united nations ducational, scientific and cultural organization

international atomic energy agency **abdus salam** international centre for theoretical physics

the

SMR.1348 - 18

SECOND EUROPEAN SUMMER SCHOOL on MICROSCOPIC QUANTUM MANY-BODY THEORIES and their APPLICATIONS

(3 - 14 September 2001)

HYPERSPHERICAL HARMONIC METHODS FOR STRONGLY INTERACTING SYSTEMS: A SUMMARY AND NEW DEVELOPMENTS PART II

> Sergio ROSATI Dipartimento di Fisica Universita' di Pisa Via Buonarroti, 2 - Ed. B I-56127 Pisa ITALY

These are preliminary lecture notes, intended only for distribution to participants

The compled equations.

The Schrocolinger equation in the center of mans frame in terms of the Jacobi coordinates y, --, y can be written as $(T+V-E)\psi(1,...,h) = \begin{cases} -t_{1}^{*} Z_{1} \nabla_{y_{1}}^{*} + V(y_{1}^{*},..,y_{r}^{*}-E) \psi(y_{1}^{*},..,y_{r}^{*}) = l \\ \frac{1}{2n} t_{r}^{*} \nabla_{y_{1}}^{*} + V(y_{1}^{*},..,y_{r}^{*}-E) \psi(y_{1}^{*},..,y_{r}^{*}) = l \end{cases}$ In the hypuspherical formalism the w.s. of is expanded in HH functions satisfying the appropriate symmetry relations, namely H²⁵⁾ EEz. The poblem to be solved is the calculation of all the hyperaolial function u₂GJ (r). For a bound state problem one can adopt a variational procedure and use the Rayleigh-Ritz principle. First of all, the W. f. is expanded in a finite number of functions H⁽³⁾ by limiting the choice of the quantum {~; } $\Psi_{N}(1,..,R) = \frac{(D-1)/2}{2} \stackrel{(MAX)}{\underset{\{\tilde{G}\}}{\overset{(S)}{\underset{\{\tilde{G}\}}}} \stackrel{(S)}{\underset{\{\tilde{G}\}}{\overset{(S)}{\underset{\{\tilde{G}\}}}} \stackrel{(S)}{\underset{\{\tilde{G}\}}{\overset{(S)}{\underset{\{\tilde{G}\}}}} \stackrel{(S)}{\underset{\{\tilde{G}\}}{\overset{(C)}{\underset{\{\tilde{G}\}}}} \stackrel{(S)}{\underset{\{\tilde{G}\}}{\overset{(C)}{\underset{\{\tilde{G}\}}}}} \stackrel{(S)}{\underset{\{\tilde{G}\}}{\overset{(C)}{\underset{\{\tilde{G}\}}}}} \stackrel{(S)}{\underset{\{\tilde{G}\}}{\overset{(C)}{\underset{\{\tilde{G}\}}}}} \stackrel{(S)}{\underset{\{\tilde{G}\}}{\overset{(C)}{\underset{\{\tilde{G}\}}}}} \stackrel{(S)}{\underset{\{\tilde{G}\}}{\overset{(C)}{\underset{\{\tilde{G}\}}}}} \stackrel{(S)}{\underset{\{\tilde{G}\}}{\overset{(C)}{\underset{\{\tilde{G}\}}}}} \stackrel{(S)}{\underset{(C)}{\underset{[C)}{\underset{\{\tilde{G}\}}}}} \stackrel{(S)}{\underset{\{\tilde{G}\}}{\underset{\{\tilde{G}\}}}} \stackrel{(S)}{\underset{\{\tilde{G}\}}} \stackrel{(S)}{\underset{\{\tilde{G}\}}}} \stackrel{(S)}{\underset{\{\tilde{G}\}}{\underset{\{\tilde{G}\}}}} \stackrel{(S)}{\underset{\{\tilde{G}\}}} \stackrel{(S)}{\underset{\{\tilde{G}\}}} \stackrel{(S)}{\underset{\{\tilde{G}\}}} \stackrel{(S)}{\underset{\{\tilde{G}\}}} \stackrel{(S)}{\underset{\{\tilde{G}\}}} \stackrel{(S)}{\underset{\{\tilde{G}\}}} \stackrel{(S)}{\underset{\{\tilde{G}\}}} \stackrel{(S)}{\underset{\{\tilde{G}\}}} \stackrel{(S)}{\underset{\{\tilde{G}\}}} \stackrel{(S)}{\underset{\{\tilde{G}}}} \stackrel{(S)}{\underset{\{\tilde{G}}} \stackrel{(S)}{\underset{\{\tilde{G}}} \stackrel{(S)}{\underset{\{\tilde{G}}}} \stackrel{(S)}{\underset{\{\tilde{G}}} \stackrel{(S)}{\underset{\{\tilde{G}}}} \stackrel{(S)}{\underset{\{\tilde{G}}} \stackrel{(S)}{\underset{\{\tilde{G}}}} \stackrel{(S)}{\underset{\{\tilde{G}}} \stackrel{(S)}{\underset{\{\tilde{G}}} \stackrel{(S)}{\underset{\{\tilde{G}}} \stackrel{(S)}{\underset{\{\tilde{G}}} \stackrel{(S)}{\underset{\{\tilde{G}}} \stackrel{(S)}{\underset{\{\tilde{G}}} \stackrel{(S)}{\underset{\{\tilde{G}}} \stackrel{(S)}{\underset{\{\tilde{G}}} \stackrel{(S)}{\underset{\{\tilde{G}}} \stackrel{(S)}{\underset{\{\tilde{G}}$ Then from the Railegh. Rith principle $S_{u} < \Psi_{v} | H - E | \Psi_{v} > = 0$ one gots e not of differential equations for the u-functions.

Let us introduce $N_{\tilde{EG}3,\tilde{EG}'3} = \sum_{opin} \int d\Omega H_{\tilde{EG}3}^{(S)} H_{\tilde{EG}3}^{(S)}$, munical $\tilde{EG}3,\tilde{EG}'3 = \sum_{opin} \int d\Omega H_{\tilde{EG}3}^{(S)} T^{o} H_{\tilde{EG}3}^{(S)}$, operators $\tilde{EG}3,\tilde{EG}'3 = \sum_{opin} \int d\Omega H_{\tilde{EG}3}^{(S)} T^{o} H_{\tilde{EG}3}^{(S)}$, operators $\tilde{EG}3,\tilde{EG}'3 = \sum_{opin} \int d\Omega H_{\tilde{EG}3}^{(S)} V H_{\tilde{EG}3}^{(S)}$, $\tilde{EG}3$

A set of record order compled differential equations is then obtained

$$\sum_{\{\tilde{G}'\}} \left[\begin{array}{c} T \\ \{\tilde{G}'\} \\$$

Without loss of generality, the functions H^{G3}_{EG3} can be taken to correspond to a given grandengular momentum G end the equations can be whitten in the form

 $\begin{bmatrix} \sum_{i \in I} \left[-\frac{i}{2\pi} N_{i \in I} \left\{ \frac{d^{2}}{d\pi} + \frac{d(\delta + 1)}{\pi^{2}} - E \right\} + V_{i \in I} \left\{ \frac{d^{2}}{2} + \frac{d(\delta + 1)}{\pi^{2}} - E \right\} + V_{i \in I} \left\{ \frac{d^{2}}{2} + \frac{d(\delta + 1)}{\pi^{2}} - E \right\} + V_{i \in I} \left\{ \frac{d^{2}}{2} + \frac{d(\delta + 1)}{\pi^{2}} - E \right\} + V_{i \in I} \left\{ \frac{d^{2}}{2} + \frac{d(\delta + 1)}{\pi^{2}} - E \right\} + V_{i \in I} \left\{ \frac{d^{2}}{2} + \frac{d(\delta + 1)}{\pi^{2}} - E \right\} + V_{i \in I} \left\{ \frac{d^{2}}{2} + \frac{d(\delta + 1)}{\pi^{2}} - E \right\} + V_{i \in I} \left\{ \frac{d^{2}}{2} + \frac{d(\delta + 1)}{\pi^{2}} - E \right\} + V_{i \in I} \left\{ \frac{d^{2}}{2} + \frac{d(\delta + 1)}{\pi^{2}} - E \right\} + V_{i \in I} \left\{ \frac{d^{2}}{2} + \frac{d(\delta + 1)}{\pi^{2}} - E \right\} + V_{i \in I} \left\{ \frac{d^{2}}{2} + \frac{d(\delta + 1)}{\pi^{2}} - E \right\} + V_{i \in I} \left\{ \frac{d^{2}}{2} + \frac{d(\delta + 1)}{\pi^{2}} - E \right\} + V_{i \in I} \left\{ \frac{d^{2}}{2} + \frac{d(\delta + 1)}{\pi^{2}} - E \right\} + V_{i \in I} \left\{ \frac{d^{2}}{2} + \frac{d(\delta + 1)}{\pi^{2}} - E \right\} + V_{i \in I} \left\{ \frac{d^{2}}{2} + \frac{d(\delta + 1)}{\pi^{2}} - E \right\} + V_{i \in I} \left\{ \frac{d^{2}}{2} + \frac{d(\delta + 1)}{\pi^{2}} - E \right\} + V_{i \in I} \left\{ \frac{d^{2}}{2} + \frac{d(\delta + 1)}{\pi^{2}} - E \right\} + V_{i \in I} \left\{ \frac{d^{2}}{2} + \frac{d(\delta + 1)}{\pi^{2}} - E \right\} + V_{i \in I} \left\{ \frac{d^{2}}{2} + \frac{d(\delta + 1)}{\pi^{2}} - E \right\} + V_{i \in I} \left\{ \frac{d^{2}}{2} + \frac{d(\delta + 1)}{\pi^{2}} - E \right\} + V_{i \in I} \left\{ \frac{d^{2}}{2} + \frac{d(\delta + 1)}{\pi^{2}} - E \right\} + V_{i \in I} \left\{ \frac{d^{2}}{2} + \frac{d(\delta + 1)}{\pi^{2}} - E \right\} + V_{i \in I} \left\{ \frac{d^{2}}{2} + \frac{d(\delta + 1)}{\pi^{2}} + \frac{d($

2-2

The main difficulty when using the 444 expansion is that, due to the mormous dymenecy of the basis simetion as G increases, one has to manage as many as possible functions (to day, a few thousand).

ii) The solution of the eigenvalue problem does not present survey difficulties survey there are available normerical codes which sequire acceptable computing time.

ini) The convergence problem is quite serious. The HH expansion is necessfull for A=3 and 4 while for larger A values appropriable moblifications of the method are required. The helium atm

with

The problem of calculating the energy levels of helium strue was just afterded by Hylleraas in 1930. A noticeable recuracy was reached later on by Pekeris. After that a quat attention has been dested to increase the secondary of theoretical calculation due to the improvements in the experimental date.

$$\begin{array}{c} \text{In the work of Pekans the w.f.} \\ \text{In the work of Pekans the w.f.} \\ \text{(B in a.u)} \\ \text{state B} \\ (^{1}3_{0} \quad 2.9036942839(33)) \\ 2^{3}5_{4} \quad 2.145974365117(33)) \\ 2^{4}5_{5} \quad 2.145974147(12) \\ 2^{3}f_{2} \quad 2.1331721598(62) \\ \end{array} \\ \begin{array}{c} \text{In the work of Pekans the w.f.} \\ \text{was constructed using the "primeter coordinates"} \\ (u = \varepsilon \left(\frac{r_{32}}{32} - \frac{r_{12}}{31} + \frac{r_{12}}{32}\right) \\ \text{We set of the the set of the$$

$$G(u, v, z) = \sum_{\substack{i,j,k \\ i,j,k }} A = L(u) L(v) L_{k}(z).$$

L (3) is the Laguerre polynamicl of order on end Aijk are trial parameters to be determined by means of the fariational principle. Such a form of trial spurction has been generalized by other authors, in particular by Drake et al. :

$$\frac{1}{\sqrt{2}} = \sum_{ijk} \begin{bmatrix} (a) & (a_{a}, \beta_{a}) + a_{ijk} & (a_{a}, \beta_{a}) \end{bmatrix} + a_{ijk} \begin{bmatrix} (a_{a}, \beta_{a}) & (a_{a}, \beta_{a}) \\ \lambda_{ijk} & \lambda_{ijk} \end{bmatrix} + a_{ijk} \begin{bmatrix} (a_{a}, \beta_{a}) & (a_{a}, \beta_{a}) \\ \lambda_{ijk} & \lambda_{ijk} \end{bmatrix} + a_{ijk} \begin{bmatrix} (a_{a}, \beta_{a}) & (a_{a}, \beta_{a}) \\ \lambda_{ijk} & \lambda_{ijk} \end{bmatrix} + a_{ijk} \begin{bmatrix} (a_{a}, \beta_{a}) & (a_{a}, \beta_{a}) \\ \lambda_{ijk} & \lambda_{ijk} \end{bmatrix} + a_{ijk} \begin{bmatrix} (a_{a}, \beta_{a}) & (a_{a}, \beta_{a}) \\ \lambda_{ijk} & \lambda_{ijk} \end{bmatrix} + a_{ijk} \begin{bmatrix} (a_{a}, \beta_{a}) & (a_{a}, \beta_{a}) \\ \lambda_{ijk} & \lambda_{ijk} \end{bmatrix} + a_{ijk} \begin{bmatrix} (a_{a}, \beta_{a}) & (a_{a}, \beta_{a}) \\ \lambda_{ijk} & \lambda_{ijk} \end{bmatrix} + a_{ijk} \begin{bmatrix} (a_{a}, \beta_{a}) & (a_{a}, \beta_{a}) \\ \lambda_{ijk} & \lambda_{ijk} \end{bmatrix} + a_{ijk} \begin{bmatrix} (a_{a}, \beta_{a}) & (a_{a}, \beta_{a}) \\ \lambda_{ijk} & \lambda_{ijk} \end{bmatrix} + a_{ijk} \begin{bmatrix} (a_{a}, \beta_{a}) & (a_{a}, \beta_{a}) \\ \lambda_{ijk} & \lambda_{ijk} \end{bmatrix} + a_{ijk} \begin{bmatrix} (a_{a}, \beta_{a}) & (a_{a}, \beta_{a}) \\ \lambda_{ijk} & \lambda_{ijk} \end{bmatrix} + a_{ijk} \begin{bmatrix} (a_{a}, \beta_{a}) & (a_{a}, \beta_{a}) \\ \lambda_{ijk} & \lambda_{ijk} \end{bmatrix} + a_{ijk} \begin{bmatrix} (a_{a}, \beta_{a}) & (a_{a}, \beta_{a}) \\ \lambda_{ijk} & \lambda_{ijk} \end{bmatrix} + a_{ijk} \begin{bmatrix} (a_{a}, \beta_{a}) & (a_{a}, \beta_{a}) \\ \lambda_{ijk} & \lambda_{ijk} \end{bmatrix} + a_{ijk} \begin{bmatrix} (a_{a}, \beta_{a}) & (a_{a}, \beta_{a}) \\ \lambda_{ijk} & \lambda_{ijk} \end{bmatrix} + a_{ijk} \begin{bmatrix} (a_{a}, \beta_{a}) & (a_{a}, \beta_{a}) \\ \lambda_{ijk} & \lambda_{ijk} \end{bmatrix} + a_{ijk} \begin{bmatrix} (a_{a}, \beta_{a}) & (a_{a}, \beta_{a}) \\ \lambda_{ijk} & \lambda_{ijk} \end{bmatrix} + a_{ijk} \begin{bmatrix} (a_{a}, \beta_{a}) & (a_{a}, \beta_{a}) \\ \lambda_{ijk} & \lambda_{ijk} \end{bmatrix} + a_{ijk} \begin{bmatrix} (a_{a}, \beta_{a}) & (a_{a}, \beta_{a}) \\ \lambda_{ijk} & \lambda_{ijk} \end{bmatrix} + a_{ijk} \begin{bmatrix} (a_{a}, \beta_{a}) & (a_{a}, \beta_{a}) \\ \lambda_{ijk} & \lambda_{ijk} \end{bmatrix} + a_{ijk} \begin{bmatrix} (a_{a}, \beta_{a}) & (a_{a}, \beta_{a}) \\ \lambda_{ijk} & \lambda_{ijk} \end{bmatrix} + a_{ijk} \begin{bmatrix} (a_{a}, \beta_{a}) & (a_{a}, \beta_{a}) \\ \lambda_{ijk} & \lambda_{ijk} \end{bmatrix} + a_{ijk} \begin{bmatrix} (a_{a}, \beta_{a}) & (a_{a}, \beta_{a}) \\ \lambda_{ijk} & \lambda_{ijk} \end{bmatrix} + a_{ijk} \begin{bmatrix} (a_{a}, \beta_{a}) & (a_{a}, \beta_{a}) \\ \lambda_{ijk} & \lambda_{ijk} \end{bmatrix} + a_{ijk} \begin{bmatrix} (a_{a}, \beta_{a}) & (a_{a}, \beta_{a}) \\ \lambda_{ijk} & \lambda_{ijk} \end{bmatrix} + a_{ijk} \begin{bmatrix} (a_{a}, \beta_{a}) & (a_{a}, \beta_{a}) \\ \lambda_{ijk} & \lambda_{ijk} \end{bmatrix} + a_{ijk} \begin{bmatrix} (a_{a}, \beta_{a}) & (a_{a}, \beta_{a}) \\ \lambda_{ijk} & \lambda_{ijk} \end{bmatrix} + a_{ijk} \begin{bmatrix} (a_{a}, \beta_{a}) & (a_{a}, \beta_{a}) \\ \lambda_{ijk} & \lambda_{ijk} \end{bmatrix} + a_{ijk} \begin{bmatrix} (a_{a}, \beta_{a}) & (a_{a}, \beta_{a}) \\ \lambda_{ijk} & \lambda_{ijk} \end{bmatrix} \end{bmatrix} + a_{ijk} \begin{bmatrix} (a_{a}, \beta_{a}) & (a_{a}, \beta_{a}) \\ \lambda_{ijk} &$$

à and of are trial parameters,

and (a_n, β_n) , (a_n, β_n) are two sets of non linear farameters. The exchanged term has the same functional form of the first one but with $\pi_1 \leftrightarrow \pi_{32}$.

PM	wis (Phys. Rev. 126 (1962) 1470	Drucke A al. (Phys. Rur. Lett. 77(1996) 17.				
N	B(a.m.u)	N	B (1.m.u)			
<i>95</i>	2.903723389	44	2.903724 131			
125	2.903723878	67	9 943724 751			
203	2.903724228	135	2.963 724376 75			
210	2.903724311	182	2.90372437696			
extr.	2.90372435	236	2.90372437702			

Nis the number of linear trial parameters, B the ground state energy with ma/me =00.

Finite ma value - finite ma value - relativistic concetions - QED concetions.

This have been treated up to the order & mechind. One in postant aim is to use theoretical results and exp. date to in prove our Kamelador and and Budder and the The HH method has been applied to the helium atom problem by many prople (see, for exemple, R. Knivee, Few Booky Systems 25 (1938) 189) The not intimate for the ground state energy is given in the paper of Febre de Le Rifelle et el., Phys. Rev. A44 (1931) 7084 :

The difficulty is that the HH expansion (due to the mendarity et r=0 of the coulomb stential) is extremely slow. To remedy to this Haftel and trandelswing, Ann. of Phys. 189(1989) 29) have modified the expansion basis by multiply is the HH functions by an expropriate correlation factor :

where

$$\theta = e^{-\beta r_{12} - \delta(r_{31} + r_{32})}, \quad \beta = -\frac{1}{2} \quad \delta = \frac{2m_2}{m_{22}}.$$

With meh e choice of p end & the behavior at r-so of the Coulomb interaction is correctly taken into account. The function of is expended in the HH bagis. However, the equation to be solved is written as

$$\theta^{-1} \left[H - E \right] \theta \phi = \left(\theta^{-1} T \theta + V - E \right) \phi = 0$$

The details of the calculations can be found in the original paper. The conclusion is that the everycupence is strongly fortuned and with a reasonnably small number of HH congonents the value

has been total need.

ψ= θφ,

Now reactly, the HH expension has been sixisted in the
there of Paterni (2010, Phys. P15H). The wife has the form

$$\psi = \psi \chi_{-}^{(1,2)}$$
 $\psi = \phi(\overline{z}_{1}, \overline{y}) + \phi(\overline{z}_{1}, \overline{y}) + \phi(\overline{z}_{2}, \overline{y})$
where $\overline{z}_{1}, \overline{y}$ are the Jacobi vectors corresponding to the three
even permitted in of $\delta_{12}, 3$.
The employed of an ether expended on the HH persi.
It must be noticed that:
 $\phi(\overline{z}_{1}, \overline{y}_{1})$ alone in might into to produce ψ
 $(but envery ence is dow)$
- the three ϕ anylitically are not orthogonal each other so
core is necessary to evoid duffication of slements.
With a responsible number of han's purching the estimate
 $B = 2, 9 \cdot 28$ ($8(2RAKE) = 2.903724.394$) has been obtained, so
the induction againes improvements.
To this end, the EHH as jaurin has been used:
 $\psi_{1} = \chi_{-}^{(2,2)} \int_{-2}^{3} \left[\psi_{-}^{(2)} (\overline{z}_{p}, \overline{y}_{p}) + \psi_{-}^{(2)} (\overline{z}_{p}, \overline{y}_{p}) \right]$, $\psi = 2, 2, 3$.
Where both ψ and ψ_{-} are constructed in torms of HH function.
The hypersocial functions in ϕ and ϕ_{-} are taken as
combination of Laguere functions ($exp(-3e)L_{m}^{-1}(3e_{1})$).

-

Results for the ground state

N _{HH}	CFHHM (nandel zwiget d.)	EHH (+13 states in \$ (2)
1	2.855504862	2,90347103
4 9	2.902 870 977 2.903 70 1425	2.90369776 2.90371936
16	2.903718547	2.90372322
25	2.303723654	2.90372388 serven digits are
36	2.903723987	2.90372415 soviet

(Prake it d.) 2,9037243970

For the first excited state an accuracy of six digits has been attained.

Note that : $e^{-\delta r_{12} - \delta (r_{13} + r_{23})} = 1 - \delta g (cos \phi_1 + cos \phi_3) + \cdots$

Further calculations are in progress.

The HH - and modified HH - Kype expansion.

The main difficulty when applying the HH approach to systems with particle interactions strongly state-dependent and containing large separation, is the very slow convergence (thousands of components can be nearsery). Also for ningle contral potentials, the convergence is repion only for rolt core potential, as wident from the poper of Ehreno et ol. (see table).

in) to study appropriate modifications of the expansion to fosten the convergence.

i) As myands this point the most intensting approach is the use of the so-colled potential pasis (PB) firstly introduced by Fabre de la Ripelle. The underlying idea is to treat in an accurate way the cutribution from the pair **excetus** coeschations which, as has been discussed by J. Nerarro in his contribution, are those to be firstly taken into account. To this and, the PB perceiptions are hereften discussed. Let in again while the w.f. in the form

ERENS, VISSCHERS AND VAN WAGENINGEN

TABLE V Eigenvalue | E | For the Potentials From Table I as a Function of k_{max}

	<i>E</i> (MeV)												
k _{max}	B	V	EH	AT	Н	Y	M VI	ΜV					
0	9.2062	7.7080	3.6660	0.3548	8.2849	2.5382	8.3960	0.5660					
2	9.6134	8.0786	4.7390	2.1291	9.1954	3.1359	9.5219	1.8386					
3	9.7462	8.3296	5.8895	4.6059	9.7496	3.5378	10.2383	4.2234					
4	9.7646	8.3759	6.1083	5.2081	9.8681	3.6283	10.3952	4.9824					
5	9.7738	8.4162	6.4934	5.8066	9.9733	3.7125	10.5375	5.8854					
6	9.7779	8.4428	6.7385	6.2376	10.0536	3.7792	10.6481	6.6316					
9	9.7794	8.4609	6.9592	6.5848	10.1306	3.8466	10.7566	7.3762					
12	9.7795	8.4641	7.0201	6.6675	10.1577	3.8717	10.7958	7.6217					
15	9.7795	8.4646	7.0379	6.6894	10.1695	3.8830	10.8131	7.7136					
18	9.7795	8.4647	7.0446	6.6953	10.1754	3.8887	10.8218	7.7521					
21		1 C # 2 C*				3.8919		7.7697					
24						3.8939		7.7785					
27						3.8951		7.7831					

FIG. 1. Illustration of the convergence of the binding energy as a function of k_{max} for the potentials listed in Table I.

$$\Psi(n, ..., R) = \sum_{(p)} a_{p} \Phi(n, i, k, ...)$$

p=(i, j, k...) is a generic formutation of the indices 1, 2, ..., A dp are coefficients which guarantee the correct immetry properties.

PB basis

In the HH expansion of
$$\Phi^{(p)}$$

- only the minimum engular momentum value of the
pair i, j (for all the important spin-isospin channels)
is considered (all the others ming taken = 0);
- only the dependence on the hyper engle $\Phi_N^{(b)}$ is allowed.
Since $r_{ij}^{(p)} \sim r \cos \phi_N$, by this limited the expansion with
incussing G values, the best function of the type
 $\Psi_{RB}^{(p)} = \sum_{(p)}^{\infty} d_p \, \Psi_{(r_{ij}^{(p)}, \tau)}$

can be constructed.

For malistic NN niterections also if the PB components give the largest contributions, higher order contributions must be taken into account for an accurate description of the system structure.

iii) As ugardo this point the moolifications more widely investigated are the actiabatic approximation, the coorelated HH expansion and the EHH expansion recently proposed.

Nuclear systems (A= 3, 4) with realistic interactions

Goal: find accurate solutions of $H\Psi = E\Psi$.

H nuclear hamiltonian:

$$H = -\frac{\hbar^2}{M} \sum_{i=1}^{A} \nabla^2 + \sum_{i < j}^{A} V(i, j) + \sum_{i < j < k}^{A} W(i, j, k)$$

- non relativistic kinetic energy
- V(i, j) nucleon-nucleon (NN) potential strong repulsion at short distances spin-isospin dependence non central (strong tensor component)
- W(i, j, k) three–nucleon (3N) potential

Use of variational principles

Expansion of the spatial part of Ψ in the **HH basis** Due to the strong repulsion at short interparticle distances, the HH basis **converges very slowly** Modifications of the method \rightarrow CHH & EHH

Alternative techniques

- Variational methods (Expansion in a basis of gaussians)
- Faddeev–Yakubovsky equations
- Green Function Monte Carlo method

A= 4

$$\alpha = (l_{1}, l_{2}, ..., l_{N}, L_{2}, ..., L_{N-1}; L_{1}, S_{2}, ..., S_{N-1}, S_{1}, T_{1}, T_{1$$

Antioymmetrisation

$$\overline{P}_{\alpha_{1},m_{2},\cdots,m_{r}} = \sum_{\substack{j \in \mathcal{M}_{r} \\ (i,j,\cdots)}} \mathcal{K}_{i} \left(\frac{1}{2}, \frac{$$

- the sum is limited to ever permetations since, by construction, this (i, i, k ...) is antisymmetric with respect to it is.
- many functions $\stackrel{-}{P}_{a, \frac{m_{2} \cdots m_{p}}{2}}$ are linearly dependent from each other - Problem : choice of a small as jornible set of functions For a given channel & the states are ordered as: 1) two-body states (PB basis) : only $m_{p} \neq 0$ a) three-body states (tright basis) : only $m_{p}, m_{p,s} \neq 0$

Examifus:

PB banis

wo fr. = <u>9r-1</u> r sin fr

Triplet basis

Defails of the calculation. • A set of M bosis functions $\vec{p}_{a,m_{a},\dots,m_{N}} \equiv |\mu\rangle$ is chosen • Orthonormalization of the basis $|\mu\rangle = \frac{\vec{p}}{p} \quad V_{\mu\nu'} |\mu'\rangle,$ so that $\langle \mu | \mu' \rangle_{T} = S_{\mu\mu'}$. The linearly dependent functions are then removed. Total w.f. $\Psi = \pi \frac{\vec{p} - 1}{2} \prod_{\mu=1}^{n} \mu(\pi) [\mu^{2}]$ From the Rayleigh - Riter principle $[S_{a} \leq 41H - E|t\rangle = 0]$: $\left\{ -\frac{4\pi}{2n} \left[\frac{d^{2}}{dn^{2}} - \frac{S_{an}(\frac{d}{dn+4})}{\pi^{2}} \right] - E \right\} W(\pi) = -\sum_{\mu=1}^{n} V(\pi) n(\pi)$

A few details on the rolution of the differential equal of N points in the hyperadius is fixed

$$z_{i} = h \frac{\eta^{2} - 1}{\eta - 1}$$

 $T_{i} = h , \quad T_{i} = h + \eta + h \text{ and so on}$
 $(h = 0.1 \div 0.5 \text{ fm} , \quad \eta = 1.05 \div 1.15) \quad 0 \le \tau \le 50 \text{ fm} \quad N \approx 50.$

$$\frac{\partial^2 u(r)}{\partial r^2} = \sum_{j=1}^{N_c} L(i,j) u(r_j)$$

$$\frac{\partial^2 u(r)}{\partial r^2} = \sum_{j=1}^{N_c} L(i,j) u(r_j)$$

•

ч.

In this way one has to where a standard signisative problem (the quantities to be determined are $u(r_{o})$, $\mu=1, M$, i=1, N) The dimensionality of the matrices involved is NorM+H.

	Q	l1.	la.	L	So	T_{2}	S.	\overline{T}		
	1	$\frac{\sqrt{1\alpha}}{0}$	$\frac{-2\alpha}{0}$	$\frac{\Delta_{\alpha}}{0}$	$\frac{D_{2\alpha}}{1}$	$\frac{12\alpha}{0}$	$\frac{\nu_{\alpha}}{1/2}$	$\frac{1\alpha}{1/2}$	7	0
	2		0	0	0	1	$\frac{1}{2}$	$\frac{1}{2}$	ζ	1
10	3		2	2	1	<u> </u>	$\frac{1}{2}$	$\frac{1}{2}$		0
2 7	4	2	0	2	1	0	3/2	1/2		
2	5	2	2	0	1	0	1/2	1/2		
6	6	$\begin{vmatrix} -2 \end{vmatrix}$	$\frac{-}{2}$	2	1	0	3/2	1/2		
	7	2	2	1	1	0	1/2	1/2		
2 - (8	2	2	1	1	0	, 3/2	1/2		
- <u>-</u> 2 (9	1	1	0	1	1	1/2	1/2		
	10	1	1	1	1	1	1/2	1/2		
4	11	1	1	1	1	1	3/2	1/2		
	12	1	1	2	1	1	3/2	1/2		

 3 H and 3 He bound state

26 CHANNELS

The final calculations includes all the channels with $\ell_1 + \ell_2 \leq 6$. For each channel, states with $\underline{G} = 2n_2 + \ell_1 + \ell_2$ are included starting from $G^0_{\alpha} = \ell_1 + \ell_2$ up to a given maximum \underline{G}_{α} .

It is very important to study the convergence channel by channel, in fact, the necessary \underline{G}_{α} values **can be rather different**.

- Channels 1 4: $\underline{G}_{\alpha} \approx 80$
- Channels 5 8: $\underline{G_{\alpha}} \approx 40$
- Channels > 8: $\underline{G_{\alpha}} \approx 20$ or less

³H binding energy (MW)

Convergence with G – First 4 channels

G	Volkov	S3a	AV14
0	7.708	0.344	_
.4	8.079	2.129	—
8	8.376	5.207	2.803
12	8.443	6.237	5.635
16	8.458	6.500	6.532
. 20	8.463	6.620	6.973
30	8.466	6.689	7.283
40	8.466	6.697	7.353
50		6.698	7.362
70			7.373
90			7.375
exact	8.466	6.700	7.684

Channel convergence – AV14 potential

N _c	B	< T >	$P_{S'}$	P_D
4	7.3751	44.200	1.231	8.169
8	7.6605	45.556	1.129	8.926
12	7.6788	45.650	1.126	8.963
18	7.6822	45.676	1.126	8.967
26	7.6844	45.678	1.126	8.968

Potential	Method	B(Hw)	T (Her)	R(fm)	$P_{S'}$
	HH	8.2527	30.639	1.681	0
MT(V)	\mathbf{FE}	8.25273			0
	SVM	8.2527		1.682	0
	ATMS	8.26		1.682	0
	HH	8.765	33.879	1.673	3.490
S3	FE	8.765			
	SVM	8.753		1.67	
MT(I - III)	HH	8.881	31.313	1.696	2.416
	IDEA	8.86			······

Comparison with other techniques Central potentials

Non Central potentials

Potential	Method	$B(\mathbf{M})$	T(MN)	R(fm)	$P_{S'}$	P_P	P_D
	HH	7.6844	45.68	1.776	1.126	0.0761	8.968
	\mathbf{FE}	7.680					
AV14	FE	7.670			1.12	0.08	8.96
	CRC	7.6844			1.126	0.076	8.968
	GFMC	7.670(8)	ł				
AV18	HH	7.618	46.71	1.769	1.294	0.0658	8.511
	FE	7.62					

<u>FE</u>=Faddeev equations, Friar et al, 1985; Glöckle et al, 1995

SVM=Stochastic variational method, Suzuki and Varga, 1995

ATMS=amalgamation of two-body correlations into multiple scattering, Akaishi, 1974

IDEA=Integro-differental equation approach, Fabre et al 1988

<u>CRC</u>=coupled-rearrangement-channel, Kamimura et al, 1989 .

GFMC=Green function Monte Carlo, Carlson, 1988

α -particle ground state (J = T = 0)

The first 8 channels

•							-				-			
0/0			α	ℓ_1	ℓ_2	ℓ_3	ℓ_{12}	L	S_2	S_3	S	T_2	T_3	T
		>\$	1	0	0	0	0	0	1	1/2	0	0	1/2	0
$\frac{1}{\sqrt{2}}$	•	j	2	0	0	0	0	0	0	1/2	0	1	1/2	0
		×	3	0	0	2	0	2	1	3/2	2	0	1/2	0
- ·		>	4	0	2	0	2	2	1	3/2	2	0	1/2	0
2.0		Ń	5	0	2	2	2	0	1	1/2	0	0	1/2	0
-0		7.	6	0	2	2	2	1	1	1/2	1	0	1/2	0
	· · /		7	0	2	2	2	1	1	3/2	1	0	1/2	0
27	•		8	0	2	2	2	2	1	3/2	2	0	1/2	0
5									·			L	·····	

DNLY THE SET A OF JAWBI VECTURS 15 USED_

3

3

8

80

Choice of the expansion basis

- 1. Class C1. In this class are included the HH states belonging to the PB= **two-body correlations**. The PB includes states of the first three channels (the only channels with $\ell_1 = \ell_2 = 0$) and $n_2 = 0$.
- 2. Class C2. This class includes states belonging to the same three channels as class C1, but with $n_2 > 0$. This states therefore, includes also part of **three-body correlations**.
- 3. Class C3. This class includes all the states belonging to the channels 4 8 reported in table.
- 4. Class C4. This class includes all the HH states belonging to the channels with $\ell_1 + \ell_2 + \ell_3 = 4$ not included in classes C1-C3
- 5. Class C5. This class includes all the states belonging to the channels with $\ell_1 + \ell_2 + \ell_3 = 6$.

NUMBER &

Comparison with other techniques Central potentials

Potential	Method	B (MeN)	T (Here)	R(f~)	$P_{S'}$
	HH	31.357	69.71	1.409	0
	SVM	31.360		1.4087	0
MT(V)	FYE	31.36			0
	CRC	31.36			0
S3 _a	HH	27.412	69.06	1.444	0
	DMC	27.31(5)			0
S3	HH	31.608	74.341	1.413	4.087
	FYE	31.00			

Realistic potentials

Potential	Method	B (Men)	T (MW)	R(pm)	$P_{S'}$	P_P	P_D
	HH	25.60	99.41	1.497		0.402	14.46
AV8	SVM	25.62	98.9	1.50			
	GFMC	25.67(3)					
AV14 + C	HH	24.21	95.80	1.524	0,355	0.389	14.40
	GFMC	24.23(3)					
AV18 + C	HH	24.11					
	GFMC	24.1(1)					

<u>SVM</u>=Stochastic variational method, Suzuki and Varga, 1997 <u>FYE</u>=Faddeev-Yakubovsky equations, Glöckle *et al*, 1995 <u>CRC</u>=coupled-rearrangement-channel, Kamimura *et al*, 1989 <u>DMC</u>=Diffusion Monte Carlo, Bishop *et al*, 1990 GFMC=Green function Monte Carlo, Carlson, 1988 Binding Energy (Her)

Convergence:

G	C1	C2	C3	C4	C5
8		17.394	21.310	23.200	
10	_	18.290	21.593	23.544	
12	_	18.694	21.770	23.858	
14	7.532	18.992	21.898	24.007	24.180
16	9.590	19.173	21.965	24.105	24.190
18	10.929	19.267	22.009	24.147	24.203
20	11.825	19.337	22.035	24.170	24.208
22	12.363	19.381	22.051	24.176	24.210
24	12.752	19.410	22.061	24.178	
26	12.997	19.430	22.066		
28	13.166	19.444	22.070		
30	13.279	19.454	22.072		
32	13.359	19.461			
34	13.413	19.466		·	
36	13.452	19.470			
38	13.479	19.472			
40	13.499				
50	13.541				
60	13.551				
70	13.554				

NUMBER M

UF EUS. To ->

BE SOLVED

A=4 with AV14 potential - Reputts by different groups. 2,22

TABLE I The expectation values $\langle T \rangle$ and $\langle V \rangle$ of kinetic and potential energies, the binding energies E_b in MeV, and the radius in fm

Method	$\langle T \rangle$	$\langle V \rangle$	E _b	$\sqrt{\langle r^2 \rangle}$
FY	102.39(5)	-128 33(10)	-25 94(5)	1 485(3)
CRCGV	102 30	-128 20	-25 90	1 482
SVM	102 35	-128 27	-25 92	1.486
HH	102.44	-128 34	-25.90(1)	1.483
GFMC	102.3(1.0)	-128 25(1 0)	-25 93(2)	1 490(5)
NCSM	103.35	-129.45	-25 80(20)	1.485
EIHH	100 8(9)	-126.7(9)	-25.944(10)	1 486

r [fm]

FIG 1 Correlation functions in the different calculational schemes EIHH (dashed-dotted), FY, CRCGV, SVM, HH, and NCSM (overlapping curves)