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New BEC observations from May 1, 1997, as reported by our correspondents. Color indicates atomic species: H, He*, Li, Na, Rb. Numbers of condensate atoms are as
communicated to us, and reflect different thermodynamic conditions - see the original reports for details.

Twenty-six new reports of laboratory observations of BEC in atomic gases have come in since May, 1997:

O May 18, 2001: Vive la difference!
O May 17, 2001: Strine debut
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FIG. 5. Condensate fraction as a function of T/T?. Circles are
the experimental results of Ensher ef al. (1996), while the
dashed line is Eq. (15).

analyzed extensively in the next sections. Here we
briefly discuss the relevance of finite-size corrections.

C. Finite-size effects

The number of atoms that can be put into the traps is

not truly macroscopic. So far experiments have been
carried out with a maximum of abhont 107 atame Ac a

No/N

0 J 1L 1 i : 0
] 0.2 0.4 0.8 0.8 1
T/TS

FIG. 6. Condensate fraction vs temperature for an ideal gas in
a trap. The circles correspond to the exact quantum calculation
for N=1000 atoms in a trap with spherical symmetry and the
solid line to the prediction (19). The dashed line refers to the
thermodynamic limit (15).

van Druten (1996b) found that finite-size effects are sig-
nificant only for rather small values of N, less than about
10%. They also calculated the occupation of the first ex-
cited levels, finding that the fraction of atoms in these
states vanishes for N—o and is very small already for N
of the order of 100.
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FIG. 3. plryy) for McMillan-Jastrow wave function at

p=0.3650"" in HNC, HNC/4, and HNC/S approximations.
The dots give results of Monte Carlo calculations.

elementary diagrams are quite accurate.

The values of the three scaling factors for the
McMillan-Jastrow wave function at equilibrium density
are found to be

sga=2.72, su=171, s5,,=1.86, (2.23)

Puoskari and Kallio'? use both the two-component mix-
ture and Fantoni’s formalism used here to calculate the
plryp). At any level of approximation the mixture for-
malism and Fantoni’s p{ry, ) are proportional to each oth-
er. The only difference is that in mixture formalism the
ng is calculated by using the normalization condition
(2.20) in Eq. (2.5), whereas Fantoni calculates it indepen-
dently by Eq. (2.9). PK also use scaling constants s,
Sao» and sy, (their kg equal 1+5,4 in our notation), and
them from TJF = TPB’ TMD = TJFv and
Typ(mixture) = Typ where Typ(mixture) is the kinetic
encrgy obtained with n (k) from mixture formalism. This
Pprocedure is identical to ours because n(k)(mixture) is
+ proportional to n(k), and so Typ(mixture)=Typ is

identical to the normalization condition. Thus we do not
- find that the mixture formalism offers any simplification.
PK neglect the contribution of one-body elementary dia-
ms E,; and E,; we include them, but find that they are

1. THREE-BODY CORRELATIONS

) A significant improvement in the variational energy of
’fquld .helium is obtained by including three-body correla-
tons in the wave function.”!® The wave function (the
J+ T denotes Jastrow plus triplet) is taken as

\[’H_T: Hf(rij) II f3(rij1rik) , (3.1)

icj icj<k
ftyny=ap|-13 3 gl(rij)gl(’ik)Pl(rij‘rik)] .
. cyc 1=0,2

(3.2)

15
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The [ =1 term of f3 gives the dominant contribution, the
! =0 term gives a small contribution, and the [ =2 term
has negligible effect.”

HNC equations for the distribution functions of the
J 4+ T wave function have been discussed in Ref. 7. The
HNC equations for the density matrix are obtained in an
analogous way by replacing the E,,,xy =dd, wd, and ww
as follows:

Ey=Cy+ES +E;, . (3.3)
Here C,, are three-body elements given by
Cualrip)=p [ [f}ra,1i)—1]
X 8aa(Tia 8aulrja)d’ry (3.4)
Cottrip)=p [ [f3{F1a:1)—1]
X 8ua(r1a)8udlra)d’rs (3.5)
Cuulry)=0. (3.6)

E§, is the sum of elementary diagrams having only
g —1 bonds, and Ej, is the sum of elementary diagrams
having one or more three-body correlations. The E}, ; di-
agrams are given in Fig. | of Ref. 7, and E 44, Eiy, 4, and
E; ; diagrams are given in Figs. 4, 5, and 6, respectively.
In these diagrams a wiggly line triangle 1jk with 1 as an
external point represents :

[falry;,ie) = 138w (711080 r14)8aa (i)
whereas a plain triangle ijk represents
U3y ) = 118aa(rij )8aa(ris 8aalric) -

As in Ref. 7, a cross on a side ij of the triangle indicates

(]
H

Q
P
o"’

n

&

A

| 2 { 2 { 2
(4.4) {4.5) {4.6)
3 4 3 4 3 4
X >
! 2 1 2 {
(4.7) (4.8) (4.9)
3 4 3 4
{ 2 | 2
{4.10) 4.11)

FIG. 4. Four-point E5y diagrams.
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o

TABLE IL kn(k) with the J + T wave function at various

densities.
: a—3) 0.365 0.401 0.438
k(A7Y
0.05 0.0167 0.0136 0.0106
0.25 0.0318 0.0264 0.0208
0.45 0.0416 0.0349 0.0279
0.65 0.0458 0.0391 0.0318
0.85 0.0455 0.0398 0.0331
L05 0.0417 0.0377 0.0324
1.25 0.0350 0.0332 0.0298
145 0.0264 . 0.0266 0.0253
1.65 0.0175 0.0190 0.0196
1.85 0.0112 0.0129 0.0144
2.05 0.0091 0.0105 0.0117
225 0.0084 0.0097 0.0109
2.45 0.0066 0.0080 0.0094
2.65 0.0045 0.0058 0.0072
2.85 0.0029: 0.0041 0.0054
3.05 0.0019 0.0027 0.0039
3.25 0.0012 0.0018 0.0027
3.35 0.0007 0.0011 0.0019

In general we find that the triplet correlation by itself has
little effect on the n(k). The n(k) is seen to decrease ex-
ponentially for k>3 A ~!in Fig. 7.

The kn(k) obtained from the neutron scattering
data>'® is compared with theoretical results in Fig. 8.

" Both the experimental and the GFMC n (k) do not have °

the correct k-—0 asymptotic behavior. The difference be-
. tween GFMC and J + T results has to be attributed to (i)
the approximations in the use of J + T wave function, and
those in the HNC/S calculation; and (ii) the finite box size

'w T T I { i

n(k)
i Illlllll 1 L1511

i lllllll

i}

]
3.0

k(A1)

40

FIG. 7. n(k>2 A-") of the J and J + T wave functions at

P§0_3650—] on lo . . .
g scale. Here n(k) is normalized according
-0 Eq. 2.19),

16
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T
=
z
= .
L 4
!
4.0

FIG. 8. n(k) is normalized according to Eq. (4.6). The
dashed and solid curves are the results of the present calculation
with the Jastrow (J) and Jastrow + triplet (J + T) wave function,
respectively. The dashed-dotted curve gives GFMC results
from Ref. 17. The experimental data (Refs. 3 and 18) are shown
with the crosses.

in the GFMC simulation. The latter effect is particularly
manifested at small k. The difference between theory and
experiment may be mostly due to the inadequacy of the
Aziz potential, or the impulse approximation used in re-
lating the n(k) to neutron scattering cross sections at
large momentum transfer. The use of impulse approxi-
mation for analysis of scattering from hard core liquids
has been recently criticized.!”” There certainly is more

T T T T i T {
.15~ =
_— Sears
x Ref 2
/ }Icriatioml(LJ)
o.not TTe-Ll x -
o - T
) N T |
i
| o
0.08 -
) / Varigtional (Aziz)
GFMC(LJ)
) i 1 i I | i 1
0.365 0.375 0Q.385 0395 0405 04I5 0425 0435 0445
-3
pla™)

FIG. 9. Comparison of the theoretical and experimental con-
densate fraction. The solid curve shows the results of this work
with Aziz potential. The open circles, joint by a dashed-dotted
line, are the results of GFMC calculation with Aziz potential
{Ref. 17). GFMC results with Lennard-Jones (LJ) potential are
shown with open squares (Ref. 22). The crosses represent the
results of Puoskari and Kallio (Ref. 12) variational calculation
using LJ potential. The solid circles with the error bars. show
the data taken from Ref. 2. The dashed line is a guide to the -
eye. The triangle gives the experimental result at the equilibri-
um density of Ref. 3. :
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TABLE III. Results with optimized J and optimized J + T wave functions.
Condensate fraction Kinetic energy (K)
plo™) Sad Swd Suw J IJ+T GFMC TmpJ +T) T +T)
0.365 2.4 2.24 2.404 0.098 0.092 0.092 14.86 14.72
0.401 2.78 2.780 2916 0.071 0.065 0.052 18.17 17.45
0.438 3.12 3.120 3.280 0.048 0.043 22.99 20.53

than qualitative agreement between theory and experi-
ment, marred by significant differences at k =0.5 and 2.3
A ~1. The density dependence of the J+ T n(k) is given
in Table II. The n(k) becomes broader as the density is
increased.

The condensate fraction and the kinetic energies are
given along with the scaling constants, in Table III. At
p=0.438¢7‘3 the Typ is ~10% larger than the Ty indi-
cating increased importance of the neglected E;, dia-
grams.

The theoretical and experimental condensate fractions
are compared in Fig. 9. At equilibrium density and
GFMC and J + T values of n, are identical, but they are
~20% below the values deduced from neutron scattering _

experiments. The density dependence of the J + T ng is
in crude agreement with that of Ref. 2. On the other
hand the experiments of Wirth er al.?® have shown no
density dependence of no, while Mook finds a much
stronger decrease in ng with p.
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VARIATIONAL MONTE CARLO CALCULATIONS OF GROQUND...

r(d)
+3. Density distribution for the 728-atom *He drop with
j peak near the surface. The dashed curve is the single-
" ‘density divided by 10. The dotted curve is exp(2%;) di-
by 100.

than that of the liquid.
Phe unit radii 7o(N) are defined as

ro(N)=[$(rH N ]V?/N3, (5.5)

(r%N)) is the mean-square radius of an N-body
. The values of ro(N) for both “He and *He drops are
qven in Table XIV. The rms radii of the drops have
egligible statistical uncertainty resulting from Monte
ario sampling. The main error in (7*(N)) comes from
e uncertainty in choosing the best variational wave
inctions. In particular, the uncertainty in the radius of
e N =20 *He (metastable) drop is large because the ener-

[he unit radius rol e ) of the liquid can be extracted by
ting the 7¢(N) by a polynomial in N~'/. A fit to the

ed umit radii of N =40-728 ‘He drops with a
polynomial gives 7g(0)=2214) A for
Ie, in good agreement with the experimental value
A as well as with the GFMC value for the Aziz
atial. The quoted error of ry( « ) is an estimate based
goth the variational and extrapolation errors. Fits to
fradii of *He drops having N =40-240 give
3)=2.5(1) in agreement with the experimental value

£23 “He drops (Fig. 2) and N=240 *He drop (Fig. 3)
spatible with these values of 74l ).

43 A. We note that the central densities of N=240"

4581

E(N}/N

L L L 1 i [

728 240 H2 70 40
N (Nscale)

FIG. 9: E/N for the *He and ‘He drops. The abscissa is N

“on an N~!/ scale. The curves are from rows 2 and 3 of Table

XII.

V1. DISCUSSION

We have made VMC calculations of the §ro
of small- to moderate-sized drops of liquid *He and 3He.
Comparisons with GFMC calculations show that our
binding energies are typically 0.1 K per atom too low.
There is unfortunately no suitable experimental data to
which these calculations can be compared. . A mass spec-
trometer experiment’ has reported the observanon of
magic numbers for both “He and *He drops and also *He
drops containing as few as four atoms. However, the
drops are charged and may be fragmcnted in the mass
spectrometer. Detailed GFMC calculations® for neutral
*He drops show only a smooth energy versus drop-size re-
lation. The very small binding energy for eight ‘He atoms
with Fermi statistics obtained with GFMC makes it cer-
tain that eight He atoms are not bound. For these
reasons, we agree with the conclusions of Ref. 34, that the
charge on the drops has significantly altered their proper-
ties. Macroscopic liquid drops having more than 10000
helium atoms have been used in experiments.® Ex_.ped-
mental studies of small neutral drops would be very in-
teresting. In particular, there is the question of what is
the smallest number of *He atoms that will form a bound
state. Our calculations suggest that this number is just
shightly less than 40. However, if our energy for 40 “He
atoms is 0.1 K too high, the number will be close to 30.

There is an interesting contrast between studies of
liquid-helium drops and nuclei. By fitting liquid-drop ex-
pansions to the drop energies, we can obtain binding-

TABLE XII1. quuxd-drop energy fits. The coefficients of the polynomial defined in Eq. (5.1) are
given. The last column gives X? per degree of freedom.

System Range E, E, E, X*/Ns
*He N=20-728 ~7.00 19.6 ~13.3 9.0
“He N=40-728 —6.85 182 -9.9 2.0
He N=20-240 —2.09 9.9 -9.9 2.9
He N=40-240 —1.90 8.3 —6.4 0.36
He N=70-240 -2.09 10.0 -10.5 0.04
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—

This method has the advantage of introducing no bias
about the functional form of u,,(r) but has the disadvan-
tage, due to the relatively large sampling errors in p,(r,7’)
for small r or 7', of not producing radial functions with
the correct r/*! behavior at the origin. The statistical er-
rors in the so-extracted u,(r) also make it difficult to
compute the Fourier transforms #,,(k).

In the second method we expand the p;(r,r’) in terms
of the oscillator functions h,,(r):

M= [ [ hy(rp,r,r e )dr dr’ (3.9)
for i,j <I with I less than the number of points on the
grid used to compute p;(r,r’). The eigenvectors of M !
may be used to construct u,,(r) with the correct behavior
at the origin.

Table I shows the eigenvalues of p,_q(7,r’) for the 70-
atom *He drop computed by these methods. (Note that
the eigenvalues are twice the occupation numbers.) We
used a 28-element grid to compute p,(r,r’) so method 1
gives us 28 eigenvalues. However, because of the statisti-
cal errors in py(7,r’), eleven of these are negative (the sum
of the negative eigenvalues is —0.01). Column 4 of Table
1 shows the ten largest eigenvalues. Columns 1 to 3 show
the corresponding eigenvalues computed using 11, 16,
and 21 oscillator functions, respectively. The first, third,
and fifth eigenvectors computed by method 1 (symbols)
and with 11 and 16 oscillator functions (curves) are
shown in Fig. 3. The curves for 21 oscillator functions
are indistinguishable from those for 16 functions. It can
be seen that the two methods are in good agreement and
that eigenvalues down to ~0.01 are probably reliable. In
the rest of the paper we present results obtained using 16
oscillator functions.

B. Natural orbitals of the N =70 Liquid *He Drop

Some of the s-wave natural orbitals of the 70-particle
Bose-liquid *He drop are shown in Fig. 4 along with the
1s mean-field orbital. We note that all the natural orbit-

TABLE 1. Eigenvalues of p;.o(r,7’) for 70 *He atoms.
Columns 1-3 show the eigenvalues computed in an oscillator
basis containing, respectively, the first 11, 16, and 21 oscillator
functions. The last column shows the eigenvalues resulting
from a direct diagonalization of p,.s{7,7') on a 28X 28 point
grid in r space. In all cases only the first ten eigenvalues are
shown.

r I=1 I1=16 I=21 2828
1 1.0801 1.0803 1.0804 1.0816
2 1.2565 1.2575 1.2580 1.2600
3 1.6963 1.6987 1.6996 1.7066
4 0.1476 0.1477 0.1477 0.1495
5 0.0782 0.0784 0.0784 0.0799
6 0.0376 0.0378 0.0382 0.0427
7 0.0160 0.0197 0.0197 0.0232
8 0.0007 0.0065 0.0067 0.0084
9 4.0x 1073 0.0010 0.0022 0.0071

10 —1.0x10°¢ 0.0004 0.0010 0.0044
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FIG. 3. The ls, 35, and 5s natural orbitals of the 70-atom *He
drop obtained with 11 (dashed curves) and 16 (solid curves) os-
cillator functions. The symbols show the eigenfunctions ob-
tained by diagonalizing in coordinate space.

als are confined in the region where p(r)s20. Equation
(1.7) implies that the ¥;(r) are zero where p(r)=0. The
occupation numbers of the natural orbitals are given in
Table II. A significant fraction (36%) of the particles are
condensed in the ls natural orbital of the 70-particle
drop, as against ~10% in the extended liquid. The
dependence of the condensate fraction on the number of
particles is discussed in Sec. IV.

The partial density of the particles condensed in the 1s
natural orbital is called the condensate density,

pr=n | ¥ ()], (3.10)

and it is compared with the total density p(r) in Fig. 5.
We note that at the center of the drop p.(0)=0.1p(0), as
expected from studies of the extended liquid.

~3/2
Wnl(r). ¢M(r) (%%

t (o)

FIG. 4. The s-wave natural orbitals (1s to 4s) of the 70-
particle Bose-liquid *He drop (solid lines). The dashed curve
shows the 1s mean-field orbital. The ¢, and ¢,, have been mul-
tiplied by 8.
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TABLE II. Occupation numbers of natural orbitals of the
N =70 Bose-liquid ‘*He drop.

ml n,, nl n,, nl n,,
1s  25.33 1k 0.24 : 1k 0.104
1p 0.49 2f 022 ‘ 2i  0.086
1d 044 3p 022 3g 0078
2s 0.44 i 0.19 4d 0.077
if 037 2g 017 5s  0.100
2p 0.35 3d 0.16 17 0.063
1g 0.30 4s  0.19 2j 0.060
2d  0.28 1j 0.14 3r  0.046
3s 0.30 2k 0.12 4f 0.049
if o1l 5p 0.046
4 0.11

In Bose-liquid drops the 1s natural orbital can be well
approximated as follows:

¢1,(r)= A[1—0.68p(r)/p()]¢1,(1')
=~ A[1-0.68p(r)/po}Vp(r)/N ,

where A is a normalization constant and p, is the equilib-
rium density of liquid “He (0.365¢ ). The wave func-
tion obtained from this approximation is practically in-
distinguishable from the ¢,,(r) in Fig. 4. The factor mul-
‘tiplying 1/p(r)/N in Eq. (3.11) can be interpreted as
vV nolp(r)]), where ny(p) is the condensate fraction in
liquid “He at density p, from the argument given in the
next paragraph. Since extended liquid at p <p, is unsta-
ble, only ny(p) for p > p, has been studied.* In Fig. 6 we
show that the function (1—0.68p/p,) provides a con-
tinuation of v/ ny(p) for p < p,.

Consider an inhomogeneous Bose system with a densi-

0.3

0.24

pln) (&™)

lllllllllllllll‘ll

0 . S

[}

FIG. 5. The density p{r) of the 70-atom *He drop (dots with
error bars) from Ref. 1. The curves show the cumulative contri-
butions of the natural orbitals up to a given /,, as obtained
from the oscillator expansions. The crosses and error bars show
the som of p,(r, 7} for ] up to 10 and are to be compared with the
uppermost curve. The dashed curve is the condensate contribu-
tion p.(r).
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1-0.68 p/p, s
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Q.1 S R U RS SN S RS R 1
o] 02 04 06 08 1O L2 1.4
P/P,

FIG. 6. Condensate amplitudes 1/, as a function of density
for liquid ‘He (lower curves and symbols) and the Vz{p) for
liquid *He (upper line and symbols). The solid lines are the ap-
proximations ny(p)=(1—0.68p/po)* (‘He) and Z(p)=(1
—0.45p/py)* CHe). The plus signs are from Ref. 4, the X's are
from Ref. 5, and the circles are obtained by assuming that the
experimental effective mass (Ref. 8) is given by 0.8/Z (Ref. 5).
The ratio X,,(r)/V p(r), as described in the text, is shown for
the 20-atom (dotted), 70-atom (dashed), and 240-atom (dot-dash)
‘He drops.

ty distribution p(r). In mean-field theory, all the parti-
cles occupy the state ¢g(r)=Vp(r}/N. In reality, a cer-
tain fraction of the particles are condensed in the natural
orbital ,{r). Now let us pretend that the inhomogene-
ous system is a large tank of liquid *He, with an external
potential applied to the x >0 half such that the density
distribution of the liquid in this tank is given by

pL» x<<0

plr)= l (3.12)

Pr» Xx>>0.

(3.13)

Now the density of particles having momenta k ~0 at
x <<0 is given by nylp, )p., while for that at x >>0it is
nolpr)pg. Thus we have ,

(3.14)
(3.15)

nolpLlpr » 0
N g3(r)= o\PLPL XK
”o(PR )pR y x>>0,

where N, is the number of particles condensed in the nat-
ural orbital 1,. This implies that when p(r) is a slowly
varying function of r, the natural orbital ¥y(r) is approxi-
mately given by

Yo(r) = AV ng[p(r)]1Vp(r) /N = AV nylplr)Jolr) -
(3.16)

Equation (3.16) can be considered as a local-density ap-
proximation (LDA) for the condensate natura) orbital. It
is a good approximation in all the Bose-liquid drops
(N =20-240) studied in this work.
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Fig. 15. The variation of the edge of the £ = 0 density matrix as a function of
droplet size.

is asymmetric (only r is binned), the resulting function is symmetric as it should.
(The fish-fin like structures near r = Q are artifacts due to poor statistics amplified
by the small bin size, like that of determining the central density. These should be
ignored.) We note that for ali droplets: 1) po(r, ')/ psute drops quickly from one to
about 0.1 whenever either r or r’ is greater than 4 A. 2) Whenever r or ¢’ is greater
than 4A, po(r,r')/prunn is roughly constant, resulting in a plateau-like structure.
3)"This plateau extends out to about the droplet radius and grows steadily with
increase droplet sizes. 4) The table-top-like sharp corner strongly suggests that
po(r,r’) is a product of two identical functions, 1.e.,

po(r, ') o< B(r)é(r').

Since po(r,r'} can be expanded in an eigenfunction expansion, the above suggest
that it is likely to be dominated by a single term, that of its largest eigenfunction.
5) If this is the case, this largesi eigenfunction must be roughly proportional to
po(r,0)/psuix. In Fig.15, we show the latter for all droplet sizes considered. The
results are now strikingly similar to the bulk density matrix of Fig.1. This edge
function drops from 1 to a0.1 from the center out to about 4A. It then remains
roughly constant all the way out to the tim of the droplet. (The slight rise is too fine
a structure to be trust in a variational calculation.} As N increases, there is a clear
systematic convergence to the bulk condensate value from above. Thus the £ = 0
component of the one-body density matrix gives an excellent visual characterization
of the growth of the condensate in Helium droplets.
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Dalfovo et al.: Bose-Einstein condensation in trapped gases
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ntum pressure in Eq. (39),
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=t(r)] (50)

r), and n=0 outside. This
1as-Fermi (TF) approxima-

m on n(r) provides the re-
ential and number of par-

(51)

ntial depends on the trap-
potential V., given in Eq.
itric average oy, [see Eq.
IN, the energy per particle
This energy is the sum of
energies, since the kinetic
ltnbunon for large N F1-

. X AN

tamm s —o

L) I 1 I L
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distance

FIG. 13. Density profile for atoms interacting with repulsive
forces in a spherical trap, with Na/a,,=100. Solid line: solu-
tion of the stationary GP Eqg. (39). Dashed line: Thomas-Fermi
approximation (50). In the upper part, the atom density is plot-
ted in arbitrary units, while the distance from the center of the
trap is in units of a;,. The classical turning point is at R

=4.31ay,. In the lower part, the column density for the same
system is reported.

trap, this implies u=mw?,R%/2 and, using result (51) for
u, one finds the following expression for the radius of
the condensate

15Na\ 15
R=aho aho

(52)

which grows with N. For an axially symmetric trap, the
widths in the radial and axial directions are fixed by the
conditions p=me:R22=mw?Z??2. It is worth men-
tioning that, in the case of the c1gar-shaped trap used at
MIT, with a condensate of about 107 sodium atoms, the
axial width becomes macroscopically large (Z~0.3
mm), allowing for direct in situ measurements.

The value of the den51ty (50) in the center of the trap

1t'1n /n\—"

-_ Ya .
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Dalfovo et al.: Bose-Einstein condenéation in trapped gases

0.6

wave function
o
'S

o
1Y)

o 1 L

r (units of ay,)

FIG. 8. Condensate wave function, at T=0, obtained by solv-
ing numerically the stationary GP Egq. (39) in a spherical trap
and with attractive interaction among the atoms (a<0). The
three solid lines correspond to Nlaj/ay,=0.1,03,05. The
dashed line is the prediction for the ideal gas. Here the radius
r is in units of the oscillator length ay, and we plot
-(a3/N)2é(r), so that the curves are normalized to 1 [see also
Egq. (40)).

interaction and the radius of the atomic cloud conse-
quently increases (decreases). This effect of the-interac-
tion has important consequences, not only for the struc-
ture of the ground state, but also for the dynamics and
thermodynamics of the system, as we will see later on.
The ground state can be easily obtained within
the formalism of mean-field theory. For this, one
can write the condensate wave function as ®(r,t)
=¢(r)exp(—iut/h), where p is the chemical potential
and ¢ is real and normalized to the total number of
particles, fdr¢*=No=N. Then the Gross-Pitaevskii
Eq. (35) becomes 7
2V2

— +Vm(r)+g¢2(r))¢<r)=u¢<r>.

This has the form of a “nonlinear Schrodinger equa-
tion,” the nonlinearity coming from the mean-field term,
proportional to the particle density n(r)= ¢*(r). In the
absence of interactions (g=0), this equation reduces to
the usual Schrodinger equation for the single-particle
Hamiltonian —#2/(2m)V23+ Ve,(r) and, for harmonic
confinement, the ground-state solation coincides, apart
from a pormalization factor, with the Gaussian function
(3): ¢(r)=VNegy(r). We note, in passing, that a similar
nonlinear equation for the order parameter has been
also considered in connection with the theory of super-
fluid helium near the X point (Ginzburg and Pitaevskii,
1958); in that case, however, the ingredients of the equa-
tion have a different physical meaning.

The numerical solution of the GP Eq. (39) is relatively
easy to obtain (Edwards and Burnett, 1995; Ruprecht
et al., 1995; Dalfovo and Stringari, 1996; Edwards, Dodd
et al., 1996b; Holland and Cooper, 1996). Typical wave
fumctions ¢, calculated from Eq. (39) with different val-

(39)
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FIG. 9. Same as in Fig. 8, but for repulsive interaction ()z
>0) and Na/a,,=1,10,100.

ues of the parameter N|a|/ay,, are shown in Figs. 8 and
9 for attractive and rtepulsive interaction, respectively.
The effects of the interaction are revealed by the devia-
tions from the Gaussian profile (3) predicted by the non-
interacting model. Excellent agreement has been found
by comparing the solution of the GP equation with the
experimental density profiles obtained at low tempera-
ture (Hau et al, 1998), as shown in Fig. 3. The conden-
sate wave function obtained with the stationary GP
equation has been also compared with the results of an
ab initio Monte Carlo simulation starting from Hamil-
tonian (26), finding very good agreement (Krauth,
1996).

The role of the parameter N|a|/ay,, already discussed
im the previous section, can be easily pointed out, in the
Gross-Pitaevskii equation, by using rescaled .dimension-
less variables. Let us consider a spherical trap with fre-
quency wy, and use ay,, a;o:’, and Awy, as units of
length, density, and energy, respectively. By putting a
tilde over the rescaled quantities, Eq. (39) becomes

[~ V2+7+8m(Nalay) $*(T)]$(T)=253(F). (40)
In these new units the order parameter satisfies the nor-
malization condition fd¥ @|*>=1. It is now evident that
the importance of the atom-atom interaction is com-
pletely fixed by the parameter Na/ay,.

It is worth noticing that the solution of the stationary
GP Eq. (39) minimizes the energy functional (37) for a
fixed number of particles. Since the ground state has no
currents, the energy is a functional of the density only,
which can be written in the form

gn?

ﬁ2
E[n]:f dr [5;|Vx/;lz+an(r)+T
=Eyin+ Epot+ Eint- (4D

The first term corresponds to the quantum kinetic en-
ergy coming from the uncertainty principle; it is usually
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A. FABROCINI AND A. POLLS

TABLE 1. Chemical potentials u,, ground-state energies per particle E; /N, and root mean-square radii
R,ms» of N ¥Rb atoms in an isotropic trap (w/27=77.78 Hz) in TF approximation or solving the GP [Eq.

(2)], the MGP [Eq. (5)], and the correlated Hartree ENC [Eq. (17)] equations. The N=1.5% 107 row refers

to the Na case (w/27r=230 Hz). Energies are in units of £w and lengths are in units of agg .

1 E\IN Ripms
N TF GP MGP HNC TF GP MGP ENC GP MGP HNC
10° 2.66 3.04 3.06 3.4 1.90 243 243 243 165 166 1.66
104 6.67 6.87 6.92 6.89 6.87 5.04 5.08 504 244 245 24
10° 1675 1685 17.07 1694 119 1210 1225 1220 380 3.84 383
108 42.07 4212 4297 4253 3005 3012 3066 3048 601 6.10 6.06
107 105.68 10570 108.75 10720 7549 7552 7748 7685 952 9.74 964
15107 91.07 9110 9241 9167 6505 6509 6592 6566 884 892 890
108 265.46 26547 27589 273.58 189.61 189.63 19645 19474 1508 15.44 1538

PRA 60

where we have again introduced the scaled unities and the
local gas parameter, x;,0(7) = p,(r)a*=Na>|y, (N)}*.

The calculations have been performed for the ¥'Rb scat-
tering length. The scaled energies per particle and the root
mean-square radii are reported in Table 1 for particle num-
bers from 10° to 10%. The table also shows the results ob-
tained by neglecting the kinetic-energy term in the Gross-
Pitaevskii equation. This approach, loosely called the
Thomas-Fermi (TF) approximation, has been discussed in
the literature and allows for deriving simple analytical ex-
pressions [10]. The differences between this Thomas-Fermi
approach and a rigorous one have been recently discussed
[21,22] for spatially inhomogeneous Bose condensates.
Local-density approximation has been used [1,5] to estimate
corrections to the Gross-Pitaevskii for the ground and ex-
cited states within the Thomas-Fermi approximation and re-
taining only the first correction in Eq. (1). The second cor-
rection is negative and partially cancels the first one. For
instance, the cancellations go from ~15% for N=10% 10
~40% at N=10° if we just take the central demsities,
whereas the final energy is reduced by ~15% at N=10° and
it is practically unaffected by the second correction at lower
N values.

As expected, the Thomas-Fermi results are close to the
Gross-Pitaevskii ones when N becomes large. The differ-

ences between GP and MGP increase with the number of
particles and are of the order of 4% for the chemical poten-
tial and 2.5% for the energy at N=10". The higher-arder
terms in the low-density expansion always have a repulsive
effect. The same behavior is shown by the HNC results,
which, however, are less repulsive than MGP at the large N
values.

‘We notice that if one uses the Gross-Pitaevskii solution to
perturbatively estimate the MGP energy, then the correction
is negative (at N= 107, AE,=-—4.54). The nonlinear char-
acter of Eq. (5) is responsible for this discrepancy.

The density profile (normalized to unity) for N=107 par-
ticles is given in Fig. 2. For this large number of particles the
TF and GP densities are close, whereas the more repulsive
MGP and HNC solutions lower the central density, expand-
ing the density distribution and providing a larger radius, as
shown in Table 1.

We have also considered a system of N=1.5X10" Na
atoms (a=27.5 A) in a spherical trap having a frequency of
230 Hz. These conditions roughly correspond to those of e
experiment described in Ref. [4]. The resuits are showm im
the last row of the table and in Fig. 2. The effects of the
correlations are similar to those found in the large N Rb
cases. The energy increases by ~1% and the rms radius by
~0.7% respect to GP. The HNC central density is slightly
reduced. '

I v T ' i 4 1

N=10’

13 N i 4 ¥ i

0.25 | , .
N=1.5x10

0.20 +
0.15 -
0.10 |

0.05 -

0. . ) . 2 " ! . )
% 0 4 8 12 16

r

FIG. 2. Density profiles for N=10" Rb atoms and for N=1.5X 107 Na atoms in different approaches (dotted line, Gross-Pitaevskii;
dashed line, modified Gross-Pitaevskii; solid line, hypemettad chain). Densities are normalized to unity and distances are in units of ago -
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TABLE II. Ground state properties of N = 10* 85RD atoms in the cylindrical trap described

in the paper. Energies in HO units.

a/ag 1400 3000 8000 " 10000
uf¥ 9.70 13.15 19.47 21.29
u$r 9.82 13.25 19.55 21.36
pMGF 10.22 14.51 24.38 27.79
p§BF 10.19 14.38 - 24.37 28.09
ETFIN 6.93 9.39 13.91 15.21
ECGP N 7.08 9.52 14.00 15.29
EMGF N 7.33 10.31 17.09 19.43
ECBF N 7.31 10.23 16.98 19.42
oTF - 6.23 x107* 3.8 x10-3 4.09 x10-2 6.98 x10~2
L 6.28 x10™* 3.90 x10~3 4.10 x1072 7.00 x1072
zMGP 5.72 x10™* 3.19 x1073 2.60 x10~2 4.10 x10~2
=GBF 5.76 x10™* 3.24 x103 2.53 x1072 3.86 x1072
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FIG. 1. Column densities at four values of the scattering length for the cylindrical trap. Dashed
lines=TF, stars= GP, solid ines= MGP, dot—dashed lines= CBF. The triangles in the first (second)
upper pazel give the MGP column density at a/ag=5920 (4940).
FIG. 2. Scattering length as a fanction of the full strength at half maximum (left) and of the
half maximum radius (right) in the cylindrical trap. Circles, stars and triangles correspond to the
TF, GP and MGP results, respectively. Lines are a guide to the eyes.
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