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Date of report

New BEC observations from May 1,1997, as reported by our correspondents. Color indicates atomic species: H, He*, Li, Na, Rb. Numbers of condensate atoms are as
communicated to us, and reflect different thermodynamic conditions - see the original reports for details.

Twenty-six new reports of laboratory observations of BEC in atomic gases have come in since May, 1997:

O May 18, 2001: Vive la difference!
O May 17, 2001: Strine debut
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470 Dalfovo et al:. Bose-Einstein condensation in trapped gases
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FIG. 5. Condensate fraction as a function of 77 71]?. Circles are
the experimental results of Ensher et al. (1996), while the
dashed line is Eq. (15).

analyzed extensively in the next sections. Here we
briefly discuss the relevance of finite-size corrections.

C. Finite-size effects

The number of atoms that can be put into the traps is
not truly macroscopic. So far experiments have been
carried out with a maximum of nhnnt 10? atom* Ac a

0.8
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0.4

0.2

0.2 0.4 0.6
i 0

0.6

T/Te°

FIG. 6. Condensate fraction vs temperature for an ideal gas in
a trap. The circles correspond to the exact quantum calculation
for N= 1000 atoms in a trap with spherical symmetry and the
solid line to the prediction (19). The dashed line refers to the
thermodynamic limit (15).

van Druten (1996b) found that finite-size effects are sig-
nificant only for rather small values of N, less than about
104. They also calculated the occupation of the first ex-
cited levels, finding that the fraction of atoms in these
states vanishes for N—>°o and is very small already for N
of the order of 100.
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FIG. 3- pf'ir) for McMillan-Jastrow wave function at
n=0.365ar""3 in HNC, HNC/4, and HNC/S approximations.
The dots give results of Monte Carlo calculations.

elementary diagrams are quite accurate.
The values of the three scaling factors for the

McMillan-Jastrow wave function at equilibrium density
are found to be

5^=2.72, ^ = (2.23)

Puoskari and Kallio12 use both the two-component mix-
ture and Fantoni's formalism used here to calculate the
p(rij'). At any level of approximation the mixture for-
malism and Fantoni's p(rir) are proportional to each oth-
er. The only difference is that in mixture formalism the
n0 is calculated by using the normalization condition
(2.20) in Eq. (2.5), whereas Fantoni calculates it indepen-
dently by Eq. (2.9). PK also use scaling constants sdd,
Sfa, and SMJ, (their <ca/3 equal 1 +sap in our notation), and
determine them from TJF = TPB, r M D = 7 j F , and
TWmixture) = TM D where TM D (mixture) is the kinetic
energy obtained with n (k) from mixture formalism. This
procedure is identical to ours because n(fc)(mixture) is
proportional to n(Jfc), and so 7MD(mixture)= J M D is
identical to the normalization condition. Thus we do not
find that the mixture formalism offers any simplification.
PK neglect the contribution of one-body elementary dia-
grams Ed and Ew; we include them, but find that they are
small.

III. THREE-BODY CORRELATIONS

A significant improvement in the variational energy of
•^pad helium is obtained by including three-body correla-
tions in the wave function.7-15 The wave function (the
* + T denotes Jastrow plus triplet) is taken as

) I I /3(ry,r l fc), (3.1)

eye 1=0,2

The / = 1 term of / 3 gives the dominant contribution, the
/ = 0 term gives a small contribution, and the 1=2 term
has negligible effect.7

HNC equations for the distribution functions of the
J 4- T wave function have been discussed in Ref. 7. The
HNC equations for the density matrix are obtained in an
analogous way by replacing the Exy,xy=dd, wd, and ww
as follows:

(3.3)

(3.4)

(3.5)

(3.6)

Here Cg, are three-body elements given by

^p f [fliT^TjJ-l]

Cluu,(r11-)=0 .

E%y is the sum of elementary diagrams having only
gxy — 1 bonds, and E'^ is the sum of elementary diagrams
having one or more three-body correlations. The E^ di-
agrams are given in Fig. 1 of Ref. 7, and £^,4, E^, and
E'Wt4 diagrams are given in Figs. 4, 5, and 6, respectively.
In these diagrams a wiggly line triangle \jk with 1 as an
external point represents

whereas a plain triangle ijk represents

As in Ref. 7, a cross on a side ij of the triangle indicates

I 2
(4.10)

(3.2) FIG. 4. Four-point E& diagrams.
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TABLE II. kn(k)

densities.

with the J + T wave function at various

0.365 0.401 0.438

0.05
0.25
0.45
0.65
0.85
1.05
1.25
1.45
1.65
1.85
2.05
2.25
2.45
2.65
2.85
3.05
3.25
3.35

0.0167
0.0318
0.0416
0.0458
0.0455
0.0417
0.0350
0.0264
0.0175
0.0112
0.0091
0.0084
0.0066
0.0045
0.0029,
0.0019
0.0012
0.0007

0.0136
0.0264
0.0349
0.0391
0.0398
0.0377
0.0332
0.0266
0.0190
0.0129
0.0105
0.0097
0.0080
0.0058
0.0041
0.0027
0.0018
0.0011

0.0106
0.0208
0.0279
0.0318
0.0331
0.0324
0.0298
0.0253
0.0196
0.0144
0.0117
0.0109
0.0094
0.0072
0.0054
0.0039
0.0027
0.0019

In general we find that the triplet correlation by itself has
little effect on the n (k). The n {k) is seen to decrease ex-
ponentially for k > 3 A ~ ' in Fig. 7.

The kn(k) obtained from the neutron scattering
data3'18 is compared with theoretical results in Fig. 8.
Both the experimental and the GFMC n(k) do not have
the correct k—»0 asymptotic behavior. The difference be-
tween GFMC and J + T results has to be attributed to (i)
the approximations in the use of J + T wave function, and
those in the HNC/S calculation; and (ii) the finite box size

•toEq.(2.19).

7. n (k > 2 A ~') of the J and J + T wave functions at
3 on log scale. Here n{k) is normalized according

0.06 -

- 0.04-

0.02

4.0

FIG. 8. n(k) is normalized according to Eq. (4.6). The
dashed and solid curves are the results of the present calculation
with the Jastrow (J) and Jastrow + triplet (J + T) wave function,
respectively. The dashed-dotted curve gives GFMC results
from Ref. 17. The experimental data (Refs. 3 and 18) are shown
with the crosses.

in the GFMC simulation. The latter effect is particularly
manifested at small k. The difference between theory and
experiment may be mostly due to the inadequacy of the
Aziz potential, or the impulse approximation used in re-
lating the n(k) to neutron scattering cross sections at
large momentum transfer. The use of impulse approxi-
mation for analysis of scattering from hard core liquids
has been recently criticized.19 There certainly is more

0.15-

0.05-

0.365 0.375 0.385 0.395 0.405 0.415 0.425 0.435 0.445

FIG. 9. Comparison of the theoretical and experimental con-
densate fraction. The solid curve shows the results of this work
with Aziz potential. The open circles, joint by a dashed-dotted
line, are the results of GFMC calculation with Aziz potential
(Ref. 17). GFMC results with Lennard-Jones (LJ) potential are
shown with open squares (Ref. 22). The crosses represent the
results of Puoskari and Kallio (Ref. 12) variational calculation
using LJ potential. The solid circles with the error bars show
the data taken from Ref. 2. The dashed line is a guide to the
eye. The triangle gives the experimental result at the equilibri-
um density of Ref. 3.
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TABLE III. Results with optimized J and optimized J + T wave functions.

31

p (a"3)
Condensate fraction

J J + T GFMC
Kinetic energy (K)

0.365
0.401
0.438

2.44
2.78
3.12

2.24
2.780
3.120

2.404
2.916
3.280

0.098
0.071
0.048

0.092
0.065
0.043

0.092
0.052

14.86
18.17
22.99

14.72
17.45
20.53

than qualitative agreement between theory and experi-
ment, marred by significant differences at k =0.5 and 2.3
A " ' . The density dependence of the J + T n {k) is given
in Table II. The n(k) becomes broader as the density is
increased.

The condensate fraction and the kinetic energies are
given along with the scaling constants, in Table III. At
p=0.438<7~3 the 7"MD is ~ 10% larger than the T]F indi-
cating increased importance of the neglected E^, dia-
grams.

The theoretical and experimental condensate fractions
are compared in Fig. 9. At equilibrium density and
GFMC and J + T values of nQ are identical, but they are
~20% below the values deduced from neutron scattering

experiments. The density dependence of the J + T n0 is
in crude agreement with that of Ref. 2. On the other
hand the experiments of Wirth et a/.20 have shown no
density dependence of ZIQ, while Mook21 finds a much
stronger decrease in n0 with p.
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VARIATIONAL MONTE CARLO CALCULATIONS OF GROUND . . . 4581

Density distribution for the 728-atom 4He drop with
Jed peak near the surface. The dashed curve is the single-

B density divided by 10. The dotted curve is exp(2u,) di-
iby 100.

-7

20

FIG. 9: E/N for the 3He and *He drops. The abscissa is N
on an N~l/1 scale. The curves are from rows 2 and 3 of Table
XIII.

fthan that of the liquid.
• unit radii ro(N) are defined as

2/7v-1/3, (5.5)

(r2(N)) is the mean-square radius of an JV-body
The values of ro(N) for both 4He and 3He drops are
in Table XIV. The nns radii of the drops have

gible statistical uncertainty resulting from Monte
sampling. The main error in (r2(N)) comes from

^uncertainty in choosing the best variational wave
In particular, the uncertainty in the radius of

=20 3He (metastable) drop is large because the ener-
i not change significantly with a ±10% variation

fradius. The energies of larger drops are much more
live to their radii, and thus their radii are much
'determined.
! unit radius ro( oo) of the liquid can be extracted by
; the ro(N) by a polynomial in N~xn. A fit to the

unit radii of N =40 -728 4He drops with a
ier polynomial gives r0(oo)=2-21(4) A for

14He, in good agreement with the experimental value
A as well as with the GFMC value for the Aziz

The quoted error of ro( oo) is an estimate based
the variational and extrapolation errors. Fits to

dii of *Oc drops having N =40-240 give
=2.50) in agreement with the experimental value
! A. We note that the central densities of N=240
I *He drops (Fig. 2) and # = 2 4 0 *He drop (Fig. 3)

i with these values of roi oo).

VI. DISCUSSION

We have made VMC calculations of the ground states
of small- to moderate-sized drops of liquid He and 3Hc
Comparisons with GFMC calculations show that our
binding energies are typically 0.1 K per atom too low.
There is unfortunately no suitable experimental data to
which these calculations can be compared. A mass spec-
trometer experiment33 has reported the observation of
magic numbers for both 4He and 3He drops and also 3He
drops containing as few as four atoms. However, the
drops are charged and may be fragmented in the mass
spectrometer. Detailed GFMC calculations34 for neutral
4He drops show only a smooth energy versus drop-size re-
lation. The very small binding energy for eight *He atoms
with Fermi statistics obtained with GFMC makes it cer-
tain that eight 3He atoms are not bound. For these
reasons, we agree with the conclusions of Ref. 34, that the
charge on the drops has significantly altered their proper-
ties. Macroscopic liquid drops having more than 10000
helium atoms have been used in experiments.35 Experi-
mental studies of small neutral drops would be very in-
teresting. In particular, there is the question of what is
the smallest number of 3He atoms that will form a bound
state. Our calculations suggest that this number is just
slightly less than 40. However, if our energy for 40 He
atoms is 0.1 K too high, the number will be close to 30.

There is an interesting contrast between studies of
liquid-helium drops and nuclei. By fitting liquid-drop ex-
pansions to the drop energies, we can obtain binding-

TABLE XIII. Liquid-drop energy fits. The coefficients of the polynomial defined in Eq. (5.1) are
The last column gives*2 per degree of freedom. '

System

•He
*He

'He
'He
"He

Range

#=20-728
jSr=40-728

#=20-240
jV=40-240
Ar=70-240

E,

-7.00
-6.85

-2.09
-1.90
-2.09

E,

19.6
18.2

9.9
8.3

10.0

Ee

-13.3
-9.9

-9.9
-6.4

-10.5

Xl/Nf

9.0
2.0

2.9
0.36
0.04

19



37 SINGLE-PARTICLE ORBITALS IN LIQUID-HELIUM DROPS 4953

This method has the advantage of introducing no bias
about the functional form of unl(r) but has the disadvan-
tage, due to the relatively large sampling errors in pi(r,r')
for small r or r', of not producing radial functions with
the correct r / + 1 behavior at the origin. The statistical er-
rors in the so-extracted unl(r) also make it difficult to
compute the Fourier transforms untUc).

In the second method we expand the pi(r,r') in terms
of the oscillator functions hnl(r):

0.8-

M'j= f f (3.9)

for i,j <I with I less than the number of points on the
grid used to compute p,(r,r'). The eigenvectors of Ml

may be used to construct un/(r) with the correct behavior
at the origin.

Table I shows the eigenvalues of pi-a(r,r') for the 70-
atom 3He drop computed by these methods. (Note that
the eigenvalues are twice the occupation numbers.) We
used a 28-element grid to compute pt(r,r') so method 1
gives us 28 eigenvalues. However, because of the statisti-
cal errors in polr,r'), eleven of these are negative (the sum
of the negative eigenvalues is —0.01). Column 4 of Table
I shows the ten largest eigenvalues. Columns 1 to 3 show
the corresponding eigenvalues computed using 11, 16,
and 21 oscillator functions, respectively. The first, third,
and fifth eigenvectors computed by method 1 (symbols)
and with 11 and 16 oscillator functions (curves) are
shown in Fig. 3. The curves for 21 oscillator functions
are indistinguishable from those for 16 functions. It can
be seen that the two methods are in good agreement and
that eigenvalues down to —0.01 are probably reliable. In
the rest of the paper we present results obtained using 16
oscillator functions.

B. Natural orbitals of the N =70 Liquid *He Drop

Some of the s-wave natural orbitals of the 70-particle
Bose-liquid 4He drop are shown in Fig. 4 along with the
Is mean-field orbital. We note that all the natural orbit-

, I , i . i . i-0.8
5 6 7

FIG. 3. The Is, 3s, and 5s natural orbitals of the 70-atom 3He
drop obtained with 11 (dashed curves) and 16 (solid curves) os-
cillator functions. The symbols show the eigenfunctions ob-
tained by diagonalizing in coordinate space.

als are confined in the region where p ( r ) ^ 0 . Equation
(1.7) implies that the ^ , ( r ) are zero where />(r)=0. The
occupation numbers of the natural orbitals are given in
Table II. A significant fraction (36%) of the particles are
condensed in the Is natural orbital of the 70-particle
drop, as against ~ 10% in the extended liquid. The
dependence of the condensate fraction on the number of
particles is discussed in Sec. IV.

The partial density of the particles condensed in the Is
natural orbital is called the condensate density,

pc(r) = nls | ^ ( r ) | 2 , (3.10)

and it is compared with the total density p(r) in Fig. 5.
We note that at the center of the drop p,.(0)~0. lp(0), as
expected from studies of the extended liquid.

TABLE I. Eigenvalues of p,^0(r,r') for 70 3He atoms.
Columns 1-3 show the eigenvalues computed in an oscillator
basis containing, respectively, the first 11, 16, and 21 oscillator
functions. The last column shows the eigenvalues resulting
from a direct diagonalization of pi=<J.r,r') on a 28X28 point
grid in r space. In all cases only the first ten eigenvalues we
shown.

n

1
2
3
4
5

6
7
8
9

10

7 = 11

1.0801
1.2565
1.6963
0.1476
0.0782

0.0376
0.0160
0.0007
4.0XKT3

-1.0X10"6

7 = 16

1.0803
1.2575
1.6987
0.1477
0.0784

0.0378
0.0197
0.0065
0.0010
0.0004

7=21

1.0804
1.2580
1.6996
0.1477
0.0784

0.0382
0.0197
0.0067
0.0022
0.0010

28X28

1.0816
1.2600
1.7066
0.1495
0.0799

0.0427
0.0232
0.0084
0.0071
0.0044

2.0

„ 1.6

!b 1.2

~S 0.8

—„ 0.4

0

-0.4

- \

—

-

n r — ' — i — ' — i — ' — r • i - i •

^ X ^-f <»8)

i\Y*» * \ \

FIG. 4. The s-wave natural orbitals (Is to 4s) of the 70-
particle Bose-liquid 4He drop (solid lines). The dashed curve
shows the 1; mean-field orbital. The ipu and <l>ls have been mul-
tiplied by 8.
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4954 LEWART, PANDHARIPANDE, AND PIEPER 37

TABLE II. Occupation numbers of natural orbitals of the
=70 Bose-liquid 4He drop.

Is
Ip
Id
2s
1 /

lg
Id
Is

25.33
0.49
0.44
0.44
0.37
0.35
0.30
0.28
0.30

\h
2/

li

2?
3d
4s
\j
Ih
3 /

0.24
0.22
0.22
0.19
0.17
0.16
0.19
0.14
0.12
0.11
0.11

\k
2i
3g
4d
5s
1/

V
3A
4 /
5p

0.104
0.086 b-
0.078 %
0.077 -
0.100 i
0.063 ^
0.060
0.046
0.049
0.046

In Bose-liquid drops the \s natural orbital can be well
approximated as follows:

)= A [ 1 - 0 .

(3.11)

where A is a normalization constant and p0 is the equilib-
rium density of liquid 4He (0.365<7"3). The wave func-
tion obtained from this approximation is practically in-
distinguishable from the tf>u(r) in Fig. 4. The factor mul-
tiplying y/p(r)/N ih Eq. (3.11) can be interpreted as

no[p(r)], where no(p) is the condensate fraction in
liquid 4He at density p, from the argument given in the
next paragraph. Since extended liquid at p <p0 is unsta-
ble, only no(p) for p >p0 has been studied.4 In Fig. 6 we
show that the function (1—0.68p/p0) provides a con-
tinuation of \/no(p) for p <p0.

Consider an inhomogeneous Bose system with a densi-

0.4Q

FIG. 5. The density p(r) of the 70-atom 4He drop (dots with
CTTOI bars) from Ref. 1. The curves show the cumulative contri-
butions of the natural orbitals up to a given / m u as obtained
from the oscillator expansions. The crosses and error bars show
the sum of p,(r,r) for / up to 10 and are to be compared with the
uppermost curve. The dashed curve is the condensate contribu-
tion pc(r).

0.2 0.4 0.6 0.8 1.0 1.2

FIG. 6. Condensate amplitudes V~n§ as a function of density
for liquid 4He (lower curves and symbols) and the v'z(p) ftw
liquid 3He (upper line and symbols). The solid lines are the ap-
proximations no(p)=( 1—0. dip/pa)1 (4He) and Z(p)—Ci
—0.45p/p0)

2 ('He). The plus signs are from Ref. 4, the X's are
from Ref. 5, and the circles are obtained by assuming that the
experimental effective mass (Ref. 8) is given by 0.8/Z (Ref. 5).
The ratio Xu(r)/Vp(r), as described in the text, is shown for
the 20-atom (dotted), 70-atom (dashed), and 240-atom (dot-dash)
4He drops.

ty distribution p(r). In mean-field theory, all the parti-
cles occupy the state <f>0(x)=Vp~(x)7N. In reality, a cer-
tain fraction of the particles are condensed in the natural
orbital j^0(r). Now let us pretend that the inhomogene-
ous system is a large tank of liquid 4He, with an external
potential applied to the x > 0 half such that the density
distribution of the liquid in this tank is given by

p(r)=
\pL , x «0

»0 .\PR
P. 12)

(3.13)

Now the density of particles having momenta &—0 at
x « 0 is given by no(pL )pL, while for that at x » 0 it is
no(pR)pR. Thus we have

x«Q

x»Q ,

(3.14)

(3.15)

where Nc is the number of particles condensed in the nat-
ural orbital i[>0. This implies that when p(r) is a slowly
varying function of r, the natural orbital ^0(r) is approxi-
mately given by

rl>0(T)^AVnQ[p(t)]Vp(T)/N = A

(3.16)

Equation (3.16) can be considered as a local-density ap-
proximation (LDA) for the condensate natural orbital. It
is a good approximation in all the Bose-liquid drops
(JV=20-240) studied in this work.
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Fig.; 13. Same as Fig.10 but for N=500

N = 1 0 0 0

Fig. 14. Same as Fig.10 but for N=1000
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Fig. 15. The variation of the edge of the I = 0 density matrix as a function of
droplet size.

is asymmetric (only r is binned), the resulting function is symmetric as it should.
(The fish-fin like structures near r = 0 are artifacts due to poor statistics amplified
by the small bin size, like that of determining the central density. These should be
ignored.) We note that for all dropl«ts: 1) po(r,r')/pniu drops quickly from one to
about 0.1 whenever either r or r1 is greater than 4 A. 2) Whenever r or r' is greater
than 4A, po{r,r')/piuik is roughly constant, resulting in a plateau-like structure.
3)*This plateau extends out to about the droplet radius and grows steadily with
increase droplet sizes. 4) The table-top-like sharp corner strongly suggests that
Po(r, r') is a product of two identical functions, i.e.,

Since po(r,r') can be expanded in an eigenfunction expansion, the above suggest
that it is likely to be dominated by a single term, that of its largest eigenfunction.
5) If this is the case, this largest eigenfunction must be roughly proportional to
Po{r,O)/pbuik- In Fig. 15, we show the latter for all droplet sizes considered. The
results are now strikingly similar to the bulk density matrix of Fig.l. This edge
function drops from 1 to s*0.1 from the center out to about 4A. It then remains
roughly constant all the way out to the rim of the droplet. (The slight rise is too fine
a structure to be trust in a variationai calculation.) As N increases, there is a clear
systematic convergence to the bulk condensate value from above. Thus the 1 = 0
component of the one-body density matrix gives an excellent visual characterization
of the growth of the condensate in Helium droplets.
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eda and Huang (1998), and

0.008 -

forces

th repulsive interaction {a
is particularly interesting,

itisfied by the parameters N,
current experiments. More-
ctions of mean-field theory
ic form (Edwards and Bur-
k, 1996).
ate, the effect of increasing
xly seen in Fig. 9: the atoms
ltral density becomes rather
;. As a consequence, the
e Gross-Pitaevskii Eq. (39),
:es a significant contribution
becomes less and less im-
interaction energy. If one

ntum pressure in Eq. (39),
n the form

*(r)] (50)

[r), and n = 0 outside. This
las-Fermi (TF) approxima-

>n on n(r) provides the re-
ential and number of par-

(51)

Qtial depends on the trap-
potential yext given in Eq.

;tric average 6>ho [see Eq.
9N, the energy per particle
This energy is the sum of
energies, since the kinetic
Ltribution for large N. Fi-

FIG. 13. Density profile for atoms interacting with repulsive
forces in a spherical trap, with Afa/aho=100. Solid line: solu-
tion of the stationary GP Eq. (39). Dashed line: Thomas-Fermi
approximation (50). In the upper part, the atom density is plot-
ted in arbitrary units, while the distance from the center of the
trap is in units of aho. The classical turning point is at R
=*431aho. In the lower part, the column density for the same
system is reported.

trap, this implies fi=ma)2
iOR2/2 and, using result (51) for

//,, one finds the following expression for the radius of
the condensate

ll5Na\
=0h[ 1

1/5

/
(52)

which grows with N. For an axially symmetric trap, the
widths in the radial and axial directions are fixed by the
conditions ^=m(x>\R2J2-m(x)2

zZ
2l2. It is worth men-

tioning that, in the case of the cigar-shaped trap used at
MIT, with a condensate of about 107 sodium atoms, the
axial width becomes macroscopically large (Z—0.3
mm), allowing for direct in situ measurements.

The value of the density (50) in the center of the trap
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0.6

C
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0 1 2 3 4
r (units of a ,̂,)

FIG. 8. Condensate wave function, at T=0, obtained by solv-
ing numerically the stationary GP Eq. (39) in a spherical trap
and with attractive interaction among the atoms (a<0). The
three solid lines correspond to N|a|/aho=0.1,03,0ii. The
dashed line is the prediction for the ideal gas. Here the radius
r is in units of the oscillator length aho and we plot
(a^0/iV)1/2^(r), so that the curves are normalized to 1 [see also
Eq. (40)].

interaction and the radius of the atomic cloud conse-
quently increases (decreases). This effect of the interac-
tion has important consequences, not only for the struc-
ture of the ground state, but also for the dynamics and
thermodynamics of the system, as we will see later on.

The ground state can be easily obtained within
the formalism of mean-field theory. For this, one
can write the condensate wave function as 4>(r,/)
= 4>(r)exp(-i(Lt/h), where ft is the chemical potential
and <j> is real and normalized to the total number of
particles, Jdi<i>2=N0=N. Then the Gross-Pitaevskii
Eq. (35) becomes r

(39)

This has the form of a "nonlinear Schrodinger equa-
tion," the nonlinearity coming from the mean-field term,
proportional to the particle density n(r) = 02(r). In the
absence of interactions (g=0), this equation reduces to
the usual Schrodinger equation for the single-particle
Hamiltonian -h2/(2m)V2+Vaa(t) and, for harmonic
confinement, the ground-state solution coincides, apart
from a normalization factor, with the Gaussian function
(3): <£(r) = y[N(pQ(t). We note, in passing, that a similar
nonlinear equation for the order parameter has been
also considered in connection with the theory of super-
fluid helium near the X point (Ginzburg and Pitaevskii,
1958); in that case, however, the ingredients of the equa-
tion have a different physical meaning.

The numerical solution of the GP Eq. (39) is relatively
easy to obtain (Edwards and Burnett, 1995; Ruprecht
etui, 1995; Dalfovo and Stringari, 1996; Edwards, Dodd
etaL, 1996b; Holland and Cooper, 1996). Typical wave
functions <f>, calculated from Eq. (39) with different val-

o l 2 3 4
r (units of

FIG. 9. Same as in Fig. 8, but for repulsive interaction (a
>0) and Nala^* 1,10,100.

ues of the parameter N\a\/abo, are shown in Figs. 8 and
9 for attractive and repulsive interaction, respectively.
The effects of the interaction are revealed by the devia-
tions from the Gaussian profile (3) predicted by the non-
interacting model. Excellent agreement has been found
by comparing the solution of lie GP equation with the
experimental density profiles obtained at low tempera-
ture (Hau et al, 1998), as shown in Fig. 3. The conden-
sate wave function obtained with the stationary GP
equation has been also compared with the results of an
ab initio Monte Carlo simulation starting from Hamil-
tonian (26), finding very good agreement (Krauth,
1996).

The role of the parameter N\a\la^o, already discussed
in the previous section, can be easily pointed out, in the
Gross-Pitaevskii equation, by using restated dimension-
less variables. Let us consider a spherical trap with fre-
quency who and use aho, ajj"o

3, and ftwho as units of
length, density, and energy, respectively. By putting a
tilde over the rescaled quantities, Eq. (39) becomes

[-V2+f2+8irUVfl/abo)£2Cr)]£(r)=2/Z£(r). (40)

In these new units the order parameter satisfies the nor-
malization condition JdT|0 |2=l. It is now evident that
the importance of the atom-atom interaction is com-
pletely fixed by the parameter Na/a^.

It is worth noticing that the solution of the stationary
GP Eq. (39) minimizes the energy functional (37) for a
fixed number of particles. Since the ground state has no
currents, the energy is a functional of the density only,
which can be written in the form

The first term corresponds to the quantum kinetic en-
ergy coming from the uncertainty principle; it is usually
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2322 A. FABROCINI AND A. POLLS PRA 60

TABLE I. Chemical potentials filt ground-state energies per particle Ei /N, and root mean-square radii
Rrms, of N 87Rb atoms in an isotropic trap (to/2v= 77.78 Hz) in TF approximation or solving the GP [Eq.
(2)], the MGP [Eq. (5)], and the correlated Hartree HNC [Eq. (17)] equations. The N= 1.5X 107 row refers
to the Na case (co/2i7=230 Hz). Energies are in units of Uto and lengths are in units of aH0.

Pi Ei IN Rms

N TF GP MGP HNC TF GP MGP HNC GP MGP HNC

103 2.66 3.04 3.06 3.04 1.90 2.43 2.43
104 6.67 6.87 6.92 6.89 6.87 5.04 5.08
10s 16.75 16.85 17.07 16.94 11.96 1Z10 12.25
106 42.07 4112 42.97 42.53 30.05 30.12 30.66
107 105.68 105.70 108.75 107.20 75.49 75.52 77.48
1.5X107 91.07 91.10 92.41 91.67 65.05 65.09 65.92
10s 265.46 265.47 275.89 27338 189.61 189.63 196.45

2.43
5.04

12.20
30.48
76.85
65.66

194.74

1.65
2.44
3.80
6.01
9.52
8.84

15.08

1.66
2.45
3.84
6.10
9.74
8.92

15.44

1.66
2.44
3.83
6.06
9.64
8.90

15.38

where we have again introduced the scaled unities and the
local gas parameter, Xioc(r)=pi(r)a3-Np\4i1(r)\2.

The calculations have been performed for the 87Rb scat-
tering length. The scaled energies per particle and the root
mean-square radii are reported in Table I for particle num-
bers from 103 to 108. The table also shows the results ob-
tained by neglecting the kinetic-energy term in the Gross-
Pitaevskii equation. This approach, loosely called the
Thomas-Fermi (TF) approximation, has been discussed in
the literature and allows for deriving simple analytical ex-
pressions [10]. The differences between this Thomas-Fermi
approach and a rigorous one have been recently discussed
[21,22] for spatially inhomogeneous Bose condensates.
Local-density approximation has been used [1,5] to estimate
corrections to the Gross-Pitaevskii for the ground and ex-
cited states within the Thomas-Fermi approximation and re-
taining only the first correction in Eq. (1). The second cor-
rection is negative and partially cancels the first one. For
"*=»"*. tike cancellations go from —15% for N=l& to
~4O% at N=l& if we just take the central densities,
whereas the final energy is reduced by ~ 15% at N= l(f and
it is practically unaffected by the second correction at lower
N values.

As expected, the Thomas-Fermi results are close to the
Gross-Pitaevskii ones when N becomes large. The differ-

0.00
16

ences between GP and MGP increase with the number of
particles and are of the order of 4% for the chemical poten-
tial and 2.5% for the energy at N= 107. The higher-order
terms in the low-density expansion always have a repulsive
effect The same behavior is shown by the HNC results,
which, however, are less repulsive than MGP at the large N
values.

We notice that if one uses the Gross-Pitaevskii solution to
perturbatively estimate the MGP energy, then the correction
is negative (at N= 107, A£j =—4.54). The nonlinear char-
acter of Eq. (5) is responsible for this discrepancy.

The density profile (normalized to unity) for N= 107 par-
ticles is given in Fig. 2. For this large number of particles the
TF and GP densities are close, whereas the more repulsive
MGP and HNC solutions lower the central density, expand-
ing the density distribution and providing a larger radius, as
shown in Table I.

We have also considered a system of N= 1.5X 107 Na
atoms (a=27.5 A) in a spherical trap having a frequency of
230 Hz. These conditions roughly correspond to those" of i&e
experiment described in Ref. [4]. The results are shown in
the last row of the table and in Fig. 2. The effects of tine
correlations are similar to those found in the large N Rb
cases. The energy increases by ~ 1 % and the rms radius by
-0 .7% respect to GP. The HNC central density is slightly
reduced.

- 0.25 -

- 0.20 -

- 0.15 -

- 0.10 -

- 0.05 -

0.00
16

FK3. 2. Density profiles for N= 107 Rb atoms and for N= 1.5X 107 Na atoms in different approaches (dotted line, Gross-Pitaevskii;
dasined line, modified Gross-Pitaevskii; solid line, hypemetted chain). Densities are normalized to unity and distances are in units of aM0.
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TABLE II. Ground state properties of JV = 104 85Rb atoms in the cylindrical trap described

in the paper. Energies in HO units.

a/a0

tfBF

EjF/N

EGP/N

E?GP/N

EfBF/N

TTFxpk

XGP

xpk

*piGP

^BF

1400

9.70

9.82

10.22

10.19

6.93

7.08

7.33

7.31

• 6.23 xl0~ 4

6.28 xlO"4

5.72 xl0~ 4

5.76 xl0~ 4

3000

13.15

13.25

14.51

14.38

9.39

9.52

10.31

10.23

3.88 xlO"3

3.90 xlO~3

3.19 xlO"3

3.24 xlO~3

8000

19.47

19.55

24.38

24.37

13.91

14.00

17.09

16.98

4.09 x lO- 2

4.10 x lO- 2

2.60 xlO"2

2.53 xlO"2

10000

21.29

21.36

27.79

28.09

15.21

15.29

19.43

19.42

6.98 xlO"2

7.00 xlO~2

4.10 xlO~2

3.86 xlO~2
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FIGURES

FIG. 1< Column densities at four values of the scattering length for the cylindrical trap. Dashed

lines= TF, stars» GP, solid lines= MGP, dot-dashed lines= CBF. The triangles in the fiist (second)

upper panel give the MGP column density at a/ao=592O (4940).

FIG. 2. Scattering length as a function of the full strength at h^f Tpft̂ T̂ mre (left) and of the

half -m^TP"1" radius (right) in the cylindrical trap. Circles, stars and triangles correspond to the

TF, GP and MGP results, respectively. Lines are a guide to the eyes.
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