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The consequences of the physical law

Laplace, 1820

An intelligent being who, at a given moment, knows all the forces that cause nature to

move and the positions of the objects that it is made from, if also it is powerful enough to

analyze this data, would have described in the same formula the movements of the largest

bodies of the universe and those of the lightest atoms. Although scientific research

steadily approaches the abilities of this intelligent being, complete prediction will always

remain infinitely far away.

Dirac, 1929

The general theory of quantum mechanics is now almost complete. The underlying

physical laws necessary for the mathematical theory of a large part of physics and the

whole of chemistry are thus completely known, and the difficulty is only that the exact

application of these laws leads to equations much too complicated to be soluble.
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Many-body and Computational Physics

I The equations that Dirac alluded to are complicated because of the

many-body nature of the systems that they describe.

I One may try with approximate analytic (many-body) theories.

i Or one may turn to computers (Metropolis etal., 1953; Alder and

Wainright, 1957; .. .)•

i Computational physics has turned into a third way of doing physics,

together with theory and experiments:

3 It is often able to give essentially exact predictions where

experiments are not possible, difficult, expensive.

3 It allows for a check of approximate analytic theories.

3 It offers, when feasible, a direct approach to problems.
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Plan of the lectures

3 Lecture 1: Generalities. Multidimensional integrals and the Monte

Carlo method. Random numbers and generators. Markov chains and

random walks. Estimate of the errors.

3 Lecture 2: Variational Monte Carlo. Optimization of the wavefunction.

Correlated sampling ad reweighting. Variance minimization.

3 Lecture 3: Diffusion Monte Carlo. Imaginary time evolution. Small time

Green function. Importance sampling. Fermions, nodes, and the sign

problem. Other ground state methods properties. Path Integral Monte

Carlo and finite temperature properties.

3 Lecture 4: Selected applications - I.

3 Lecture 5: Selected applications - II.
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A partial list of references

David Ceperley lecture notes on Quantum Monte Carlo (QMC):

http://archive.ncsa.uiuc.edu/Apps/CMP/papers/cep96b/lnotes.ps

A recent school on QMC: NATO Advanced Study Institute: Quantum Monte Carlo

Methods in Physics and Chemistry, ed. P. Nightingale and C. Umrigar (Kluwer,

Dordrecht, 1999).

A book on QMC: Monte Carlo Methods in Ab Initio Quantum Chemistry, by B.L

Hammond, W.A. Lester, Jr., and P.J. Reynolds (World Scientific, Singapore, 1994).

A book and a long article on Monte Carlo methods: Monte Carlo Methods Volume I,

M.H. Kalos and P.A. Whitlock (Wiley, New York, 1981).

Monte Carlo Methods in Statistical Mechanics: Foundations and New Algorithms,

Alan D. Sokal (Cargese Summer School on " Functional Integration: Basics and

Applications, 1996; also Cours de Troisieme Cycle de la Physique en Suisse

Romand, Lausanne, Switzerland, 1989)
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Notation

M The N-body Hamiltonian (for a one-component system!) is

with
h2

D = — , R=

and

M R is a d-N-dimensional vector

O is a generic Hermitian operator ( / , H, n(r) , n(r, r '),...)

r is the imaginary time (r = it/h).
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Quantum Averages I

Quantum averages involve multidimensional integrations (here J ) :

M (Ground) state average

(Oh =
(4>\O\<t>) fdR<KR)*O<KR)

<</#)

dR

JdR\<t>(R)\

<</#>
= f dR7r(R)OL(R)

M The method of choice is Monte Carlo (MC) Integration.

dR7r(R)OL(R) ~
M

± cost
M large.

if the walkers {Ri} are distributed with the probability TT(R).
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Quantum Averages II

Temperature averages also involve multidimensional integrations:

3 For classical systems

3 For quantum systems

and

is the temperature density matrix.

3 Above, Z is the canonical partition function.
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Multidimensional Integration

Quadrature (Simpson-like) schemes are unfeasible!

M A regular grid with 10 mesh points per axis would require

evaluations of the integrand, for N particles in d dimensions, i.e.,

1030 operations for 10 particles in 3 dimensions!

M A simple operation takes say about 10~9s on a present computer.

M A year is about 3 x 107s.

M Integration by quadrature even for 10 particles would take too

many years! About 3 x 1013 years!
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Error scaling for quadrature

3 If we integrate over a hypercube of side L, with a mesh of size h, the

number of grid points is M = ( L / / i ) d A r , i.e. h oc M~l^d'N\

M Assume that the error oc hl. Hence

error oc l/Ml/{d'N)

Since I is of order unity, the error decays exceedingly slowly with M.

In fact, the larger is d • N the slower decays the error.

M For N = 20, d = 2,1 = 4 (Simpson rule), halving the error of an

evaluation with M points requires going to

2d-N/l . M = 22-20/4 . M =

points; to reduce it by a factor 4 requires 106 • M points, and so on!
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Monte Carlo Integration

Monte Carlo Integration is the only choice:

1
dRn{R)O{R) ~ -T7^2O(Ri), M large

with an

error oc 1/vM,

provided that the configurations or walkers {Ri} are distributed with

the probability TT(R).

To halve the error only 4 • M points are required; 16 • M points are

sufficient to reduce the error by a factor 4; and so on. Also, there is no

dependence on the dimensionality of the configuration space.
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Generating the random walk

Configurations distributed with a given probability can be generated with a

variety of algorithms:

M (generalized) Metropolis algorithm,

M Molecular Dynamics,

M Langevin Dynamics,

M combination of the above,

M other.

In the following we shall restrict to the (generalized) Metropolis algorithm.

Metropolis method generates configurations resorting to random walks, for

which random numbers need to be generated.
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Random numbers

M Random sequence of numbers drawn from an assigned probability

density, say u(x):

u(x)dx = probability that x falls between x and x+dx, / u(x)dx = 1

«• Uniform variates:

u(x) =

Vl(rp) —
KAJ \ *AJ J

M Other variates

Oil 11 ILAJ \ LJ J

Ub I LJ J
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Generation of pseudo numbers

M Let's concentrate on the uniform distribution (0 < x < 1):

M a proper generator will produce values of x placed at random in

the given interval;

M for large generation numbers the x values will be uniformly

distributed in 0 < x < 1;

M for large generation numbers both the average and variance

calculated on the generated values will reproduce those of the

assigned uniform distribution.

-• In practice pseudo random numbers are generate on computers with

deterministic rules [sequences are perfectly reproducible!].

3 In the following we shall assume that a good generator of uniform

variates is provided, disregarding the issue of how to device it.
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Random variates: the inversion method

How we can generate non-uniform variates from uniform ones, w(y) from

u(x) = 1, 0 < x < 1? Let's consider the inversion method.

B Look for y = f(x) such that if x's are distributed according to u(x),

then y — f{x) are distributed according to w(y).

B Start from

u{x)dx = w(y)dy = u(f~1(y))df~l{y),

and use u{f~l(y)) — 1 to get

dyfw(yf) = W(y).
-oo

If W(y) and its inverse are known, y = f(x) = W~
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Random variates: the rejection method

When the inverse of W(y) = J^ dyfw(y') is not known [ w(y)

non-uniform], one may resort to the rejection methods

M Look for f(y) > w(y). Here we choose f(y) = w1

Generate a uniform random number y

Generate a second uniform random number

'max-

(1) w(y)/wmax > f, accept y

(2) w(y)/wmax < f, reject y

It easily seen that y is distributed according to w(y)

Note: the normalization of w(y) is not necessary!

Metropolis method is a particular rejection method.
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Random Walks (Markov Chains)

A Markov chain is fully specified by the initial distribution and by the

transition probability p(s, sr). Markov chains provide a convenient way to

sample multidimensional probability distributions.

The state (or configuration) s of the system is changed randomly according

to the transition probability p(s, sf) = p(s —» sf) satisfying

, s') = l and p(s , s ' ) > 0 ,
s'

thus generating a random walk (or sample) (so, Si, $2,. . .)•

If p(s, s1) is ergodic there exists a (unique) probability measure TT(S)

satisfying at equilibrium the stationarity condition:
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Moreover if pn(s, s') is the probability to reach s' from s i nn steps then

\impn(s,s') =TT(S') :
n—»oo

the random walk converges to the equilibrium distribution irrespective of the

initial distribution.

The transition p(s, sf) is ergodic if the following conditions are verified:

-• Irreducibility: for each (s, sf) there exists an n > 0 such that

> 0;

M Aperiodicity: p(s, s) > 0;

M The average return time is finite: it exists JVS>S/ < oc such that, for

n>
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Detailed balance

A sufficient condition to obtain n(s) as stationary distribution is to chose

the transition probability to satisfy

7r(s)p(s,s') =7r(s')p(s\s).

In fact summing the above over s one gets
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Generalized Metropolis Algorithm

The transition probability may be conveniently decomposed into the

product of an irreducible proposal or sampling matrix T(s , sf) and an

acceptance matrix A(s, sf)

p(s,s')=T(s,s')A(s,sl).

Imposing the detailed balance yields

A(s, s') TT(S')T(S', S) _

A(s',s) ir(s)T(s,s') -

which can be satisfied quite generally by choosing

A(s,s') = F[q(s,s')},

where the function F : [0, oo] —> [0,1] satisfies
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F[z]
= z, for all z.

Metropolis choice:

F[z] = mm[l, z]

3 An alternative choice could be:

z
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Monte Carlo Estimates and Averages

One would like to evaluate the true mean

(O) = f dsir(s)O(s),

whereas MC yield a sample (si, 52 , . . . ,%) of length ~ M of states

distributed according to TT(S). Evidently, one can define a sample mean

M

M
1=1

with C?i =

The sample mean is an unbiased estimator of the true mean, i.e.,

(O) = (O) independently of M.AIso, it is possible to prove:
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the law of large numbers, liniM^oo O = (O);

M The central limit theorem, which states that O is normally distributed

around (O).

Therefore we need to evaluate the variance

- (o))2),
whose root we may interpret as statistical error on O.
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The statistical error

Using O = ( 1 / M ) X ^ = i ^ » o n e obtains for the variance

t=M-l

( ) X 7

Here

Cit) = (OsOs+t) -

is the normalized time autocorrelation function, which evidently reduces to

the variance of O at time 0, C(0) = cr2(O), and the integrated correlation

time

" C(t)oo

T =
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accounts for the correlation existing between walkers in the Markov chain.

In general r > 1.

A sample estimate of C(t), with a bias of order 1/M is given by

1 = 1

Thus one has an estimate for cr2(O) = C(0) « C(0),

M

and the correlation time can also be calculated from C(t).
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Blocking and estimate of errors

The precise estimate of the error bar requires the calculation of time

correlation functions, which one would rather avoid.

An alternative is provided by the blocking procedure. The sample is broken

in a number of blocks M = 7V&n&, with NB the number of blocks and and

rib the length of each block. New variable are constructed as block

averages

and clearly have a mean equal to the run mean O. Intuitively, if n& ^> r,

this new variables should become statistically independent and therefore

have a variance around their mean O given by
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Nb

One can indeed show that provided n& ^> r and yet n^ < M or

equivalent^ A^ large

A plot of a2(Ob) versus n^ will reveal a plateau, where in fact the above

relation holds, and therefore it also yields an estimate of the correlation

time.
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Implementation of Metropolis algorithm

Given a probability TT(S) to sample (here, s is the state of the system and

TT(S) may be not known in closed form, see, e.g., DMC, GFMC):

M Chose the proposal matrix T(s , s') ;

M Initialize the system in the state s§,

3 To advance from sn to sn+\\

M sample s' from T(sn, s'),

M calculate
7T(S')T(S', Sn)
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M generate a random number rn and compare it with q(sn, s')\

* if q(sn, sf) > rn\ sn+1 = s'

m else 5 n + i = sn.

M Throw away the first k states as being out of equilibrium;

M Collect averages using the configurations with n > k and block them

to calculate error bars (???).

3 Example: T a constant in a cube, TT(S) OC exp(—/3V(s)).
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Some facts about Metropolis:

3 The normalization of the probability, J ds TT(S), is never needed and

in fact cannot be calculated (... easily).

3 Particles can be moved one at time ( hard spheres!);

3 For the generalized algorithm (T(s, sr) is not a constant) one has to

sample both forward and reverse transition;

3 An optimal acceptance is

moves accepted .
A = — ~ 1/2.

total moves

In fact the overall efficiency may dictate different choices (see, e.g.,

DMC).
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M The length of the necessary thermalization (deciding the number k of

initial moves to discard) can be investigate monitoring cumulative

averages of physically relevant quantities (energy, density profile, ...).
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Plan of lecture III and IV

Variational Monte Carlo

M Variance minimization.

M Optimization of the wavefunction

M Correlated sampling and reweighting

Size extrapolation

Diffusion Monte Carlo

The algorithm

Fermion and Fixed-node Approximation
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Variational Monte Carlo

3 If the wavefunction is given, MC provides a straightforward mean of

evaluating state averages.

3 Assume that we have a trial wavefunction \I/(i?; a) depending on a

set of parameters a = (a i , a<i,..., ap). The variational theorem

states that

fdR*(R;&yH*(R;&)

with EQ the exact ground state energy.

3 We know how to generate configurations (say M) distributed with the

probability 7r(i2; a) oc | ^ ( i ? , a)|2 . Hence we can estimate E(a),

MQMBT Trieste 2001 Gaetano Senatore Quantum Simulations I - p. 33



dR

1 M

; a) by minimizing E(a), to obtain the best upper

M Note: as $ a —> $ n (an exact eigenstate), EL(R); a) approaches a

costant everywhere, EL(R)]3L) —> En.

We can optimize

bound to

M The above implies the zero variance property: as ^ a approaches an

eigenstate the MC estimate of the energy converges more rapidly with

the number M of steps in the random walk.
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Variance

The optimization of \&(i?; a) can be also achieved with other techniques.

M Another quantity enjoying a minimum property is the variance

The minimum value attainable by a2 is 0, which is achieved whenever

\I/(i?, a) coincides with an exact eigenstate of H, say $ n with

eigenvalue En, and Eref is set equal to the En.

In principle one could judge on the quality of a minimization by looking

at the size of a2. In practice, variance minimization has a number of

bonuses:
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M It can be used to study excited states (by a proper choice of the

constant Eref).

M Being a sum of squares, a2 can be efficiently minimized using efficient

algorithms like that of Levenberg and Marquand.

M It requires a smaller number of configurations as compared with the

energy minimization.

M The only way a2 (a) can be made small is by having EL(R; a)

smooth and close to an eigenvalue, whereas the energy minimization

can be biased by configurations with EL(R] a) to low.
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Weinstein criterion

The variance

is a measure of the distance of E^ from exact eigenvalues. In fact,

only vanishes at an energy eigenstate.

M It is easily shown that in the range

there is always at least one exact energy eigenvalue.

3 There is always an energy eigenvalue whose distance from E^ is at

most cr,0. Hence, <x̂  can be employed to determine the (energy)

accuracy of a minimization.
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The Trial Wavefunction

A good trial wavefunction, apart from being flexible enough should satisfy a

minimum number of basic requirements:

M \ I / and V\& should be continuous for finite potential V(R).

M Not only / ^ 2 and / * * # * should exists, but also / * * # 2 * , in

order that the variance exists and statistical errors are finite.

M The wavefunction should embody all the know exact behaviors, so as

to make the local energy EL{R) as smooth as possible.
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Symmetry

should have the correct symmetry property, i.e., for any particle

permutation P:

M for Bosons

and for Fermions

Above

S =

denotes the set of discrete spin projection variables.
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Symmetry - Bosons

3 For an uniform Bose fluid the simplest trial function is of the

Bijl-Jastrow type

= exp[- = J(R).

M More refined wavefunctions include three-body correlations to read

= J(R) • exp[-

=M The Feynman ansatz u$ = V i e lds

= J(R) . exp
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Pseudopotentials for

/2O) = exp[-u(r)]

M Me Millan: u{r) oc 1/r5.

Ji OJ: optimized u(f).

M OT: optimized u${r).
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Variational calculations for

Table 1: Energy E of He4 with various wavefunctions

M

OJ

OJTa

OJOT

DMC

E

-5.702(5)

-6.001(16)

-6.862(16)

-6.901 (4)

-7.143(4)

T

14.712(50)

14.709(20)

14.233(8)

14.049(18)

(E-E0)/(2T)

5.1%

4.1%

0.99%

0.86%

0.0%
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Symmetry - Fermions

A typical Fermion wavefunction is obtained augmenting the symmetric

Jastrow function by a Slater determinant ensuring antisymmetry,

with (pi(rki (Jk) the i-Xh orbital. One needs, for N particle N distinct

spin orbitals to get a non-vanishing determinant.

-3 More refined wavefunctions are obtained

M with resorting to triplet pseudopotentials:

By including backflow in the the Slater determinant. [Particle

coordinates are replaced by suitable collective coordinates].
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Smoothness of EL(R) - small r

Look at the dominant terms in EL{R) when two particles come close.

3 For He atoms

EL(R) = v(r) + 2DV2u(r) - 2D(Vu(r))2 + • • •,

with v(r) the pair interaction. So for LJ interaction one is led to

McMillan u(r) oc 1/r5, r —» 0. Here r = r^.

For electrons one would chose the <fii(r) as exact solution of the

independent particle problem; then with an analysis similar to the one

above one would get u(r) = a^r, —> 0, with

3 an = -e2/'(4D), and

* au = -e2/(8D).
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Smoothness of EL(R) - large r

The study of u(r) at large r is most easily accomplished by rewriting the

variational energy in reciprocal space in terms of the collective coordinates

with

S(k) =

the static structure factor.

Using the RPA approximation, one obtains for the energy

Ev = To + J2 (s(k) • (Dk2u2(k) + \v{k))
1 \
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and for the structure factor

2u(k)S0(k)'

Variation with respect to u(k) immediately yields

1 2v(k)
+

3 For charged Fermions in 3 dimensions this implies,

u(r) oc 1/r, —> oo.

M For short ranged potentials, like Helium, replacing u(k) with a

constant for small k one obtains u{r) oc 1/r2, —» oo.
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Reweighting

Optimization techniques require taking derivatives of MC estimates with

respect to the variational parameters.

In principle one would obtain a sample {Ri} from TT(R] a) and a sample

{R[} from 7r(R; a') to calculate for example

M

and

and from these the derivative of E(a). This procedure, however, turns out

to be unstable due to the independent statistical errors on the two

^estimates of the energy.
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If the two parameters sets are close enough to each other a winning

strategy is to use the same sample, say {Ri} for both evaluations. In other

words,

with

MQMBT Trieste 2001 Gaetano Senatore Quantum Simulations I - p. 48



Ewald sums and N extrapolation

M Properties in the long-wavelength limit depend on long-range

behaviour of the trial function as well as on the modeling of the system

under study.

M Especially for Coulomb systems it is crucial to consider periodic

replicas of the simulation cell, and to sum interactions with all the

replicas (Ewald sums). It is also important to Ewald sum the

pseudopotential.

M Even allowing for Ewald sums Coulomb systems have residual size

effects due to the size of the cell (finite number of particles).

M Important size effects are present in Fermion systems in the Fermi

liquid regime due to levels shell structure.
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3 To study systems in the thermodynamic limit, one can:

3 Study the system at various TV and then try to extrapolate to

N = oo. This is usually the case with VMC. Some times This is

also done for DMC simulations (see following lectures).

3 Assume that the N dependence does not depend much on the

details of the simulation and borrow the number dependence of

VMC. This is usually done with DMC and GFMC.
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Some filtering (projection) techniques

Suitable evolution to evolve a initial guess or trial wavef unction ^/T(R) into

the sought ground state $o(i?). The evolution can be either in imaginary

time (DMC, PIGS), or time integrated (GFMC).

GFMC

n + o
with H + Vo positive definite and £ r close to the ground state energy

Expanding ^T in eigenfunctions of H, ^o — ^ T = J2i °i^u one

immediately gets
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/ j

+
o

n

which for large n implies

i n

provided that CQ ^ 0.

Evidently, higher energy components, compared with the funtamental

one, die out exponentially as

o + Vo n

= exp —nlog o

Knowledge (construction) of g(R, R') is necessary.
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DMC: = * r , or

; (n = / dR' G(R, R'] r)tf ( # ; nr),

,R!]T) = (R\exp[-r(H-ET)]\Rf),

and ET close to the ground state. Again for large n one projects out

the ground state according to

oc exp(-nr(E0 -

3 Note that
/»OO

g(R, R') = /
Jo

with ET = -Vo.
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s Both DMC and GFMC involve d • N dimensional integrations,

which require MC techniques and can be dealt with by resorting to

random walks.

M One has to sample the appropriate Green's functions: this can be

arranged with a small time expansion for DMC and other

techniques for GFMC.

3 Both DMC and GFMC are implemented as power methods, i.e., in

an iterative manner.

P I G S

It implies classical simulation of interacting polymers. It allows for pure

stimates and is easily extended at finite temperature.
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Diffusion Monte Carlo (DMC)

From a trial wavefunction to the exact ground state:

M Imaginary time evolution ( t —> —irk, D = h2/2m )

dr
OO

n=0

filters out high energy components:

oo

n=0

for large enough times r.
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M If $ ( i? , r ) > 0, then it can be regarded as a probability and the

equation above can be exactly integrated by numerical means.

M It is convenient to resort to Green function of the equation,

G(R,R';T) = (R\exp[-r(H - ET)]\Rf), and put \t\n

integral form and use random walks.

M The equation contains:

m a diffusion term, describing brownian motion, and

j> a rate term describing death and birth processes

M In practice the equation is not easy to deal with because usually the

potential is not boundend: is infinite for certain configurations.

M The cure to the above problem is importance sampling.
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Importance sampling

3 A smooth evolution equation is obtained evolving the mixed distribution

with the initial condition f(R] 0) = ^^(R). The resulting equation is

[EL(R) - ET}f + DV

¥Q(R) is called the quantum force.

M Note: here and in the following we assume real wavenfunctions, which

is always possible for the ground state without magnetic field.
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Small time Green Function

3 The evolution of f(R, r) = $>(R; T)^T{R), involves a modified

Green's function,

G(R, R'; T) -»• K(R, R'; r) = VT(R)G(R, R';

3 which, for small time A T reads

1 ~

K(R', R; AT) = K1XK2 + O(AT2),

~[R' - R -

K2 = exp (- (^[EL(R') + EL(R)} - E^j AT
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Processed described by the K(R, R!\ r

It can be easily shown that the small time Green function describes to

distinct processes:

3 K\ is the small time Green function of

1 = ~DX/2f

which has the steady-state solution / =

M K2 is the small time Green function of

and describes rate processes, or branching.
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The algorithm to sample f(R, r

• To perform the filtering and sampling use

f(R, (n + 1)AT) = / dR' K(R, R'] Ar)f(Rf; nAr)

Start from

f(R, o) =
i=l

M Evolve / ( i ? , 0) by one step to get

f(R,Ar) = Y, J dR'K^R>^,oi AT) X KX(R,Rifi] AT)

x K^R, Rifi; AT)
I
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The algorithm: Diffusion with a drift

Sample / ( i ? , A r ) to get a new generation of walkers

Nw). as follows:

X

normally distributed, variance 2DAr,

accept the move with probability

p = min ,1

to eliminate time step errors in this part of the evolution.

Note that the exact G is symmetric (—> p = 1)!.
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The algorithm: Branching

» Of each walker take m (integer!) copies, according

s. m = Wi + x' = e

J* x ' f lat in]O,l [ .

M Periodically adjust ET to keep the walker population ~

ITERATE, discard the initial transient (filtering!); accumulate averages.
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Importance sampling: mixed estimates

With importance sampling it is easy to evaluate mixed estimates

JdRf(R)OL(R)
mix J dR $0(R)VT(R) J dR f(R)

M

M .=i

For the Hamiltonian and for operators that commute with it, the mixed

estimate coincides with the pure estimate,

H >mix= EQ, < O >mix — < O >o .

M For other operators < O >mix is different from the pure ground state

expectation value < O > o = < <&0|C>|<E>o > ••
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Extrapolated estimates

For operators that do not commute with H, assume that "$?T is close

enough to <3>o

$ >=

Then a reasonable approximatation to the pure average is given by the

extrapolated estimate

> = 2<O>mix-<O>VMC

Another possibility is to resort to forward walking, whereby keeping

memory for a while of the walkers evolution, one becomes able to

evaluate pure estimates.
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Fermions and DMC: the nodes

Nodal surfaces

H= -

= En$n(R).

Statistics <-> symmetry of

m Bosons: <E>f = <E>0

JI Fermions: $ ^ = $ n , n > 0 if TV > 2.

A An excited state of H ($n , n > 0) has nodes

^ = $n, n > 0

Absence of exact and stable algorithms: because of roundoff

errors even if \&T is antisymmetric,: ^ y ^ &
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Fixed-Node Approximation (Fermions)

^ = $ n , n > 0

M &n(R) < 0 is not a probability

However, the nodal regions of the lowest state of given discrete

symmetry possess a tiling property, given a nodal region all the others

are obtained by the first by permutational symmetry.

M Thus It is possible to consider one of the equivalent nodal region,

and get a Bosonic problem with homogeneous boundary

conditions.

3 The exact nodal surface unknown in general: fix the nodes to

those of ^T(R), which implies f(R) > 0 everywhere.

M Fixed-node is variational and stable.
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Fixing the nodes on the walkers

3 Constrain the random walk to a given nodal region, rejecting moves

whereby a walker crosses in a different nodal pocket.

In practice, monitor the sign of ^T- If the proposed move is such that

< 0 reject the move.
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Plan of last lecture

Helium-4

Electrons in low dimension

M Magnetization transition in the 2D electron gas (egas)

M A model quantum wire

M Electron-hole bilayer
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He4 by DMC

In the following as a first illustration of the method to Bosons, we show

selected results of DMC calculations for He4, after Moroni et a/(PRB 52,

13547,95).

In particular we shall give results for

The equation of state

Structural properties

The condensate

3 Note: the HFDHE2 of Aziz et al (JCP 70, 4330, 1979) was used .
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Equation of state of

Dashed and dotted lines are fits to the MC results.

3 Exp: Roach etal, (PRA 2, 543, 1970).

3 VMC: OJOT
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Pressure and compressibility of

M Dashed lines are fits to the DMC results.

Exp: Roach etal, (PRA 2, 543, 1970).
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The g(r) of He4 at the equilibrium density

M Note the improvement from the VMC - M to the OJOT.
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The S(q) of He4
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The one-body density matrix of
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The condensate fraction in
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Condensate fraction in

T a b l e 2 : Condensate fraction n 0 in 4He. DMC, GFMC(Whitlock et al, 87), and

HNC(Manousakis et al, 85) predictions are at T = 0. The PIMC(Ceperley, Pollock, 86)

result is at T = 1.18°K. The density is in A~3.

p

DMC

PIMC

GFMC

HNC

0.01964

0.112(1)

0.02186

0.0717(5)

0.069(10)

0.092(1)

0.092

0.02401

0.0462(6)

0.052(1)

0.065

0.02622

0.02.71(6)

0.037(2)

0.043
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Electrons in low dimension

Quasi 2D and 1D electron (hole) systems are nowadays routinely

realized in the labs.

M Very low densities are becoming achievable: exchange and correlation

(!) should have measurable consequences in these systems, however,

their balance is extremely delicate.

M Coupled electron (hole) layers [Quantum Wells (QW)] should bring

about addictional correlations effects and phases.

M High accuracy is crucial for reliable predictions.

3 Accurate calculations should clarify some of the points above and may

be guide experiments.
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