intensity needed to know to measure the cross section

1) Tagging

Example: $d(d,n)^{3}$ He Only one final state Detect ³He \rightarrow "tag" on neutron Low (but known!) intensity beam

2) Hydrogen combinations

Total cross section well known (1%) Measured by attenuation Absolute intensity not needed

Measure angular np distribution Normalize to total cross section

3) Total/reaction/elastic combinations

Also reaction cross section well known (2%) Also attenuation experiments Integrated elastic = total – reaction Measure elastic angular distribution Normalize to integrated elastic

4) Theoretically "known" relations

Example: $np \rightarrow d\pi^0$ half of $pp \rightarrow d\pi^+$ Measure relative to $np \rightarrow d\pi^0$ Trouble: large corrections

Methodology:

Determine a reference cross section Measure relative to it

How large is a neutron detector?

Need to know solid angle = active detector area

Charged particles:	Collimators
Low energies: Slightly higher energies: High energies:	B/Cd huge capture cross sections Moderator (paraffin) + B/Cd Collimators useless (harmful) No strong capture Only reactions and scattering Produce as much as they remove In-scattering of junk
Conclusion:	"Naked" detectors
Recent test:	Tagged efficiency measurement Events from outside the detector (!) In-scattering from front plastic shield

How are high-energy neutron experiments carried out?

Case study: elastic scattering (all the trouble...)

Neutron production

Mono-energetic beams possible only up to a few MeV Break-up energies typically $8 \text{ MeV} \rightarrow \text{low-E}$ tail above 8 MeV

Up to 20-30 MeV:	T(d,n)	few 100 keV d \rightarrow 14 MeV n
Above 50 MeV:	D(p,n)	large cross section 3 MeV wide
		1 MeV wide Equally good
	⁶ Li ⁷ Li	Bomb material = hard to get For free = standard choice
	Remaining	ne neutrons in a high-E peak g equally distributed in energy good as it gets
Different approach:		All energies (white source) Large total number of neutrons Most at low energy Few per energy bin

Event-by-event necessary Good for Large cross sections Excitation functions

Neutron detection

Low energies:	Time-Of-Flight (TOF) standard technique Initial (d) beam stopped in a thin metal foil No neutrons from beam stop Scattering target close to production Movable detector (large hall) Beam swinger (fixed flight path)
High energies:	TOF increasingly difficult
Example:	 1 ns time resolution 0.5 MeV energy resolution wanted 5 m flight path at 20 MeV 60 m (!) at 100 MeV → Beam swinger needed
Next problem:	Above all neutron thresholds \rightarrow Most neutrons from the beam stop \rightarrow Move beam stop \rightarrow second magnet
Different approach:	Skip TOF Convert neutrons to protons Measure proton energy
Plus:	Large distance n production to target OK Short distance target to detector
Minus:	Poor conversion efficiency

The HINDAS project

High and Intermediate energy Nuclear Data for Accelerator driven Systems

EU project	16 universities/laboratories
	6 of these are experimental facilities

Essentially all competence in Europe above 20 MeV gathered

8 work packages:

- 1-3 20-200 MeV, n- or p-induced data
- 4-6 200-2000 MeV, p(d)-induced data
- 7 20-200 MeV theory
- 8 200-2000 MeV theory

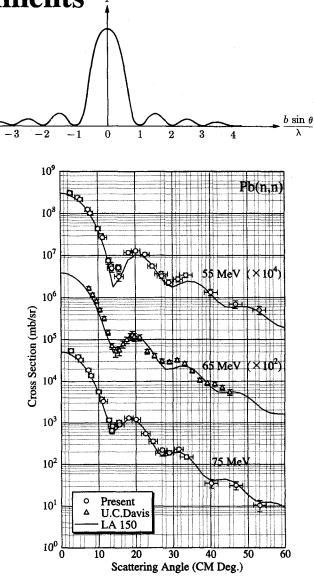
Survey of ongoing experiments

Elastic neutron scattering

Why bother?

Optics:

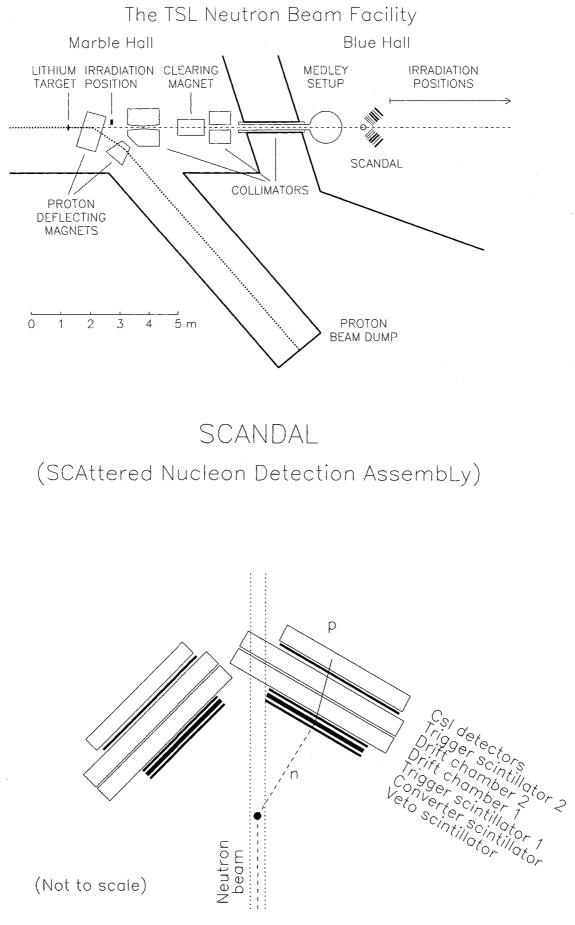
Slit scattering Interference between two slits Max-min distance related to slit separation


Neutrons:

Interference between two sides of the nucleus ("black" nucleus) Max-min distance related to nuclear size

Optics/neutrons:

Optical potential:


Also:

Quantum mechanics = Schrödinger equation Real potential = scattering only Losses = imaginary potential

Work horse in nuclear physics Describes n-nucleus force Derived from elastic scattering

Elastic scattering largest (>50 %)

Neutron/proton-induced charged-particle production

Why?

Low energy (<20 MeV)	Compound nucleus Statistical theory
High energy (>200 MeV)	Single interaction Direct reaction
Intermediate energy (20-200 MeV)	Few interactions Pre-compound reactions
Data for theory:	All emission energies, all angles
Also:	Protons = hydrogen = safety, embrittlement Alpha's = helium = steel swelling

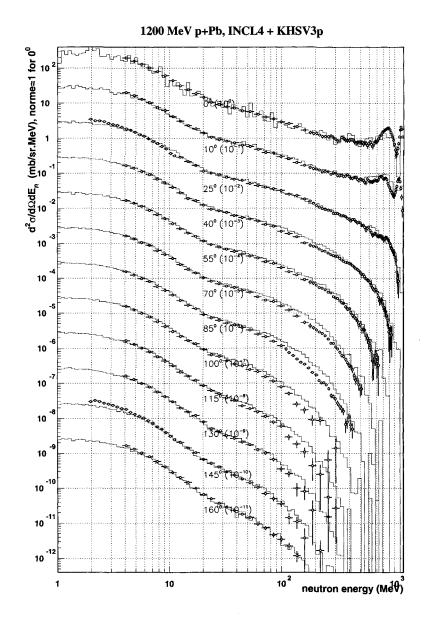
Extra motivation for proton-induced experiments:

Coincidence measurements with low-E neutrons for spallation target modelling

Standard method: Recent improvement:	Particle telescopes	$\Delta E - E$ $\Delta E - \Delta E - E$
Another improvement		oton detector

Residues

Why?


Ultimate goal:	Know all elementary processes Make a huge multistep calculation Predict all what happens	
Problem:	We are not there (yet)	
Large uncertaintites in predictions of final products \rightarrow direct measurements needed		
Special use:	Total radioactivity of the system	
Classic technique:	Irradiation + γ detection afterwards Gives all radioactive rest products	
Improvement:	AMS gives stable (and long-lived) nuclei	
New technique:	Inverse kinematics Not proton on lead Instead lead on proton All fragments at high energy → "easy" detection No waiting period → reaction mechanism	
Minus:	Just one element per experiment Neutron interaction difficult Low energies difficult	

High-energy neutron production

(p,xn) at very high energies for spallation target modelling

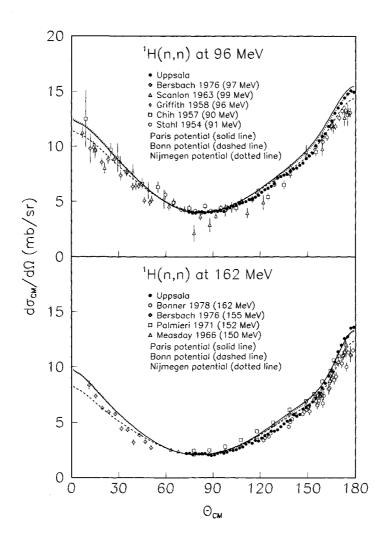
Two techniques:

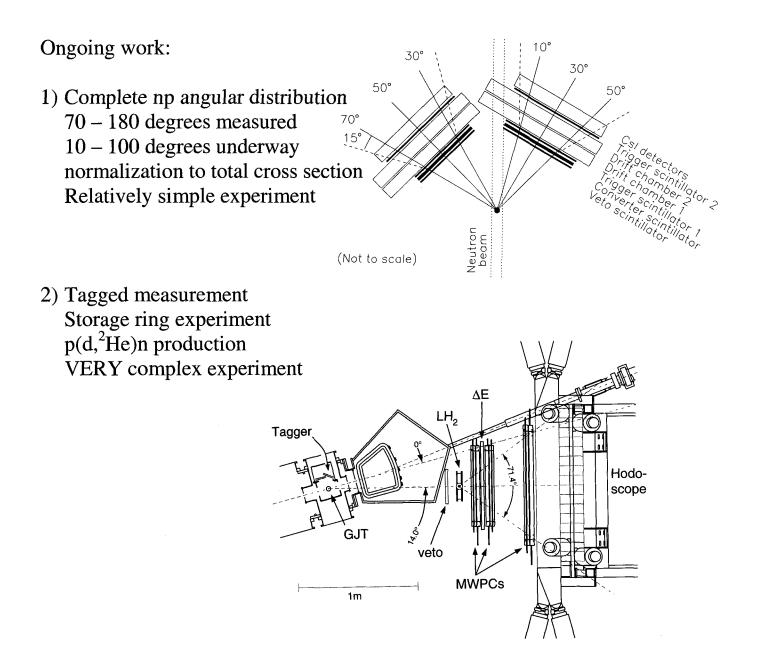
TOF at low E Conversion to protons + magnetic spectrometer at high E Overlap region for inter-comparison

Fission

Why?

Low E:	Fission only in some actinides	
High E:	Sizeable fission in many heavy elements	
Example:	1.6 GeV lead spallation target 10-15 % of activity due to fission products	
Standard fission	data: Cross sections Yields (element distributions)	
Virtually absent	above 50 MeV	
Low-E:	No other reactions look like fission	
High-E:	Fragmentation (spallation) imitates fission Multiple light ions look like fission fragmen	nts
Solution:	Detectors insensitive to light ions \rightarrow TFBC	S


Now cross sections on uranium, lead and bismuth.


The length of the yardstick – np scattering

np scattering is used as primary standard Almost all other data measured relative to np scattering

np 100-1000 MeV:	huge discrepancies (10-15%) \rightarrow all other data equally uncertain
Also:	np data determine absolute strength of the strong interaction

How strong is the strong interaction?

