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Correlated Coupled Clusters
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Reference Material:

F. Coester, in Lectures in Theoretical Physics: Quantum Fluids and Nu-
clear Matter (Gordon and Breach, New York, 1969), Vol. XI B.
H. Kiimmel, K. H. Luhrmann, and J. G. Zabolitzky, Physics Reports 36,
1 (1978).
R. F. Bishop and K. H. Luhrmann, Phys. Rev. B 17, 3757 (1978).
R. F. Bishop, in Microscopic Quantum Many-Body Theories and their
Applications, 187-250, Eds. Jesus Navarro and Artur Polls, Lecture Notes
in Physics Vol. 510, Springer, Heidelberg (1998).
J. Navarro, these lectures.
E. K., H. Kiimmel, and J. G. Zabolitzky, Phys. Rev. A 22, 1243 (1980).

Goal: Derive CBF perturbative corrections by integral equations.
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Conventional CCM: (Navarro lectures)

where
O —

n>2

n!
t, h a) a)

..pn]rii...nn
Ujp1 • • • "'p.

Write the Schrodinger equation as

Observe that for all n-particle n-hole states

(m ^ o)
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Let
e~ o i

Q — _ V ^ Q t t
71 \ ' '

Distribution of tasks:

=> Jastrow-Feenberg correlations for high-order summations of average geo-
metric correlations;

=> Coupled clusters for not-so-high order summations of state-dependent
effects.

=> Keep the correlation operator F the same for all states.
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Schrodinger equation in the correlated basis:

H es o) = eso

Basic C-CCM energy:

(Note that (oe~s\ = (o\ !)
Project on a correlated basis {|?7i)}

Basic C-CCM equations:
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Correlated coupled cluster energy

Take SUB2 approximation of CCM and keep only matrix elements that can
be written as (unlinked products of) two-body operators ("C-SUB2 approx-
imation" )

1
2!

define c ft
^pp'hh'Ctpap,ah'ah

pp'hh pp'hh'

E = o H

o eso

H-K 00 e o = Ho o
o H1

e o

1 + (o (es - 1) o) '

(let Hf = H — Hoo). Expand in powers of S:

(o\H'\So)

= Hoo + (SE)1 + (SE)

2!
(o\ H' \S2 o) - (o\ H' \So) (o\ So
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For C-SUB2-approximation:
• First-order Term: Let Smn = (<&m| S

(O\ H' \SO) =

m

{hh'\ H \PP') a Spp,
pp'hh'

Second-order Term:

(a) - (o\ H' \S2 o) - (o\ H' \So) (o\ So

(2!)24! (hlh2h3h4\'H4\PlP2P3P4)aSp1p2^h1h2)aSp3p4,(h3h4)a

Pi,hi

(2!)

(b) Keep the disconnected pieces of the 4-body operator
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(c) cancel unlinked terms against (o\ H' \So) (o\ So
Write energy as

(o\H'\$o)
1
4

pp'hh'

and find rules for the construction of $.

In second order:

% __
pp )[rbrL ) d pp>,(hh>)a

h

X
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Diagrammatic notation (borrowed from CCM)

• Up- and down-going directed lines:
"particle" or "hole" lines

• ellipes: ^-operator

horizontal dashed lines: A/*-operators

horizontal heavy solid lines: % operators

Sum over all internal lines

A
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Rules for renormalizing S to $:

is represented by the sum of all diagrams that can
be constructed from 52 and J\f^ such that
• the external lines enter only
• only internal lines may enter
• no two A/2 operators may be connected directly by

a particle or a hole line.

Verify at higher orders
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Extend to
when needed

if and

Note: The renormalization is useful only if the same procedure simplifies the
correlated coupled cluster equations !
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C-CCM equations

Choose \m) to be (any) correlated 2p-2h state. Then

me -s -(mS\

Rewrite C-CCM equations

me -s H eso oe
-s H eso) (me s

(oe-s e°o (oe-s e°o (oe'

in terms of matrix elements of H' = H — Htoo

(m\Hf eso

(es -

(o\ Hf eso

(o\ (es -

(m eso

(o\ (es - l)o>
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Expand in powers of S:

0 = (m\ H' \o)

+ (m\ H' \So) - {m\ H' \o) {o\So) - {m\ o) {o\ H' \So)

+ ^ H H' \S2o) - (m\ H' \o) (o\ S2 o) - (m\ o) (o\ H' \S2o)

2 (m\ H1 \So) (o\ So)-2 (o\ Hf \So) (m (m\ H' \o) (m\ So

Separate diagonal terms:

n

-E 9 fff j
Zi£J-mnJon'

nn'

~r / v [J^-rnn ~ -^mo

n

2! / v L-^mn -^mo^on ^mo^-On\ no

TTI J J
' -^m.n^on^on'

no

o ~r • • •

Second-order CBF is obtained by keeping the first two terms.
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• Restrict \m) and \n) to correlared 2p-2h states

• Matrix elements of two-body operators arise when |3>m) a n d l^n) differ
by two or four orbitals.

• States differing by two orbitals may be generated by coincidence of:

the particle orbitals in |$m) with the particle orbitals in
the hole orbitals in |$m) with the hole orbitals in |$n)>

 o r

a particle-hole pair in |$m) with a particle-hole pair in |$

• In the d = 4 contribution take all terms that can be written as matrix
elements of unlinked products of two-body operators.
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Results are best represented diagrammatically:
Some first-order contribution are

Particle-particle ladders
hole-hole ladders
and ring diagrams
from ordinary CCM

Non-orthogonality corrections
Dot on a line =

More non-orthogonality correc-
tions
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Diagrammatic rules for C-CCM equations

The expansion of the coupled-cluster equations is represented graphically by
the sum of all diagrams which have the following properties:

• Two hole lines entering and two particle lines exiting
at the top of each diagram,

• an arbitrary number of S elements,
• an arbitrary number of J\f elements,
• one effective interaction operator H, or one single-

particle (or hole) energy,

They obey the rules
• the S elements have only incoming hole lines and out-

going particle lines,
• no A/* line and no % or e element may be connected

directly to another J\f element.
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Verify at higher orders: Some more diagrams

All these diagrams are included in the first-order term if S is replaced by $ !

The only sub diagram where all particle-and hole lines
enter an S operator is $
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Summary
: -* 1 . •- It * i - - : . ; :

A set of integral equations to sum systematically
CBF perturbative diagrams;
For the Jastrow-Feenberg-lover: A way to "move
the nodes", or to do "single-operator chains";
For the CCM-lover: A way to solve the hard-core
problem.
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The effective two-body interaction can be written as

(j),p'\U(l,2)\h,h')a

= (p,p'\ W(l,2) \h,h')a + \ (ep + ep, - eh - eh>) {p,

It has the "average zero" property

I,

h

mm

OO

q,h'-q|W(l,2)|h,h'>o =

In the simplest approximations, we omit exchanges and use

- T'dd(r)

ek ->• t(k)

\h,h')a
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Verify the "average zero" property:

hh'

n(h)n(h + q)n(h')n(h' - q) f (h + q, h' - q| W(l, 2) |h, h')

+ - (*(h + q) + *(h' - q) - *(/i)

s2
F(q)

Use here:

*(?)

- Fp.h(g)

+ q, h' + q| ^ ( 1 , 2) |h, h')

= 0

*(?)
5(g)J + 1
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We can derive the CBF perturbation series from

"n — ~7 / J ^Pi-..pn;h1...hn
a
Pl • • • ap

pi...hn

In C-SUB2 approximation, we have

= 2 A^ §PP'\hh'OLporp>oih' -

and the leading term is

, , , , ~ Q , , , , — __
'\hh' ^ LJpp';hh' —
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Interpretation
olalioj'is or what 7

Focus on the direct term:

(ep - eh - eh>)

N

where q = p — h.

4m
( h -

Observe:
The Fermi-sea average of the expression vanishes. CBF corrections do
not lead to new local correlations if these have already been optimized.
The non-local part of the operator can be written, in coordinate space,
as

V L dd\' ) v

which is exactly the so-called "backflow" form.
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Dynamics in CBF
;= = :; *:

Objectives:
Formulation of a theory of excitations for a strongly interacting system,

Interpretation of the effective interactions of CBF theory
Interpretation of FHNC-diagrams

Reference Material:

D. J. Thouless, The quantum mechanics of many-body systems, Academic
Press, New York (1972).
A. K. Kerman and S. E. Koonin, Ann. Phys. (NY) 100, 332 (1976).
P. Kramer and M. Saraceno, Geometry of the time-dependent variational
principle in quantum mechanics, Vol. 140 of Lecture Notes in Physics
Springer, Berlin, Heidelberg, and New York, (1981).
J. M. C. Chen, J. W. Clark, and D. G. Sandier, Z. Physik A 305, 223
(1982).
E. K., Phys. Rev. A 26, 3536 (1982).
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Recall Saarela's lectures:

!*(*)> =
e-iHoot/h

1/2
•iHoot/h

!*(*)>

6U(t) = - , t)

Action principle: Assume a weak external potential Uext(^',t):
•ti

6 t U(t) H - ih%-+
ot

H - Hoo - ih

) dt

oo
d_
di

Fermion generalization: Two-particle-two-hole exctiations still need to be done.

ph pp'hh'
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Time-Dependent Hartree-Fock
% £-

i- _ .»* "_

Let H be a second—quantized Hamiltonian with a weak interaction:

H =
Q;

(1) Expand the action principle to second order in the particle-hole ampli-
tudes c h(t), (£/ext(r) is first order),
(2a) Time-derivative term: I(t) is the normalization integral

d cv,h,(t)

ih ih

(Omit terms that can be written as total time-derivatives)
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(2b) Density operator p(r) = ^ • <5(r — r^) and external field term:

(*(t)|«r)| *(()> == £
ph

,* $0 > +C.C.

|C/ext

ph

(2c) Interaction terms:

<m *w> = 5
ph,p'h'

, * „*

ph,p'hf

aha
P

ah'ap<H +c.c.

0
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Evaluate for second quantized Hamiltonian:

Bph;p'h' = \^0

= (eP - eh) \hP')a

with
V\k,h)a

h

Hartree-Fock single-particle energies.
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Let

, A =

(3) Carry out variation wrt. c h and

BC*(t)

o

(4) Harmonic decomposition

e~iut]
Then —)• "time-dependent Hartree-Fock" (TDHF) equations:
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Solutions for Uext(r;t) — 0 => excitations !
(5) Response-function: Calculate "transition density"

5p(r;t) =

(6) To get the familiar RPA:
(•) approximate e& & t{k)
(•) omit all exchange terms
(•) Formulate equations in momentum space

Find:

Lindhard function.
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Problem with TDHF/RPA: The matrix elements (pp'\V\hti)a and
{ph'\ V \hp')a don't exist or are totally unreasonable for strong interactions.

The ways out:

(1) "medium to large amplitude handwaving" that is, invent effective in-
teractions like
(la) "local field corrections" for electrons,
(lb) "Pseudopotentials" in 3He and 4He,
(lc) "Time-dependent density functional theory",
(Id) "Skyrme forces" in nuclear physics.

(2) CBF theory.

Warning: CBF theory does not fix the crimes one made to derive RPA (like
omitting exchanges !)
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A correlated time-dependent wave function:

Recall

*(*)> =
e-iHoot/he\8U{t)

—iHoot/h

O
1/2 = e

SU(t) = ^ cph(t) a\ah
ph

0) =

IPh =

Iph

!*(*)>
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The same tasks again: Evaluate the action integral and the equations of
motion:
(2a) Time-derivative term:

dt
php'h'

ih

php'h'

a
p

d cp,h,(t)

-c;,h,(t)](ph\P'h')

php'h'

(Omit terms that can be written as total time-derivatives)
Recall that

{ph\p'ti) = 5pp,8hh> + {pti\N\hp')a
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(2c) Interaction terms:

ph,p'h'

ph,p'h'

Evaluate using CBF technology:

H-H,OO O) + C.C.

, o) =

Bph;p'h' = (Oahapah'ap'\H\°) =

, 2)

!2) \hh')a

with
-eh = ,f H-H.OO

CBF particle-hole energies.
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Let matrices A, B as before, and

= ({ph\p'ti)),,

("Metric matrix").
(3) Carry out variation wrt. cph and c*ft:

ihMC(t) = AC(t) + BC*{t)

Normal mode decomposition -> "Correlated RPA" (CRPA) equations:

A B
B* A*

X
Y

M 0 \(X
0 -M \Y

Observe:
• All matrix elements are well-behaved
• The only evident change is the appearance of the "metric matrix"
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Examining the structure of CRPA

Recall that:

{pp'\ n \hti)a = {pp'\ W \hti)a + -(ep + ep, -eh- eh.) (pp'\M\hh')a

(pti\n \hp')a = (ph'\ W \hp')a + \{ep + ep, -eh- eh.) {pti\Af\hp')a

All matrix elements contain "nodal diagrams"
The "metric matrix" contains "nodal diagrams" as well:

(ph p'ti) = 5pp>5hh> + (pti M\hp')a
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Reduction of the equations of motion

Define

w=((ph'\W\hp')a (PP'\W\hh')a

(hh'\W\pP')a (hp'\W\ph')a
N = {Ph'\N\hp')a

{hh'\MW)a (hp'\Ar\Ph'}a

0 =
_ i ep — eh — hut 0

0

Then

A B
B* A*

= 1 + -
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+ IN) (W - JMW) (i + IN

What have we done ? Let's look at the simple approximation for W an A/*,
omit exchanges:

{pp'\J\T\hti) = --5p+p>-h-h'fdd(q)

Define

\« -11- jX

Prove (by verification) that

/ (Ph'\ xdd | V ) (PP'\ xdd \hh')
{hh'\Xdd\pp>) (hp'\Xdd\ph'}
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Let's see for the 1-1 element how this works:

> 11

nunp"h

ff\ rdd |V

- -A{ph"\ Vdd |hp") (p"ti\ Xdd \h"p')

2 ^ ' V

xdd \P"p')

\ E
p"h"

1 ~

p"h "

= NSF(q)
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Prove further (by verification) that

% = X'dd(q) ~

This means that we have reduced our problem of finding the excitations in
the correlated basis onto an ordinary RPA equation with a local, energy
independent effective interaction Vp^q).
The rest is as in ordinary RPA: Get a response function

Including exchanges and more complicated FHNC diagrams is messy. It
leads to similar eliminations of "nodal" diagrams, but no great new insight.
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We now have two ways to get S(k):
• We have the FHNC-EL result

S(q) =

On the other hand, RPA tells us that
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Connection:

(a) Define a "collective" or "mean spherical" approximation for

TVTSA / \ ^"\Q)
Xo (« ,w) = N 2 •

(b) Observe that

(c) Then

-o ill

°
Conclusion: FHNC-EL replaces the particle-hole continuum by an

effective collective mode.
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Issue:
• Knowing S(k) lets us in principle calculate the energy by coupling-

constant integration.
• FHNC-EL and RPA lead to slightly different S(fc)'s.
• The difference must be due to CBF ring diagrams, so let's sum them.

In MSA, the sum of ring diagrams is easily obtained by coupling constant
integration:

/ /
1 f dh C

brings = ? / T^T^p-hW / d\(SX(k) - SF(k))
z J Z7T) P JO

S F { k )
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Let's to back to the big perturbation formula

TTf TTf
£1om£1mo

m

+ E
mnp

I

mn
I TTf TTf TTf

mn np po

\-H-mm •H-oo)\-£'-nn

mn

TTf TJl TTf TJf

•^ om mo on no

T TTf TTf ZT/

Jom-n-rno£1on-n-no
\-tlmm ilooj

,

TTf TTf TTf
017117171710

oo) yllnn

f T TJ TT
omJrno-n-Oni:Lno

iioojyiinn ilooj
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To make contact with RPA:
• Keep only CBF diagrams that can be written as "ring-diagrams":
• Keep only FHNC diagrams with topology of rings:

= f 'dd{q) - Af(q) = Tdd(q)

Take only free kinetic energies e& « t(k), eph = t(p) — t{h)
Let d = 2, recall

(AE)2 =-_lr \(hh'\H(l,2)\PP')a I yy
2 ^rf eph

pp'hh' "

and

, 2) |pp7) = (hh'\ W(l, 2) | V , 2)
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Now expand

(A£)2 = (0)

\{pp'\W\hh')\
eph

(pp'\Af\hti) (hh'\ W

eph{pp'\M\hh'){hti\N\pp')

W |/»/»') (hti\N\pp!)

(0) has no energy denominators. Use n(k) — 1 — n(k) — 9{k —

E
h

q) = NSF(q)

h
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Hence: Evaluate

Q

2SF(q)(T'dd(q) t(q)
Fdd(q))+t{q)fdd(q)

+t(q)fdd(q)

= 0 for optimized correlations
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To derive the generic rules, rewrite the series

E = n
n

of all CBF ring-diagrams in terms of the interaction Hf
mn and Jmn as

E = Y(8E)n
n

by canceling all energy numerator terms and rearranging according to the
number of remaining energy denominators.

Warning: Keep all terms.
"Thou shalt not split small
quantities into large pieces"
(Coester's commandment)

QMBT-2001 46



Three-body order:

vwvwv
wvw* vww*

A"

m) and \n) are two-particle, two-hole states, and may differ only by one
particle-hole pair, i.e.

m) = o) \n) = o) .

For this pair of states, we have therefore

Tjl TT/

-"-mn — vv mn

= (h'p"

= {h'p"

—— — I r~t —— f—*
I i j . _M. nrin nry~i I JL JL *n 'Ki

2

W \p'h") + \ (2eph -

•H \p'h") + eph {h'p"

(Second and third diagram above)
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H

)*

p'

'mn

+ ep,,t

h")

H") (h'p" M \p'h")
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Expand (AE)3

(A£)r =

(AE)3 =

\hh'){h'p"\W\p'h"){hh "

- V

{h'P"\ w \P'h") {hh"\N

{h'p"\M\v'h") {hh" N\pp")

{tip"\N \p'h") {hh"\ w W)

{hh"\W\pp")
-ep,h,{pp'\M\hh'){h'p"\M\p'h")

>V |/z/i') </i'p"|TV\p'h") + {pp'\M\hti) {h'p"\ W \p'h")
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_ - Y "
8

3 (pp'\ W \hti) {h'p"\Af \p'h") {hh"\M \pp")

(pp'\Af\hti) {hh"\W\pp"))
2 (pp'| M \hti) (h'p"\ W \p'h") {hh"\M \PP")

(2eph + ep,h, (pp'\ Af \hti) {h'p"\M\p'h") {hh"\M\pp")

Renormalize

(pp'\W\hti)-
p"h II L

{Ptil\W\hv")(p"p'\N\ti'ti)

i [2ep,h, + eph (ph"\N\hp") {p"p'\N\h"h!)

Sum all terms for (A£")o
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4th order verification: (slightly lengthier)

A A

Last two diagrams come from third and secoond order CBF !

QMBT-2001 50



The short lesson from the long story:

(AE)0

i>0

1 ^

4 z—'

Sum of all ordinary ring diagrams
in terms of Vp_h(g)

Conclusion
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As a formula:

TP — TT _ ;?MSA
^CRPA-RingS ~" ^rmgs ^ r

d3k ~ f1

2 , ,^r-Vv_h(k) I d\(Sx(k)-SF(k))
O
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1.0

0.5

0.0

-0.5

-1.0

-1.5

-2.0

-2.5

VMC-J/ +
VMC4T x
YMC-JTB *

•

0.010 0.018

X

0.020
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(a) The Jastrow-Feenberg wave function replaces the Lindhard function by
a collective mode.

(a.l) More "complete" versions of FHNC-EL will not change this.
(a.2) We can interpret the diagrams of FHNC-EL as approximate Feynman

diagrams. Identify by momentum flux.
(a.3) The power of (F)HNC-EL lies in the fact that it sums vast classes of

Feynman diagrams approximately, that cannot be summed exactly.
(a.4) There is no point in calculating a quantity with JF wave functions

unless this advantage is exploited !

(b) Observe (by numerical integration): The approximation is accurate at
the percent level for S(k).

(b.l) Do expect that FHNC-EL works for other integrated quantities (e.g.
the energy),
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(b.2) Do NOT expect that the same approximation works for quantities
specific to Fermi statistics (e.g. Fermi-Liquid parameters),

(b.3) Do NOT expect that the naive extension to finite temperatures
works.

(c) CBF perturbation theory: A way to do better
(c.l) CBF moves the nodes,
(c.2) CBF must be consistent between evaluation of the energy and CBF

matrix elements,
(c.3) The Lindhard function has nothing to do with Feynman-Cohen back-

flow.
(c.4) "Chain diagrams" are just approximations for ring diagrams.

(d) Time-dependent "Correlated Hartree-Fock" (= Correlated RPA, CRPA)
provides justification to use V _̂h(fc) as effective interaction in an ordinary
RPA

(d.l) A technically complicated proof,
(d.2) A plausible result after all we have seen !

(e) Do expect that all of these statements are true in an inhomogeneous
geometry.
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