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1.1 Brief history of CCM

Invented in 1958 by Coester, Kumme!
Ground State energy of closed-shell nuclei

Rediscovered in 1966-70 by Cizek, Paldus
Realm of Quantum Chemistry

Revival in Nuclear Physics Bochum group
1974: calculations of GS properties of doubly magic nu-

clei 4He, 16O and 40Ca using realistic interactions (HJ,

Reid SSC)

From 1979 on large scale applications in atoms,
molecules, electron gas, spin lattices, quantum
optics, etc,
Standard accurate technique in Quantum Chemistry.

Ground and excited states

From 1990 on new revival in Nuclear Physics
the Manchester - Valencia collaboration
Reformulation of CCM to take proper care of the Center-

of-Mass motion in the description of finite nuclei

Recently, Quantum Liquids La Plata - Valen-
cia collaboration
Drops of helium atoms



1.2 Basic references

e R.F. Bishop and K.H. Kummel, Phys. Today 40,
52 (1987)
pedagogical introduction

• Proc. Workshop CCM, Cambridge, Mass. 1990
Theor. Chim. Acta 80 (1991)
formalism + reviews + lots of references

• 1st. Eur. School Microscopic Quantum Many-
Body Theories and Their Applications, Valencia 1997
Lecture Notes in Physics 510 (1998)
R.F. Bishop The Coupled Cluster Method
formalism + general overview

« H.G. Kummel, K.H. Luhrmann, and J.G. Zabo'itzky,
Phys. Rep. 36C, 1 (1978)
A classic: formalism -+- finite nuclei



2.1 The Exponential Form

of the CCM Wave Function

• First approach: Each nucleon moves Independently in
the mean field created by the other nucleons

Reference state: |d>) = a+...a+|0)

Labels v -> occupied states in the Fermi sea

p —> unoccupied states

a -> both occupied and unoccupied states

unoccupied states

occupied states

But all of this ignores interactions between nu-
cleons



• Two particles may interact independently from all oth
ers and lift out of Fermi sea.

The process is described by an operator

A = antisymmetrisation i/ lf

One-pair excitation:

! wo independent pairs: i-5f |<t>)

m independent pairs: -^St
1 772; ^

Sum of all terms involving independent excitations of
pairs (including none)

OO

m=0



•Three particles may interact independently from all
others lifting out of Fermi sea.

The process is described by an operator

Excitation of p independent triplets

m pairs and p triplets may be excited independently

ml pi

The operators 52 and 53 commute, as they are describ-
ing independent processes

Sum of all terms involving independent excitations of
pairs and triplets (including none)

00 ..

771 = 0

OO

p=0



n cluster excitation described by an operator

n\

Sum of all terms involving independent excitations

aoo T ^ 3 T ••• + &A

• Finally, it may also happen that in the interaction of
any subset of particles, only one of them is lift above
the Fermi oca

(p\Si\iy)aJau

Sum of all independent lp- lh excitations



CCM a n s a t z

|M/>
Q

l

(n!>
<

= e5 0}

[p\...pn Sn V\--.vn)

%+ a+a

• The exponentiated operatorial form is convenient in
extended systems (Goldstone theorem)

• This is a natural decomposition of the wave function in
clusters of excitations, where each independent excita-
tion has been considered with its appropriate muitipiicity

•Let the reference state |4>) be a Slater determinant
Each term in each cluster Sn produces a new Slater
determinant
The action of e5 on \&) is to generate in a specific way
a complete set of many-particle states formed by Slater
determinants
Everything is exact up to now but not very practical for
the moment



Formal writting of the wave function in coor-
dinate space

• Single-particle wave functions

(x\v)

• n-ph amplitudes

^ {Xl\pi)...{xn\pn}{pi, ...,pn

These amplitudes are antisymmetric both in particle and
state labels xi, v{

-\-SvxAu {{X\

) --(xA\l/A)] +

The symbol A means sum over all permutations of the
single-particle state labels with the corresponding sign

The symbol S means sum over all permutations of pairs

of particle and single-particle state labels

This result leads to a unique definition of cor-
relations



2.2 The Configuration

Interaction Method (CIM)

Alternative way to obtain the np-nh content of the wave
function: project onto np-nh state

The true wave function:

1 ^
Fn =

n=l

1 ^

•)

—y probability amplitude for the excitation of n nucleons
from the occupied states (vi,...,i/n) to the unoccupied
states (pi,...,pn) in the reference state.

This is a generalized shell-model. Amplitudes and eigen-

values are determined by diagonaiizing the hamiitontan

matrix.

CCM=CIM if no approximations are made

But there are conceptual differences ...



Linked vs unlinked
Relations Fn <—> Sn

F4 = 54 + \l | ? f
Sn are linked by construction

Fn contains uniinked pieces. They cancel out in the

exact theory, but it is not true when truncations are

made

n-particle subsystem amplitudes

—> amplitude for l...n particles moving freely (positions
xi...xn) and the remaining N -n being in (i/n+i...i/N)

{xi\Fi\i/i)

(52> is that part of (M/2> that cannot be described by
(M/i). A similar interpretation does not exist for ampli-
tudes (F2>

+ (Xl X2X31531 V\ V2 V3 ) A

{Sn) is that part of (vl/ra) which cannot be described in

terms of one-, two, ... (n — l)-body amplitudes. It

describes correlations occuring within an n-body cluster

12



Size-extensivity

Separate system with N particles into two subsystems
A, B with NA, NB particles. Separation distance TAB-

TAB -+ oo H -> HA + HB , [HA, HB] = 0
BEB

A system is said to be size-extensive when it obeys the
above separability properties. In such a case the energy
has the (correct) linear dependence with the number of
constituents

A common truncation: SUB(n)
S —-> Si + S2 + ... + Sn (Sm = 0,m> n)
F —¥ F\ + F2 + ... + Fn (Fm = Q,m>n)

CIM-SUB(n)

(1 + Fi + F2 + ...Fn)|O> ^ (rAB -> oo)

4- Ff} + Ff > + ...Fi
does not have separability property: it would require
excitations of up 2n excitations, which go beyond the
assumed approximation

CCM-SUB(n)

exp(5i + S2 + ...5n)|0> = {TAB

S[B) +

guarantees the separability relation, no matter how the
cluster correlation operator S is truncated

13



2.3 The Coupled Cluster

equations

Determine amplitudes (Sn)
and ground state energy

Schrodinger equation

/j|U/> = £|U/} —> Hes\<t>) = Ees\<t>)

Use (O|v|/> = (O|e5|0) = 1

= E
Assume two-body interaction:

E =

Only one- and two-body amplitudes (M/i, M/2 or 5 i , S2).
are needed to determine the ground state energy
Expanded expression:

E =

Recall:

Premultiply with (O| = Project onto Oph state

Idea: Convert the Schrodinger equation into
an equivalent set of coupled equations for am-
plitudes (Sn) by projecting onto Oph, l ph , ...
nph states

14



Formal writ t ing of cluster operator

np-nh projection —>
The Schrodinger equation transforms into

with £? = (ct>!#e5!0> if / = 0

Warning: E is a macroscopic quantity. Problems in

extended systems?

No: There are cancelations between unlinked terms in

both sides of these equations

Alternative CC equations

Transform the Schrodinger equation into
^ — S TT^Sl <*N\ rT>l^s\

Oph projection:

E = (&\e-sHes\<4>) = (&Hes\&)

= 0 , 7 =£ 0
No macroscopic quantity appears to determine <Sj

—> EXERCISE 1

15



Use the nested commutator expansion

e~sHes = h

An infinite series for a general operator
S is formed by creation operators Cf such that

— n

The only non-vanishing terms in the series comes from
the contractions between the Hamiltonian and S
The operator e~sHes is a fully linked operator

—> the series is finite

For an n-body hamiltonian the series will exactly termi-
nate with the term involving 2n cluster operators.

Two-body hamiltonian:

JK

JKL

' JKLM

= 0
A coupled set of non-linear equations in the amplitudes
Si, up to the fourth order.

16



2.4 The Reference state

In order to describe many-body correlations we always

need a reference state with respect to which the corre-

lations are defined. In some cases the choice of |O) may

be determined by simple physical ideas, but it is impor-

tant to realize that this choice may be not unique

System of bosons
Example: liquid 4He

Obvious choice: the Bose condensate, in which all N
particles condense into the lowest-energy single-particle
state
Normalized reference state:

1 / . \ N

Bosonic commutation relations:

[ba, b0]=Q = [6+, 6+] , [6aj 6+] = 5a

s-p states in coordinate representation: <£a(

occupied states a -> v = 0, unoccupied states ex.

Finite system: {a} <— HO

Homogeneous system: plane waves

Thermodynamical limit:

N - * oo, Q -+ oo, p — N/Q. finite

17



System of fermions
Examples: liquid 3He, finite nuclei, atoms, molecules,
electron plasma

Obvious choice: an Slater determinant of single-particle
states:

N

formed from some complete s-p basis {\ai} = a+
Fermionic anticommutation relations

{aa, ap} = 0 = {a+, a^"} , {aa, a j } = 5Ojp

Finite systems

Atoms and molecules: {a} <— HF

Finite nuclei: {a} <— HF (which may or not be consis-

tent with the N,M interaction), or {a} <— HO

Homogeneous system: plane waves

Thermodynamica! limit:

N -> oo, Q. ->• oo, p = N/Q. finite

The choice of a Slater determinant for the reference

state of a fermion system may seem obvious. However,

it is worth noting that, depending on the type of physics

one is interested in, other choices may be more conve-

nient

18



• Open-shell systems

A multi-reference approach seems to be more reason-

able. It results in a mixture of CCM and CIM

Atoms and molecules

• BCS state

The reference state is also an Slater determinant but

I U I ii î rvj MV^IM LjUabi|jdi L I ^ I C o ia uro. I » K3O<3 quaoipoi L I ^ I C

states are linear combinations of the previous particle

a nri hnlo cf-pf-oc

Not considered here

• Quantum Spin Lattices

Spin-Half particles on a bipartite lattice! Neel state

Not considered here

• Systems with a very strong repulsion at short

distances

It may be convenient to consider a correlated reference

state. To be useful, these correlations have to be de-

termined separately. It results in a mixture of Jastrow

and CC correlations

Finite nuclei and drops of liquid He

—y EXERCISE 2

19



2.5 The Bra state

Up to this point we have only considered the ket state

|vj/). Ground state energy extracted from the Schrodinger

equation projecting upon C/ np-nh excitations

Calculate E as an expectation value:

_ (v|/|#|\|/) _ (0\es+Hes\0)
~ (\I/|VJ/> ~ (o|e5+e5|O)

The resulting expression is generally of infinite order in

the correlation operators S and S+ , no matter how S is

truncated

Cancellation of unlinked terms between the numerator

and the denominator may be proven, but it is by no

means transparent

Normal CCM and Extended CCM
parametrise independently the bra and the ket
states
but the hermitian-adjoint relationship to one
another is broken

20



Parametrisation of the bra ground state

Preserves the explicit normalisation

<\J/|vi/) = (O|v|/> = (<t>|ct>) = l

The full set of independent variables {<S/,<§/} provides a

complete parametrisation of the ground state

Expectation value of an arbitrary operator

(A) = <U>|i4|v|/> = (O|5e-sAe5|O) = A(ShSj)

It is fully linked even though the operator S itself con-

tains unlinked pieces

NCCM equations
Schrodinger equation

(<if\H = (vfr|jE7

Project onto states Cf\<t>)

(<t>\S (e~sHes - E) C+\<X>) = 0

Ground state energy ( / = 0)

E =

21



• Solve
i&lde-8Hes\<t>) = 0 , / j=. 0

to obtain {Sj}

• Use {Sj} as an input and solve the linear set
of equations

[ , ] | ) = 0 , 7

to obtain {Sj}

The NCCM bra parametrisation is derivable from the

Hellmann-Feynman theorem —> The expectation value

of an arbitrary operator A may be calculated diagram-

maticaliy from the same set diagrams as for the energy:

replace V-lines by A-lines

ECCM is a method to use fully linked basic

amplitudes (NCCM {<§/} contains unlinked terms)

22



3.1 The SUB(n) or CCn

approximation

lp-lh projection

V

V

2p-2h projection

(piP2|[T(l) + T

] 13)

^ ( 1 V ( 3 4 ) ( 1 2 3 4 ) \ / ) A

Ul/

X3(l;23) =
X4(12;34) = 52(13)52(24)-h52(14)52(23)

+ S3(123)M/i(4) + S3(124)M/i(3) + 54(1234)

Insert unit operators to derive explicit expressions

23



np-nh projection:
the amplitudes Sn coupled to Sn+i and Sn+2, as weii as

to a!! Sm with m < n

The Schrodinger equation —> a set of non-linear cou-

pled equations for the amplitudes

For the moment not too much progress has been ob-

tained for practical purposes

Idea:
For relatively low density systems only comparatively

rarely do more than a few particles come together to

lift themselves simultaneously out of the Fermi sea

SUB(n) approximation hierarchy:
all clusters with more than n particles are ne-
glected

Throwing away Sm,m > n still leaves us with a
rich wave function

High-excitations, few-body effects, collective
effects, ... are taken into account

24



S U B ( l ) approximation: Sn = 0,n> 1
Equation for Si

V V

This is the Hartree Fock equation with a self-consistent
potential

{ai|£/U>i|i/i} = (aii

A surprise?
SUB(l) wave function:

bi —

No: the Thouless theorem ensures that |M/) is nothing

more than a general Slater determinant non-orthogonal

to the reference state |<t>)

Usual choice: S\ = 0

• Use HF wave function as the reference state (with

• Solve the generalized HF equation (including couplings

with 52 and S3

• Use a reasonable reference state, e.g. Harmonic Os-

cillator single-particle states. Converged results should

be independent of the reference state —> our choice for

finite nuclei and helium drops

25



3.2 Some examples from

Quantum Chemistry

CHEMICAL ACCURACY:

Ethylene molecule

• Total energy: -78.35451 hartrees

• Hartree-Fock energy: -78.04520 hartrees

• Correlation energy: 309.31 mh

• Reaction H2+C2H2 -+ C2H4

Experimental energy: 66.99 ± 0.40 mh

• Equilibrium bond length: Rc = 1.339±0.00lA

• Transition from planar to twisted configura-

tion at Rc ~ 2A

• 1% change in Rc —> 2 mh change in energy

Typicalliy a HF calculation provides ~ 99% of

the energy, and very sophisticated methods are

required to determine the correlation energy

—> high-precision is needed (< 1 mh)

26



VOCABULARY

Quantum Chemistry Physics
Operators T,Tn —> Operators S,Sn

CCS (singles) —> S U B ( l ) , CC1
CCSD (doubles) —> SUB(2), CC2
CCSDT (triples) —> SUB(3), CC3

CCSD(T) —> approximate S3

CCSD(T,Q) —> approximate S3,S4
QP v cinnlo rof&rc>nr&

MR —> multi reference state
—> full CI (converged CI)FCI

Examples:
• Potential energy curves HF molecule (Paldus, RPMBT11)
• Vibrational levels N2 molecule (Paldus, RPMBT11)
• Spectroscopic parameters N2 molecule (Paldus, RPMBTli)
• Relativistic CCM: Excited states Sc+ atom (Kaldor,
RPMBTl i )
• Relativistic CCM: Excited states Xe atom (Kaldor,
RPMBTl i )

RPMBTl i : 11th Conf. Recent Progress in Many-Body

Theories, Manchester, July 2001

SI, S2, S3, S4/S5

27



•100.00

-100.05

LLJ
-100.10

-100.15

•4)

FCI
_A_._ CCSD
- r - - CCSD(T)

a 4R-RMR CCSD

e-
- CCSD-[2R]

CCSD-[4R]

2.5 3.5

Figure 1. Potential energy carves for the HF molecule obtained with tie FCI (dash-

dot carve), CCSD (daafardot-dot carve), CCSD(T) (long dash carve), 4R-RMB. CCSD

(solid curve), CCSD-(2R] (dashed curve), and CCSD-{4R] (dotted curve) methods and

aDZ basis set.

28



PECs with both the SR CCSD and 4R RMR CCSD methods

o

UJ

5

4

3

2

1

0

~\ ^
- \ 20-

: \ =

\ 10-

- \ _

- \ z

25 / /
MM. i i i y* J

— - - " * * / /

zz::::=: //

—- #—:::: 5 #

0.9 1.1 1.3 1.4 1S 1.6

R(A)

FIG. 1. The experimentally determined RKR PEC and the first 26 vibia-
tional levels (Ref. 30) (solid curve and lines) and the corresponding ab iniiio
data obtained with the SR CCSD (dotted curve and lines) and 8R RMR
CCSD (dashed curve and lines) methods and cc-p\TZ basis set The energy
zero is chosen to coincide with the tmrnmiTm of the PEC in each case.
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A comparison of theoretical and experimental
spectroscopic parameters for the iV2 molecule

Re(A)
LJL)f*

(jJeVe / 1 0 ~ 3

, . „ /i n—4

Be

-Ote / 1 0 ~ 2

7e /10~5

de /10"7

-De /10"6

Pe / 1 0 " 8

txpt.
1.0977

2358.54
-14.3058

-5.07
i i n

1.9982
-1.7313
-2.85

-5.74
-1.02

SR
CCSD
1.0962

2425.60
-12.9242

5.92
0.57

2.0040
-1.5969
-0.34
0.199
-5.46
-0.03

* r—N r—N A M r—N

^•K KIX/lK

CCSD
1.1012
2365.2

-14.0058
-7.62
-0.53
1.9861

-1.6880
-2.43

-4.241
-5.56
-1.81
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Pilot application: IP, EEs of Sc+ (eV, errors in meV):
FSCC: only 4s, 3d can be included in P.
IH: Pm. 4s, 3d, 4p; P: 5s, 6s, 5p, 6p, 4d, 5d, 4 / added.

State
IP 3d4s
EE

! 3d2

\ 4s2

3d2

I

1
1

i

3d4p

A
._. i
. > 7 ^ !

/ /-~\ '

3D3
lDo
3F2
3 F 3

lF>2
%
3Po
3r>

3p

2>jrp

many more

j

Average error, first

Expt.
12.800
0.009
0.022
0.315
0.596
0.606
0.618
1.357
1.455
1.497
1.500
1.507
1.768
3.234
3.403
3.422
3.452

13 energies

IH err
29

1
3

- 1 6
17
18
22
34

- 5 6
27
28
29
14
3

10
12
14

good
18

FS err |
93 j|

1.
3j

29?
- 1 2 1 ;
- 1 2 0
-116!!

i i

- 6 6 .
- 8 2
- 9 8
- 9 7
- 9 6

- 1 1 3
NC
NC
NC
NC
NC
80

Accuracy quadrupled.
Many more states accessible.
Average error of first 20 states is 0.020 eV.
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Excitation energies of Xe (cm ).

Configuration J Expt.
5p5(2JD3/2)65

1 5p5(2P1/2)6s
i
i
i

op5e-p3/2)6p
i

i

5p5(2P1/2)6p

5p5(2P3/2)5d

2
1

67068
68046

0 76197
1
1
2
3
1

77186
77270
78120
78404
78957

2 79213
0 80119
1
2
1
0

88380
89163
89279
89861

0 79772
1 79987
4 80197
3
2
1
2
3

80971
80323
83890
81926
82431

Calculated
67466
68484
76391
77457
77735
78713
78983 |
79585
79913
80588
88985
89810
89953
90395
80240
80441
80388
81275
80705
84495
82347
83008

Average error 0.060 eV or 0.6%
MVOs improve results by pf03-0.05 eV.
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3.3 Diagrammatic

representation of CC2

equations

2p-2h projection

= 0, Sn>2 = 0

lv)A)

1/

J. ^—r

= \PlP2\ / ^ 2 ^1^2/A T —

2
vv'

vv'

• Integers in parentheses after a particular operator re-

fer that operator to those quantum labels in the associ-

ated bra or ket in the corresponding numerical positions

(counting from the left)

• Insert unit operators to derive explicit expressions

33



V....V ...V
RPA

I \ / \

I f RPAEX

I i t -

HHP

I I

FHP

i I \

I I \ \ A CHP
S2

HP

HPP FPP

CPP

l - i l
1 1 I

p p L A D

l-i
t t

hhLAD

CLAD

PHA PHB EEI

EE2 (si) EE2 (s2)
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3.4 Application to the

Coulomb plasma

" Jellium": a model for electrons in metals

Ionic lattice —> uniform positive charge
Two-body interaction:

v(q) =

Q = normalization volume

One-component Coulomb plasma
N fermions (or bosons) of mass m, charge e, interacting
via V(q)

Thermodynamical limit: p = iV/Q, TV —> ooT Q -> oo

Dimensionless coupling constant: rs =
r0 = average interparticle distance
a0 = ft2/me2 Bohr radius
p = (4nrf4/3)-l = fc3/37r2

Energy per particle in Rydberg units:

E/N = c-
e2

2ao

e = eQ + ec
e0 = Hartree-Fock energy

ec = correlation energy

35



Weak limit:

rs -t 0 (plasma limit)

Intermediate coupling:

1 < rs < 5 (metallic region)

Strong limit:

rs -> oo (Wigner crystal)

•€c (in miliiRydberg) for the unpoiarized electron gas

RPA
CC2

CC[4]
GFMC

1
158
123
122
121

2
124
91.7
90.4
90.2

3
106
75.1
73.8

(73.8)

4
93.
64.
63.

(63.

6
4
4
6)

5
84.9
56.8
56.0
56.3

10
61.3

37.0
37.22

20
4O Q

23.6
23.00

R.F. Bishop and K.H. Luhrmann: PRB 17('78)3757

K. Emrich and J.G. Zabolitzky: PRB 30 ('84) 2049

GFMC: D.M. Ceperiey and B.J. Aider: PRL 45 ('80)

566; ( S.H. Vosko et al: Can.J.Phys. 50 ('80) 1200 )
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3.5 The HCSUB(n)

approximation

Hard Core potential:

V(r) = oo , r < rc

SUB( l ) : Equation for S1

V1

1
E =

In the case the potential contains a hard core the de-

scription of the wave function in terms of solely single

particle wave functions is not longer possible

Exact energy:

E =

One has to include at least
two-body correlations

37



lp-lh projection

>

(aii/|l/U/2|z/iz/)/i finite if

Since

this means that 52 inside the hard core is determined
completey by the single particle wave functions

Consider the three-body amplitude

X 3 ( l ; 23) = 52(13)M/1(2) + 52(12)v|/i(3) + 53(123)

Inside the hard core, 53 is completely determined by 52

and v|/x

SUB(2) approximation is meaningless in case
of a HC potential One has to neglect %3 altogether

if one wants to calculate wave function with HC inter-

actions including two-body and excluding higher corre-

lations

38



SUB(2): Equation for S2 (Assume Si = 0)

I/I/'

4- T/(23)[52(12) +

; 34)

I/I/'

-hS2(14)S2(23)j|*/izW},4

HCSUB(2): Equation for 52
(Si = 0 f X3 = 0,X4 = 0, Sn>2 = 0)

1
2

I/j/

4-

EXERCISE 3
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4. TICC2: Finite Nuclei

Previous CC calculations in finite nuclei:

• Kummel, Luhrmann, Zaboiitzy (PRep 36 ('76) 1)
4He, 16O, 40Ca, CC(4), realistic interactions

—> S6

• Heisenber, Mihaila (PR C59 ('99) 1440)

16O, CC(3), configuration space up to 50 hu

-E/A (MeV) rc (fm)
AV14 6.1 2.86
AV18 ^ 9 2.81
Exp. 8.0 2.73±0.03

The Center-of-mass motion
—y Translational Invariance

• Approximation: T —y T — TQM (only exact
for HO)
• Use a T I reference state from the very be-
ginlng —> TICCn
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4.1 TICC2 in configuration

representation

N Boson system
Determine a wave function of the CCM form

|vj/> = e5jct>)

completely symmetric and translationally invariant

Possibilities for the reference state:
• Use a T I wave function (for instance, choose Jacobi
coordinates or nypersphericai coordinates)
• Use the Harmonic Oscillator GS wave function

HO single-particle wave functions:

\nlm) = a+jO)
N-boson wave function:

Use coordinate representation:

3N/2 I a2

(n,...,rN\<P) = [-—} exp -

(
exp V

HO parameter: a =
Although the wave function is not T I , this factorization
allows us to eliminate the CMM unambigously

A similar factorization also holds for a fermionic system,

where the reference state is a Slater determinant build

up from HO single particle wave functions
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The correlation operator at the SUB(2) level

S = Si + S2

S\ and 52 are independent lp- lh and 2p-2h operators
Translational Invariance couples them

Example:

(v. _ r-^i2 — r ? _i_ r2 _ 2(r4 • rA

TI operator lp - lh operator 2p - 2h operator

Neither the one-body operator r2 nor the two-body op-

erator r; • TJ are separately TI

TICC2

Transiational Invariance may be imposed by:

• Recoupling the product of sp HO states into sums of
comparable products of HO states for the relative and
center-of-mass coordinates of the pair

• Imposing that the CMM of the destroyed pair in the
occupied subspace is the same as that of the created
pair of particles in the unoccupied subspace

Since we are dealing with HO wave functions this is

accomplished by using the Brody-Moshinsky brackets
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The Cluster Operator

oo

7 1 = 1

(nO,00,0|niZ,7i2Z, 0)

Ul JI2I

(0,0) 2
2

aooo

Sn is the amplitude to be determined

(nl,NL, A|niZi,n2Zi, A) is a Brody-Moshinsky coefficient
sp states 7ii, Zi, n<2,h coupled to angular momentum A.
BM coefficient gives its contents in terms of relative
state nl and CM state NL coupled to A

a§00 destroys two particles in occupied states

x a+z creates two particles in occupied states,

coupling their angular momentum to (A,/*)

• The term with both (ni,Z) = (0,0) and (n2,l) = (0,0)
is excluded, as it simply reproduces the uncorrelated
reference state
• The terms with either (m, Z) = (0,0), n2 •£ 0 and m i=-
0,(712, Z) = (0,0) must be included. These terms give
precisely the required lp- lh excitations in the admixture

Note the simplification implied by TI: the amplitudes to

be determined are the c-numbers S{n), which depends

on a single parameter n, which counts the number os-

cillator quanta globally excited (2nhu)
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The use of a TI S^1'2) does not imply that
c(l>2)

e° is also TI
Simplified notation:

sum over repeated indices is assumed, p = (np, lp, mp),
0 = (0,0,0)

s(p) = S(lPi 0)S(mp, 0) 2 {np0, 00, 0,lnp0, 00, 0)S(np)
P-Q) — C{lv,lq.0\mv,mq,0)

{np -\-nq-\- Zp0, 00, 0|npZp, nqlPi 0)S(np -j- nq -j-

Consider

Sd,2)5(i,2) =

The red term is TI. The blue term is not TI.

The clue: the term in red is precisely the ordered form

The same device applies to all the powers of S^1

TICC2 Ansatz for the wave

function
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The TICC2 Equations

H :

Op-Oh projection

= E : e* 1 * : \<t>)

Hi —

Notation:

k(m, p) =
v(n, m,p, q) = (nm ,

npi = • N ( N - l

Use REDUCE to obtain

p, Zp, m p )
n n , /ra, 77in|V|np, Zp, mp ; ng , lq,mq)

E= k(O,O)*npl + v(0,0,0,0)*np2
+ np2*( k(O,p)*s(p) + 2*(n-l)*v(0,0,p,0)*s(p)
+ np2*( 2*v(0,0,p,q)*s(p,q) )
+ np4*( v(O,O,p,q)*s(p)*s(q) )

Recall:

E =
V

with s(p) ->• Sin?) and

2
l/W

«S(np + nq + lp)
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er

To obtain the TICC2 equation for the amplitudes S(n)

we have to project onto the appropriate admixture of

lp- lh and 2p-2h, characterized by the quantum number

Nx (excitation energy 2Nxhu)

The TI excited state:

> Q)5(mp, 0)2{np0, 00, 0inp0, 00, 0)

:Q) — C(lp,lq,0\rnp,rnq,Q)(np -r nq -\- lp0,0G,0\nplpjnqlp,0)

The resulting equation:

(&\[c(p)apa0(a+)2 + c(p,q)apaq(a+)2]\H :

= E(<t>\[c(p)apa0(a£)2 + c(jp,q)apaq(a+)2} : e*1* : \<t>)

Simplified notation:

F(Nx, h, 12, *3, i4)S(ii)S(i2)S(i3)S(i4) — 0

with the convention <S(0) = 1
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Example: Contribution of the potential energy

(<t>| \c(m)(a£)2aoam + c{m,n)(a^)2aman V :

to the equation

= 0

F(N_x,0,0,0,0) =
np2*( 2*(n-l)*c(ni)*v(ni,0,0,0)

+2*c(m,n)*v(m,n,0,0))

F(N_x,i_l,0,0,0) =
np2*( (n-1)**2*(n-2)*c(m)*v(0,0,0,0)*s(m)

+2*(n-2)*(n-3)*c(m,n)*v(0,0,0,0)*s(m,n)
+4*(n-1)*(n-2)*c(m,n)*v(m,0,0,0)*s(n)
+4*(n-l)*(n-2)*c(m)*v(0,0,p,0)*s(m,p)
+4*(n-l)**2*c(m)*v(m,0,p,0)*s(p)
+16*(n-2)*c(m,n)*v(n,0,p,0)*s(m,p)
+4*(n-l)*c(m)*v(m,0,p,q)*s(p,q)
+4*(n-l)*c(rn,n)*v(in,n,p,0)*s(p)
+4*c(m,n)*v(m,n,p,q)*s(p,q))

np2 = N(N-l)
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np4*( (n-2)*(n-3)*c(m,n)*v(0,0,0,0)*s(m)*s(n)
+4* (n-3) *c (m ,n) *v (0,0, p, 0) *s (m ,n) *s (p)
+8*(n-3)*c(m,n)*v(0,0,p,0)*s(m,p)*s(n)
+2*(n-l)*(n-2)*c(m)*v(0,0,p,0)*s(m)*s(p)
+4*c(m,n)*v(0>0,p,q)*s(m,n)*3(p,q)
+8*c(m,n)*v(0,0>p>q)*s(m>p)*s(n>q)
+8*(n-2)*c(m,n)*v(n>0>p>0)*s(m)*s(q)
+4*(n-l)*c(m)*v(0,0,p,q)*s(a,q)*s(p)
+2*(n-l)*c(m)*v(0,0,p,q)*s(m)*s(p,q)
+2*(n-l)*c(m)*v(m,0,p,q)*s(p)*s(q)
+ 16*c(m,n)*v(ji,0,p,q)*s(m,q)*s(p)
+8*c(m,n)*v(n}0,p,q)*s(m)*s(p,q)
+2*c(m,n)*v(m,n,p,0)*s(p)*s(q))

(N_x,i_l,i_2,i_3,0) =
np6*( 2*(n-3)*c(m,n)*v(0,0,p,0)*s(m)*s(n)*5(p)

+(n-2)*c(m)*v(0>0,p,q)*s(m)*s(p)*s(q)
+8*c(m,n)*v(0,0,p,q)*s(m,p)*s(n)*s(q)
+2*c(m,n)*v(0,0,p,q)*s(m,n)*s(p)*s(q)
+2*c(m,n)*v(0,0>p,q)*s(m)*s(n)*s(p,q)
+4*c(m,n)*v(n,0,p,q)*s(m)*s(p)*s(q))

np8*( c(m,n)*v(0,0,p,q)*s(m)*s(n)*s(p)*s(q))

np4 = N(N-l)(N-2)(N-3)

np6 = np4 (N-4)(N-5)

np8 = np6 (N-6)(N-7)
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= 0

with 5(0) = 1

• The function F(NX, n,22,^3,^4) contains combinations
of excitation coefficients c(n), and matrix elements of
kinetic and potential energy

• TICC2 involves the solution of a coupled set of non-
linear multinomial equations in the truncated set of co-
efficients {S(n); n = l , . . . , iVmax}

• This is a nonlinear problem: there is no a priori way
to know whether all solutions have been determined in
this way neither if the so obtained solutions are or not
physically relevant

• TICI2 |\|/) = (1+ : 5(1'2) :)|0) (linear approximation)
Solve

ix=0

+q J2 F(N*i *!> *2>i3' i4)S(h)S(i2)S(i3)S(U) = 0
11=0,(12,13,14)7^0

q quenching factor slowly growing from 0 (TICI2) to 1
(TICC2)

• The use of a HO reference state introduces a free
parameter a, and a supplementary minimization of the
ground state energy could also be envisaged
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z 0

f o / - 0.6 0.7 0.8 a ( l / f m ) 1.0

FIG. 2. The ground-state energy of the ^He nucleus calciilat-
ed with the S3 potential and at various levels of basis truncation
in the CI2 approximation, as a function of the oscillator param-
eter a which characterizes the single-particle basis. The
different curves are labeled by the respective order (nmax) of the
truncation.

0 . 0

- 3 0 . 0
0.55 0.65 0.75 0.85

a (i/tux)
0.95

FIG. 3. The ground-state energy of the *He nucleus calculat-
ed with the MT-V potential and at various levels of basis trun-
cation in the CI2 approximation (solid lines) and the CC2 ap-
proximation (dashed lines), as a function of the oscillator pa-
rameter a which characeterizes the singJe-particle basis. The
different curves are labeled by the order (nmzx) of the truncation.

- 3 .

r(fm)
FIG. 4. The correlation factor fir) that characterizes the

CI2 approximation to the 4He ground-state wave function via
the paramctrization of Eq. (35). The calculation employs the S3
potential and a value a = 0.7 fm~! for the oscillator parameter
of the single-particle basis. The different curves arc labeled by
the respective order inmMA) of the truncation.
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-30.0
0.55 0.65 0.75 a (l/fm) 0.95

Figure 3- The GS energy in MeV of 4He corresponding to the MTV interaction versus
the harmonic oscillator parameter or. The lines labelled with an mteger number nm*x

represent the shell-model calculation with 2p-2h excitations up to 2nmajcAw in
The curve labelled E is the present Euler-Lagrange evaluation of this energy.
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—> S7, S8, S9

Several comments regarding these three solu-
tions

• A - \ I I v_> i L i i c i i i L C i i c i LV -> i L d u i i i i y v v i L i i I I I ^ I c a b i i i y

vaiues of iVmax.. and at /vmax = 30 they
have already converged.

• There is a connection between the contin-
I I A I I C IJr^O ZX m ̂  f h n (~ TO l inn I r\ +" K O m t n n . r hu ^ ^ U o l i n e d n u L I i C v ^ x ^ l I I M O f rr L M C m - i C r r u i r "

ing scheme and in both directions. This
means that starting at CI2 solution (g = 0
one arrives to the point \r, the continuous
line (CC2 solution) when q = 1 and con-
versely, starting at the CC2 solution (q = l )
from the continuous line one arrives to the
CI2 solution by slowly decreasing q down
to q = 0.

• There is not a connection path which starts
at the long-dashed CC2 solution. When q
is slowly decreased the solution disappears.
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4.2 TICC2 in coordinate

representation

Coordinate representation of operator

CO

(n...rN |5 (1'2) |O) =
n—l

2nn!

u (2n+l ) ! ! J

Completeness of the Laguerre polynomials:

1/2CO

2"n!
(2n+ 1)!!

The quadratic term:

Primed sum means that neither particle in pair kl in the

second summation coincides with either particle in pair

ij in the first one
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TICC2 ground-state wave function in coordi-
nate representation

(n...rA\ : expS(1>2)

k^ f(rtj)

m<n

convention: repeated indices in the products of primed

sums are excluded

In general: CCn deals only with

independent n-body correlation

operators

Compare with a Jastrow correlation factor

exp E^fo) ] <Kri...rA)
\i<3 )

k<t

Repeated indices imply non trivial technical problems if

functions h contain not commuting operators

56



Properties of the correlation function / ( r )

The Intermediate normalization condition (0|v|/) = l im
plies

= 0

In the case of a bosonic system this condition is always
satisfied because

(</>ooo(ri)^ooo(r2)i/(^*i2)|0ooo(ri)</>ooo(r2)) = 0

HO single-particle wave functions

a \ 3 / 2

I

Change of coordinates {rx,r2}

(^000

2nn\

2

The red factor is identically zero due to the orthogonal-

ity properties of the Laguerre poiynomiais

The physical meaning is clear: the pair cor-
relation function /(r i2) projects the product
^ooo(ri)^ooo(r2) °f occupied functions onto
the unoccupied subspace



Projecting onto TI(lp-lh + 2p-2h) states

In coordinate representation the wave funtion is given
by

Ground-state energy

E = (<t>\H\Mf)

A generic TI ( lp- lh + 2p-2h) excitation may be rep-
resented by an arbitrary function gfcj) with the same
characteristics as / , namely

(0ooo(ri)^ooo(r2)|c/(ri2)|9ooo(ri)0ooo(r2)) = 0

Equation for /

The equation is most succintly presented in a diagram
matic form.

Notation:

Particle O

function g

function / O o

Action of T ®

Action of V O O
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CC2 Equation in diagrammatic form

/ 0 I * I 0 \

1 i ."»" I ."T"_ I f

Li
c>—-o " f

? r
c*^—>6

+E2 *^> + ^3 2C? T + E4 Cl T ?

= Eb { d», + 2Cf T 4- C\ T T )

Statistical factors Cl = (/v-n)(Ar-n-l)...(iV-n-A;-ri)

The quantities £?n are related to unlinked dia-
grams

• o 1 — O 2 0 - 0 "j" —

corresponds to the ground-state energy



To clarify the diagrammatic notation:

= / <J>* g*(rl2)V(r34)f(r13)f(r24) <t> drx . . . drA

General form of the TICC2 equation

fg*(r12)F[f]dr1...drA = 0.

g(r) is not a fully arbitrary function, because of the
required orthogonality of the excited states with respect
t r\ tho rDfnronro ctpto

Replace

where C(rtJ) is a completely arbitrary function

—• EXERCISE 4

Practical way to solve the integro-differential equation:
Expand / using a suitable basis

• Gaussian basis f(r) = ^2pCpexp(-(3pr
2)

(largely employed in atomic and molecular problems)
Use negative and positive values for {0P}

Laguerre polynomial basis —> TICC2 in configuration
representation
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Example

Binding energies (in MeV) for various bosonic nuclei
with the Wigner part of the S3 interaction and for the
different orders of truncation of the equations in powers
of f

Order 1
Order 2
Order 3
Order 4

A - 4
25.42
25.60

25.49

A = 8
225.46
235.12
235.12
235.12
235.03

A = 16
1131.2
1235.7
1235.1
1235.1
1234.9

A = 40 j
7495.3
8457.1
8458.5
8458.7
8456.6

Order 1 corresponds to the TICI2 case, and Order 4
is the full TICC2 result. The last row shows the full
TICC2 configuration-space results

• The coordinate-space numbers are fully converged,
with the use of between 10 and 14 gaussians
By contrast, in HO configuration space up to 30 ampli-
tudes were used (corresponding to single-particle excita-
tion energies up to 60/ia;), not reaching full convergence
in some cases

• Working in coordinate-space results in a much faster
computation of the required expansion coefficients

• The third- and fourth-order terms give an almost
negligible contribution —> one may safely simplify the
integro-differential equation by keeping only up to quadratic
terms in / ( r ) .
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4.3 The nuclei 4He and 16O

in the TICI2 approximation
TICI2 in coordinate space

\

\ ~ ' /
\ /

This ansatz is not exclusive of the bosonic nature of
the particles we have assumed to obtain it
• The bosonic or fermionic character of the particles is
contained in the reference state
• TICI2: the simplest way to consider TI pair correla-
tions is to determine a correlation function

In fermionic systems /i(r^) may be generalized to deal
with discrete degrees of freedom

Suppose a V4 nucleon-nucleon interaction

— 1 (C>(2) — per /c>(3) — pr /C\(4) — per pr

It seems natural to consider an operatorial structure for
the pair correlation operator also of the V4 form
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Practical calculation

{cx- } = unknown coefficients to be determined
{&} = set of pre-determined exponents (include nega-
tive as we!! as positive values)

• Note that this is completely different from the expan-
sion in Laguerre polynomials = TICI2 in configuration
space

• The gaussian form is particularly adequate for the HO
o: the required space integrals are the product of an
exponential of a positive-definite quadratic form with a
polynomial

• The expectation va!ue of the energy:

(p)

°33

(the different components in this decomposition are not
orthogonal)

Optimize with respect to c^ —> a generalized eigen-
value problem

The lowest eigenvalue X gives an upper bound to the
ground state energy (TICI2 is variational!)
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Results for 4He and 16O with V4-interactions

V4-interactions: B l , S3, MS3, MT I/III and MT V

• This choice allows for the best comparison with exist-
ing results in the literature
• Some of these interactions are semi-realistic in the
sense that they fit some of the two-nucleon properties

Two types of calculations, according to the two-body
correlation operator

• state-independent (SI): restricted to the first term in

• fully state-dependent (SD): four correlation functions
are to be determined

• The value of the HO parameter a has been optimized
for the SI case, and this value is kept fixed for the en-
suing SD calculations

64



The Interactions

VBl(r) = [595.5455e-(r'/a7)2 - 72.211

+ [206.0455e-(r/0-7)2

VS3(r) = [500.e"3r2 - 81.675e-105r2

-41.5e- a 8 r 2-5.75e-°-4 r 2 l

-f [-81.675e~105r2 - 10.75e-°6r2 -f 41.5e"0Sr2

H-5.75e~°-4r2]P<T

-h [81.675e"1-05r2 -}- 10.75e-a6r2 - 41.5e-°-8r2

-5.75e-0 4 r 2]P r

+ [-500.e"3r2 -f 81.675e-1-05r2 + 10.75e-°-6r2

= 500.e"3r2

e-3.11r e-1.55r
VMTV(T) — [1458.2687 578.1769 ]

r r
e-3.11r o-1.55r

) = [729.13435 289.-08845- ]
r r

p— 1.55r
+ [28.61285 }Pa

T
p-1.55r

4- [-28.61285 ]PT

r
p-3.11r p-1.55r

4- [-729.13435 h 289.08845 }PaPr

S10
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4He and 16O nuclei
TICI2 ground-state energies (in MeV)
Nu.c. Phys. A609 (1996) 218

Interaction
Bl

S3

MS3

MT I/III

MT V

Nucleus
4He
16Q

4He
16Q

4He
ieo

4He
16O

4He
16Q

a (fm-1)
0.729
0.602

U . ( i /

0.707

0.713
0.596

0.741
0.744

u. / 4i

SI
-37.86

-145.94

-25.41
-141.64

-25.41
-85.56

-29.45
-194.10

-29.45
-966.65

SD
-37.86

-167.30

-28.19
-164.88

-27.99
-105.64

-ou.oi

-207.52

-29.45
-973.67 !

• SD variational space larger than the SI one: it should
produce a lower value for the ground state energy

—• (0 - 4) MeV for 4Her (10 - 20) MeV for 16O

• Interactions B l and MTV contain only Wigner and
Majorana terms: do not couple to the spin-dependent
piece of the correlation operator in 4He

—y No difference in the SD and SI energies for these
interactions in 4He
However, even for those potentials, spin-dependent cor-
relations do play a role for 16O (<— the uncorrelated
state is not fully space symmetric)
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Comparing with other techniques
Interaction: MTV
MTV does not saturate nuclear matter —v it produces
high-density systems. Ideal case to test the important
of three- and more-body correlations

TICI2-SI
TICI2-SD
GFMC [a]

DMC
VMC

FHNC/O

IDEA [f]

4He (MTV) i b O (MTV)
29.45 966.65
29.45 973.67

31.3 ±0 .2 1194 ± 20
31.32 ± 0.02 [b] 1189 ± 1 [c]

1138.5 db 0.2 [c]
987/1152 [dj
1059/1055 [e]

30.7-31.2 1021-1027

4He: TICI2 ~ 9 4 % GFMC, DMC energy
1 6 O: TICI2 ~ 8 0 % GFMC, DMC energy
the effects due to the non-linear terms neglected in
TICI2, and the correlations neglected in TICC2 are com-
paratively more important for heavier systems

[a] J.G. Zabolitzky et al: NP A356 ('81) 114; PR C25
( f82) 1111; NP A442 ('85) 109
[b] R.F. Bishop et al: JP G18 ( f92) L21
[c] S.A Chin, E. Krotscheck: NP A560 ( f93) 151
[d] G. Co', A. Fabrocini, S. Fantoni: NP A568 ('94) 73
[e] E. Krotscheck: NP A465 ('87) 461
[f] R. Brizzi et ai: NP A596 ('96) 199

—> S l l
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Fig. 1. The calculated correlation functions in the case of the MS3 potential. Dashed
lines correspond to purely central scalar SI correlations and solid lines to SD cor-
relations of V4 type. LDL the latter case the labels 1, <r, r and ar correspond to the
terms k = 1,2,3 and 4 in the paranietrisation of eqs. (8) and (9). As discussed in
the text, for helium only two such functions should be used.
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0.0 .

- 0 . 5 .

- 1 . 0

\

• V

a

ar

1 2C

""" '" •"" LJJL-U-ll.
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V6-Interactions

P

Add two more terms containing the tensor operator

O(5)fe) =

We use the following interactions:

GPDT D. Gogny et al: PLB32('70)591
SSC R. de Tourreil, D. Sprung: NPA201('73)193
AV14 R.B. Wiringa et al: PRC29('84)1207
AV18 R.B. Wiringa et al: PRC51('95)38
Reid-V6 J. Carlson: PRC38('88)1879

They contain more terms (spin-orbit, L2, ...), which win
be ignored. Only the 4-central plus the 2-tensor terms
are considered
Exception: Reid-V6, which is a V6 adaptation of Reid
SC (R.V. Reid: AP 50 ('68) 411)

All these interactions are realistic: they include at least
the one pion exchange part of the NN interaction plus
a short-range phenomenological part, adjusted so as to
reproduce experimental phase-shifts
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The introduction of tensor correlations increases dra-
matically the computer time needed in the calculations

V4:
Potential matrix element of a generic diagram

«/ J J ¥ \

A/4

pqr i[...i'N = l P

: statistical weight of the diagram
<j)'s: spatiai part of sp wave functions
Pp;« Pi«: representation of the spin part of the permu-
tation

V6:
The tensor operator contributes both to the traces and
to the spatiai terms
—> The number of traces is much higher
—y More types of spatial integrals

—> S12
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>

>

-200

Fig. 2. A comparison between the V6 potentials used in this paper. The horizontal axis in each pand shows
r (in fin), the vertical axis the potential strength (in MeV). Each panel represents one operatorial cfconodi,
for each of the operators used to expand the cocreladon functions, as indicated in the figure. The sofid fine is
AV14, tbe long-dashed fine is AVI 8. The doited fine is the SSC, and the medium dashed line is tbe Gcgny.
Hie short-long dashed fins is the Rod-V6 potential.
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4He and 16O nuclei
TICI2 ground-state energies (in MeV)
Nuc. Phys. A643 (1998) 243

Interaction
GPDT

SSC

AV14

AV18

Reid-V6

Nucleus
*He
16O

4He
16O

4He
16O

4He
16O

4He

_P

-27.36
-128.68

-24.12
-DJ.DD

-14.77
-14.97

-15.40
-23.76

-5.67

a (fm-1)
0.70
0.64

0.68
0.55

0.59 1
0.40

0.61
u.4o

There is a competition between central and tensor forces:

Most binding is obtained from the off-diagonal tensor in-

teraction (matrix element between the central and the

tensor-correlated channel)

This matrix element competes with a strong repulsion.

in the central channel

The origin of the problem is to be related to
the size of the repulsive core of the potential

Solution: Include more correlations
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4.4 Beyond the TICI2

approximation

4.4.1 TICC[2]
Lessons from TICC2 for bosons

Binding energies (in MeV) for various bosonic nuclei
with the Wigner part of the S3 interaction and for the
different orders of truncation of the equations in powers
of f

Order
Order
Order
Order

1
2
3
4

A --
25
25

= 4
.42
.60

A =
225.
235.
235.
235.

8
46
12
12
12

A= 16
1131.2
1235.7
1235.1
1235.1

A — 40
7495.3
8457.1
8458.5
8458.7

Order 1 corresponds to the TICI2 case, and Order 4 is
the full TICC2 result

The third- and fourth-order terms give an almost negli-
gible contribution —> one may safely simplify the integro-
differential equation by keeping only up to quadratic
terms in / ( r )

TICC[2] Approximation
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A significant difference between the bosonic
and fermionic cases arises

Consider the following diagram

o o

(W is the Wigner part of the interaction)

In the bosonic case the unlinked diagrams fac-
torise because in the reference state aii the
particles are in the lowest HO state

The second factor vanishes. All the diagrams containing

a disconnected / give a null contribution

This is not the case with fermions because the
permutations in the reference state involve dif-
ferent HO states
—y The number of diagrams to consider is
much greater than in the bosonic case
It turns out that the contribution of discon-
nected diagrams is almost negligible, at least
to compute the ground state energies of light
nuclei
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TICI2 and TICC[2] binding energies (in MeV)
No unlinked diagrams are considered in TICC[2j

Bl
TICI2-SI

TICC[2]-SI

TICI2-SD
TICC[2]-SD

MS3
TICI2-SI

TICC[2]-SI

TICI2-SD
TICC[2]-SD

4He

-37.86
-37.92

-37.36
-37.92

-25.41
-25.59

-27.99
-28.21

-149.36

-167.30
-173.76

-85.56
-94.71

-105.64
-123.79

The improvement is quite remarkable, specially for the
MS3 interaction which has a stronger short-range repul-
sion than the B l potential

Calculations for realistic calculations have not yet been
performed
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4.4.2 J-TICI2
The problem with strong-repulsive potentials

screened by correlation

not screened

Recall: CCn deals only with independent n-body corre-
lation operators

Hybrid Method:
TICI2 additive state-dependent correlations
Jastrow multiplicative state-independent correlations

/ x

\k<l P J

(similar to the CBF of Feenberg, Clark, ..., in which
are combined Jastrow correlations and non-orthogona.1

perturbation theory)

For simplicity: g(r) = 1 +

Variational problem: Minimize the ground state energy
with respect to parameters a, a, b and functions
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Results for 4He
TICI2

-E a -E
J-TICI2
a a

Bl
S3

MS3
MT I/III
MT V

37.86
28.19
27.99
30.81
29.45

0.73
0.72
0.71
0.74
0.74

38.28
30.16
29.97
32.70
31.21

0.77
0.78
0.74
0.75
0.75

-0.41
-0.70
-0.70
-0.88
-0.87

1.8
2.1
2.1
.5.0
5.6

Or U I

ssc
AV14
AV18

Reid-V6

24.12
14.77
15.40
5.67

0.70
0.68
0.59
0.61
0.43

27.5.8
26.74
20.37
21.08
22.70

0.72 -0.29 1.9
0.75 -0.66 2.1
0.71 -0.93 2.7
0.74 -0.92 3.2
0.72 -1.05 2.4

For comparison

MTV
AV14

Reid-V6

38.
31.
24.

32 ±
79 ±

28.30 db

0.
0.
0.
0.

/~\ 1
UJL

02
20
12

DMC
DMC

GFMC
GFMC

V4 interactions: Energies very close to DMC ones

V6 interactions: Impressive effects for strongly repulsive

interactions (Reid-V6)

J-TICI2: Division of roles

Jastrow: short-range correlations

TICI2: medium and long-range

correlations

S13
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0.2

0.0

255

-0.2

0.050

0.025

0.00002

0.1

0.0
0.0

(1)

1.0
r(fm)

2.0 3.0

Fig. 3. A comparison between the TICI2 (solid line) and J-TICI2 (dashed line) correlation fractions f*y

multiplied with exp(—a2/-2/^), for 4He obtained from a solution to the generalised eigenvalue problem (7).
We have chosen the V6 part of the AV14 potential as an example, and only pk* the range far r from 0 to 3
fVnT The normalisation of each of the correlation functions is as in the normalised gnxmd-staie
but we presezit separate results for each of the three qperatoriai channels.
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5.1 The Approximation

J-TICI3

Correlated reference state

Jastrow factor

- ^ V ig(r) = exp

with fixed values v — 5.2, b= 2.95 A(4He), 2.85 A(3He)
—> EXERCISE 5

• Reference state

4He: ( )
Boson HO condensate

3He: o(R) = ot(R)0i(R)
Product of HO Slater determinants
referred to t , i spin particles
Backflow correlations are also included

with fixed value A = 5 A3
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Correlated reference state

In practice, expansion on a Gaussian basis

GM(R) = <S { Y, e - ^ e - ^ e " ^ j
\i<j<k J

with {fi} = {p,q,r}

Our choice: five Gaussians with widths

(PP/a2) = (0,-0.05,0.5,1,4) (4He)
= (0,0.5,1,2,4) (3He)

Interest of using /3i = 0

• Three labels p,g,r = 1 —y ^ T J C / 3

Two labels = 1 —• ̂ T / C / 3 = TIC I4!
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Generalized eigenvalue problem
V—-\ v v—^ -

/ V /^l >/̂ 2 ' r*l J/^2 / ^~^ Â 2 — / A l̂ >/̂ 2 ^̂ ^ //-2

= f
/

^ m<n

We choose

K^7= J

Multidimensional integrals calculated by means of the

MC method, using the positive definite function |Oj(R)|2

as the guide of a Metropolis random walk

• No substraction of the CMM is necessary, as
we are using a T I wave function

The number of unkown amplitudes C^ is

(Np + 2-
3 J

In our case, Na = 5 —> 35
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He-He interaction: Aziz HFD-B(HE)

V(r) = €

F{x) = e

— T/ '"rn

(K) t
800 i

600

400

200 t t

4- ~ " -L

12

30 .

15

0

15

Aziz L-J

1
l

8 10
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5.2 Drops of 4He atoms

Ground state results
PR B60 (99f) 6288

E/N (K) ro(A)
N D A A

IVI J-CI3 DMC
3
4
5
6
7
8
9
10
14
20
40

-.0430(10)
-.1398(15)

-.3868(11)
-.5081(12)
-.6289(13)
-.7392(12)
-.8484(19)
-1.215(2)

-1.6336(15)
-2.4563(14)

-.1443(2)
-.2670(3)
-.3950(2)
-.5206(4)
-.6417(4)

• f w / V ^ > - • I S / /

-.8654(7)
-1.2478(12)
-1.688(2)
-2.575(3)

5.4(2)
4.11(11)
3.66(7)
3.42(6)
3.31(5)
3.18(4)
3.11(3)
3.01(3)
2.91(2)

2.727(14)
2.578(8)

5.59
4.13
3.65

3.22

2.83
2.69

0 10 15 20 25 30 35 40
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E / N ( K )

o.o ..

- 0 . 5 ..

- 1 . 0 ..

- 1 . 5 T

2.5 x

- 3 . 0
10

0.50
E/N (K)

- 0 . 5 3 ..

- 0 . 5 6

- 0 . 5 9

- 0 . 6 2

- 0 . 6 5

J-CI2

20 3 0

T /"• T O
>J — ^ 1 ^

40 N

-=- VMC

J-CI3

DMC

0.26 0.28 O. Q nn
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Static structure factor

S(q) = 1 2
1

1.2

1.0

0.8

0.6

0.4

0.2

0.0 L
0.0 0.5 1.0 1.5 2.0 2.5 3.0

0.5 1.0 1.5 2.0 2.5 3.0

J-TICI3 (solid), VMC-tripiets (circles), DMC (diamonds)
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Excited states (angular momentum L)

Generalize the reference state

f T\

Note that (/2 and / 3 depend implicitly on L)

Variational problem: minimize

EL =

with respect to fa and / 3

Random walk guided by
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E (t)-Eo (K)

4.CL

>*• - N.JL — — — .

3.Q

2-5. _ _

2.Q

1 r.a. ___

l.Q

0 5.
I

O.Qi _ _
N=6 8 10 12 14 16 18 20 30 40

l_=2, L=4 excitation energies

Chemical potential \fi(N)\=\E(N) - E(N - 1)|

Discrete excitations:
L=2 for N> 10, - 1.5 K
L=4 for JV>30f ~ 3.1 K



Other calculations: M/exc =

• Use exact M/gs and solve the variational prob-
lem for F (C.hin-Krotscheck DMC)
Define

Mi = i(U/gs|[F,[H,F]]|vi/gs>

Mo = (^gs|F2|^gs) - ((v|/gS|F|\l/ss»
2

Excitation energy hu — Mi/Mo

Upper bound for excitation energy

• Use trial v|/gS(VMC) and minimize thexnen-
troid energy hcu (Krishna-Whaley, Chin-K'roiis'ciheck

VMC)

• Our trial wave function for L

JCI3

one-body excitation operator F(R)

KVV
VMC

DMC

Ours
Mi /Mo

L=0
2.67
2.79
2.80
2.72
2.80

3.57

N=20
L=2 -ft

2.03
2.26
1.75 2.91
1.71
1.58 2.87
1.78

L=0

3.44
3.68
3.60
3.68

3.93

N=40
L=2

1.77
2.04
1.37
1.22
1.45
1.79

3.67

f
3.72 f
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5,3 Drops of 3He atoms

Differences with respect to 4He drops

• m3 <m4 —> Large zero point motion

• Fermions —> Pauli repulsion

Mass and statistics act in the same direction

N=8

Bosons
Fermions

- 4
- 0

J-CI3 results
Aziz HDF-B(HE) interaction

IT14

.78 ±

.78 ±

m 3

U.O f̂ —U.D^ltU.O/

0.05 +2.57 ±0.07

Existence of a minimum number of atoms
below which 3He drops are unbound

Determination of Nmin

NLDF + shell model
HO magic numbers
AT - ~i V mm —

J-CI3
(approximating mixing of subshells)
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A comparison with previous calculations

Binding energies (K) with HFDHE-2 interaction

~/V VMC J-CI3
20 4.12 ±0.14 3.44 ±0.05
40 -1.44 ±0.08 -2.55 ±0.07

VMC: Trial WF includes pair plus triplet Jastrow and

backflow correlations (Pandharipande et aL PRB34 ('86)

4571)

—> 20 < 7Vmin < 40 (If2p shell)

Use cartesian coordinates (L not well defined)

O rr\ \r\^f\r\r\ niimKorc for rnnf irn i rptjrMric in tho 1 /OT> z*r~

tive shell in cartesian coordinates giving rise to wave
functions invariant under 90° rotations, as a function of
the number of atoms of a given az

orbitals
X6

V3

z3

x2y
x2z
y2x

y2*

z2y
xyz

71=10

1
1
1
1
1
1
1

1
1

9
1
1
1
1
1
1
1
1
1
0

7
0
0
0
1
1
1
1
1
1
1

6
0
0
0
1
1
1
1
1
1
0

4
1
1
1
0
0
0
0
0
0
1

3
1
i

1
0
0
0
0
0
0
0

1
0
0
0
0
0
0
0
0
0
1
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Binding energy (in K) determined at the J-CI3 approxi-

mation for several 3Heyv drops as a function of the num-

ber of spin up (j\fy) and spin down (N±) atoms. Results

are given for the Aziz potential HFD-B(HE)

PRL 84 (00') 1144

N
40
39
38
37
36
36
35
34
34

00
 

C
O

 
0
0

00
 

C
O

 
0
0

32
32
31
31o

 o
 o

 o
CO CO CO CO

20

Nt

20
20
19
20
20
19
19
20
17
20
19
17
19
16
20
17
20
19
17
16
10

NX

20
19
19
17
16
17
16
14
17
13
14
16
13
16

14
10
11
13
14
10

s2
0

1/2
Q

3/2
2
1

3/2
3
0

7/2
5/2
1/2

3
0

9/2
5/2

5
4
2
1
0

HFD-B(HE)
-3.90 ±0.07
— 5.11 uz u . iu

-2.29 ±0.11
-1.62 ±0.09
-1.09 ±0.09
-0.86 ±0.10
-0.33 ±0.09

0.09 ±0.06
0.67 ±0.06
0.56 ±0.09
0.66 ± 0.09
1.15±0.10
1.04 ±0.09
1.81 ±0.08
1.42 ±0.07
1.62 ±0.09
1.35 ±0.09
1.73 ±0.07
2.02 ± 0.06
2.09 ± 0.07
3.01 ± 0.05

min

GS with maximum spin
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Fill either l /n2p6 or If142pn subshells
(L well defined)

Binding energy (in K) (PRB 62 (01') 3415)

N
34

35

36

38

Conf.
Pbf3

P b / y

Ptf12

P4f14

L
3
7
8

ii
12

1
JL

3
5
8
9
10

0
2
3
4
6
8
9
1
1
3
5
1

3
2
2
-I

1
0

5/2
5/2
5/2
3/2
3/2
1/2
1/2
2
2
2
2
2
1
1
1
1
1
1
1

E (K)
-0.03 ±0.05
0.17 ±0.08
0.35 ±0.12
r\ A *\ i r\ r\fi
W.^-L Hi w.wQ

0.46 ±0.10
0.55 ± 0.09

-0.52 ±0.09
-0.59 ±0.09
-0.39 ±0.06

-0.23 ±0.08
-0.15 ±0.10
-0.03 ± 0.06
-0.97 ±0.08
-1.04 ±0.10
-1.01 ±0.10
-0.93 ±0.08
-1.00 ±0.10
-0.80 ±0.07
-0.78 ±0.09
-0.69 ±0.09
-2.23 ± 0.09
-2.22 ± 0.09
-2.21 ± 0.05
-2.31 ± 0.07

i V mm —

GS with maximum spin

For a given S, degeneracy with L
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EXERCISE 1
The CCM equations have been written in two different
ways:

> = E(<t>\des\&) I
a n H

with E — {<t>\Hes\®}. Show that both sets of equations
are identical.
Hint: Use the identities

j

(index J includes 0)

EXERCISE 2
Calculate the ground state energy, in succesive CCn ap-
proximations, of the one-dimensional anharmonic oscil-
lator described by the Hamiitonian

H = - (p2 + x2) -f- Ax4

You have to choose a reference state, construct the CCn
ansatz for the ground state wave function, derive the
equations for amplitudes, solve them (you only need a
pocket calculator), and finally calculate the ground state
energy. It is convenient to use the set of equations

<0|C/e-5#e5|O> = 0 7

and express the operator e~sHes in terms of nested
commutators.

You should reproduce (or correct!) the results displayed
in the following table for several values of the coupling
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constant A. The column "exact" corresponds to en-
ergies obtained integrating numerically the Schrbdinger
equation.

A
0.1

1
i n

100
-i Ann

1UUU

exact
0.559
0.804

3.131
6.694

CC2
0.560
u. /yo
1.424
2.834

CC4
0.559
0.805
1.497
3.075
6.513

CC6
0.559
0.805
1.507
3.124
6.651

CCS
0.559
0.804
1.509
3.138
6.695

EXERCISE 3
Show that for an homogeneous system of bosons the
HCSUB(2) equation in coordinate representation may
be written as

-A52(r) = 4eS2(r)

where

is the energy per particle, and p is the particle density.
(Units: h2/m — 1)
Suppose the bosons interact through a hard sphere po-
tential: V(r) = oo if r < a, = 0 otherwise. In the
low-density limit, the energy per particle is given by the
series (see e.g. Fetter-WaIecka)

Calculate the HCSUB(2) energy e in the low-density

imit

95



EXERCISE 4

A generic T I ( lp- lh- f 2p-2h) excitation has been repre-

sented by a function g(ij) with the property (&\g\3>) = 0.

Let us call TICC2[g] the corresponding TICC2 equation.

To deal with a completely arbitrary function, the change

g -> G{0\G\<t>) has been made. Write the new TICC2[G]

equation and compare with the TICC2[g]. Explain the

result (at first sight surprising).

EXERCISE 5
Consider two helium atoms, interacting through a Lenard-
Jones potential

12
T/(r) = 4e \ r / V r / J

with e = 10.22K and a = 2.556A. Obtain the very short-

range behaviour of the relative wave function, thus jus-

tifying the choice of the Jastrow factor in J-TICI3. To

be quantitative, use the values h2/m — 12.1194 K A2

and 16.084 K A2, respectively for 4He and 3He
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