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1.1 Brief history of CCM

Invented in 1958 by Coester, Kimmel

Ground State energy of closed-shell nuclei
Rediscovered in 1966-70 by CiZek, Paldus
Realm of Quantum Chemistry

Revival in Nuclear Physics Bochum group
1974: calculations of GS properties of doubly magic nu-
clei 4He, 1°0O and “°Ca using realistic interactions (HJ,
Reid SSC)

From 1979 on large scale applications in atoms,
molecules, electron gas, spin lattices, guantum
optics, etc,

Standard accurate technique in Quantum Chemistry.
Ground and excited states

From 1990 on new revival in Nuclear Physics
the Manchester - Valencia collaboration
Reformulation of CCM to take proper care of the Center-
of-Mass motion in the description of finite nuclei
Recently, Quantum Liquids [La Plata - Valen-
cia collaboration

Drops of helium atoms



1.2 Basic references

R.F. Bishop and K.H. Kimmel, Phys. Today 40,
52 (1987) |
pedagogical introduction

Proc. Workshop CCM, Cambridge, Mass. 1990
Theor. Chim. Acta 80 (1991)
formalism <+ reviews -+ lots of references

1st. Eur. School Microscopic Quantum Many-
8ody T heories and T heir Applications, Valencia 1997
| ecture Notes in Physics 510 (1998)

R.F. Bishop The Coupled Cluster Method
formalism 4+ general overview

H.G. Kimmel, K.H. Lidhrmann, and J.G. Zabolitzky,
Phys. Rep. 36C, 1 (1978)
A classic: formalism -+ finite nuclei



2.1 The EXponentiaI Form
of the CCM Wave Function

e First approach: Each nucleon moves independently in
the mean field created by the other nucleons

Reference state: |®) = af...a;|0)
Labels v — occupied states in the Fermi sea

p — unoccupied states

o — both occupied and unoccupied states

unocounied states

= eF

- occupied states

® 000000

/’

J

But all of this ignores interactions between nu-
cleons



e T wo particles may interact independently from all oth-
ers and iift out of Fermi sea.

The process is described by an operator
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e T hree particles may interact independently from all
others lifting out of Fermi sea.

The process is described by an operator

_ 1 '
S3 = S (p1p2p3|Salvivavayaatatata,,au,a.,

31)2 awv,1),V3,01,02,03

P17 P27 3

e m pairs and p triplets may be excited independently
1 1
;;,55"2;75%"’)

The 'operators S> and S3 commute, as they are describ-

ing independent processes

Sum of all terms involving independent axcitations of
pairs and tripiets (including none)




e n cluster excitation described by an operator
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e Finally, it may also happen that in the interaction of
any subset of particles, only one of them is lift above
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CCM ansatz
(W) = e|d)
S=y4_,8,
1
— 2
(n!)2 V]..-Un,p1---Pn

{p1---Pn|Snlv1...vn)

a,;){; . ..a;‘;ayn...ayl

Sn-:

e The exponentiated operatorial form is convenient in
extended systems (Goidstone thaoram)

e Thisis a natural decomposition of the wave function in
clusters of excitations, where each independent excita-
tion has been considered with its appropriate muitipiicity

el et the reference state |®) be a Slater determinant
Each term in each cluster S, produces a new Slater
determinant

The action of € on |®) is to generate in a specific way
a complete set of many-particie states formed by Slater
determinants

Everything is exact up to now but not very practical for
the moment



Formal writting of the wave function in coor-
dinate space

e Singie-particle wave functions

(z|v)

e n-ph amplitudes

(1,22, ..., Tn|Splvi, v2, ...y vp)

= > (z1lpr)(@nlpn)(p1, ooy pnl Snlva, oy )
PrseeesPr

These amplitudes are antisymmetric both in particie and
state labels z;, y;

(ZL‘]_, 7$Alw>
= A, [{z1|11)...(zalv4)]
+Svz Ay [(z1|S1{v1){z2|v2)...(T4|VA4)]
+Sue Ay [{z122|S2|v1v2) (23lv3).. (T 4lva)]
+Suz A [{x12223|S3|v1v2u3) (Talva).. (T alva)]
+..

+Svz A [{x122|S2|viv2) (x3xal S2|vava) (zs|vs)...(xalva)] +

The;symboi A means sum over all permutations of the
single-particle state labels with the corresponding sign

The symbol & means sum over all permutations of pairs
of particle and single-particle state labels |

This result leads to a unique definition of cor-
relations

10



2.2 The Configuration
Interaction Method (CIM)

Alternative way to obtain the np-nh content of the wave
function: project onto np-nh state

+ o+
agy..-a, ay,...ay,|P)

The true wave function:

1
Fn = Z <,01~-pniFniV1---Vn>A a;:...aza,,n..,a,,l

(nt)?

ViyeoiWnyPry---Pn
— probability amplitude for the excitation of n nucleons
from the occupied states (v,,...,v,) to the unoccupied
states (pi,...,pn) in the reference state.

This is a generalized shell-model. Amplitudes and eigen-
values are determined by diagonalizing the hamiitontan
matrix.

CCM=CIM if no approximations are made

But there are conceptual differences ...

11



Linked vs unlinked

Relations F,, +—— Sp

Fi =35

Fr = 5 + %—S%

F3 =83+ 5251 + 157

Fs =S4+ 8351 + 252 + 35252 + £5%

S,, are linked by construction

F, contains uniinked pieces. They cancel out in the
exact theory, but it is not true when truncations are

made

n-particle subsystem amplitudes
(1..zp|Walvr..op)a = (<D|a+...a+a(a:1\ a(zp)W)

141

— amplitude for 1...n particles moving freely {positicns
z1...T) and the remaining N —n being in (vp41...0n)

(z1|W1ilv1) = (z1jr1) + {(z1{S1iv1)
= \3»'1!1/1) + {x1]| F1]v1)
(mleIWQ!UlllQ)A = 11w, 1y \/$2|\U 'I/Q }“—3-/ 122182 o) 4
= ($1$2!V1V2)A+512{(1:1!1/1)(3! Fylvo)la

+(z122| Fa|viv2) 4

(S2) is that part of (W3) that cannot be described by
(W1). A similar interpretation does not exist for ampli-
tudes (F3?)

(T1z273|Wsjnirovs)a = {(z1|Wilvi)(z2|WVilva)(z3|Wilv3)ta
+S123{{z122|S2|v1v2) (z3|W1|v3) } A
+{z12223|S3|v1v2v3) 4

(S,) is that part of (W,) which cannot be described in

terms of one-, two, ... (n — 1)-body amplitudes. It

describes correlations occuring within an n-body cluster

12



Size-extensivity

Separate system with N particles into two subsystems
A, B with Ny, Np particles. Separation distance ru4p5.

rag + 00 H—HA+HB [HA HBl =0
Ey— Ef +EF
Wy = W) @ |wh)
A system is said to be size-extensive when it obeys the
above separability properties. In such a case the energy

has the (correct) linear dependence with the number of
constituents

A common truncation: SUB(n)
S“"‘)S]_’!"SQ’!"..._!"ST; (Sm:07m>n>
F—m+R+. . +F, (Fr=0m>n)

CIM-SUB(n)
<1+1D1+F2+...1Dn>=®> # (TAB —')OQ)
a0 of v (A) —~( AN \
(1+ rl‘A) + Y 4 LR el

@(1 + F® + F{ 4+ FP)o®)

does not have separability property: it would require
excitations of up 2n excitations, which go beyond the
assumed approximation

CCM-SUB(n)
exp(51 + So + Sn)|<D> = (TAB — OO)
exp(SY 4+ 58 4 gt 4 g(B) 4 4 54 1 5(B)y i)
= exp(S{* + S5 4 .5 | (A)y
R@exp(SP) 4 5B 4 | 5(B)y | (B))

guarantees the separability relation, no matter how the
cluster correlation operator S is truncated

13



2.3 The Coupled Cluster

equations

Determine amplitudes (Sp)
and ground state energy

Schrodinger equation »
HiWV) = E|V) — He’|[®) = Ee’|d)
Use (®|W) = (dled|d) =1

(P|HeS|d) = E(P|ed|P) = F

Assume two-body interaction:

2._/_4

-
J— S o ve o ! i \ URYALY: A
E-——-— \l/li W]_lV)T <1/V|/W2|1/V/A

]

Only one- and two-body amplitudes (W1, W, or S1, S2)
are needed to determine the ground state energy
Expanded expressicn:

Tivie I\

% [\Walvr')a

E =) (vTla){aiiv) + Viaa'y (o
v

Recall:
(z1|W1ilv1) = (zilrv1) + (z1]S1]ea)
A{z1z2|Walrive)a = {{z1]Wilv1){z2|Wil2) }a
+{z122|S2|v12) 4

Premultiply with (®| = Project onto Oph state

Idea: Convert the Schrodinger equation into
an equivalent set of coupled equations for am-
plitudes (Sp) by projecting onto Oph, 1ph, ...
nph states

14



Formal writting of cluster operator

S = ZI#O S[CI_*_ ) C'1+ = a;:...a;ta,,n...aul
np-nh projection — (®|Cy
The Schrodinger equation transforms into
(®|CrHES|®) = B(®|CreS|®) , T#0
with E = (®|He%|®) if I =0
Warning: E is a macroscopic quantity. Problems in
extended systems?

No: There are cancelations between unlinked terms in

both sides of these equations

Alternative CC equations

Transform the Schrddinger equation into
e He®|®) = E|o)
Oph projection:
E = (dle”*He®|®) = (P He|®)
(®|Cre~HeS|®)=0 , I#0

No macroscopic quantity appe_ars to determine Sy

— EXERCISE 1

15



Use the nested commutator expansion

1
e—SHes — H+[H,S]+—2;rH SJ,S '*",2i [ 75175}15]
1 1 N
+4;[ il(H,S],5],5],5] + ...

An infinite series for a generai operator
S is formed by creation operators C,+ such that

[+ ~+1 —

Lt~ aVJJ—V

The only non-vanishing terms in the series comes from
the contractions between the Hamiltonian and S
The operator e SHe® is a fully linked operator

— the series is finite

For an n-body hamiitonian the series wili exactiy termi-
nate V\J!fh the term |r}\/r\lvgnn 2n cluster nnorafnrs

Two-body hamiltonian:

(ICIH|®) + Y SH(®|C;[H,CFl®)
J

! | 1 ot
TE{ ZSJ3K<®|CI[{H7 Cy1, Crll®)

Z S;SkSL(®|CI[H, CH1, Cl, CFl|®)
" JKL
=S SiSkSLSu(@ICIIH, CF1, G, CF ), Cilio)

4 JKLM
=0

A coupled set of non-linear equations in the amplitudes
Sy, up to the fourth order.

16



2.4 The Reference state

In order to describe many-body correlations we aiways
need a reference state with respect to which the corre-
lations are defihed. In some cases the choice of [®) may
be determined by simple physical ideas, but it is impor-

tant to realize that this choice may be not unique

System of bosons
‘Example: liquid 4He

Obvious choice: the Bose condensate, in which all N
particles condense into the lowest-energy single-particie
state

Normalized reference state:

©) = —=(t¢)" 10)

Bosonic commutation relations:

[ba, bg) = 0 = [bF,b5] , [bay b5 ] = bap

s-p states in coordinate representation: ¢.(r)
occupied states a =+ v = 0, unoccupied states a — p
Finite system: {a} +— HO

Homogeneous system: plane waves
Thermodynamical limit:

N — 00, 2 = o0, p = N/ finite

17



System of fermions
Examples: liquid 3He, finite nuclei, atoms, molecules,

electron plasma

Obvious choice: an Slater determinant of single-particle
states:

N
@) = []a}]0)
1=1

formed from some complete s-p basis {|a;) = aZ|0)}
Fermionic anticommutation relations

{aa,ap} =0 = {ajaa;} , {aa, a';jl-} = 0a,3

Finite systems

Atoms and molecuies: {a} +— HF

Finite nuclei: {a} «— HF (which may or not be consis-
tent with the NN interaction), or {a} «+— HO
Homogeneous system: plane waves

Thermodynamical limit:

N — 00, §2 = 00, p = N/S2 finite

The choice of a Slater determinant for the reference
state of a fermion system may seem obvious. However,
it is worth noting that, depending on the type of physics
one is interested in, other choices may be more conve-

nient

18



e Open-shell systems
A muilti-reference approacn seems to be more reason-
able. It results in a mixture of CCM and CIM

Atoms and molecules

e BCS state |
The reference state is also an Stlater determinant but
formed from guasiparticle states. 7T hese guasiparticle

states are linear combinations of the previous particle
and hole states
Not considered here
e Quantum Spin Lattices
Spin-Haii particles on a bipartite lattice: Néel state

Not considered here

e Systems with a very strong repulsion at short
distances

It may be convenient to consider a correlated reference
state. To be useful, these correiations have to be de-
termined separately. It results in a mixture of Jastrow

and CC correlations
Finite nuclei and drops of liquid He

— EXERCISE 2

19



2.5 The Bra state

Up to this point we have only considered the ket state
|W). Ground state energy extracted from the Schr&dinger
equation projecting upon C| np-nh excitation

Calculate E as an expectation value:

_(WIH|Y) _ (PleS HeS|o)

(Ww)y — (dleSTeS|o)
The resulting expression is generally of infinite order in

the correlation operators S and S*, no matter how S is
truncated

Cancellation of unlinked terms between the numerator
and the denominator may be proven, but it is by no

means transparent

Normal CCM and Extended CCM
parametrise independently the bra and the ket

states
but the hermitian-adjoint relationship to one

another is broken

20



Parametrisation of the bra ground state
S (et (v

W=y = W
(U] = (0|Se~5
S=1+) 8¢

1#0
Preserves the explicit normalisation

(W) = (D|W) = (d[d) = 1

The full set of independent variables {S;,S;} provides a

complete parametrisation of the ground state

Expectation value of an arbitrary operator

It is fully linked even though the operator S itself con-

tains uniinked pieces

NCCM equations
Schrodinger equation

Project onto states Cj|®)
(@S (eSHeS —E)Cff|®) =0 ,1#0
Ground state energy (I = 0)

~ W W dlesSt S
E = (®|Se SHe®|d) = WiHW) _ (Ple ffe |®)
(VW) — (@leS*eS|o)

21



e Solve
(®|Cre " He’|d) =0 ,1#0

to obtain {S]}

e Use {S;} as an input and solve the linear set
of equations

(®|Se™5[H,Cfle’|®) =0 ,I1#0

to obtain {57}

3

The NCCM bra parametrisation is derivable from the
Hellmann-Feynman theorem — The expectation value
of an arbitrary operator A may be calculated diagram-
matically from the same set diagrams as for the energy:

replace V-lines by A-lines

ECCM is a method to use fully linked basic
amplitudes (NCCM {&;} contains unlinked terms)

22



3.1 The SsUB(n) or CCn
approximation

1p-1h projection
(CXIIT\UI!L’1> + Z(CXII/IT(2>52!I/11/>,A + Z<all/iv\1/2il/ll/>‘4

+-l— Z(alw/'!V(Q'&)xg,(l; 23 vV 4 = Z hoy, (o

2p-2h projection

(p1o2)[T(1) + T(2)]S2|viva)a + E {(p1p2v|T(3)S3lv1vav) 4

v

] \ ) 1 ¢ ¥ \ 1Y 7y \
+(p1p2|V W2lr12) a4 + 52(9102152WV')A<W'1 V\Walvivo)a
vy’

+ D (o102l [V {(13)x3(2:13) + V(23)x3(1: 23)}imrav) 4
l ’ I N - . A
—{—5 Zﬁplpgvu [V (34)xa(12;38)|jv1v2vv') 4
vv

=Y (hulp1p21S2lvv2) a + huss(prp2|S2lviv)a)
v

x3(1;23) = S2(13)W1(2) + S2(12)W1(3) + S3(123)
xa4(12;34) = 852(13)S2(24) + S2(14)5,(23)
+ S3(123)W1(4) + S3(124)W1(3) + S4(1234)
hulu;, -

(| TW1|r) + Z(Vlu’lvwzluzu')A
v

e Insert unit operators to derive explicit expressions

23



np-nh projection:

the ampiitudes S, coupied to S,4+1 and S,4+2, as weii as
to all S, with m <n

The Schrodinger equation — a set of non-linear Cou-
pled equations for the amplitudes

For the moment not too much progress has beenr ob-

tained for practical purposes

Idea:
For relatively low density systems conly comparatively
rarely do more than a few particies come together to

lift themselves simultaneously out of the Fermi sea

SUB(n) approximation hierarchy:
all clusters with more than n particles are ne-
glected

Throwing away Sm,m > n still leaves us with a
rich wave function

exp(S1 + So + ... + Sn)|®)

High-excitations, few-body effects, collective
effects, ... are taken into account

24



SUB(1) approximation: S, =0,n > 1
Equation for S;

(a|TW1lvr) + ) (a|VWiWinv)a = > hus,(aa|gnlv)

This is the Hartree Fock equation with a self-consistent
potential

<015J\V1!I/1> = <a1U!‘/W1W1!.’/II/>A

A surprise?
SUB(1) wave function:

W) = e%i[o)

S1 =) {plSilv)alay
| Py
No: the Thouless theorem ensures that |W) is nothing

more than a general Siater de erm:ram non-orthogonal
to the reference state |®)
Usual choice: §1 =0

e Use HF wave function as the reference state (with .
So = 0,53 =0) .

e Solve the generalized HF equation (including couplings
with 52' and S3

e Use a reasonable reference state, e.g. Harmonic Os-
cillator single-particle states. Converged results should
be independent of the reference state — our choice for

finite nuclei and helium drops

25



3.2 Some examples from

Quantum Chemistry

CHEMICAL ACCURACY:
Ethylene molecule

e Total energy: -78.35451 hartrees

e Hartree-Fock energy: -78.04520 hartrees

e Correlation energy: 309.31 mh

e Reaction Hy+4-CoHy — CoHyg

Experimental energy: 66.99 & 0.40 mh

e Equilibrium bond length: R. = 1.3394+0.001A
e Transition from planar to twisted configura-
tion at Rc ~ 2A

e 1% change in R, — 2 mh change in energy

Typicallly a HF calculation provides ~ 99% of
the energy, and very sophisticated methods are
required to determine the correlation energy
— high-precision is needed (< 1 mh) |

26



VOCABULARY

Quantum Chemistry Physics
Operators 1,71y — Operators 5,5,
CCS (singles) — SUB(1), CC1
CCSD (doubiles) — SUB(2), CC2
CCSDT (triples) — SUB(3), CC3
CCSD(T) — approximate S3
CCsSD(T,Q) — approximate Sz, 5,
SR — single reference state
MR —  multi reference state
FCI — full CI (converged CI)
Examples:

s Potential energy curves HF molecule (Paldus, RPMBT11)

e Vibrational leveis N> molecule (Paldus, RPMBT11)

e Spectroscopic parameters Nop molecule (Paldus, RPMB7T11)
e Relativistic CCM: Excited states Sct atom (Kaldor,

RPMBTL11)
s Relativistic CCM:
RPMBT11)

Excited states Xe atom (Kaldor,

RPMBT11l: 11th Conf. Recent Progress in Many-Body
Theories, Manchester, July 2001

27
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-100.00

-100.05

E.(a.u.)

-100.10

-100.15

. FCl

——t—-— CCSD
— —v— - CCSD(T)
4R-RMR CCSD

- —0— - CCSD-[2R]
........... T — CCSD-{4R]

Figure 1. Potential energy curves for the HF molecule obtained with the FCI (dash-

‘ dot curve), CCSD (dash-dot-dot curve), CCSD(T) (long dash curve), 4R-RMR CCSD
(solid curve), CCSD-[2R] (dashed curve), and CCSD-4R] (dotted curve) methods and
~a DZ basis set.
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PECs with both the SR CCSD and 4R RMR CCSD methods

[s2]

-3 —325 .
\—§ ——— ,l
5 e L ——
A ll— 2
4 - B—
o~ - T
v ! —
£ - —15
s _} Il
- 3 = ———
'o " T —
- a L e——
» L —10
1 5 = e —
i L ——
i —_—5
1 jove ————
of e
!L‘L!ifltLJ_LlLllil!lillllLtllLLLJl'?LLLL‘
0.9 1 1.1 12 13 1.4 15 1.6

R (A)

FIG. 1. The experimentaily determmed RKR PEC and the first 26 vibra-
tional levels (Ref. 30) (solid curve and lines) and the corresponding ab initio
data obtained with the SR CCSD (dotted curve and lines) and 8R RMR
CCSD (dashed curve and lines) methods and cc-pVTZ basis set. The energy
zero 1s chosen to comncide with the minimum of the PEC i each case.
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A comparison of theoretical and experimentai
spectroscopic parameters for the No molecule

SR 4R RMR
Expt. CCSD CCSD

Re(A) 1.0977 1.0962  1.1012
We 2358.54 2425.60 2365.2

—WeTe -14.3058 -12.9242 -14.0058
weye /1073 -5.07 5.92 -7.62
weze /1074  -1.10 C.57 -0.53
Be 1.9982 20040  1.9861
—ae /1072 -1.7313 -1.5969 -1.6880
Ye /10—5 -2.85  -0.34 -2.43
be /1077 0.199 -4.241
—De /107 574 -5.46 -5.56

Be /1078 -1.02 -0.03 -1.81

30



2]

Pilot application: IP, EEs of Sc™ (eV, errors in meV):
FSCC: only 4s, 3d can be included in P.
IH: P,,: 4s,3d,4p; P: 5s,6s,5p,0p,4d, 5d,4f added.

State Expt. IH err FS err

P 3d4s °D; 12.800 29 93
EE "D, 0.009 1 1!
3D 0.022 3

D, 0315 —16 29

3d° °F; 0596 17 —121
3F 0.606 18 —120

3F, 0618 22 —116

D, 1357 34 —66

45% 1S, 1.455 —56 —82
3d2 P, 1497 27 —98
3P| 1.500 28 —97

3P, 1.507 29  —96

Gy 1.768 14 —113

3d4p 1D, 3.234 3 NC

| 3 3.403 10 NC
3Fy 3.422 12 NC

3FY 3.452 14  NC

many more good NC
Average error, first 13 energies 18 30

Accuracy quadrupled.
Many more states accessible.
Average error of first 20 states is 0.020 eV.
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Excitation energies of Xe (cm™!).

Configuration J Expt. Calculated |
5p°(*P32)6s 2 67068 67466
1 68046 68484
| 5p°(*Pj9)6s 0 76197 76391
| 1 77186 77457
5p°(*Py0)6p 1 77270 77735
2 78120 78713
3 78404 78983
1 78957 79585
2 79213 79913
0 80119 80588
5p°(%Py)6p 1 88380 88985
2 89163 89810
1 89279 89953
0 89861 90395
5p°(*P32)5d 0 79772 80240
1 79987 80441
4 80197 80388
3 80971 81275
2 80323 80705
1 83890 84495
2 81926 82347
3 82431 83008

Average error 0.060 eV or 0.6%
MVOs improve results by (.03-0.05 eV.
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3.3 Diagrammatic
representation of CC2

equations

2p-2h projection
S]_ p— O, Sn>2 == O

— A{p1p2|[T(1) + T(2)]S2|v1v2) 4
i L(hVVl \pu»2152!1/1/2\ 4 —L h’l/l/'z \ppoISQ!Vll/)A)

v
4

Fy
= (pr1p2|VVWajriv2)a + 5 > {p1p2] Salvr!) alvv' |V Waliiva)

vy

+2 (p1p2vlV(13)[82(12) + S2(23)}lv1v2v) 4
v

1 7 AY
+5 > (p1pavV'|V(34)[S2(13)52(24)

vv'

+ 52(14)55(23)]|vavove/) 4

o hyw, = (N|TW1ilv2) + > (1 |[VWalvar') 4

e Integers in parentheses after a particular operator re-
fer that operator to those quantum labels in the associ-
ated bra or ket in the corresponding numerical positions
(counting from the left)

e Insert unit operators to derive explicit expressions
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3.4 Application to the

Coulomb plasma

" Jellium’ : @ model for electrons in metals

Ionic lattice — uniform positive charge

Two-body interaction:

2 = normalization volume

One-component Coulomb plasma
V fermions {or bosons) of mass m, charge e, interacting

via V{(q)
Thermodynamical limit: p = N/Q2, N — oo, 2 =5 o0

Dimensionless coupling constant: rs = rg/ao
ro = average interparticle gistance
ag = h?/me? Bohr radius
p= (4nrdad/3)"t = k3 /3n?
Energy per particie in Rydberg units:
2
€
E/N = e—
2a0

€ = €Q + €c
eo = Hartree-Fock energy
ec = correlation energy

35



e Weak limit:

rs — O (ptasma limit)
e Intermediate coupling:

1 < rs <5 (metallic region)
e Strong limit:

rs — oo {Wigner crysta

)
J

—e. (in milliRydberg) for the unpolarized electron gas

s 1 p) 3 2 5 10 20
RPA 158 124 106  93.6 849 61.3 428
CC2 123 917 75.1 64.4 56.8
CC{4] 122 90.4 73.8 63.4 56.0 37.0 23.6

GFMC 121 90.2 (73.8) (63.6) 56.3 37.22 23.00

R.F. Bishop and K.H. Lihrmann: PRB 17('78)3757
K. Emrich and J.G. Zabolitzky: PRB 30 ('84) 2049
GFMC: D.M. Ceperiey and B.J. Alder: PRL 45 ('80)
566; ( S.H. Vosko et al: Can.J.Phys. 50 ("80) 1200 )
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3.5 The HCSUB(n)

approximation

Hard Core potential:

V(r) =00 ,7 <r¢

SUB(1): Equation for Sy

(e TWilv) + Z(aw!V\UlWl}ulu)A =N R, le;lWily)

N
<
5
+

<«
L<U1U,!V\U1\U1!U2!/l>

174
Z(yy'!‘/wl\vllyy'),q

In the case the potential contains a hard core the de-
scription of the wave function in terms of solely single

particle wave functions is not longer possible

Exact energy:

A 1
E =) ([TWilv) + > > (W [VWalu)y
. v v,V

One has to include at least
two-body correlations
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1p-1h projection
(a|TW1lvi) + D (a1v|T(2)S2linv) 4

—{-Z {a1v|VWa i) 4
v
1 ' /
+—2- Z(CHVV WV {23)x3{(1;23)|vive') 4
N
- Zhvul<aliwl;‘/>
1 24

{a;v|VWalviv) 4 finite if
(zrz2|W2lriv)a =0 ,|z1 — 22| < 7
Since

(Trz2|Walivz)a = {{z1|Warlv1){(z2|Wajr2)}a
+{z122]S2jv112) 4

this means that S> inside the hard core is determined
completey by the single particle wave functions

Consider the three-body amplitude
(aluV'!V(23)x3(l; 23)|1/11/1/')A
x3(1;23) = S2(13)W1(2) + S2(12)W1(3) + S3(123)

Inside the hard core, S3 is completely determined by 5S>
and v,

SUB(2) approximation is meaningless in case
of a HC potential One has to neglect x5 altogether
if one wants to calculate wave function with HC inter-
actions including two-body and excluding higher corre-
lations |
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SUB(2): Equation for S, (Assume S; = 0)
(p102|[T (1) + T(2)]S2jv1v2) 4

1
oV Wolnz)a + 5 > (p1p2lSalv) a(wr/ |V Walviin) 4

<+ Z<p1p2V|[V(13)X3(2? 13) + V(23)x3(1; 23)]‘V1V2V>.4>

+ V{(23)[S2(12) + S2(13)]jjr1vav)a

(-P-"“ > {prpov'|V (34)xa(12; 34)”/1’/2’/’/%4)

p—1

1
Z(plpé././”/(34)[52<13)SQ(24)

N |

+ 52(14)52(23)]j|vivave'ya
= L(huul (p1p2]S2lvv2) 4 + huv,(p1p2]S2l11v) 4)

HCSUB(2): Equation for S5
(S1=0,x3=0,x4a =0, Sp>2=0)

(p1p2|[T(1) + T(2)]1S2|v1v2)a
1 / /
Hpro2lVWalnia)a + 5 ) (1ol Salvv') a@wr/ |V Walviva) a
vy’

- Z(hvm(PlPQiSQHVV?)A + hVV2<p1p2|SQIU1V>A)

— EXERCISE 3
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4. TICC2: Finite Nuclei

Previous CC calculations in finite nuclei:

e Kiimmel, Lihrmann, Zabolitzy (PRep 36 ('76) 1)
4He, 160, 40Ca, CC(4), realistic interactions
— S6
e Heisenber, Niinaila (PR C59 ('89) 1440)

P

160, CC(3), configuration space up to 50 hw

-E/A {(MeV) ro {(fm)

AV14 6.1 2.86
AV18 5.9 2.81
E=XP. 8.0 2.73x0.03

The Center-of-mass motion

—— Translational Invariance
e Approximation: T — T — Tcp (only exact
for HO)
o Use a T1I reference state from the very be-
gining — TICCn

40



kOmu¢{,L0Ler£;.za(°k+rk
/71—]/, ﬂL/\.JfC (

) 4

1

1,9 rc [fm]

HJ

GBHF

FBHF (4)

“He

SSC-8

FBHF (3)

GBHF

HJ

" FBHF (4)

Ssc-B
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4.1 TICC2 in configuration
representation

N Boson system
Determine 3 wave function of the CCM form
[W) = e|®)
completely symmetric and translationally invariant

Possibilities for the reference state:

e Use a TI wave function (for instance, choose Jacobi
coordinates or hyperspherical coordinates)

e Use the Harmonic Oscillator GS wave function

HO single-particle wave functions:

.
'

jnlm) = a, |0)
N-boson wave function:
1 v + \ vV
|P) = i \%000) 10)

Use coordinate representation:
\

/ o 3N/2 02 Y‘ , \
i, ..., In|P) = | — ex - T
< 1 N! ) K\/"'_T) P QATL_J J)

i<j
2
exp (— N; RQ)

HO parameter: a = (mw/k)/?

Although the wave function is not T1, this factorization
allows us to eliminate the CMM unambigously

A similar factorization also holds for a fermionic system,
where the reference state is a Slater determinant build
up from HO single particle wave functions
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The correlation operator at the SUB(2) level
S=251+52

S1 and S, are independent 1p-1h and 2p-2h operators
Translational Invariance couples them

Exampile:
(I‘i — I’j)2 = l‘i2 + !‘32 — 2(1‘1 . I‘j)
TI operator 1p — 1h operator 2D — 2h operator

Neither the one-body operator r2 nor the two-body on-

erator r; - r; are separateiy TI

TICC2 S+ S, — 5(1,2)
Transiational Invariance may be imposed by:

e Recoupling the product of sp HO states into sums of
comparable products of HO states for the relative and
center-of-mass coordinates of the pair

e Imposing that the CMM of the destroyed pair in the
occupied subspace is the same as that of the created
pair of particles in the unoccupied subspace

Since we are dealing with HO wave functions this is
accomb!ished by using the Brody-Moshinsky brackets
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The Cluster Operator

S = 3" S5(n)
' n=1

3" (n0,00,0|n1, nal, 0)

1,702,(

~ (0,0)
+ o o+ 2
,:a’nll X anzzJ apoo

S, is the amplitude to be determined

(nl, NL, A|nil1,n2l1, A) is @ Brody-Moshinsky coefficient
sp states ni,l;, no,lp coupled to angular momentum ).
BM coefficient gives its contents in terms of relative
state ni{ and CM state NL coupled to A

a3y, destroys two particles in occupied states

I 4 1) ) _ i
l:a'nll X a ] creates two particles in occupied states,

nzl

coupling their anguiar momentum to (A, u)

¢ The term with both (ny,{) = (0,0) and (n2,i) = {0, 0)
is excluded, as it simply reproduces the uncorrelated
reference state

¢ The terms with either {n1,l) = (0,0),n2 # 0 and n1 #
0, (n2,1) = (0,0) must be included. These terms give
precisely the required 1p-1h excitations in the admixture

Note the simplification implied by TI: the amplitudes to
be determined are the c-numbers S(n), which depends
on a single parameter n, which counts the number ©

cillator quanta globally excited (2nhiw)
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The use of a TI $(1,2) does not imply that
1,2) |

eS( ) iIs also TI1

Simplified notation:

(

S\l 2)

— S
sum over repeated i
0=(0,0,0)

8(lp,0)8(my, 0) 2 (n,0,00,0In,0,00,0)S(n,)
C(l,,1,,0; my, my, 0)
<np + Mg + ZPO7 OO: Olnplp7 nqlp7 O>S(pr + g + ZD\)

s(p)

s(p, q)

Consider
SU280D = [s(p1)afad + s(p1,q1)afa]]
[s(p2)aag + s(p2,q2)ata}]ad
+ [s(p1)afad + s(p1,q1)a) qI]QS(Pz)a;;ag
The red term is TI. The blue term is not T1.

The clue: the term in red is precisely the ordered form
- §(1,2) g(1,2) -

The same device applies to all the powers of S(1.2)

TICC2 Ansatz for the wave
function

. 51,2,
W) = :e” | )
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The TICC2 Equations

H:e5 |0y =FE 5 |o)

Gp-0h projection:

(1,2)
E=(®|H: 57 o)
Notation:
k(m, P) - <nma lm’ mle|nP7 lpv mp>
. — —_— . .
V\na‘“7f’7q) — <nmalmammrnn7lnamnlL/{nP7 lpv mpvnQalmmq}

npi = N(N-1L).(N—-71+41)
Use REDUCE to obtain

E= k(0,0)*npl + v(0,0,0,0)*np2
+ np2*( k{(0,p)*s(p) + 2x(a-1)*v(0,0,p,0)*s(p) )
+ np2*( 2*v(0,0,p,q)*s(p,q) )
+ np4*( v(0,0,p,q)*s(pi*s(q) )

Recall:

D Z(ViTWﬂl/) + %Z(UU’IV\UQIUUI)A

v 1274

s(12) — s(p)a;'ag'ag + s(p, q)a,;'a,;'ag

with s(p) = S(n,) and s(p,q) - S(np + nq + 1)
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To obtain the TICC2 equation for the amplitudes S{(n)
we have to project onto the appropriate admixture of
1p-1h and 2p-2h, characterized by the quantum number

N; (excitation energy 2N hw)

The T1 excited state:

(®|[c(p)apao(ag)? + c(p, @)apaq(ad)?]

c(p) = 6(lp,0)6{(myp,0)2(n,0, 00, Gjn,0, 00, 0)
C(Pa qg) = C(Zp: lg, 0 mp, My, 0){np + ng + {,0, 80, Oinplpanqlp;

The resuiting equation:

(®][c(p)apao(ad)? + c(p, Q)apas(ad )] H : 7 : |)
= E(®|[c(p)apac(ad)? + c(p, @)apaq(ad)?] : €57 : |®)
Simpiified notation:

Nmax
Y. F(Neyin,iz, is, ia)S(i2)S(12)S(i3)S(ia) = O

il ,iz ,i3 ,i4=0

with the convention S(0) = 1
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Example: Contribution of the potential energy
(P [C(m)(ag‘)%oam + c(m,n)(a{)")zaman} V:ed |o)

to the equation

Nmax
Z F(Ny,i1,12,13,14)S(51)S(12)S(i3)S(i4) = O

7:1 7i2 7i3 1i4:0

F(%_x,0,0,0,0) =
np2*(  2*(n-1)*xc(m)*v(m,0,0,0)
+2*xc(m,n)*v(m,n,0,0))

F(N_x,i_1,0,0,0) =

np2*( (n-1)**2x(n-2)*c(m)*v(0,0,0,0) *s(m)
+2x{n-2)*{n-3)*c{m,n)*v{0,0,0,0)*s{m,n)
+4*x(n-1)*(n-2)*c(m,n)*v(m,0,0,0) *s(n)
+4*(n-1)*(n-2) *c(m) *v(0,0,p,0) *s(m,p)
+4*(n-1) **x2*xc{(m) *v(m,0,p,0) *s(p)
+16*(n-2) *c(m,n) *v(n,0,p,0) *s(m, p)
+4*(n-1)*c(m)*v(m,0,p,q) *s(p,q)
+4*(n-1)*c(m,n)*v(m,n,p,0) *s(p)

- +4xc(m,n)*v(m,n,p,q)*s(p,q))

np2 = N(N-1)
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F(N_x,i_1,i_2,0,0) =

np4*( (n-2)*(n-3)*c(m,n)*v(0,0,0,0)*s(m)*s(n)
+4*(n-3)*c(m,n)*v(0,0,p,0) *s(m,n)*s{p)
+8*(n-3) *c(m,n) *v(0,0,p,0) *s(m,p)*s(n)
+2%(n-1) *(n-2) *c(m)*v(0,0,p,0) *s(m) *s (p)
+4xc(m,n)*v(0,0,p,q)*s(m,n)*s(p,q)
+8*c(m,n)*v(0,0,p,q)*s(m,p)*s(n,q)
+8* (n-2)*c(m,n)*v{n,0,p,0) *s(m)*s(q)
+4x(n-1)»c{m)*v{(2,0,p,q)*s(m,q)*s{p}
+2*(n-1)*c(m)*v(0,0,p,a) *s(m)*s(p,q)
+2*(n-1)*c(m)*v{(m,0,p,q) *s(p)*s(q)
+16xc(m,n)*v{n,0,p,q)*s{m,q) *s(p)
+8*c(m,n)*v(n,0,p,q)*s(m)*s(p,q)
+2%c (m,n)*v{m,n,p,0) *s(p)*s{q))

F(N_x,i_1,i_2,1_3,0) =

np6*{ 2*{(n-3)*c{m,n)*v{0,0,p,0) *s(m)*s{n)*s{p)
+(n-2)*c(m)*v(0,0,p,q)*s(m) *s(p) *s(q)
+8*c(m,n)*v(0,0,p,q)*s(m,p)*s(n)*s(q)
+2*xc{(m,n)*v(0,0,p,q)*s{m,n)*s{p)*s{qg)
+2*c(m,n)*v(0,0,p,q)*s(m)*s(n)*s(p,q)
+4*c(m,n)*v(n,0,p,q)*s(m) *s(p)*s{q))

F(N_x,i_1,i_2,i_3,i_4) =
np8*( c(m,n)*v(0,0,p,q)*s(m)*s(n)*s(p)*s(q))

np4 = N(N-1)(N-2)(N-3)
np6 = np4 (N-4)(N-5)
np8 = np6 (N-6)(N-7)

49



Nmax
Y F(Nayia,iz,13,14)S(11)S(12) S (i3)S(ia) = 0

11,22,i3,i4=0

with S(0) = 1

e The function F(N,,1,12,13,14) contains combinations
of excitaticn coefficients c(n), and matrix elements of
kinetic and potential energy -

e TICC?2 involves the solution of a coupled set of non-
linear multinomial equations in the truncated set of co-
efficients {S(n);n =1, ..., Nmax}

e This is a nonlinear problem: there is no a priori way
to know whether all solutions have been determined in
this way neither if the so obtained solutions are or not
physically relevant

o TICI2 |W) = (14 : S(12 )|) (linear approximation)
Soive

Noaa
Y F(Nz,i1,0,0,0)8(i1)

i1=0

Nimax

+q Z F(Ng,11,12,13,24)S(71)S(12)S(43)S(i4) = 0

630, (i2i3,is) 70
g quenching factor slowly growing from 0 (TICI2) to 1
(TICC2)

e The use of a HO reference state introduces a free
parameter a, and a supplementary minimization of the
ground state energy could also be envisaged
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FIG. 2. The ground-state energy of the *He nucleus calculat-
ed with the S3 potential and at various levels of basis truncation
in the CI2 approximation, as a function of the oscillator param-
eter a which characterizes the single-particle basis. The
different curves are labeled by the respective order (n,,,,) of the
truncation.
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FIG. 3. The ground-state energy of the *He nucleys calculat-
ed with the MT-V potential and at various levels of basis trun-
cation in the CI2 approximation (solid lines) and the CC2 ap-
proximation (dashed lines), as a function of the oscillator pa-
rameter a which characeterizes the single-particle basis. The
different curves are labeled by the order (n,,,,,) of the truncation.

-5
0 1 2 3 r(fm) 5

FIG. 4. The correlation factor f(r) that characterizes the
CI2 approximation to the *He ground-state wave function via

the parametrization of Eq. (35). The calculation employs the S3

potential and a value a=0.7 fm™' for the oscillator parameter
of the single-particle basis. The different curves are labeled by
the respective order {(n,,) of the truncation.
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Figure 3. The Gs energy in MeV of *He comresponding to the MTV interaction versus
~ the harmonic oscillator parameter . The lines labelled with an integer number nmax
represent the shell-model calculation with 2p—2h excitations up 10 2nmax/ic’ in energy.
The curve labelled E is the present Euler-Lagrange evaluation of this energy.
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— S7, S8, S9

Several comments regarding these three solu-

tions
¢ All of them tend to stability with increasing
vaiu of Nmax, and at Nmax = 30 they
av lready converged.

L

h

There is a connection between the contin-
ucus line and the (CI2 line in the guench-

ing scheme and in both directions. 7 his
means that starting at CI2 solution (g =0
one arrives to the point in the continuous

line (CC2 soilution) when ¢ = 1 and con-
versely, starting at the CC2 solution (g=1)

from the continuous line one arrives to the

CI2 solution by slowly decreasing g down
to g = 0.

There is not a connection path which starts
at the long-dashed CC?2 solution. When ¢
is slowly decreased the solution disappears.
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4.2 TICC2 in coordinate

representation

Coordinate representation of operator S(1:2)

r ~1/2
| /2
/1 \ TL ’
<I‘1...I‘N|S\"2’!(D> — }
n—l td
1/2 /1 o2r2
E L / }(rl IN|D)
i< )

the Laguerre polynomials:

of
oo 1/2 / \
2"n! 1
firy=2> Sn [ ] L2 24272
J\T) ; \ )lL(Qn—'r-l)??J n ST /;

(r1.ry ST D) =) f(ry) (r1.r|P)

i<
The quadratic term:

(ry..ra| 1 SEASE2 1) = Zf(’f‘u)Zf('rkz)(rl .r4|P)

1<J k<l
aned sum means that neither particle in pair kl in the

second summation coincides with either particle in pair

17 in the first one
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TICC2 ground-state wave function in coordi-
nate representation

W{r;.. rA)—(I‘l I'Al eXDS(lz) |P)

— \1 +Z 7'13/+ ZJ\ 1]/ Z!f kl)
<3 )

k<!

+3il. Z f(TZ]) Z f('rk!) Z .f(\rmn\) + "')(D<r1"'rAj

T i<y k<l m<n

convention: repeated indices in the products of primed
sums are excluded

In general: CCn deals only with
independent n-body correlation

operators

Compare with a Jastrow correlation factor

\
exp (Z h(z‘j)) ®(ry...r4)

<2
= (14—21&(:7)-{— ZZh(zg)
i<y ! i<y k<l

+5; Z Y > h(EDA(kDA(mn) 4 ...)D(r1...T4)

T i<j k<l m<n
Repeated indices imply non trivial technical problems if
functions h contain not commuting operators
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Properties of the correlation function f(r)

The intermediate normalization condition (®|W) = 1 im-
plies

(‘Dl(z,f(rij} + %Zf(rij) Z,f(m) +...)|®) =0

1<y <] k<l

In the case of a bosonic system this condition is always
satisfied because

(P000{T1)dooo(r2){ f{r12)|Pooo(r1)dooo(rz)) = O
HO single-particle wave functions

booo(ri) = | —=1 exp(—3a°r;)
Y\ 2

Change of coordinates {r;,r2} — {r,R}

{$000(r1)do00(r2)|f(r12)|bo0o(r1)dooo(ra))
= (¢o00(R ) @000 (r)|f(r)]|d000(R)dooo(r))
= (po0o(r)|f(r)|do0o(r))

_ ad : 2"n! 1/2
- 2:4_;15(”)((27;4,- 1)!!)

(8000 (1)|LY/2(503r2) 000 (r))

The red factor is identically zero due to the orthogonal-
ity properties of the Laguerre polynomiais

The physical meaning is clear: the pair cor-
relation function f(rio) projects the product
$000(r1)do0o(r2) Of occupied functions onto
the unoccupied subspace
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Projecting onto TI(1p-1h 4 2p-2h) states

In coordinate representation the wave funtion is given
by ‘

e 1 ' \
v = (14 L1+ 5 3 X i) + )@
Ground-state energy
E = (®|H|W)
= (SIHQ+ Y76 + 5 30 S FaNFRD) + .}

A generic TI(1p-1h + 2p-2h) excitation may be rep-
resented by an arbitrary function g(r;;) with the same
characteristics as f, namely

{($000(T1)do00(r2){g{r12)|P000(r1)dooo(r2)) =0

Equation for f
(PlgH|V) = E (PlglV),

The equation is most succintly presented in a diagram-
matic form.

Notation:

Particle O
function g OO
function f Oo—oO0O

Action of T Q
O

Action of V ----0O
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CC2 Equation in diagrammatic form

bord )
+ oo + a +207 7
R DO B N
O L]+ I L
+e{ T+ L2 2 [ 2 )

:Eo{cak,—i-QCfLM +C3 1 7l

Statisticai factors C} = (N—n)(N—n—-1)..(N-n—k+1)

The quantities E, are related to unlinked dia-
grams

1 1
-.EnZC?. +C1211——o +§Cgo-—o +§C121c(—\~o

3]

N =

?
L o

Eqy corresponds to the ground-state energy
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To clarify the diagrammatic notation:

u = /CD* g*(rlz)V(T34>f(rl3>f('r24) ® dry ... dr 4

General form of the TICC2 equation

/g*(rlg)F[f] dry...dr, =0

g(r) is not a fully arbitrary function, because of the
required orthogonality of the excited states with respect

to the reference state

Replace
g — G —(P|G|D)
where G(r;;) is a completely arbitrary function

— EXERCISE 4

Practical way to solve the integro-differential equation:
Expand f using a suitable basis

e Gaussian basis f(r) =} Cpexp(—LFpr?)
(largely employed in atomic and molecular problems)
Use negative and positive values for {5y}

Laguerre polynomial basis — TICC2 in configuration
representation
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Example

Binding energies (in MeV) for various bosonic nuclei
with the Wigner part of the S3 interaction and for the
different orders of truncation of the egquations in powers
of f
~ J

A=4 A=8 A=16 A=140
Order 1 | 25.42 225.46 1131.2 74953
Order 2 | 25.60 235.12 1235.7 8457.1
Order 3 235.12 1235.1 8458.5
Order 4 235.12 1235.1 8458.7

Conf. 25.49 235.03 1234.9 8456.6

Order 1 corresponds to the TICI2 case, and Order 4
is the full TICC2 result. The last row shows the full
TICC?2 configuration-space results

e The coordinate-space numbers are fully converged,
with the use of between 10 and 14 gaussians

By contrast, in HO configuration space up to 30 ampli-
tudes were used (corresponding to single-particie excita-
tion energies up to 60/w), not reaching full convergence
in some cases

e Working in coordinate-space results in a much faster
computation of the required expansion coefficients

e The third- and fourth-order terms give an almost
negligible contribution — one may safely simplify the
integro-differential equation by keeping only up to quadratic
terms in f(r).
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4.3 The nuclei “He and 160
in the TICI2 approximation

TICI2 in coordinate space

Y =

(on. N AN
»Zh\’l‘z]/w

1<]

//""-"h\

\
\
1+ Zf(”f‘z‘j) } >
i<j ]
This ansatz is not exclusive of the bosonic nature of
the particles we have assumed to obtain it

e T he bosonic or fermionic character of the particies is
contained in the reference state

e TICI2: the simplest way to consider TI pair correta-
tions is to determine a correlation function h(r;;)

In fermionic systems h(r;;) may be generalized to deal
with discrete degrees of freedom

Sunpose a V4 nucleon-nucleon interaction
Vi =) VP(ry)eP (i),
D
o) — 1,@(2) — pg’@@) — IDi"Jj, o4 = pzcjrplvj'

It seems natural to consider an operatorial structure for
the pair correlation operator also of the V4 form

his = Y hP(ri;)0P (3j)
I 4
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Practical calculation

R (r) =5 e exp(—Bir?),

) T .
{cgp'} = unknown coerficients to be determined
{Bi} = set of pre-determined exponents (include nega-
tive as well as positive values)

e Note that this is completely different from the expan-
sion in Laguerre polynomials = TICI2 in configuration
space

e T he gaussian form is particularly adequate for the HO
®: the required space integrals are the product of an
exponential of a positive-definite quadratic form with a
polynomial

e T he expectation value of the energy:

FZURN Fa N N
2 cAPI* PO )
t 17 2

(1y _ (p),(3g)
E({¢™}) = Z P Ar(p0) (@

i Vi 7
(ip),{q)
(the different components in this decomposition are not
orthogonal)

Optimize with respect to c,-(”) — a generalized eigen-
value problem

(rg9) () _ ) (9)
D_HIIGY =23 NFS
(G (Ge)
The lowest eigenvalue X\ gives an upper bound to the
ground state energy (TICI2 is variational!)
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Results for 4He and O with V4-interactions

V4-interactions: B1, S3, MS3, MT I/Ill and MT VvV

< ~ aYe)

8 T his choice allows for the best Comparison with exist-
ing results in the literature

e Some of these interactions are semi-realistic in the
sense that they fit some of the two-nuclecn properties

Two types of calculations, according to the two-body
correlation operator

e state-independent (SI): restricted to the first term in
= Zp h(P) 'r,J)O(p)\z]}

o fully state-dependent (SD): four correlation functions

are to be determined

e The value of the HO parameter o has been optimized
for the SI case, and this value is kept fixed for the en-

suing SD calculations
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The interactions

[206.0455e~¢/%7) | 68.38784e (/14 pe pr
[500.e73" — 81.675e~195 _ 10.75e~96"

| —41.5e708" _ 5 7504

+ [-81.675e 105 _ 10.75e705 4 41 508
+5.75e 04 pe

Vp1(r) {595.54556—(’"/0’7)2 —72.21 16e—(r/l.4)2]

+

Vs3(r)

[81.675e7 105 1 10.75e7067 _ 41 5e~087
—5.75e7 04 pT

+ [-500.e7°" 4+ 81.675e 105 4 10.75e7057

+41.5e7087 1 5 75¢7 04 prpT

[y —3 2 ] Y r

Vuss(r) = 500.e7°" + Vs3(r)
=3.11r e—1.557
— 578.176S i

r T
e—3.11r e—1.557
— 289.08845
T T

[729.13435

e—l.aarﬂ

[28.61285——] P’
T
e—l.SST

[1458.2687

Vmrv(r)

1
I

Vaerr(r)

[-28.61285

1PT
p
-3.11r —~1.55r
+ 289.08845

T T

+ + o+

[-729.13435 1p7 p7

—> S10
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4He and %O nuclei
TICI2 ground-state energies (in MeV)
Nuc. Phys. A609 (1996) 218

Interaction | Nucleus | a (fm~1) SI SD
81 THe 0.725 -37.86 -37.86
160 0.602 -145.94 -167.30
S3 4He 0.717 -25.41 -28.19
1605 0.707 -141.64 -164.88
MS3 4dHe 0.713 -25.41 -27.99
160 0.596 -85.56 -105.64
MT I/ ‘He 0.741 -25.45  -30.81
1605 0.744 -104.10 -207.52
MT V 4He 0.741 -25.45 -235.45
1605 1.078 -066.65 -973.67

e SD variational space larger than the SI one: it should
produce a lower value for the ground state energy
—» (0 - 4) MeV for *He, (10 - 20) MeV for 180

e Interactions Bl and MTV contain only Wigner and
Majorana terms: do not couple to the spin-dependent
piece of the correlation operator in 4He

— No difference in the SD and SI energies for these
interactions in *He
However, even for those potentials, spin-dependent cor-
relations do play a role for 16O (+— the uncorrelated
state is not fully space symmetric)
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Comparing with other techniques

Interaction: MTV

MTV does not saturate nuclear matter — it produces
high-density systems. Ideal case to test the importance
of three- and more-body correlations

He (MTV) 5O (MTV)
TICI2-51 25.45 566.65
1 CI2-SD 20.45 973.67
GFMC [a] 31.3+0.2 1194 + 20
DMC | 31.32+0.02[b] 1189+1 [g]
VMC 1138.5 + 0.2 [c]
FHNC/0 987/1152 {d]
1059/1055 [e]
IDEA [f] 30.7-31.2 1021-1027

‘He: TICI2 ~94% GFMC, DMC energy

160: TICI2 ~ 80% GFMC, DMC energy

the effects due to the non-linear terms neglected in
TICI2, and the correlations neglected in TICC2 are com-
paratively more important for heavier systems

[a] J.G. Zabolitzky et al: NP A356 (’'81) 114; PR C25

]
'82) 1111; NP A442 ('85) 109
b] R.F. Bishop et al: JP G18 ('92) L
c] S.A Chin, E. Krotscheck: NP A560 ( 93) 151
d] G. Co', A. Fabrocini, S. Fantoni: NP A568 ('94) 73
e] E.
R.

/'\

Krotscheck: NP A465 ('87) 461
Brizzi et al: NP A596 ('96) 199

=) o P Y )

f]
— S11
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\

160
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4
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Fig. 1. The calculated correlation functions in the case of the MS3 potential. Dashed
lines correspond to purely central scalar SI correlations and solid lines to SD cor-
relations of V4 type. In the latter case the labels 1, o, 7 and o7 correspond to the
terms k = 1,2,3 and 4 in the parametrisation of egs. (8) and (9). As discussed in
the text, for helium only two such functions should be used.

SI — = —
$D
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Vo6-Interactions

Vii =y VP ()o@ (),
P A
Add two more terms containing the tensor operator

= 57(3)

— () p(T)
= S‘T@J)‘ ij

(5)¢;

(8¢

N~
o
' N

®

We use the following interactions:

- GPDT D. Gogny et al: PLB32('70)591

SSC R. de Tourreil, D. Sprung: NPA201('73)193
AV14 R.B. Wiringa et al: PRC29(’'84)1207

AV18 R.B. Wiringa et al: PRC51('95)38

Reid-V6 J. Carlson: PRC38('88)1879

They contain more terms (spin-orbit, L2, ...), which wiii
be ignored. Only the 4-central plus the 2-tensor terms
are considered

Exception: Reid-V6, which is a V6 adaptation of Reid
SC (R.V. Reid: AP 50 ('68) 411)

All these interactions are realistic: they include at least
the one pion exchange part of the NN interaction plus
a short-range phenomenological part, adjusted so as tc
reproduce experimental phase-shifts
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The introduction of tensor correlations increases dra-
matically the computer time needed in the calculations

S
(]
(]
~[]
3
5
©
gt
@
S
Q
;F
;
-
3

WP (i) VA (ri ) BT (rma) | pig (1) ..
W,. statistical weight of the diagram
¢'s: spatial part of sp wave functions
2. pwo . epresentation of the spin part of the permu-
[ S N
tation

V6!

The tensor operator contributes both to the traces and
to the spatial terms

—— The number of traces is much higher

—— More types of spatial integrals

— S12
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Fig. 2. A comparison between the V6 potentials used in this paper. The horizontal axis in each panel shows
r(inﬁn),&xevexﬁmla:dsmepotunialsumgm(inMeV).EachpandrepmentsoneopamidM
for each of the operators used to expand the cormrelation functions, as indicated in the figure. The solid e is
AV 14, the Jong-dashed line is AV18. The dotted line is the SSC, and the medium dashed line is the Gosny.
The short-long dashed line is the Reid-V6 potential.
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*He and %O nuclei
TICI2 ground-state energies (in MeV)
Nuc. Phys. A643 (1998) 243

Interaction Nucleus -E a (fm~1) 1

GPDT “He -27.36 0.70
'**C -128.68 | 0.64
SSC ‘He -24.12 0.68
180 -63.55 0.55
AV14 ‘He -14.77 0.59
1605 -14.97 0.40
AV18 “He -15.40 0.61
e -23.76 0.46

Reid-V6 ‘He -5.67

Thereis a competition between central and tensor forces:
Most binding is obtained from the off-diagona! tensor in-
teraction (matrix element between the centrai and the
tensor-correlated channel) |

This matrix element competes with a strong repuision

in the central channel

The origin of the problem is to be related to
the size of the repulsive core of the potential

Solution: Include more correlations
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4.4 Beyond the TICI2
approximation

4.4.1 TICC][2]

Lessons from TICC2 for bosons

Binding energies (in MeV) for various bosonic nuclei
with the Wigner part of the S3 interaction and for the
different orders of truncation of the equations in powers
of f

A=4 A=8 A=16 A=40
Order 1 | 25.42 225.46 1131.2 74953
Orager 2 | 25.6C 235.12 1235.7 8457.1
Order 3 235.12 1235.1 8458.5
Order 4 235.12 1235.1 8458.7

Order 1 corresponds to the TICI2 case, and Order 4 is
the full TICC?2 result

The third- and fourth-order terms give an almost negli-
gible contribution — one may safely simplify the integro-
differential equation by keeping only up to quadratic
terms in f(r)

TICC[2] Approximation
W(ry..rgq) =
1+ ) + 5 3 ) 3 1 Gw)

1<j 1<j k<l
®d(ry...T4)
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A significant difference between the bosonic
and fermionic cases arises

Consider the following diagram

O——0
= (P|g(12)W(12)f(34)|®)
OO

(W is the Wigner part of the interaction)

In the bosonic case the unlinked diagrams fac-
torise because In the reference state aii the
particles are in the lowest HO state

— {po (1) (2)1g{12)W (12)|¢d5(1)¢o(2))
X (00(3)P0(4)|f(34)|p0(3)P0(4))

The second factor vanishes. All the diagrams containing
a disconnected f give a null contribution

This is not the case with fermions because the
permutations in the reference state involve dif-
ferent HO states

—— The number of diagrams to consider is
much greater than in the bosonic case

It turns out that the contribution of discon-
nected diagrams is almost negligible, at least
to compute the ground state energies of iight
nuclei

75



TICI2 and TICC[2] binding energies (in MeV)
No unlinked diagrams are considered in TICC[2]

4He 16O
Bl
TICI2-S1 -37.86 -145.54
TICC[2]-SI -37.92 -149.36

TICI2-SD  -37.86 -167.30
TICC[2]-SD -37.92 -173.76
MS3
TICi2-SI  -25.41 -85.56
TICC[2]-SI -25.59 -94.71

TICI2-SD  -27.59 -105.64
TICC[2]-SD -28.21 -123.79

The improvement is quite remarkable, specially for the
MS3 interaction which has a stronger short-range repul-
sion than the Bl potential

Calculations for realistic calculations have not yet been
performed
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4.4.2 J-TICI2

The problem with strong-repulsive potentials

U;C —— screened by correlation

O—0O

Recall: CCn deals only with independent n-body corre-
lation operators

— nOt screened

Hybrid Method:
TICI2 additive state-dependent correlations
Jastrow multiplicative state-independent correlations

\ s/ N\
\ \
w(i..Ay=|ITqG5 | (ZZh(P)(kl)C—)(p)(kl)) D(1...4)
\i<s J \k<t p
(similar to the CBF of Feenberg, Ciark, ..., in which

are combined Jastrow correlations and non-orthegonat
perturbation theory)

| 2
For simplicity: g(r) =1 + ae~b7

Variational problem: Minimize the ground state energy
with respect to parameters a,a,b and functions r(®
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Results for 4He

TICI2 J-TICI2
-E " -E a a b
B1 37.86 0.73 { 38.28 0.77 -0.41 1.8
S3 28.19 0.72 | 30.16 0.78 -0.70 2.1
MS3 27.99 0.71 [ 29.97 0.74 -0.7C 2.1
MT I/III | 30.81 0.74 1 32.70 0.75 -0.83 5.0
MT V | 29.45 0.74 |31.21 0.75 -0.87 5.6
GPDT 27.36 0.70 [ 27.58 0.72 -0.2 1.9
SSC 24.12 068 | 2674 (0.75 -066 2.1
AV14 14.77 0.59 | 20.37 0.71 -0.93 2.7
AV18 15.4 0.61 [ 21.08 0.74 -0.92 3.2
Reid-V6 5.67 0.43 | 2270 0.72 -1.05 2.4
For comparison

81 -38.32 = 0.01 DM

MTV 31.32+0.02 DMC

AV14 24.79+0.20 GFMC

Reid-V6 28.30+0.12 GFMC

V4 interactions: Energies very close to DMC ones

V6 interactions: Impressive effects for strongly repulsive
interactions (Reid-V6)

correlations

J-TICI2: Division of roles
Jastrow: short-range correlations

TICI2: medium and long-range
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R.F. Bishop et al. /Nuclear Physics A 643 (1998) 243-258 255
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Fig. 3. A comparison between the TICI2 (solid line) and J-TICI2 (dashed Line) correlation functions 72,
multiplied with exp(—a?r?/8), for *He obtained from a solution to the generalised eigenvaloc problem (7).
We have chosen the V6 part of the AV14 potential as an example, and only piot the range for 7 from 0 t0 3
fm. The normalisation of each of the correlation functions is as in the normalised ground-staie exgenfusction,
but we present separate results for each of the three operatorial channels.
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5.1 The Approximatio'n
J-TICI3

W(R) = 7013(R) @ 5(R)

Correlated reference state

®;(R) = M;;9(r;5) P(R)
e Jastrow factor

T
N
Pl
S |
N——

with fixed values v = 5.2, b= 2.95 A(*He), 2.85 A(3He)
— EXERCISE 5

e Reference state

4He:' o(R) = M;<jexp (—-29—;\’—,7‘7:2]-)

Boson HO condensate

3He:  ®(R) = ®;(R)®P,(R)
‘ Product of HO Silater determinants
referred to 1,1 spin particles
Backflow correlations are also included:

A
r{ —r; + Z —3(I‘i — I‘j)
i#j T

with fixed value A = 5 A3
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Correlated reference state

Pricr3(R) =1+ i f2(ri5) + Ticjckf3(i5, Ti, T55)

In practice, expansion on a Gaussian basis

N

Gup(R) =8| ) e e =i

with {u} = {p,q,7}

Cur choice: five Gaussians with widths
(Bo/?) 0,-0.05,0.5,1,4) (*He)
0,0.5,1,2,4) (3He)

(
(

Interest of using 81 =0
e [ hree labels p,q,7r = 1 — CDTICIB =1

e Two labels =1 — Opro3 =TICI2
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Generalized eigenvalue problem

Z (K:Ml H2 V#l #2)0#2 - EZ‘A’IM #2‘/,&2

N = / dR|®,(R)[2C%, (R)Co(R)

We choose

e = / dR| Dy (R)?

G (R)

cDJ(R) (
Multidimensional integrais calculated by means of the
MC method, using the positive definite function |®;(R)|?
as the guide of a Metropoiis random walik

e NO substraction of the CMM is necessary, as
we are using a TI wave function |

e The number of unkown amplitudes Cy is

(Ng+ 2
7 7)
In our case, Nﬁ =5 -— 35

82



He-He interaction: Aziz HFD-B(HE)

V(r)

F(x)

| 2 C’ Ca (.7"\1
— —ar+pPz* _ 0 o 10y
= G[Ae F\:z:,< 6+ 8+ Iy

L =~/ |
_ —_ 2
— e (D/:L’ 1) x < D
1 eisewhere
— M/M
—_— ’ / I'm
:v,*(’r) q —
(K) 1
B840 !
1
600 \
400 |
\
200 ll
\
0 \
0 3 6 9 12 o 13
r{A)
i
I
by —
30 Aziz IL J
|
|
151 !
]
|
o h
\
\ //
o’
-15 ,
o 2 a 6 ) 10
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5.2 Drops of “He atoms |

Ground state results
PR B60 {(99') 6238

E/N (K) ro(A)

N J-Ci3 DM J-CiI3 OMC
3 | -.0430(10) -.04358(2) 5.4(2) 5.50
4 | -.1398(15)  -.1443(2) | 4.11(11) 4.13
5 | -.2616(13)  -.2670(3) 3.66(7) 3.65
6 | -.3868(11 -.3950(2) 3.42(6)
7 | -.5081(12)  -.5206(4) 3.31(5) 3.22
8 | -.6285(13) -.6417(4) 3.18(4)
9 | -.7392(12)  -.7563(8) 3.11(3)
10 | -.8484(19)  -.8654(7) 3.01(3)
14 | -1.215(2) -1.2478{12) | 2.51(2) 2.83
20 | -1.6336(15) -1.688(2) | 2.727(14) 2.69
40 | -2.4563(14) -2.575(3) | 2.578(8)

0.0 \
g-o.ﬁ i \\
— —1.0 |
N
= _ 5]

-2.0 J—CIi3

-25 ] .

DMC
-3.0 ,
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Static structure factor

2 2y (e B
S(g) =14 (3 e"T) — —|(3 T2
1<J (

1.2

M
100 o .

0.8 |

S
0.0 /
0.0 0.5 1.0 i.5 2.0 2.5 3.0
-
q(&™)
1.2

N=40

2.0 2.5 3.0

J-TICI3 (solid), VMC-triplets (circles), DMC (diamonds)
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Excited states (angular momentum L)

Generalize the reference state

l L)V a2 2

2T Thicge 20 Y i Yo(Fyg)
1<

L
CDS ) = I’li<je

Porz = 1+ Zicifori) + Ticijcrf3(rij, Tik, Tik)

Note that (f> and f3 depend implicitly on L)

Variational problem: minimize
Ep = (\U(L)IHIW(L))/(\U(L)IW(L))

with respect to fo and f3

Random walk guided by &P (R))|2
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E)-Eo (K)
4.Q
3.5 ' -
3.0 o — -
2.5 S

2.0 —

1.5 D — T -

N=6 8 10 12 14 16 18 20 30 40

L=2, L=4 excitation energies
Chemical potential |u(N)|=|E(N) — E(N — 1)|
Discréte excitations:

L=2 for N > 10, 1.5 K
L=4 for N >30, ~ 3.1K

12
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Other calculations: Wexc = F(R)Wgs

e Use exact Wgs and solve the variational prob-
lem for F' (Chin-Krotscheck DMC)
Define

1 . .,
1\/[1 = —2-<\U95“_F, [H7 F].”w95>

2
Mo = (Wgs| F2 |\ gs) — ({Wgs| FlWgs))®

Excitation energy fiw = My /My
= Upper bound for excitation energy

e Use trial Wgs(VMC) and minimize the cen-
, o
troid energy hw (Krishna-Whaley, Chin-Krétscheck

VMCQ)

e Our trial wave function for L =0

N o ) o
(L) _ _~cCI3 L =~ (0)
Vicis = > T=0 (R) TiciTi;Y10(Ti5)W jcr3

 CI3 -

#% one-body excitation operator F(R)

N=20 N=40
L=0 L=2 -1 L=0 L=2 -1
KW 2.67 |
vMC 2.79 2.03 3.44 1.77
2.80 2.26 3.68 2.04
DMC 1 2.72 1.75 291 ,3.60 1.37 3.67 |
2.80 1.71 3.68 1.22 {
Ours 1.58 2.87 1.45 3.72 !
Mi/Mp | 3.57 1.78 3.3 1.79 |
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5.3 Drops of 3He atoms

Differences with respect to 4He drops

e m3 < mg — Large zero point motion

e Fermions — Pauli repulsion

Mass and statistics act in the same direction

N=8 J-CI3 results
Aziz HDF-B(HE) interaction

Mg im3
Bosons | —4.78 == 0.04 | —0.53 = 0.07

Fermions | —0.78 £ 0.05 | 4+2.57 £+ 0.07

Existence of a minimum number of atoms
below which 3He drops are unbound

Détermination of Nmin
e NLDF -+ shell model
HO magic numbers

o J-CI3
(approximating mixing of subshelis)

90



A comparison with previous calculations

Binding energies (K) with HFDHE-2 interaction

N VMC J-CI3
20 4.12+0.14 3.44 £0.05
40 —-1.44x008 -2.55+0.07

VMC: Trial WF includes pair plus triplet Jastrow and
backflow correlations (Pandharipande et al, PRB34 ('86)

4:71\

~ i )

— 20 < Npin < 40 (1f2p shell)

Use cartesian coordinates (L not well defined)

Occupation numbers for configurations in the 1f2p ac-
tive shell in cartesian coordinates giving rise to wave
functions invariant under S0° rotations, as a function of
the number of atoms of a given o,

orbitals n=10 9 7 6 4 3 1
z3 1 1 0 0 1 1 O
y3 1 1 0 0 1 1 ¢
23 1 1 0 0 1 1 0

2y 1 1 1 1 0 0 O
x2z 1 1 1 1 0 0 ©
Y2z 1 1 1 1 0 0 O
y2z 1 1 1.1 0 0 O
z2x i 1 1 1 0 0 0
z2y 1 1 1 1 0 0 O
TYZ 1 O 1 0 1 0 1
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Binding energy (in K) determined at the J-CI3 approxi-
mation for several 3Hey drops as a function of the num-
ber of spin up (N4) and spin down (N|) atoms. Results
are given for the Aziz potential HFD-B(HE)

PRL 84 (00') 1144

N N; N,| S.| HED-B(HE)
40 20 20 0] —3.90 % 0.07
35 20 19| 1/2 | —3.17 £0.10
38 19 19 0] —229+0.11
37 20 17 |3/2| —1.62+0.09
36 20 16 2 | —1.09 £ 0.09
36 19 17 1| —0.86+0.10
35 19 16 | 3/2 | —0.33£0.00
34 20 14| 3| 0.09+0.06
34 17 17 0! 0.67+0.0

33 20 13| 7/2] 0.56%0.09
33 19 14 |5/2| 0.66+0.09

33 17 16|1/2| 1.15+0.10
32 19 13 31 1.04+0.09
32 16 16 0| 1.8140.08
31 20 11|9/2] 1.42+0.07
31 17 14|5/2| 1.62+0.09

30 20 10 5 1.35+0.09
30 19 11 4 1.73 £ 0.067
30 17 13 2 2.02+£0.06
30 16 14 1 2.09 £ 0.07
20 10 10 0 3.01 £ 0.05

GS with maximum spin
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Fill either 1fm2p° or 1f142p™ subshells
(L well defined)

Binding energy (in K) (PRB 62 (01') 3415)

N Conf. L S E (K)
34 pbf8 3 3 —-0.03+£0.05
7 2 0.17 £0.08
3 2 0.35+0.12
10 1 0.41+0.0
111 0.46 £ 0.10
12 0 0.55 + 0.09
35 pPf? 1 5/2 —-0.52+0.09
3 5/2 -0.59+0.09
5 5/2 -0.39+0.06
8 3/2 -0.16+0.08
9 3/2 -0.23+0.08
10 1/2 -0.15+0.10
11 1/2 —-0.03+0.06
36 p®f10 0 2 —-0.97 £0.08
2 2 —1.04+0.1i0
3 2 -—1.014+0.10
4 2 -0.93+0.08
6 2 —1.00+0.10
8 1 —-0.80+0.07
9 1 —-0.78+0.09
p2fl4 1 1 —-0.69+0.09
38 p°f'¢ 1 1 —-223+0.09
3 1 —-2.22+0.09
5 1 —-2.21+0.05
p*flt 1 1 -2314007

GS with maximum spin
For a given S, degeneracy with L
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EXERCISE 1
The CCM eguations have been written in two different
ways:

(®|Cre*He’|®) =0 [ #0

with £ = (®|He®|®). Show that both sets of equations
are identical.

Hint: Use the identities

1 =eSe " ZeSC

(index J includes 0)

EXERCISE 2

Calculate the ground state energy, in succesive CCn ap-
proximations, of the one-dimensional anharmonic oscil-
lator described by the Hamiltonian

H—-2(p +:c)+/\m4

You have to choose a reference state, construct the CCn
ansatz for the ground state wave function, derive the.
equations for amplitudes, solve them (you only need a
pocket calculator), and finally calculate the ground state
energy. It is convenient to use the set of equations

(®|Cre HeS|d) =0 I #0

and express the operator e SHe® in terms of nested
commutators.

You should reproduce (or correct!) the results displayed
in the following table for several values of the coupling

4
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constant A. The column
ergies obtained integrating numerically the Schrodinger

“exact”

corresponds to en-

equation.
A exact | CC2 CC4 CCs CCs8
0.1 0.559 | 0.560 0.559 0.559 0.559
i 0.804 | 0.796 0.805 0.805 0.804
10 1.808 | 1.424 1,497 1.507 1.50¢9
100 | 3.131 | 2.834 3.075 3.124 3.138
1000 | 6.684 | 5.855 6.513 6.651 6.655

EXERCISE 3

Show that for an homogeneous system of bosons the
HCSUB(2) eqguation in coordinate representation may
be written as

—AS(r) + V(r)(1 + S2(r)) = 4eSa(r)

where

€ = %—p jlf drV(r) (1 4+ S2(r))

is the energy per particle, and p is the particle density.
(Units: h%/m = 1)

Suppose the bosons interact through a hard sphere po-
tential: V(r) = oo if » < a, = O otherwise. In the
low-density limit, the energy per particle is given by the
series (see e.g. Fetter-Walecka)

1 3\ 1/2 ,
e =2mpa{l-+ 28 (pa 4 ..
15 T

Calculate the HCSUB(2) energy ¢ in the low-density

limit
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EXERCISE 4

A generic TI (1p-1h+2p-2h) excitation has been repre-
sented by a function g{(3j) with the property (®lg|®) = 0.
Let us call TICC?2|g] the corresponding TICC?2 equation.
To dea! with a2 completely arbitrary function, the change
g — G(®|G|®) has been made. Write the new TICC2{G]j
equation and cémpare with the TICC2[gl. Explain the

result (at first sight surprising).

EXERCISE 5
Consider two helium atoms, interacting through a Lenard-
Jones potential

T

1

Vi) =ae|(2) - (i’-)6J

\7T T

with ¢ = 10.22K and ¢ = 2.556A. Obtain the very short-
range behaviour of the relative wave function, thus jus-
tifying the choice of the Jastrow factor in J-TICI3. To
be quantitative, use the values A?/m = 12.1194 K A?
~and 16.084 K A2, respectively for 4He and 3He
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