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1. - Introduction

Nucleon Matter -» Heavy nuclei -» Light nuclei

(a) Equation of state

Neutron Matter

(b) Single particle properties -> Shell model

• e(k), n(fc) and n(e)

• Self-energy and Optical Potential

(c) Response functions -> Inclusive reactions

(d) Spectral functions -> Semi-exclusive reactions

(e) Magnetic properties, • • •

(oo) Standard model of nuclear physics



Why nucleon matter ?

The Mass Formula

E (Z-N)2 as Z2 Sp— = — av + aT -z f- + ac +

where

av = ~ 16MeV
aT = -

P = 0, ±UMeV



Fermi gas

kF = ^ p =1.36/m"
\ a )

eF{k) = ——
2m

TF = 38.35MeV

10m
= - 27Mei;
= 6(k-kF)
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Add N-N interaction -» N-N
correlations

4-
Nucleon systems are strongly correlated many-body
systems.

1. < T > IA : - 23MeV -> - 45MeV

2. depletion of the occupation of orbits - » ~ 75%

3. suppression of single particle contributions
-> Z ~ 0.65

4. semi-inclusive electron scattering reactions at
intermediate energies

5.
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FIG. 5. Calculated cross section for incident electron
mental data. The dot-dashed and the dashed lines
obtained with FQCT-

-/(F-/TF)
Hv(q)

* €=3,595 GeV and scattering angje ^?=3(r, compared with the esperi-
i to the results obtained with FL and FGt respcetivciy. The solid line is

Substituting this viM{r) in Mq. 13.14), we get the trivial re-..
suit

The eikonai approximation, W(qY-
m

is used to calculate * U ) and the q and / dependent opti-
cal potential V and W in Eq. (3.13). This approximation
is valid if tile quantity vml<$ varies slowly within dis-
tances of the Qt&tt of 1 /q and if vmt/Eq«1. The v-m(t;)'
represents the interaction of all the nucleons with the
struck nucleon and it is taken as

v^Sv^giT-Ti) , (3.15)

where r; denotes the positions of the other nucleons. The
û r o is obtained from the free N-N scattering data as

(3.16)

where /^(k) is the amplitude for the scattering of a nu-
cleon of momentum q> with momentum transfer k, by
free nucleons at rest.

If the ground-state correlations are neglected, Eq.
(3. IS) becomes

(3.17)

1.75

(3.18)

order to include the effects of the correlations among
hole associated with the struck nucleon and the
lining nueleons, in first-order approximation, i^fr)

is given by

m

m
•/f(*-o)

2
r(fm)

FIG. 6. Pair distribution function, of nuclear matter at the
empirical saturation density (kF = 1.33 fm~l).
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Symmetric nuclear matter: FHNC/SOC
results

Argonne v\$ two-body potential
+ Urbana IX three-body interaction
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U.Akmal et al., Phys. Rev. C58, (1998) 1804



Pure neutron matter: FHNC/SOC
results

Argonne ^ig two-body potential plus UIX
old Argonne ^14 two-body interaction plus UVII*

EOS of neutron matter with FHNC/SOC
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Existing Many-body methods

Correlated Basis Function,

- Bridge diagrams
Are they important in nucleon systems ?

- Spin problem
Need to go beyond SOC approximation ?

- Perturbation theory
is second order enough ?

- N y£ Z, spin polarization, finite T

Brueckner Hartree-Fock,

- convergence problems
- many-body forces

Quantum Simulations : standard GFMC

- limits on the size of the nucleon system
10).



Pure neutron matter: FHNC/SOC
versus BHF§

Argonne vi% two-body potential plus UIX
old Argonne ^14 two-body interaction plus UVII

Comparison FHNC/SOC with BHF

20 -
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§M.Baldo, I.Bombaci and G.F.Burgio, Astr. Astrophys. 328 (1997) 274
LEngwick et al., Nucl. Phys. A627 (1997) 85



Spin problem

The nuclear hamiltonian is strongly spin-isospin-
dependent

1. CBF theory

(a) Spin-dependent correlations -> Commutators
problem

(b) Jastrow correlations -» convergence of CBF

2. Stochastic methods

(a) D^D^ x Z H a s i n liquid 3He
D is a 4iV x 4iV complex matrix

(b) complete summation over the spin-isospin states
(c) sample the spin-isospin states

-is-



Standard GFMC11

The spin-independent part of the nucleon hamiltonian
can be handled using standard GFMC or DMC

Standard GFMC uses Monte Carlo for central part and
complete summation over the spin-isospin states.

The number of good Sz Tz spin-isospin states is

A\
Z\(A-Z)\

which can be lowered by a small factor if good T2

states are constructed.

The exponential growth of these states limits this brute
force method to A <& 10

.B. Wiringa, S.C. Pieper, J. Carlson and V.R.Pandharipande, Phys. Rev
C62, 2000



2. - Nuclear Hamiltonian

1. Non relativistic models

(a) Modern two-nucleon interactions
(b) Three-nucleon interaction
(c) Consistent nucleon currents
(d) relativistic corrections

2. Relativistic many-body models

3. Other degrees of freedom ?

(a) Meson and Deltas
(b) Born-Oppenheimer approximation
(c) short-range interaction



Non relativistic Hamiltonian

TT

_ X \ / * _1_ X o,
mmmmmmmm m—mm—mm

»=1,JV

? + y^v,:i+ ^

Urbana-Argonne form

i

= i(fi - fj) x

one-pion exchange plus a phenomenological
shorter range part



Argonne vig two-body potential

This potential includes:

• 8 standard components

• other 6 charge independent terms
(L2, tf 2

plus '4 charge-symmetry-breaking and charge-
dependent components.

It fits both pp and np scattering data up
to 350 MeV (Nijmegen database) with a
X2/datum ~ 1.

Modern two-body potentials = x2/datum ~
Argonne t^g, Reid-93, Nijmegen-I and II, CD-Bonn

"•"S.C. Pieper, V.R. Pandharipande, R.B.Wiringa and J. Carlson, Phys. Rev.
C64, 2001



A simplified two-body potential:
The Argonne v's potential*

a new fit of to the N-N data

it equals the isoscalar part of i>i8 in all S and P
waves as well as in the 3 D i wave and its coupling
to the

it has been used in GFMC calculations on light
nuclei, and in FHNC/SOC calculations on nuclear
matter

differences with the vis potential can be safely
estimated in a perturbative way

Pure neutron matter —»> f j • fj = 1

*B.S. Pudliner et al. , Phys. Rev. C56, 1720 (1997)



Table 1: The GFMC energies (in MeV) of the
ground states of stable nuclei with A < 8 computed
with Argonne vis and vf

8 two-body interactions are
compared with experimental data.

nucleus
aH

3He
4He
6He
6Li
7Li

8He
8Li
8 Be

7n
8n

AS'
-7.76(1)
-7.02(1)

-25.14(2)
-25.20(6)
-28.19(5)
-33.56(6)
-23.8(1)
-34.2(1)
-47.9(1)

-33.78(4)
-39.73(6)

,418
-7.61(1)
-6.87(1)

-24.07(4)
-23.9(1)
-26.9(1)
-31.6(1)
-21.6(2)
-31.8(3)
-45.6(3)
-33.47(5)
-39.21(8)

Expt
-8.48
-7.72

-28.30
-29.27
-31.99
-39.24
-31.41
-41.28
-56.50



Neutron matter: BHF2 results for
modern N-N two-body interactions^

Modern two-nucleon interactions
Argonne vf

8 with AFDMC and 14 neutrons

EOS of neutron matter: Comparison of modern interactionss

40

35 -

30

25

10

0.1 0.15 0.2 0.25 0.3 0.35

rho (fmA(-3))

0.4 0.45 0.5

§LEngvik, et al. Nucl.Phys. A627 (1997) 85



Neutron matter: Comparison of different
calculations

Argonne vi& two-nucleon interaction
Argonne vf

8 with AFDMC and 14 neutrons

Comparison SOC, BHF and AFDMC
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Three—body interaction: Illinois scheme^

B D

red line —> ir
blue line -> A

Vulx
v ijk

" r

^Steven C. Pieper, et al, Phys. Rev. C64 (2001) 14001



Fujita-Miyazawa term -> Diagram A

Of-k —> Repulsive phenomenological term

SW S-wave term -> Diagram B

three-pion terms -> Diagrams C and D

°ijk=
cyclic

Y(x) -
X

X Y(x)X(r)

X(r) -

Four fitting parameters plus the cut-off parameter

- 3 . 5 -



Urbana IX for Neutron Matter

For neutrons, the Urbana-IX interaction is given by the
sum of a spin independent and a spin dependent part

Vijk + Vijk

I

cyclic

Vijk - &2K JLs i A i k i A

cyclic

I

c3; r ^ ) ^ • afc + iXra^, c3;



PIEPER, PANDHARIPANDE, WIRINGA, AND CARLSON PHYSICAL REVIEW C 64 014001

FIG. 1. (Color) Energies of ground or low-lying excited states of light nuclei computed with the AVI8 and AV18/UIX interactions,
compared to experiment. The light shading shows the Monte Carlo statistical errors. The dashed lines indicate the thresholds against breakup
for each model or experiment.

tion of the spectrum of light nuclei. Studies of nuclear and
neutron star matter with these new models will be reported in
a separate paper.

The theory of strong interactions has not yet progressed
enough to permit a first-principles determination of the two-
and three-nucleon interactions with the accuracy required to
calculate nuclear binding energies. The interactions must be
determined phenomenologically. Modern, realistic models of
v(j are obtained by fitting the —4300 data below 350 MeV in
the Nijmegen MV-scattering database [6] with a x2~ 1 P e r

degree of freedom. The Nijmegen database is said to be com-
plete, i.e., the included data determine all the relevant phase
shifts and mixing parameters. Thus v-tj fitted to it are well
determined and generally give very similar predictions of the
properties of three- and four-body nuclei, as will be dis-
cussed below.

In contrast it is much more difficult to construct realistic
models of Viyjt by simply fitting three-nucleon scattering
data, which is dominated by the pairwise forces. The number
of operators that can contribute to Vtjk is very large, and until
recently, the number of observables that could both be ob-
served and accurately calculated was small. Recent advances
in three-nucleon scattering calculations, based on correlated
hyperspherical harmonic [7] and Faddeev [8] methods, and
in high-precision Nd scattering experiments, hold significant

promise for testing models of Vijk in this regime. However,
the binding energies and excitation spectra of light nuclei
also contain a great deal of information, and are in fact the
only current means to investigate T= 3/2 forces.

An additional concern is that the V;jk obtained by fitting
nuclear data may depend strongly on the model of v -^ used in
the Hamiltonian. The VVjk will naturally depend upon the
chosen vtj to some extent. For example, two equivalent mod-
els of Vjjy related by a unitary transformation, will have
different but related V-tjk associated with them [9]. However,
combinations of v-tj and Vijk related by unitary transforma-
tions will naturally predict the same observables.

Models of Vjjk based on the elimination of field variables
date back to the work of Primakoff and Holstein [10]. The
first modern meson-exchange model for nuclear Vtjk was
proposed by Fujita and Miyazawa (FM) [11]; it contained
only the two-pi on-exchange three-nucleon interaction
y2ir,pw £ut tQ s c a t t e r jng of the pion being exchanged be-
tween two nucleons by a third nucleon via the P-wave A
resonance. This interaction is attractive in nuclei and nuclear
matter. Later theoretical models, such as Tucson-Melbourne
(TM) [12] and Brazil [13] included the V2^sw due to TT/V
5-wave scattering and V2ir>pw from all P-wave scattering. In
the recent Texas model, these two-pion-exchange contribu-

014001-2



REALISTIC MODELS OF PION-EXCHANGE THREE

-25

PHYSICAL REVIEW C 64 014001

FIG. 3. (Color) Energies computed with the AV18/UIX, AV18/IL2, and AV18/IL4 Hamiltonians compared to experiment for narrow
states. The light shading shows the Monte Carlo statistical errors. The dashed lines indicate the thresholds against breakup for each model
or experiment.

of 8Be. More quantitatively, Tables III and IV show various
averages of the deviations from experiment for the narrow
states of Table II. Table III is based on the deviations of the
total energies of the 17 states, while Table IV is based on the
deviations of the excitation energies of excited states. Both
tables show the average deviation (which includes the signs

TABLE III. Average deviations (in MeV) from experimental
energies. For each Hamiltonian, the average signed deviation, aver-
age magnitude of deviation, and rms deviation are shown for the 17
"narrow" states given in Table II (only 3He energies are used for

Model Average
deviation

Average
|deviation|

rms
deviation

AV8'
AV18
AV18/UIX
AV18/IL1
AV18/IL2
AV18/IL3
AV18/IL4
AV18/IL5

5.52(2)
7.32(5)
2.02(4)

-0.09(6)
-0.10(6)

0.04(7)
-0.21(6)
-0.12(6)

5.52
7.32
2.02
0.31
0.28
0.31
0.24
0.34

5.83
7.72
2.34
0.38
0.36
0.44
0.33
0.46

of the deviations), the average of the magnitudes of the de-
viations, and the rms deviations. The average deviations in
Table III demonstrate that the Hamiltonians with no V ^
systematically underbind these nuclei by 5 to 7 MeV; AVI8/
UIX reduces this to the still large value of 2 MeV underbind-
ing. The five Illinois models have no significant systematic
under or overbinding. Because the errors for the AV8',
AVI8, and AV18/UIX cases are so one-sided, their average

TABLE IV. Average deviations (in MeV) from experimental
excitation energies for the eight "narrow" excited states. As in
Table III, but for excitation energies rather than total energies.

Model

AV8'
AVI 8
AV18/UIX
AV18/IL1
AV18/IL2
AV18/IL3
AV18/IL4
AV18/IL5

Average
deviation

Average
|deviation|

rms
deviation

-0.23(5)
-0.22(10)

0.17(8)
0.29(13)
0.53(12)
0.03(14)
0.09(12)
0.27(13)

0.83
0.90
0.41
0.44
0.53
0.24
0.20
0.66

1.20
1.36
0.53
0.53
0.61
0.34
0.25
0.79

014001-11
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Neutron matter: Comparison of different
three-body potentials

The two-body interaction is Argonne vf
8

AFDMC method with 14 neutrons

Three-body potentials : UIX, ILL-2, ILL-4
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0.35

80

70

60

5* 50

<
u3 40

30

20

i n

EOS of neutron matter: V3 problem
i i i i i

/

/ '

/
*

•

s

I I I I I

I

Mo
A8'+UIX
A8'+IL4 : - + - - -
A8>IL2 r x ; „

-

i

0.4 0.45



? Homework problem ?

Model interaction

1. Argonne vf
6 potential (A&)

2. Argonne v's potential (A8f)

3. Argonne vf
8 potential plus UIX three-body

interaction {AU8')

Systems of interest

. 4He, 1 6 0 , 40Ca

2. symmetrical nuclear matter up to 2po

3. 8n with two single particle potentials

4. neutron matter up to 2p0

- Typeset by FoillfeX -
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3. - AFDMC: Auxiliary Field Diffusion
Monte Carlo for nucleon systems1

AFDMC uses Auxiliary fields to linearize the spin-
dependent part of the propagator

AFDMC samples the spin states rather than making
a complete sum

AFDMC treats the spatial part of the * ( i ? ,5 ) as
in DMC

AFDMC allows for N / Z and polarized systems

AFDMC does both nucleon matter and nuclei

AFDMC has already simulated 76 nucleons

AFDMC scales in A as standard DMC.

^.E.Schmidt, S.Fantoni, Phys. Lett. B 446 (1999) 99

- Typeset by FoilTgX -
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Auxiliary Field Motivation

• We need to sample the spin states to do large A
systems.

• Past attempts to sample them in the Sz, Tz basis
have failed.

• The SZ1 Tz basis gives high variance - we want
a basis where relatively few samples are a good
representation of the wave function.

Let's look at a coherent state basis. In our code we
use the usual spinors, but .... with coherent state basis
ideas.

A general spinor is \Q) times a phase factor, and

- Typeset by Foi
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Advantages of a Coherent State Basis

Two reasons for coherent state basis to give lower
variance:

1. If we have a weak spin exchange or spin flip
interaction, the spin state will be mostly the usual
spin-independent result. The coherent state can
smoothly add a small spin flip component.

2. We used the coherent state basis to introduce spin
correlations in liquid helium, with results that were
hindered only by the fermi sign problem.1

1J.W. Lawson, S.A. Vitiello, K.E. Schmidt, and S. Fantoni, Phys. Rev.
Lett. 78, 1846 (1997).

- Typeset by FoilTjTJX -



Disadvantage of Coherent State Basis

Coherent states are not orthogonal and overcomplete

= 1
2?r

Even though operators like

dn /S A>

look diagonal, they are not. Even if & ^ Q,f

0

Things like fixed node don't go through as simply as
with an orthogonal basis.

- Typeset by FoilTfeX -



Walking the Spinors

The spin independent term of the hamiltonian are
treated as in standard DMC

We want to sample the states produced by the
imaginary time propagator exp(—(VfD +

x 3/2

2nh2AtJ V 2h2At

where X = R,S denotes the new positions, and X'
the old ones.

- Typeset by FoilT£X -
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Walking the Spinors: continue

(a) We want our propagation to be local. That is: as
At —> 0 we want our propagator to go smoothly to
the identity and the walker to remain the same.

(b) One way is to write the spin part of the propagator
as

A

samples i=l

(c) The Hubbard-Stratonovich or auxiliary field
method accomplishes this breakup

- Typeset by



The Hubbard-Stratonovich or auxiliary
field method

Consider a two-particle system

1 + e(jxiA/tanh(—

1 + ea^ v tanh(-vf2)

As At -> 0 this goes smoothly to 1, and for nonzero
At, the spinors each get multiplied by a near unit 2 x 2
matrix. The e variables are sampled using the Monte
Carlo method.

The breakup above requires 3 Hubbard-Stratonovich
variables for each pair of particles for a spin-exchange
and tensor interaction, or 3A(A — l ) / 2 variables.

- Typeset by Foill^X -



Our Breakup: VQ interaction

To reduce the number of HS variables we diagonalize
VSD in spin-isospin space. This requires Order(A3)
operations, but the trial wave function determinant has
the same complexity.
—> This breakup is similar to those used in auxiliary
field break ups in Shell Model Monte Carlo.

V =

<j p=l

(aT)

ij

- Typeset by FoilTfcjK -



1. Our A matrices are zero when i = j and symmetric.

2. All the A matrices are real and symmetric
—> real eigenvalues and eigenvectors.

OL

3. The matrices can be written in terms of their
eigenvectors and eigenvalues

- Typeset by



One more step to get the squares of operators

3A

with

v S D

n = l
3 3A

+ 2

2

3 A

- Typeset by Foill^X -



The Hubbard Stratonovich
transformation

where s is 1 for A < 0, and i for A > 0.

(A) Our On don't commute, so we need to keep the
time steps small so that the commutator terms can
be ignored. Each of the On is a sum of 1-body
operators as required above.

(B) A discrete version of this transformation is given
by2

dxf(x)e-AtsXnOnX + O(At3)
— OO

f(x) = ^
ZS. E. Koonin, D. J. Dean, and K. Langanke, Phys. Rept. 278, 1 (1997)

- Typeset by



(C) the value of h is given by

one can use a more accurate formula (5,7, .. points)
or gaussian distribution

(D) We require 3A Hubbard-Stratonovich variables for
the a terms, 9A variables for the ar terms, and 3A
variables for the r terms. Each time step requires
the diagonalization of two 3A by 3̂ 4 matrices and
one A by A matrix.

(E) Many other breakups are possible.

- Typeset by FoilTgX -



Spin rotation - Neutron matter

'At|An

2TT

»oo

— oo

We sample a value of xn for the n-th field variable

We make a rotation in the spin space:

R: Sf - > S

Rotate the spin state of each individual particle k

k >= ail t > +b'k \rj
k

- Typeset by Foill^X -



0 :

r)k =

Vk = ak\ t >

= af
k(cosh(An)

+ bf
ksmh(An)(rn(k) -

An

—>• i s in(—

- Typeset by FoilifeX -



Three-body potential - Neutron Matter

The spin-dependent part of Urbana IX potential,
reduces to a sum of terms containing only two-body
spin operators

= 2xijkai(Jj

Xijk

yik = Y(mw, c3, rik) - r(m7r , c3,

Incorporate the spin-dependent part of the three-body
interaction V%D in the matrix AiiOi,j,p

2 ̂
k

- Typeset by FoilTgX -



The Spin-Orbit Propagator

Keep in the propagator all the terms linear on At
—)• two- and three-body, spin-dependent counter-

terms.

-» -* —777

(Vj - Vk)G0(R,R') = Tj-iAfj - Afk)G0(R,R')
a At

( • . , \

PLS - exp — ..J [(*j + <Tk) x rjk]

gives the correct term along with some extra incorrect
contributions

- Typeset by FoilTftX -



Expand \I>, and the propagator in powers of A r and
At, keeping all terms linear in At or quadratic in Ar .

[2 + (Tj - Gk - Sj

yadd V^ y ^ rnrjkrjpvLs(rjk)vLS(rjp)
3 7^ 2

j<k<p cyclic

[2 + <7fc • <jj + a p • (Tj + (jfe • ap]

ap

Without the above counter-terms the extrapolated
mixed and growth energies do not agree.

- Typeset by FO



Constrained Path

We still have the usual fermi sign problem.
Here, the overlap of walkers with the trial function
is complex (phase problem) .

We constrain the path to regions where the real
part of the overlap with our trial function is positive.

For spin independent potentials this reduces to the
fixed-node approximation.

There is no real proof that AFDMC gives an upper
bound

Actual calculations suggest that AFDMC gives an
upper bound

In any case, one can use path integral techniques
or forward walking to overcome this problem
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Is it an Upper Bound ?

The original argument by Zhang et al. (now
retracted ?) is essentially that the wave function
goes continuously to zero at the node as At goes to
zero, so the contribution from the node to H also goes
to zero and the contribution of the true H and the
effective constrained path H are the same everywhere
else, so you can replace

with

exp{-HCpt/2)Hexp(-HCpt/2)\yT)

and get the same result.

Unfortunately, because of the nonorthogonality of the
Coherent states, this argument does not go through,
but it is suggestive.
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Scaling with A

We have not done a detailed analysis, but roughly
it appears that our time step scales as A~l from
the eigenvalue range of our potential matrices.
We have reduced this somewhat by using multiple
small auxiliary field steps for each diagonalization.

We found that a time step of A T = W^MeV'1 is
generally sufficient in neutron matter simulations to
get consistency between the mixed and the growth
energies up to 2po ar |d 66 neutrons.

The order A3 diagonalizations are the same order
as the fermion determinants, so they cost an overall
prefactor to standard fermion Green's function
Monte Carlo of perhaps a factor of 10 or 20.
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Tail corrections

Monte Carlo calculations are generally performed
within the sphere of radius L/2

Tail corrections are estimated by integrating out the
spin-independent part of the two-body potential
from L/2 up to oo

We use full simulation box, and, include also
the contribution from the neighbor cells (26 are
generally enough up to twice

mno

yny + zoz\)

\-VnV + ZoZ\)

rp —- rp _l nry) T. II Qt —L. IT) T. • • •
mno
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The Algorithm

[1] Sample \R,S) initial walkers from |(*T|JR,S)|2

using Metropolis Monte Carlo.

[2] We propagate in the usual diffusion Monte Carlo
way with a drifted gaussian for half a time step.

[3] For each walker, we diagonalize the potential
matrix.

[4] Loop over the eigenvectors, sampling the
corresponding Hubbard-Stratonovich variable and
update the spinors for half a time step. We use
the expectation value of (StfT\<Ti\R,S) to introduce
approximate importance sampling of the Hubbard-
Stratonovich variables.

[5] Propagate the spin-orbit, using importance
sampling

- Typeset by FoilT^X -



[6] Repeat 2, 3, 4 and 5 in the opposite order to
produce a reversible propagator to lower the time
step error.

[7] Combine all weight factors and evaluate new
value of ($T\R,S). If the real part < 0 enforce
constrained path by dropping the walker ( keep it in
the calculation of the mixed energy).

[8] Evaluate the averages of (^T\R,S), and
{$T\H\R,S) to calculate the energy.

[9] Repeat as necessary.
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Problems and Future plans

Sign (phase) problem: construct trial functions
with better nodal structure (backflow, sum of
determinants,...); transient estimation

Nuclei and nuclear matter: the tensor-isospin seem
too strong. Our nuclear matter with tensor forces
looks bad, whereas nuclear matter and 4He with VA_
interactions are OK. It may be a problem of bad
trial function.
-> Include Spin-orbit and three-body forces into
our VQ nuclear matter code

Finite temperature : extend AFDMC ideas to Path
Integral Monte Carlo

Response functions: some recent ideas of Moroni
and Baroni for sampling the path integral polymer
using the classical reptation method may be useful.
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4. - EOS of nucleon matter

Neutron Matter with vL +UIX8

We use the simplest trial function

A >

The overlap is the determinant of the space-spin
orbitals evaluated at the walker position and spinor
for each particle multiplied by a central Jastrow
product.

For neutron matter in a box of side L, the orbitals
are plane waves that fit in the box times up and
down spinors.

Usual closed shells are 2,14,38,54,66, ... particles.
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Preliminary results of AFDMC calculations of the EOS
of neutron matter with the Argonne v's two-body
potential plus the Urbana IX three-body potential.

1. AU8 -> Argonne v's + UIX

2. AU6 -> Argonne v'6 + UIX

3. A8 -» Argonne v'8

4. A6 —> Argonne v'6

• AFDMC results for N=14,38,66 in a periodic box

• Results of PBFHNC calculations to estimate finite
size corrections. Full FHNC for Jastrow correlations
and two-body cluster for SOC correlation operators

• the correlation functions are computed by using
FHNC/SOC theory
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AU6 model with CBF theory1

Table 1: FHNC/SOC energy per particle of neutron
matter for the AUQ interaction at various densities. Tp
is the Fermi kinetic energy, and < T > is the kinetic
energy expectation value (average of the JF and PB
kinetic energies). A £ 2 is the second order perturbative
correction. AEeiem is the contribution from the lowest
order elementary diagram. All the quantities, except
p/po, are expressed in MeV.

P/Po
0.75
1.00
1.25
2.0
2.5

TF

28.969
35.094
40.722
55.708
64.643

<T>
35.33
43.82
52.27
74.40
88.85

EFHNC
15.2
20.4
26.7
54.8
80.2

AE2

-0.9
-0.9
-1.5
-4.4
-6.1

£
0
0
1
2
3

ljL/p/prn

.6

.9

.2

.8

.8

A.Fabrocini, private communication
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AU8 model with FHNC/SOC

Table 2: FHNC/SOC energy per particle of neutron
matter for the AU8 interaction obtained with a
correlation operator of the type fg, at various densities.
Tp is the Fermi kinetic energy, and < T > is the kinetic
energy expectation value (average of the JF and PB
kinetic energies). AEeiern is the contribution from the
lowest order elementary diagram. All the quantities,
except p/poi a r e expressed in MeV.

P/Po
0.75
1.00
1.25
2.0
2.5

TF

28.969
35.094
40.722
55.708
64.643

<T>
36.55
45.79
54.41
78.83
95.10

EFHNC
12.8
16.7
21.7
44.5
67.2

AEeiem

0.5
0.9
1.3
3.0
4.5
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AFDMC calculations with 14 neutrons

Table 3: AFDMC energies per particle in MeV of 14
neutrons in a periodic box for interaction models at
various densities. Error bars for the last digit are shown
in parentheses.

p(fm-'d)
0.12
0.16
0.20
0.32
0.40

A6
12.41(4)
15.12(4)
17.86(5)
27.84(6)
36.0(1)

AU6
14.96(6)
19.73(5)
25.29(6)
48.27(9)
69.9(1)

A8
12.32(5)
14.98(6)
17.65(7)
27.3(1)
35.3(1)

AU8
14.80(9)
19.76(6)
25.13(8)
48.4(1)
70.3(2)
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Table 4: AFDMC energies per particle in MeV for the
AU6 and AU8 model interactions at various densities
and for different numbers of neutrons. Error bars for
the last digit of the Monte Carlo calculations are shown
in parentheses.

Model
AU6
AU6
AU6
AU6
AU6

AU8
AU8
AU8
AU8
AU8

P(f
0
0
0
0
0

0
0
0
0
0

.12

.16

.20

.32

.40

.12

.16

.20

.32

.40

14.
19.
25.
48.
69

14.
19.
25.
48
70

14
96(6)
73(5)
29(6)
27(9)
.9(1)

80(9)
76(6)
23(8)
.4(1)

•3(2)

38

18.7(1)

46.8(2)

66
14.93(4)

26.51(6)
53.1(1)
79.4(1)

54.3(6)
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Spin-orbit problem

SOC(6) -> calcualtion with F6

SOC(8) -> calcualtion with F8

EOS of neutron matter: the spin-orbit problem

80 -

70 -

60 -

50

40

30

20

10

AU6 - SOC(F6
AU8 - SOC F6'
AU8 - SOC(F8!

AU8-AFDMC((

0.15
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Neutron matter: a comparison of
AFDMC with FHNC/SOC

EOS of neutron matter: AFDMC versus SOC

80

70

60

I 5 0

40

30

20

10

AU18-SOC(+boost)
AU18-SOC

AU6 - CBF
AU8 - AFDMC(66)

0.1 0.15 0.2 0.25

rho (fmA(-3))

0.3 0.35 0.4
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Compressibility of neutron matter

We have also calculated the compressibility /C from the
EOS of nuclear matter

_ 3 d2E0(p) 2dEQ(p)

-> Eo(p) is taken as a fit to the AFDMC energies
= 97T2m/(k^h2) —t Fermi gas the compressibility

K -L i 3

KF
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AFDMC and other calculations

(i) CBF -> from EOS; (ii) AU182 -> from EOS; (iii)
Reid63—> from Landau parameters ; (iv) Reid4 -> from
Landau parameters

1.8

1.6

1.4

1.2

1

0.6

0.4

0.2

n

-

-

-

-

compressibility ratio of neutron matter

i i i

' " " • - • • • - , . .

- v ^ - . ^ . r .

AU6 - AFDMC i—i—i
AU6 - CBF

AU18-SOC m
Reid6

Reid

-

-

i ---•—•«.«.----

0.1 0.15 0.2 0.25

rho (fmA(-3))

0.3 0.35 0.4

2A.Akmal et al.f Phys. Rev.C58 (1998) 1804
3A.DJackson et al., Nucl. Phys. A386 (1992) 125
4S.O.Backman et al., Phys. Lett. B43(1973) 263
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Nuclear matter with AFDMC1

We have computed (i) 4He nucleus, (ii) symetrical
and (iii) asymmetrical nuclear matter with V4 type of
two-body interactions

• Argonne vr
4 two-body potential

• Modified S3 (MS3) potential by Afnan and Tang2.
As in other calculations, we have added an
interaction for the odd channels, given by the
repulsive term of the even channels.

V(r) used for the mean field part of

V(r) =
1 + e x p ( ^ )

-> Vo = -56.2MeF, R = 1.8/m and a = 0.22/m
S.Fantoni, A.Sarsa and K.E.Schmidt, in Adv. in Quantum Many-body

Theories, in press
2I.R.Afnan and Y.C.Tang, Phys.Rev. 175 (1868) 1337
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V4 model of Nuclear matter with
PBFHNC3, FHNC/SOC and Auxiliary

Field DMC

Table 1: Results for the v'4 model of symmetrical
nuclear matter at p = 0.16.The AFDMC column
reports the mixed energy at a time step of
5 x l O - ^ M e V 1 . The PBFHNC and the FHNC/SOC
results refer to the Jackson-Feenberg energy.
PB-FHNC is calculated with the F1 trial function
and FHNC/SOC with the F4. The PBFHNC and
FHNC/SOC results should be corrected by adding
+0.6MeV which corresponds to the contribution from
the elementary diagram EQ. The number in parenthesis
for AFDMC gives the statistical error. The energies
per particle are in MeV.

A PBFHNC FHNC/SOC AFDMC
28

2060
oo

1.30
1.95
1.92

0.34(3)

1.45 0.96

}S.Fantoni and K.E.Schmidt, Nucl. Phys. A690 (2001) 456
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Table 2: Results for the MS3 model of symmetrical
nuclear matter at p = 0.16. The PBFHNC and
FHNC/SOC results should be corrected by adding
+l.2MeV which corresponds to the contribution from
the elementary diagram

A
28
76

2060
oo

PB - FHNC
-14.79
-16.83
-15.15
-15.20

FHNC/SOC
-
-
-

-16.10

AFDMC
-16.17(6)
-18.08(3)

4
-16.5
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Table 3: Time step dependence of AFDMC calculations
for the MS3 model of asymmetrical nuclear matter at
p = 0.16. The energies per particle are in MeV. The
time step A T is in units 10~5MeV~1)

N
14
14
38
38

Z
2
2
14
14

0
0
0
0

a
.75
.75
.46
.46

AT

10
5
10
5

E(N, Z)
5.52(4)
5.55(5)
-8.69(6)
-8.79(5)

A]
0
0
0
0

Pfree
.69
.69
.77
.77
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V4 model of neutron matter

Table 4: Results for the MS3 model of pure neutron
matter at p = 0.16. The PBFHNC and FHNC/SOC
results should be corrected by adding +2.2MeV which
corresponds to the contribution from the elementary
diagram

N
14
38
66

1030
oo

PB - FHNC
24.42
22.49
24.30
24.79
24.72

FHNC/SOC
-
-
-
-

24.49

AFDMC
25.46(2)
23.15(1)
24.80(1)

4
25.4
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MS3 model of asymmetric matter

dashed : FHNC/SOC with elementary diagram EQ
solid : FHNC/SOC without elementary diagrams
asymmetry coefficient with AFDMC: aT ~ 37MeV

30

25

20

15

10

5

0

-5

-10

-15

-20

Symmetry energy. MS3, a semirealistic potential

40.59Vx-16.10
"asym.afdmc" o

41.59*x*x-14.9 —

0.2 0.4 0.6
(N-Z)/(N+Z)

0.8
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MS3 model of the Alpha particle with
AFDMC, VMC4, Hyperspherical
Harmonics5 and Coupled Cluster6

Table 5: AFDMC results for the MS3 model of the
alpha particle, compared with the variational Monte
Carlo (JLO), Hyperspherical Harmonics (HH) and the
Coupled Cluster (TICC[2]-SD) results. In parenthesis
is given the statistical error.

Method
JLO
HM

TICC[2]-SD
AFDMC
AFDMC
AFDMC

Ar(10-5MeV~1)
-
-
-
1
2
3

E(MeV)
-30.41(2)
-30.299
-28.21

-29.95(7)
-29.42(6)
-29.28(6)

4E.Buendia et al., J. Phys. G: Nucl.Part. Phys., 2001
5S.Rosati et al. in Adv. in Quantum Many-body theories 2, 2001

Navarro, lectures at this school
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5. - Neutron Droplets1

We compare to the 7 and 8 Neutron droplet
calculations using GFMC and the vl8+UIX interaction2

Their purpose was to improve Skyrme models.

Since these small neutron clusters are not bound, they
added an external potential.

^external y) —
1 + exp

with

Vo = -20MeV
R = 3fm
a = 0.65 fm

•In collaboration with J. Carlson and F. Pederiva

B.S. Pudliner, A. Smerzi, J. Carlson, V.R. Pandharipande, Steven C.
Pieper, and D.G. Ravenhall, Phys. Rev. Lett. 76, 2416 (1996)
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Neutron Droplet Results

A
8
7

5
5

.0

.0

A T

x l tr5

x 10~5

Energy
-36.8(2)
-30.0(2)

Growth Energy
-36.2(3)
-29.0(3)

8 neutron GFMC result is -37.6(3) MeV.
7 neutron J = l / 2 GFMC result is -32.3(2) MeV.
7 neutron J=3/2 GFMC result is -31.2(2) MeV.

The reported differences between v8' and v l8 are less
than 0.2 MeV for the GFMC calculations. Their best
variational wave function gave -35.6(1) MeV for 8
particles. Our central variational wave function gives
an energy of -25.8(4) MeV.

Our 7 neutron results used a closed shell trial function
with a neutron removed from a spin up px — py space
orbital. This required no change to the code but the
trial function does not have good angular momentum.
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6. - Spin susceptibility of neutron
matter1

AFDMC calculations show that strong correlations
induced by modern nucleon interactions lead to a
sizable reduction of x-

X and the neutrino mean free path

• effects due to strong interactions are relevant, in
the spin-density channel which couples with the
axial vector current.

• small x ' s (or big Go's ) —>> suppression of the
Gamow-Teller transitions.

• need of the spin response at zero and finite
temperature in a wide range of densities

S.Fantoni, A.Sarsa and K.E.Schmidt, Phys. Rev. Lett., in press
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Theoretical calculations of %

• no calculations of \ with modern potentials;
previous evaluations of Landau parameters were
based either on Skyrme-type potential models or
on semirealistic interactions.

• theoretical estimates of XIXF may differ up to a
factor 3 at po, and even more at higher densities.

• need of ab initio calculations with modern many-
body methods to compute %

Skyrme models :
small values of Go
instabilities for densities in the range (2 — 4)po

Microscopic calculations :
Reid or Bethe-Johnston potentials
convergence and/or spin problem
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The actual calculation

The Hamiltonian we have considered to compute the
spin susceptibility in a magnetic field, ignoring any
orbital effects, is given by

H — HQ — y ^

where

b = \i B
IJL = 6.03 x l(T18MeV/Gauss

We have computed the susceptibility according to its
definition

2d
2E0(b)

Eo(b) is the ground energy in field b.
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The Pauli expansion

Pauli expansion of the energy per particle as a function
of the spin polarization p — —dEo(b)/db\b=o :

E(p)=E(0)-bp + - o

Minimize E(p) with respect to p

d2E - l

dp4 o

Fermi gas susceptibility XF -> /J>2mkf/(h27r2)
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AFDMC calculation

AFDMC gives the energy eigenvalue, Eo(Jz, b), for the
interacting system in a field b:

• finite number of neutrons in a periodic box

• quantum state of a given spin asymmetry Jz =

Assuming that the energy and polarization are known
in terms of Jz, use chain rule

02E
dp'' o =

dp
~dTz

- 2 d2E0 dE0

dJ,
dp

Since we are calculating the lowest energy state, the
derivative of the energy with respect to Jz vanishes:

32E
dp: o —

dp
~dTz

- 2 d2E0
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Non-interacting finite systems

The energy is not a quadratic function of the external
field b.

consider different (iV-f, JV )̂ systems with N ~ 60

each of the Eo(Jz,b) is tangent to the Pauli
parabola

the Pauli parabola agrees with the exact Fermi gas
up to about b ~ 50MeV

one gets X/XF ~ 1 for Jz = 50 and Jz = 57

Table 1: Closed shells which correspond to about 60
particles.

Jz
0
6
50
57

33
33
57
57

Ni
33
27
7
0

N
66
60
64
57
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The interacting case

In the interacting case, the derivatives of the
polarization and of the energy with respect to Jz can
be easily estimated by using the following equations

dp ^ EO(JZ = Jzp, 6 = 0 ) - EO(JZ = Jzp, 6 = 60)
dJz Jzo 60

d EQ EQ(JZ = J z o , 6 = 0 ) — EQ(JZ = 0 ,6 = 0)

ZQ

based on the following assumptions

• for 6 = 0, EQ(JZ, 6) is quadratic in Jz;

• for a fixed JZ1 Eo{Jz,b) is linear in 6;

• the polarization is linear in Jz (in the non
interacting case p = Jz/N) .
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Our optimal values, based on the non-interacting
case analysis :

Jz0 = 50
&o(p = 0.12) = 28
bo(p = 0.20) = 39
bo{p = 0.32) = 53

= 62

we have verified the dependence of XIXF on JZQ,

performing simulations with JZQ = 6 and found that
it is very weak

we have verified the linearity of E(Jzo = 50,6) on
b beyond bo = 39MeV and found that X/XF is
largely independent on bo.
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Spin susceptibility of neutron matter

spin susceptibility ratio of neutron matter
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Discussion of the results

AU6 and AU8 give the same results within
statistics

The AFDMC result for X/XF is 0.36(1) with Reid6
at p = 0.20fm~s is 0.36(1)
-» compare with 0.50 obtained by CBF theory2

Jackson et al. (Reid6) and S.Backman et al (Reid)3

compute the Landau parameters, and not directly

a time step AT = 10~4MeV~1 was sufficient
in most of the quantum simulations to obtain
agreement between the mixed and the growth
energies within the statistical accuracy.

finite size effects have been estimated to give less
than 10% contribution.

2Jackson et a!., Nucl. Phys. A386 (1982) 125
3S.Backman et al., Phys. Lett. 43B (1973) 263
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Multipair contributions

The results given in the figure for Reid6 and Reid
(S.Backman et al, Phys. Lett. 43B (1973) 263) are
obtained from

X
XF 1 +

instead of

x ™* M
XF m l + G0-iO(ff2) XF '

-> T] the renormalization of quasiparticle spin
-> the O(H2) term is the tensor contribution to the
Landau parameter
-> XM/XO 's the multipair contribution to the
response.
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7, - Conclusions and Future Plans

AFDMC opens up a new generation of fully
microscopic calculations for nuclear systems, at
normal and high density.

AFDMC allows for N ^ Z, as well as for spin
polarized systems

Simulations already done up to 76 nucleons with
modern potentials

The spin susceptibility of neutron matter between
and 2po is one third of the Pauli susceptibility.

The neutron matter EOS reasonable agree with
FHNC/SOC, except for a possible spin-orbit
problem. Three-body interaction.

4He, symmetric and asymmetric nuclear matter
with V4 interactions.
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Future Plans

1. Complete study of ^8+UIX neutrons

2. Neutron Drops - complete calculation of A=7 and
8 neutron drops

3. Transient Estimation

4. Backflow correlation (spin-orbit and tensor-r)

5. Nuclei and Nuclear Matter with realistic
interactionsa

6. Finite temperature

7. Response functions

8. Mesons, Nucleons, and Deltas
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