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1 Introduction: historical developments

Compared to the ground state, the basic theoretical understanding of the mi-
croscopic structure of the excitations and of the physical processes involved is
relatively incomplete. On the experimental side, however, the elementary ex-
citation spectrum of liquid 4He, along with the underlying dynamic structure
function, are known to a high precision from x-ray and neutron scattering
experiments. (A review of the subject with references to earlier experimental
and theoretical work is given by Glyde in his book.[l]) Thus, modern many-
body methods face a demanding challenge of reproducing the correct spectrum;
a solid agreement would create confidence in the applied tools and indicate
that the essential physical ingredients have been understood and included into
the calculations. A fully microscopic approach is needed here, because these
phenomena defy a simple hydrodynamic Al description.

Before bringing the variational point of view into play, let us quickly summarize
the milestones on this path. The preliminary work on the subject was done by
Bijl and Landau in the 1940s. [2] Landau proposed that there are two separate
collective excitation modes in liquid 4He: phonons, thought of as collective
density (sound) modes having linear dispersion, and rotons, assumed to be a
collective rotation of the fluid having a separate dispersion curve. Later on, he
joined these excitations into a single collective mode dispersion curve continuous
in the wave vector.Phonons and rotons were then interpreted as the low- and
high-A: regions of the same collective excitation. (In this sense the name "roton"
is a misnomer.) Between them we have what is called the maxon region. This
seemed to be in qualitative agreement with experimental data and, at the same
time, consistent with the continuous dispersion curve for excitations in a dilute
Bose gas derived microscopically by Bogoliubov in his seminal paper. [3]

After these early developments Feynman took the first steps towards a micro-
scopic description by suggesting a specific trial excited-state wave function. [4]
Specifically, he wrote the wave function of the excited state \I>k of momentum hk
as a product \I>k = pk^o of the ground-state wave function \£o and of a density-
fluctuation operator /?k = Ejexp(ik-rj), offering thus a microscopic explanation
for phonons and rotons as collective density excitations at all k. Although the
spectrum calculated variationally using the proposed wave function, leading to
the dispersion relation

seemed to contain much of the relevant physics, quantitatively the agreement
was far from being satisfactory. The dispersion relation (1) does provide an
upper bound for the lowest-lying excitation and is exact in the long-wavelength
limit, but has severe deficiencies at shorter wavelengths.

For example, the computed roton energy is twice as large as the experimentally
observed value. Owing to this discrepancy, the theory was subsequently supple-
mented by Feynman and Cohen[5] to include so-called backflow corrections



which increased the flexibility of the wave function and, thus, lowered the rot on
energy significantly towards measured values. The term backflow is used to de-
scribe the correlated motion of neighboring particles around a given reference
atom. In the initial picture put forward by Feynman and Cohen the form of
this backflow was not unconstrained: instead, they assumed that the particles
move in a dipolar flow field, behaving in a sense like a smoke ring.

After Feynman's original arguments the method of correlated basis functions
(CBF) was developed along the same lines to further improve the agreement
between theoretical predictions and experimental data, most notably by Feen-
berg and his collaborators,[6, 7, 8, 9, 10] In the CBF approach the excited-
state wave function \I>k is written as ^k = ^k^o, and the excitation operator
Fk is further expressed as a polynomial in the density-fluctuation opera-
tors {pk}- Thus, in the lowest order we have the usual Feynman form for the
excited states, and terms beyond the linear one introduce the backflow effects.
Attempts to calculate the dynamic structure function were also made. [11]

More recently the shadow wave function (SWF) method has been extended
to permit the investigations of excited states. [12, 13] By the provision that
the momentum-carrying factor in ^k is a density fluctuation in the subsidiary
(shadow) variables, one has, in principle, a parameter-free wave function of the
Feynman form in which the fluctuations in the subsidiary variables allow for
the presence of backflow effects in the particle variables. Again, this backflow
is represented by terms of all orders in the density fluctuation {pk} of the real
variables. The CBF and SWF methods, along with the application of released-
node Monte Carlo simulations, all give results which agree reasonably well
with experimental data.

Three-dimensional vortex rings are also candidates for rotons, and expanding
rings could account for the lambda transition. [14] One additional view to the
problem is that unlike phonons, rotons might involve the motion of only few 4He
atoms, a group forming a quasi-particle. In the extreme case this quasi-particle
would be just one atom dressed in a superfluid backflow. [15] In the novel picture
put forward by Glyde and Griffin the roton is viewed as a renormalized single-
particle mode. This model has been used extensively to analyze neutron
scattering data. [16, 1, 17]

The excitation spectrum of liquid 4He is in two dimensions qualitatively very
similar to the three-dimensional spectrum, as one might expect since the physics
of liquid 4He is dominated by short-range correlations. What makes the 2D
system especially interesting, however, is that the vortex-antivortex pair
excitation occurs there naturally as a low-lying elementary excitation mode.
[18, 19, 20, 21, 22, 28] Therefore, this system forms an ideal framework within
which it is possible to study the specific differences between the roton and vortex
excitations.

The equation motion method for excited states and dynamics of quantum
fluids and fluid mixtures which I will present here has its roots in the early works
by Saarela and Suominen.[24, 25, 26] and by Krotscheck[27]. In that method



one starts with an Hamiltonian which contains an infinitesimal, external, dy-
namic interaction which drives excitations into the system and then one looks
for the response in the one- and two-particle density distributions. The time
dependence of the external interaction creates currents into the system, which
are solved together with the density fluctuations from the equations of mo-
tion. We limit ourselves into the linear response and thus calculate the linear
response function and from that the dynamic structure function. The
method has been applied to homogeneous and inhomogeneous quantum fluids
and their mixtures.

To summarize our present understanding of the dynamic structure of liquid
4He.
The nature of the collective excitations is fairly well understood.
The role of the Bose condensate in the excitations needs to be clarified.
Quantitative understanding of the behavior of the dynamic structure function
S(k, uj) is still missing.

2 Optimized ground state

In the microscopic variational theory we start from the empirical Hamilto-
nian for the system of N particles with mass m

£ f : - r J | ) . (2)
1=1 i^j

We assume that the two-particle interaction V(\ri — r^| is known.
For the variational wave function we take the Jastrow-Feenberg ansatz [6,
28,7]
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The variational problem is to minimize the total energy

E°= <*o|*o> (4)

with respect to the correlation functions ^ ( r ^ r ^ ) and ^ ( r^ r^ r f c ) . This leads
to the Euler equations

Su2(rur2)
(5)



=0 (6)

2.1 Feenberg's prime-derivative technique
Let's derive the Euler equation by using Feenberg's prime-derivative technique
[6]. By definition we have

u2(r] X) = u2(r) + X \V(r) V2u2(r)\ (7)

where V(r) is the two-particle interaction. In the following we use the notation

,./^_^2(r;A)
(8)

A=0
2VJ dx

and ignore A from the list of arguments of the functions. Then

u'2(r)^V(r)-^SJ2u2{r) (9)

Arturo Polls showed to you how to write the energy/particle in the form

— = — On I d r o(r) \V(r) V uo(r)\ (10)
IV Z J [_ Llli J

where g(r) is the radial distribution function and the derived the Euler
equation (5) both in coordinate space

g'{r) = V2p(r) (11)

and in momentum space

S'(k) = - — (S(k) - 1) (12)

using the structure function S(k).

S{k) = 1 + po /d 3 r (g(r) - 1) e i k r (13)

Let us define two new quantities the induced potential in terms of the sum
of nodal diagrams N(r) as

^ind(r) = N'(r) + ^2N(r), (14)



and the particle-hole effective interaction in terms of the direct correlation
function X(r)

Vp-h(r) = X'(r) + ^V2X(r) (15)

The HNC-equation connects these quantities

g(r) = e^M+^M (16)
=> u2(r) = log g(r)-N{r) (17)

g'(r) = g(r)(u'2(r) + N'(r)) (18)

Inserting U2(r) into the definitions (9) and (18) we get

g'(r) = g(r)V(r)+g(r)N'(r) (19)
+ £ [4

Subtract N'(r) from both sides of Eq. (19) and use the definitions

X(r) = g(r)-l-N(r)

X'(r) = g'(r)-N'(r). (20)

Then

X'(r) = g(r)V(r) (21)

Inserting the definitions (14) and (1.5) we get the expression for the particle-hole
potential

Vp-h(r) = g(r)V(r) + (g(r) - 1) wiad(r)

(22)

On the other hand from the Ornstein-Zernike relation

r3 | ) - lW|r 3 -r a | ) (23)

together with the definition (20) we get

* 1 - ^ (24)
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The priming operation and the use of Eq. (.1.2) gives

-l)
( 2 5 )4m S*(k)

Inserting these into the definition (15) we get

V h(k) -
4m V S*(k) + S(k)

Am V S2{k)

which is the Euler equation for the homogeneous one-component quantum
fluid,

S(k) = k _ = (27)

We still need to calculate the induced potential Wind(r) defined in Eq. (.1.4).
Prom the Ornstein-Zernike we get

The priming operation and the use of Eqs. (12) and (25) gives

Inserting these into the definition (14) we get

(30)

3 Equation of motion method

We begin with an assumption that the correlation functions in the ground state
wave function are optimized. It means that the system is stable against small
perturbations (linear) around that solution. Let us assume that we disturb the
system with an infinitesimal, external interaction. The system responds to that
by changing its density, but because it is in the optimized ground state all terms
linear in small changes in correlation functions disappear.

E_Eo,SE/N XTTI15*E/N r j t r n 2 + ^ a j ( 3 1 )

N N + SU 2 5U2



and one is left with the quadratic terms. Using the least action principle we can
derive the continuity equations which optimize the fluctuations in the correlation
functions and give the change in the density caused by the infinitesimal external
disturbance. These ideas lead to the linear response theory.

3.1 Linear response theory
Let us disturb the system using an external interaction Uext(k,uj) with a given
frequency UJ and wave number k. The change in the density of a homoge-
neous system 5p\(k,uj) will have the same frequency and wave number and the
information of the dynamic properties of the system is contained in the linear-
response function defined as

ext(

The imaginary part of the linear-response function defines the dynamic struc-
ture function

S(k,u) = -±Qm[X(k,oj)}, (33)

which is the measured quantity in the scattering experiments.

At low temperatures S(k,uj) consists of a sharp peak and of a broad contribu-
tion. It is therefore customary to write S(k,u>) as

,u) = Z(k)8(u - cjo(fc)) + Smp{k,u). (34)

This suggests that the linear response function can be written in the form

) = z f e ? L n
hCJ — THJJ1 — Li\k,(jj')

The quantity Z(k), the residue of the response function at the pole UJ =
can be evaluated from the derivative of the self energy E(/c,u>)

Z(k) = 1 - (36)

and gives the strength of the sharp peak, whereas 5mp(A:, u>) gives what is called
the multi-phonon background, i.e. the contribution in which the neutron
probing the system exchanges energy with two or more excitations.

In addition, the relative weight Z(k)/S(k) gives the efficiency of the single
collective excitation scattering processes, as seen from the (zeroth-moment) sum
rule

/•OO

/ S(k, LO)<LJ = S(k) = {p-kPk)/N (37)
/•O

/

Jo



In other words it gives the fraction of the available scattering processes at a
given wave number, which go through a single collective mode. If the excitation
were a simple density wave, as assumed in the Feynman theory, this ratio
would be

Z(k)
S(k)

= 1 (38)

3.2 Time-dependent correlation functions
If a weak, time dependent interaction perturbs the system then the ground-
state wave function, #0(1*1, • • •, *N) >ls modified accordingly and the correlation
functions become time dependent,

*(n, . ..,rN;t) = e - ^ / ^ n , . . . , rN; t) (39)

with

^ . . , r N i t ) (40)

The excitation operator

^ "T,rj;t) (41)

is a complex function and represents fluctuations in the correlation functions
due to this external perturbance.

The time-dependent one-body function 8ui(ri]t) must be included into the
description since the dynamics will normally break the translational invariance
of the system, but restricting the time dependence to the one-body component
only would lead directly to the Feynman theory of excitations.
The time-dependent two-body component is significant in situations where
the external field excites fluctuations of wavelengths comparable to the inter-
particle distance, as explicitly demonstrated in Refs. [29, 25, 26, 24, 10] for
liquid 4He and in Ref. [30] for the bosonic Coulomb system. With these terms
included the excitation operator then has a two-phonon basis,

£ S M n , V, t) = / ihi**6u2(kuk2;«)pklPk2. (42)

In the wave function (40) the optimized ground state \£o(ri, • •., r/v) satisfies
the Schrodinger equation

(43)

where Ho is the ground state Hamiltonian given in Eq. (2) and Eo appearing
in the phase factor of definition Eq. (39) is the ground state energy. The

9



normalization factor contains the ratio between the ground state and excited
state normalizations.

( 4 4 )

3.3 Action integral
The new Hamiltonian

(45)

which contains the infinitesimal external potential C/ext(r; t) is now time depen-
dent and must satisfy the least-action principle [31, 32]

SS = S f dt'C(t')

= 5 [ dt'
Jt0

(46)

We make two assumptions in the evaluation of the action integral. Firstly,
we require that the ground-state correlation functions are optimized. This is
important because it eliminates all contributions to the action integral that are
linear in the time-dependent correlation functions. Secondly, we assume that
the perturbation is weak which allows us to keep only the quadratic terms -
and warrants the use of the linear-response theory.

Using the ground state Schrodinger equation (43) we can write the integrand
in the form

C(t) =

+ (47)

The potential energy term commutes with SU(t) and thus only the kinetic
energy gives contribution to the commutator. This can be evaluated with a
little bit of algebra,

10



- V * o • VSU + V 2 * o

= /dr[--|*o|2eWeR

J L 4

giving the result

iV

3=1

The evaluation of the time derivative gives

where we have used the dot-notation f(t) =
Collecting all together we have the integrand

9 , u ^ e
i - + h.c.

C(t) =
N

(48)

(49)

(50)

3.4 Least action principle

In the least action principle we search for the correlation function which
minimizes the action integral (46). Let's assume that our excitation operator
SU = SU(r\,..., rn; i) depends on n coordinates and the time. Then the varia-
tion of the action integral

8S

with respect to 5U* gives

= 5 I dt'C(tl) = 0
Jtn

Uext

1 d\4>\2

Af(t) dSU*
A 1 dAfjt)
J M{t) dSU*

(51)

(52)
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The derivatives can be calculated from the definitions (40)

M =
=

dSU* 2
1 dN I

C/ _ [dr1...drN\$\29le6U
J

and the least action principle can be written in the form

J drn+1... drN [-£- £ V

= 0

(53)

3.5 Many-particle densities
In order to simplify Eq. (53) we define the n-particle density,

pn(ri,...rn;t) (54)

In the linear response theory one assumes that the time dependent perturbance
of the system is infinitesimal and hence we can separate the time dependent and
independent parts in the density,

pn(ri , • • • rn; t) = p n ( r i , . . . rn

Expanding to the first order in 5U we get

iV!
5pn(ru...Tn]t) = ,N^ny

1,... rn; t) (55)

(56)

The physical density is a real quantity and SU should be replaced with its real
part. Here we have generalized the definition to complex density fluctuations.

12



3.6 Many-particle currents
Similarly we define the n-particle current

j n ( r i , . . . r n ; t ) (57)

^ — 7 ^ 77 / d3rn + i . . . d3rN

i (N — n)\J

N\
2mi(N-n)\

t ^ (58)

3.7 Continuity equations in homogeneous fluids
Let us assume that our system is homogeneous and the single-particle density
of the ground state is constant.

Pi (r) = po = constant (59)

It is convenient to introduce the n-particle distribution function

0n(ri, . . . rn) = -j—r^pn(ri,... rn) (60)

With these assumptions we derive the one- and two-particle continuity
equations from the general Euler equation (53). These are the equations of
motion of the system [29, 25, 26]

Vi- j i ( r i ; t ) + i«Pi(ri;t) = i?i(ri;t) (61)

[Vi -J2(ri,r2;£) + same for (1 <-> 2)]

+16fa(ri,T2',t) = D2(r 1, r2; t). (62)

The terms with time derivatives in Eq. (53) are exactly time derivatives
of the density. Inserting the definition of the excitation operator (41) into the
definition of the density (56) we get for the one-particle density

8p1(Y1]t) = po5ul(Yl]t) (63)

-f pi I d3r2[(p2(ri,r2)fo2(ri,r2;t)

y / ^3r3(5r3(ri,r2,r3)-^2(r

13



From the definition (56) one sees directly that the particle number is con-
served in the fluctuations

d3rSp1(r) = 0 (64)

and that the sequential relation is satisfied,

J d3r25P2(vur2]t) = (N-l)SPl(r1;t) (65)

The one- and two-particle currents are

r 3 l

° J )
j2(ri,r2;£) = ——;< Q2(Y\')IO2)^I8U\(Y\\ t)

+ Vi^lt2(rl5 r2j t)} (67)

f 3 \\
0 J 3 3 1, 2, 3 1 2 1, 3, j -

The currents also satisfy the sequential condition

The terms which depend on the external potential are collected into the
functions D\(Y\] t) and D2(vi^V2]t) and they drive excitations into the system

e x t ( r i ; t ) (69)

/ d3r2 [<?2(ri, r2) - l] Uext(r2]t) i

/ d3r3 [#,(n, r2, r3) - g2(ru r2)] Uext(r3;t) i . (70)

4 Solving the continuity equations

Up to now, we have formulated the problem in terms of a Hamiltonian, a trial
wave function, and the action principle. What we still need to do is to find a

14



way to actually solve the continuity equations. They still contain four unknown
quantities, namely 5ui(r;t) and £1/2(1*1,T2',t) and time derivatives of 5pi(r;t)
and Sp2(ri,T2', t). Assuming that all ground state quantities are known. Clearly
they are not independent, but connected by the definition (56). In the following
we introduce various approximation schemas to put that definition into solving
the continuity equations.

In the homogeneous system fluctuations are weak and it is more convenient to
work in the Fourier space. We define the one-particle Fourier transform as

= A) f d3r dt

and similarly for the two-particle Fourier transforms

rid
zr2 dt

pQ

where R = (ri + r2)/2 is the center-of-mass vector, and r = ri — r2 the relative
position vector.

4.1 Feynman approximation
Let us first calculate the simplest approximation where we let only the one-
particle correlation function vary with time. This leads to the Feynman result
for excitations.
We need to solve the first continuity equation (61) in momentum space with the
assumption Su2(ri,r2',t) = 0 Then the current is simply

Ji(ri;i) = ^ V i & i i ( n ; t ) (71)

and the time dependent part of the density

<Jpi(ri;t) - po<fai(ri;*) (72)

+ pi I d3r2h(Tlir2)6u1(r2;t)

with h(ri,T2) = #2(ri> r2) ~ 1- The Fourier transforms can be readily calculated
giving

8p1(k',Lj) = S(k)p05u1(k;u;) (73)

and then
}~1(k]u,) (74)
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Similarly we can calculate the Fourier transform of the contribution from the
external potential (69). Inserting these results into the continuity equation (61)
we get

^ ^ ( f c , W ) ( 7 5 )

and we can solve the linear response function

<5pi(k;u>) 2S(k)

The poles of x(k, w) give the elementary excitations of the system

^ ( 7 7 )

and the limit UJ — 0 the static response function

The imaginary part of the linear response function determines the dynamic
structure function (33)

S(k,uj) = -^m[x(k,u;)} = S(k)S{hu; - eF(k)) (79)

which means that the Feynman approximation is a single pole approximation
and the strength of the pole is the structure function.
In 4He the excitation mode is linear in the long wave length limit and propor-
tional to the speed of sound c,

eF -> hkc. (80)

The structure function is also linear at small k

£ <81>
and the inverse of the static response function determines the incompressibility

-X-1(k,0)-*mc2 (82)

The elementary excitation modes of the system are obtained also directly by
setting the external potential Uext = 0 in the continuity equations. Using the
Feynman approximation and the results (71) and (72) we get a differential equa-
tion

5«i(ri;w) (83)

+ Po / rf3r2ft(ri,r2)<5Mi(r2;w) = 0
J J

16



which has the solution (77) and

5u1(r1;o;) = c<k-ri (84)

The excitation operator has then the Feynman form

5 CBF-approximation

When the two-particle correlation function is allowed to vary with time then the
first continuity equations (61) can be written in momentum space in a general
form

UUJ - eF(k) - E(fc,w) = 2S(k)X~\k,uj). (86)

where £(fc,u;) is the self energy and the linear response function as

X(k, u>) =
z
HUJ -

For real values of the self-energy the response function can have poles which
define the collective, elementary excitations. When the decay of the excited
modes becomes possible then the self-energy acquires imaginary part and the
sharp ^-function in the imaginary part of the response function spreads into
a broader peak. The notation £F(&) stands for the energy of the Feynman
collective mode.

5.1 Convolution approximation
The derivation of the self-energy starts [29, 33] with a convolution approximation
of the three-particle distribution function, but including also a special set of
diagrams with the triplet correlation function 1x3(ri, r2, ̂ 3)- The terms included
are shown in Fig. 1.

In the algebraic form it becomes

1,r2,r3) = 1 4- h(rur2) + h(rur3) + /i(r2,r3)

+/i(r i , r3) / i(r2 , r3)+ / d3

+ terms with triplet correlations functions (88)

The Fourier transform of that is simply

• % 3 ( r i , r 2 , r 3 ) - l ] = 5(kx)5(k2)5(k3) (89)

x [l + u 3 ( k i , k 2 , k 3 ) ] - l

We ignore triplet correlations for a moment and return to them at the end of
this section.

17
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Figure 1: Convolution approximation of #3(ri,r2,r3). Circles are particle posi-
tions, black circles are integrated and open circles not. Dashed lines are func-
tions h(r\,v2) and triangles are triplet correlation functions ^3(ri,r2,r3). The
second, third fifth and sixth diagrams have three of the same kind, but with
different particle coordinates.

5.2 Two-particle equation

Our aim is to get an approximation for 8U2(Y\,1*2; t) using Eq.(62). The simplest
term to approximate is D2(ri,r2]t) in Eq. (70)

+ Po J d3r3Uext(r3;t) (90)

x k(ri,r3)/i(r2,r3)H- / Mri,r4)Mr2,r4)/i(r3,r4) [•

The last two lines can be written in the form

po J d3r3Y{vur2-r3)D1(v3-t) (91)

with y(ri,r2;r3) = ft,(ri,r3)/i(r2,r3). The triplet correlation will have addi-
tional contribution to that. Thus we can express the two particle driving
term entirely in terms of £>i(r; t).

+ po j d3r3Y(r1,r2;r3)D1(v3;t)\ (92)

Similarly we can write an expression for the time dependent two-particle den-
sity using Eqs. (56) and (63)

,r2;t) = po< 5Pl(r2]t))

18



+ Po /

+ Po92{riiT2)Su2(r1,r2;t) + J:[Su2\ (93)

We have removed the dependence on 8ui(r,t) in favor of Spi(r,t). The func-
tional ^"[^2] contains all the rest of the terms with Jt£2(ri,r2;£). They can
be written explicitly using the definition (56), but they are not included in the
CBF-approximation.

The two particle current has a term with one-particle current, but also struc-
ture which comes from the time-dependent two-particle correlations.

J2(ri,r2;*) = A>02(ri,r2) j i(r i) (94)

[#3(ri,r2,r3) - #2(ri,r2)p2(ri,r3)]

The final steps of the derivation are the approximations necessary to bring the
two-body equation in a numerically tractable form. Our scheme follows the
general strategy of the uniform limit approximation [6] which has been
quite successful for the calculation of the optimal static three-body correlations
[34, 35, 36]. The essence of the approximation is to consider all products of
two or more two-body functions small in coordinate space.

In our specific case, the uniform limit approximation amounts to taking
02(ri,r2)tfzz2(ri,r2) « fo/2(ri,r2) and a similar expression for Vi<fa2(ri,r2).
While this approximation places more emphasis on the structure of <5t£2(ri,r2)
it is physically appealing since it simply removes the redundant relevant short-
range structure shared by #2(ri,r2) and <5u2(ri,r2). Invoking the equivalent
uniform limit for the three-body distribution function, the terms in Eq. (94)
which depend on &z2(ri,r2) become

d
J

3r3

x [g3(ji, r2, r3) - #2(ri, r3)g2(ri,r2)] Vi£w2(ri, r3)
J

hpO f 7q r , x , X 1 _ 7 _ / x~ 7;—: / d r3 \o(r3 — r2) + a(r3 ,r2) Vi()^2(ri,r3).
2?712 J

We can now put together the approximate two-particle continuity equation

r
Vi • k2(ri,r2) ji(ri)

- r2) + h(r3, r2)] Vi^2(ri , r3)
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-f same with (1 <-> 2)

po J d*rsY(Tl9r2',T3) (^"^l fo; t) - «Pi(r3;

,r2;t) (95)

From the terms containing the time derivative ^2(1*1^2;^) we have kept only
the leading term in accordance with the uniform limit approximation and left
out the term

If we further more use the one-particle continuity equation to replace the one-
particle quantities with one-particle currents we arrive at our final approximate
form

—^ / d3r3[6(r3 - r2) -\- h(r3,T2)}\/lSu2(r1,r3)\_lmi J

-fsame with (1 <-> 2) - <Wi2(ri, r2; t) (96)

Approximating now the one-particle current (66) by the Feynman current

"i5ixi(r;t) (97)

allows us to decouple the equations of motion. In other words the fluctuating
two-point function can be expressed, in closed form, as a functional of one-body
quantities alone.

Within this approximation the second continuity equation can be given in
the form

k;w) = 0. (98)
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Here <7k(p) corresponds to

(99)

This is an algebraic equation from which we can solve the fluctuating two-
particle correlation function,

<Jit2(k,p;o;)

needed for the self energy.

5.3 One-particle equation

Let us now return to the first continuity equation (61) and to the one-particle
current (6(y). We want again to remove Sui(ri]t) in favor of Spi(ri;t) within
the convolution approximation. In that approximation the one-particle density
(63) can be written in the form

fyi(ru*) = Po &>i(ri;t)

with

<Jvi(ri;t) = 5u1(r1;t)

f d3r2h(r1,r2;t)Sv1(r2]t) (100)

+ Po I d3r2g2(ri,r2)8u2(r1,r2;t) (101)

+ -pi / d3r2^3r3y(r2,r3;ri)^2(r2,r3;0]

Eq. (1.00) can be readily solved for Svi(ri\t)

t) = Sp^r^t) - po J d3r2X{r1,r2)SPl(r2;t) (102)

where X(ri,r2) is the direct correlation function.

Prom that we can solve the one-particle correlation function,

i;t) = Sp1(r1;t) - p0 / d 3 r 2 X(r i , r 2 )^ i ( r 2 ; t )

-pl jd3r2g2(TUr2)Su2(rur2] t) (103)

--pi I d3r2
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Taking its gradient and inserting into equation (66) we get the one-particle
current

i(ri;t) - p0 J d3r2X(Yl,v2)8p1(v2-

-pi J d3r2Su2(ru r2; t)Vl92(rur2) (104)

^ / ^3r2d3r3ViF(ri, r2, r3)<^2(r2, r3;

5.4 Self-energy
In momentum space the one-particle equation can now be written in the form

[ftw-eF(fc)]<Jpi(k;cj) (105)

J j0^a*(p)5u2(Kp;u;) = 2S(k)Uext(k)+ ~

where cr^(p) is the same as in the two-particle equation (99).
By dividing this equation with 8p\ (k; uo) we get the self-energy and the inverse
of the linear response function

hu> - eF(k) + E(k,w) - 2S(k)x-\Ku) (106)

with
h2k2 f d3p 6u2(KP'u) , xj k ^ (107)

Let's change the variables | + p —> p and ^ — p —> q and then introduce the
Dirac delta function to insure that p + q = k. The self energy correction is
written as

->CBF/ (108)

where the three-plasmon/phonon coupling matrix element

f>2 1
V3(k; p, q) = . (109)

2m 75(p)5()5(fc) V ;

x l -k • p5(p) - k • qS(q) + k2S(p)S(q) (1 + u3(k, p, q))l

2 m A; 5 ( c ^ ( 9 ) lk • P*(P) + k • q^(9) ~ fc2^(k, P, q)].

is given in terms of the ground-state structure function S(k), the direct cor-
relation function X(k) = 1 — S(k)~x, and the three-body correlation function
u3.
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5.5 Numerical solution
The integrand (108) can have poles, which makes the self energy a complex
function. Let us look next in detail how it is calculated numerically.
After integrating the S- function and the (^-coordinate we are left with the double
integral

where we have chosen the following variables

p = -(k + p)
p2 = k2 + 2k • q = k2 + q2 + 2kpx

Replacing yet x with p we write the integral in the form

rk+q-I /»oo rk+

ECBP(*,") = O - 7 - T / Qdq
87Tzp0k Jo J\k_

pdp

huj-£F(p)-£F(q)'

This integral has a pole when

(112)

In other words when the energy of the excitation is equal to the energy of two
elementary Feynman modes. In such a case the self energy becomes a complex
function. Assuming that this pole is the only pole in the integrand and that
the integrand converges fast enough at infinity we can separate the real and
imaginary parts

E(fc, UJ) = A(fc, UJ) - iT(k, UJ) (113)

by remembering that

— — = r—: l7Td(uJ — UJ) (114)
UJ' — UJ + IT) UJ' — UJ

The imaginary part can then be calculated with one integration only

r(fc,w) = -—L-.rqdq[ vpdp (us)

x \V3(k;q,p)\25(hw-eF(p)-eF(q))
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Figure 2: The dynamic structure function S(k,u>) for three-dimensional liquid
4He in the CBF-approximation at the saturation density 0.022 A"3.

The real part could be calculated from the above principle value integral, but
it is much more convenient for numerics to calculate it from the imaginary part
using Kramers-Kronig relations which connect the real and imaginary parts.
If f(w) is an analytic complex function

f(co) = a(uj) + ib(u>) (H6)

then

°° / Huf)duo —-——
-co W - U)

Provided that a{uj) and b(uS) converge fast enough at large UJ.
Using the first relation we can write the real part of the self energy in the form

(118)

The imaginary part is non-zero only when u/ > 0. In the numerical integration
of the principle value one distributes the integration mesh symmetrically around
LJ and leaves out the point u1 = u.

5.6 Analytic structure of the self-energy
The collective modes of the system are found by determining the poles (note
that all poles are on the real axis[37]) of the response function (87), in other
words by solving the implicit equation

- e(k) + £(fc,u;o(fc)) (119)

and the strength of the collective mode is given by

Z(k) = 2S(k)
u)=u)Q{k)\

(120)

From our definition (108) of the self-energy follows the inequality

ECBF(/c,u;) < ECBF(/c,0) < 0 (121)
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from which one immediately sees that the lowest collective mode satisfies the
exact inequality [38]

< -^cSfo) • (122)

While it is reassuring that our microscopic approach satisfies known exact sum-
rules and inequalities as a consequence of its structure, we will see momentarily
that the inequality (122) is of rather limited use in determining features of ei-
ther the excitation spectrum, or the static response function. The reason is
that it gives neither information on the pole strength Z(k), nor on the exis-
tence of stable collective modes. We shall encounter examples of both: a case
where the pole strength of the lowest collective mode is infinitesimal, and a case
where no real collective mode exists. The latter example is in fact a well-known
consequence of anomalous dispersion.

In writing down Eq. (119) we have to assume that T,(k,ujo(k)) is real. This is
the case when the energy denominator in Eq. (108) does not change sign, which
is true when the collective energy is below the critical value

hujQ < hxjcrit(k) = min [e(q) + e(|k + q|)] (123)
q

determining the continuum boundary. Above that energy, the self-energy is
complex. Moreover, for TIUJ < hu>CT[t(k), it follows from Eq. (108) that

< o for hu < fto;crit(AO • (124)
duj

In order to determine if Eq. (119) has a solution, we must find out whether
H(k,uj) becomes singular at the branch-cut LO = cocrit(k) or not. This depends,
of course, on the details of the reference spectrum e(k) in the energy denominator
of Eq. (119). We shall study here two relevant cases.

5.7 Anomalous dispersion in liquid 4He
The first case is that the reference spectrum s(k) is convex. This refers
typically to the regime of low momentum transfer in 4He where the sound
mode has an anomalous dispersion or to high momentum transfer where
the spectrum approaches the single particle kinetic energy. When
^crit(^) = 2e(k/2) < e(k), this critical energy is below the reference energy.
In order to determine whether Eq. (1.19) has a solution, we must therefore
study the analytic behavior of Y,(k,u>) as a function of u> near the branch-point
(jj = c^crit(^)- We shall treat only the simplest cases here, assuming a mono-
tonically growing, convex spectrum e'{k/2) > 0 and s"(k/2) > 0 and we are
interested in the singular behavior only.

As an example we evaluate the imaginary part of the integral (108) for LO « o;crit
for two-dimensional 4He. [291 It is sufficient to consider the area where the
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angle 6 between k and q is close to zero, i.e.

\V(k,\k-q\,q)f (125)

Next we expand the energy denominator in the vicinity of it's minimum value,
Went (?) • Letting p = |k - q|, we have

e(k) + e(p)

= 2e(f) + s'(p + k-q) + \e" ((k - | ) 2 + (p - | )

where

and

£ —
dq2

(126)

(127)

(128)

For cos^ w l , we can also expand (recall that we are considering momentum
transfers k « %

- cos 9)
kq

-(1-COS0)

'•q-k+(4k-q)(l-cos9) (129)

and therefore

+ — cos 0
q \q

(130)

This form of the energy denominator is correct, to second order in the mo-
mentum, in the vicinity of it's minimum value and for small angles.
We can now carry out the angle integration and find

2n

hx/A2 - B2 (131)
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with

*-* < !> + ^K<H + £ + i ] - + * <I32)

For k « | and u; « 2e(§), we can further simplify

A2 - B2 = 2ke'e"(k - k_)(k - k+) (134)

with
Ihu, - 2e(fc/2)

For UJ > 2e(k/2) and fc_ < k < fc+, the integrand is imaginary, and we get

/ ) ^ 1^2 '2 'g)! ( 1 3 6 )
4?r

whereas the imaginary part is zero for co < uCTit. With this, we have demon-
strated that the imaginary part of the CBF self-energy has a finite discontinuity
at u = oJcrit- Analyticity arguments [39] are then sufficient to show (see Eq.
(117) that the real part must have a logarithmic singularity at the same
place, and to determine the strength of that logarithmic singularity.

For the real part we get in 2D

lim &e£CBF(/c,u;) (137)

\V3(k; - k / 2 , -k /2 ) | 2 ln(2e(fc/2) -

and in 3D

lim 3fteSCBF(fc,o;) (138)
K2{k/2) V ;

lF 3 (k;-k/2, -k/2) l 2 ky/2e{k/2) - hw

Fig. 3 shows the CBF-BW self energy, for a low density two-dimensional case,
as a function of momentum q and energy hoo. The logarithmic singularity at
w = ^crit(^) is clearly seen, also that this singularity is, for low momenta, very
sharp and permits under certain circumstances three solutions. These three
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Figure 3: The CBF energy 7g(o;) = e(q) + H(q, co) is shown, for two-dimensional
4He, as a function of w for a sequence of momentum values for n = 0.035
A~2. Solutions of the CBF-BW equations correspond to the points 7q(w) = CJ
along the dotted line. Clearly, for q < 0.77 A"1 one has three solutions. It is
also clearly seen that the logarithmic singularity is extremely narrow at small
momenta.
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0.0 0.2 0.4 0.6
q (A"1)

Figure 4: The three long-wavelength "solutions" of the CBF-BW equation in
two-dimensional 4He for n = 0.035 A~2. The solid line is the lowest solution of
the CBF-BW equation, the dashed loop the two solutions above Tiujcv\t{q) (dash-
dotted line) and the dotted line at the bottom of the figure is the imaginary
part of the highest solution.
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Figure 5: The normalized dynamic structure function S(k,uj)/S(k) is shown,
for the 3D charged-boson gas, at rs = 10. The strength of S(k,uj)/S(k) is
indicated by the greyscale. Also shown are the Feynman dispersion relations
e(k), (long-dashed line), the self-energy corrected dispersion relation (solid line),
and the continuum boundaries Tiujcv-lt(k) (dotted line). The scale on the right
refers to the relative weight Z(k)/S(k) (dotted line) and 2muJo(k)Z(k)/(hk2)
(dash-dotted line) of the collective mode to the a;0 and u1 sumrules

Figure 6: Same as Fig. 5 for 3D and rs = 50.

solutions are shown in Fig. 4. There, the dash-dotted line is the boundary
foment (&) above which all solutions are complex, and the dashed loop is the
solution of the real part of the CBF-BW equation. It is also clearly seen that the
imaginary part of the complex solution peaks just before the "mode" disappears.

The comparison between the two- and the three-dimensional cases is quite inter-
esting. The self-energy is monotonically decreasing (cf. Eq. (124)) and has in
two dimensions a logarithmic singularity at the branch-point, which guarantees
that the dispersion relation (119) always has a real solution below the Feynman
spectrum. In three dimensions, however, the self-energy remains finite at the
branch-cut and, hence, the existence of a discrete collective excitation can no
longer be guaranteed.

5.8 Absolute minimum in the spectrum
The second relevant case is when the reference spectrum has an absolute min-
imum. This is the case of the three-dimensional plasmon spectrum. In view
of the further discussions, and due to it's similarity to the case of 4He, we
shall refer to this minimum as to the "roton minimum". In this case, we have
^cnt(^) = 2u;r, where ftur is the "roton energy" located at the wave number kr.
Expanding the energy denominator about this point yields the result

lim S?e£CBF(fc, U) =
^2huj

where k r is a vector of length kr oriented such that the three vectors k, —k —kr,
and k r form an isosceles triangle. In two dimensions, one finds similarly a
logarithmic singularity.
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Figure 7: Same as Fig. 5 for 3D and rs = 100.

To summarize the analysis of this section, we find that we can typically guar-
antee the existence of collective excitations in the long-wavelength regime in
both two and three dimensions. An upper bound for these excitations is the
Feynman spectrum or the continuum boundary hu>CTit(k), whichever is lower.
We have shown that, when the spectrum has a roton like structure, one can
have collective excitations, even in the long-wavelength limit, below the plasma
frequency, whereas the plasmon itself can decay for all finite, but infinitesimal
wave numbers.

The numerical value of the strength Z(k) of the additional collective mode below
the plasmon depends strongly on "how close" the solution of the implicit equa-
tion (11.9) is to the critical energy 2?iujp\. For long wavelengths, the combination
of Eqs. (109) and (139) yields for the self-energy

,cj) = Ck\n(2hujr -

as k -* 0 + and LJ / 2uor , (140)

where C is a numerical constant determined by the three phonon matrix element
(109) and the kinematic factors appearing in Eq. (139). Note that the limits
k —» 0+ and to /* 2ujr do not commute, here we must take the limit UJ /* 2ujr

first for fixed wave number and then evaluate the matrix elements in Eq. (139)
for small k.

As a consequence, we obtain an energy for that "mode" of the order TIUJ =
2hujr — const x exp \h(2u)R — uov)/Ck\ and a strength Z(k) that goes to zero as
exp [h(2ujfi — (jJp)/Ck\ for small k. Clearly this mode is a spurious solution of
infinitesimal strength, but the very existence of that solution has, as we shall
see, interesting consequences. Exact quantitative statements on the strength of
that additional mode for finite wave numbers are difficult. We found that the
strength of that additional mode is always small compared with the plasmon;
the situation is generally very similar to that of 4He where we have discussed
the analytic structure of the self-energy at length [29, 33].
The situation is different for high momentum transfers: the 3D self-energy re-
mains finite at the branch-cut, cf. Eq. (138). This means that the existence of
collective excitations can no longer be proven.

6 The full solution
Let us return to the definition of the density (56) and calculate the general
expressions for the gradients of the one and two-particle densities,

Vi5pi(ri;t) = poVi(Jui(ri;*) (141)
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/ •

j / dV2#2(ri,r2)Vi£u2(ri,r2;£)

and

i,r2;t) = Jp2(ri,r2;

J
/

,r2,r3;t)Viu2(ri,r3) (142)

Here, we have assumed that also the ground state contains only the pair corre-
lation function.

6.1 Continuity equations
Those terms which depend on 5U\{Y\ t) and <Sw2(ri, r2; t) in Eqs. (141) and (142)
appear also in the expressions for the one- and two-body currents in Eqs. (66).
Thus we can eliminate them and write the currents solely in terms of fluctu-
ating densities.

/ -

(143)

J2(ri,r2;t) = ^ r [Vi^ 2 ( r l 5 r 2 ; t ) (144)

- /

Eq. (144) contains the three-body density variation, Sps(ri, r2, r3; t) which must
be formulated in terms of one- and two-particle density fluctuations.

Without loosing generality we can write the density fluctuations in terms of
relative changes
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A 3 ( r i , r 2 , r 3 ; t ) | (145)

From the definition of the n-particle density (54) we can derive the Born-
Green-Yvon (BGY) equations by applying the gradient operator

+ Po / d3r3£3(ri,r2,r3)Viu2(ri,r3) (146)

and since our ground state is homogeneous gradient with respect to one particle
density vanishes provided that

Po / d3r2£2(ri,r2)ViU2(ri,r2) = 0 (147)

With these substitutions we get

*) = ^ { v i f ( p i ; t ) - (148)

/Po

- p 0 / d3r3 03(ri,r2,r3)[f(r3;£) + A(ri,r3;t)

(149)

These results are exact within the assumption that the wave function contains
only one- and two-particle correlations, but the currents contain now three un-
known quantities. A natural truncation is to set A(ri,r2,r3;£) = 0 since we
have so far ignored also the fluctuating three-particle correlation functions. That
is consistent with making the superposition approximation for the triplet dis-
tribution function

03(ri ,r2 , r3) = 5 r
2(ri,r2)p2(ri,r3)^2(r2,r3) (150)

Let us simplify the no-
tation slightly by setting V(ri,r2) = 5r2(ri5

r2)Vi^2(ri,r2) That is a ground
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state quantity and can be calculated using the HNC-equations. Inserting this
into the continuity equations they can be written for £(r; t) and A(ri, r2; t)

2^Vx { V^(n; t)-PoJ d3r2V(r1; r2) (151)

t£(ri;t) = —

and

A(r2, r3; t) + [h(ri, r2)/i(r2, r3) + /i(ri, r2) + fe(r2, r3)]

= JD2(ri,r2;t)-Z?i(n;t)-2?2(n;t) (152)

6.2 Continui ty equations in m o m e n t u m space

The first of the continuity equations (1.51) can be written in momentum space
in the same form as before

hu _ e(fc) _ £(/C,CJ) = 2S(k)x~1(k,Lj), (153)

but now the collective excitation mode e(k) is not any more a bare Feynman
mode, but it contains a correction term which becomes important around the
rot on region.

To see that we need to calculate the Fourier transform

Q(k) = T [vfc(ri;i) - pojd^V, • V(n,r2)C(r2;t)l (154)

From the HNC-equation

fla(ri,r2) = e'*<*i«>+*(*i«>+B(*i.'*) (155)

we get

V(ri,r2) = flr2(ri,r2)ViW2(ri,r2) (156)
= Vifl2(ri, r2) + fl2(ri,r2)(ViJV(ri, r2) + ViE(n, r2))
= V1X(n,r2)-V1E(n,r2)

(157)
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where iV(ri,r2) is the sum of nodal diagrams, X(ri,r2) the direct correlation
function and 2?(ri,r2) the sum of elementary diagrams.

The leading term in the long wavelength limit is Fourier transform of the direct
correlation function

( 1 5 8 )

with the structure function S(k) of the fluid. The Fourier transform of Q(k) is
then

(^) (159)

where I(k) stands for the integral

W = -k2E(k) - I ^ ^ k • q[S(\k - q|) - l][N(q) + E(q)}. (160)

This leads to the expression

for the reference collective mode. The correction term S(k)I{k) to the Feynman
energy is positive and therefore the correction lowers the reference energy.
Note that in case the three-body correlations are included one should add a
term

| / ^ (162)/

into elementary diagrams.

The self energy £(&, u) is given by the integral

*» '=4 /w k ^ r i 0 ( ^ f | »w <I63)

where

Q(k) = ^ (164)

The fluctuations appearing in the integrand can be solved using the second
continuity equation. The singularity structure of the self energy as well as the
second continuity equation are made more explicit by introducing the following
notation,

we get the self-energy in the form

(165)
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The function /?k,w(p) is to be solved self-consistently from the second continuity
equation.

The second continuity equation then becomes an integral equation for
/?M(P),

/?k>w(p) = [fiw - £(*)] Mk(p) + iVk(p) (166)

/?k;W(q) [tfk(p, q) -

y (2^0
With the aid of notations

we can write the terms appearing in Eq. (166) in the form

Mk(p) = W)I wk8^ + q|)s(l^ ~ q|)sD (|p " q|) (169)

s(k) = S ( k ) - 1 (167)

5
D(k) = <5(k) + s(k) (168)

+ (P <-» - P ) (170)

and the kernel is

+ (p <-> - p ) •

The collective reference spectrum entering the energy denominator in Eq.(166) is
not the Feynman spectrum (1), but the spectrum of Eq. (161), which generally
lies closer to the experimental spectrum. Therefore, this approach accounts
better for the energetics of the excitations, especially at large momenta.
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Figure 8: Left figure compares the phonon-roton spectrum of the present theory
obtained using the experimental (solid line) and the calculated S(k) (dashed
line) with measurements[40]. In the right figure the experimental[4.1] (squares)
and calculated (dashed line) structure functions are shown together with the
pole strength Z(k) as obtained from the experimental (solid line) and calculated
(dashed line) S(k) and from the measurements. [40]

The continuity equations are solved in momentum space. The center-of-mass
momentum & is a good quantum number and in the space of the relative mo-
mentum the continuity equations form an eigenvalue problem. The dependence
on the angle between the relative and center-of-mass momenta is taken into
account by expanding all the quantities in terms of the Legendre polynomials,

A(k,p) - ]£«L(fc,p)PL(cos0k|P) (171)

The resulting eigenvalues are the excitation energies and the eigenvectors give
the Fourier transforms of £(ri;£) and A(ri,r2j£) from which we can calculate
the transition currents.
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Figure 9: The density dependence of the roton and maxon excitation energies.
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6.3 Phonon-roton spectrum

The squares are the measured maxon energies and the triangles represent the
one- and two-roton energies of Ref. [42]. The stars represent the Brillouin-
Wigner perturbation theory results of Chang and Campbell [10]. The solid
lines correspond our results. The theoretical maxon energy crosses the two-
roton energy between 0.024 and 0.025 A"3, and at higher density the theoretical
maxon curve drops with the two-roton curve.

6.4 Results on two-particle currents
The two-particle current (149) can be written in the form

} (172)

where T(r i , T2] t) depends on the fluctuations in the radial distribution function
only,

po / dr3A(r2,r3;*)V(ri,r3)

Po Jdr3h(r2,r3)V(rl9T3) (173)

;t) + A(n,r3;t) + A(r2,r3;

We have chosen to present our results for the real part of the two-particle current
of Eq. (172) in mixed representation as a function of center of mass momentum
and relative coordinate. It can then be written in the form

j2(k,r,cj) = p0g2(r)\^1(
1k,uj) cos(-k - r)

The radial distribution function of the ground state g2 (
r) gives the probability of

finding another particle at the distance r away from a given particle. We locate
particle one into the origin and because of the repulsive core of the interaction
other particles are repelled outside the radius of about 2 A . This "correlation
hole" is clearly seen in Figs. 10 and 11. We also separate out the oscillating
behavior of the sound-like wave where particles move towards each other and
away from each other with the wavelength determined by the center-of-mass
motion in the cosine term. The more complicated flow patterns are collected into
T(k,r,(x>). The coordinate system is such that the center of mass momentum
points to the z-direction.
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Figure 10: The ^-component of the two-particle current (a) at the maxon region
k = 1.0 A"1, (b) near the roton minimum k = 2.0 A"1, (c) at k = 2.5 A"1,
and (d) in the asymptotic region k = 3.0 A"1. The direction of k is along the
x axis. (Originally from Ref. [43].)

Figure 11: The short-range part of the two-particle current (a) at the maxon
region k — 1.0 A"1, (b) near the roton minimum k = 2.0 A"1, (c) at k = 2.5
A"1, and (d) in the asymptotic region k = 3.0 A"1. The direction of k is
upwards and the tick-mark spacing is 1.0 A. (Originally from Ref. [43] .)

In Fig. 10 we have plotted the z-component of the two-particle current in four
typical cases of the center of mass motion with the wave numbers k= 1.0 A"1

(maxon), 2.0 A"1 (roton), 2.5A"1 and 3.0 A"1 (the asymptotic region). Besides
the center of mass oscillations there are oscillations due to interparticle correla-
tions. The most pronounced in Fig. 1.0 is the nearest neighbor peak. From Fig.
10.a one can see that in the maxon region these two kinds of oscillations are
out of phase whereas in the roton region of Fig. lO.b they are in phase. That
is why the roton region is energetically favored and the minimum corresponds
to the wave number of the peak of the structure function S(k). This is already
well known from the Feynman spectrum h2k2/2mS(k). When the wavelength
becomes shorter than the size of the correlation hole the simple wave pattern
breaks down (see Figs. 1.0.c and IG.d).

A more detailed structure of the current flow is shown in Fig. 11 where we have
subtracted the center of mass oscillations. The current flows to the direction
of arrows and since it has cylindrical symmetry we show only the x — z-plane
with x > 0. In the maxon and roton regions (Figs. 11.a and ll.b) the dominant
feature is the oscillation of the radial distribution function, though some inter-
esting topological structures could be identified. The pattern, however, changes
completely at 2.5 A"1. A clear back flow loop is formed around each atom in
Fig. ll .c. The radius of the circulation is of the order of atomic radius (compare
with the white area in the figures). When k >2.5 A"1 the loop gets elongated
with increasing wave number and forms a tube-like structure with a diameter
of atomic size. A typical case at 3.0 A"1 is shown in Fig. ll.d.

As a summary we can say that the microscopic, variational method gives good
agreement with experiments on the collective excitations obtained as a function
of density giving confidence to the equation-of-motion method.
At the roton minimum the size of the correlation hole created by an atom
matches with the wave-length of the center-of-mass motion. No backflow motion
is seen, but the topological structure of the current requires further investigation.
In our wave function we have not put in quantized vortices [23] and the struc-
tures seen in Figs, ll.c and ll .d come out of the full optimization of the action
integral with respect to the fluctuating one- and two-particle correlation func-
tions. They do not carry any conserved vorticity quantum number. The relation
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between these excitations and the vortex excitations should be investigated fur-
ther.

6.5 Precursor of the liquid-solid transition
The liquid-solid phase-transition is a first order transition. Latent heat is re-
quired for the liquid to solidify. At the same time there is an arrupt change in
the density when the particles in the liquid arrange themselved into the crystal
order. Some signatures of the emerging phase transition can be seen in the
liquid phase by studying two-particle structures, which break the translational
invariance of the liquid phase. We find that by studying solutions of the second
Euler equation which break the translational invariance.

We can assume that the single particle density is constant and the system has
no center of mass motion. Then the two-particle continuity equation (1.52) can
be written as

po M3r3^2(r2,r3)V(ri,r3)[A(rl5r3)-f A(r2,r3)]]}

+(1 <-> 2) = hu ^ ( r i , r 2 ) A ( n , r 2 ) (175)

Again this equation is simpler to solve in momentum space and since the center
of mass momentum fc = 0 then A(p) depends only on the relative momentum
p, but that is a vector quantity. A convenient way of solving Eq. (175) is to
expand A(p) in terms of Legendre polynomials.

A(p) = ^ A L ( p ) P L ( c o s ^ p ) . (176)
L

The equations for different L-values separate and those equations can be solved
for eigenvalues UJL-

6.6 Results in liquid 4He
In 4He the first mode to become soft in the long-wavelength limit has in the 3D
case the quantum number L = 6 and in the 2D case m = 6 thus indicating the
cubic and hexagonal point-group symmetries. The critical densities are 0.0295
A~3 in 3D and 0.073A"2 in 2D in agreement with the experimental and Monte
Carlo results[44, 45, 46] results.

The excitation energies as a function of density are shown in Figs. 12 and 14
and from that we determine the critical densities 0.0295 A~~3 in the 3D case
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0.018 0.022 0.026
density (A"3)

0.030

Figure 12: The energies of the L = 6 and L = 12 modes are shown in 3D 4He
at densities 0.022, 0.024 and 0.029 A~3.

and 0.07A 2 in 2D at which the energy becomes negative. In the phase dia-
gram those densities are in the phase coexistence region above the solidification
density of the liquid but below the melting density of the solid. Our results are
in reasonable agreement with experiments in 3D and in 2D with Monte Carlo
simulations. In Fig. 13 we also show the eigenfunctions Ae(p). The position of
the peak determines the reciprocal lattice vector 2.1 A"1 in 3D and 1.8 A"1

in 2D. The width of the peak is related to quantum fluctuations. By studying
the Yukawa Bose gas we found out that they decrease with increasing range of
the interaction.

6.7 Results in charged Yukawa Bose gas
An appealing feature of the Yukawa Bose fluid with the following interaction
between particles,

V(r) = e2 (177)

is that we can control the range 1/fi of the interaction and examine the effects on
the crystal structure. Our results, shown in Fig. 1.6, reveal new features in the
phase diagrams of these systems. The infinity-range limit gives the 1/r-potential
results.
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0

0 3 5

Figure 13: The L = 6 eigenstates are shown in 3D 4He at densities 0.022, 0.024
and 0.029 A"3. The peaks of the curves move to the right with increasing
density. The vertical scale of the eigenstates is arbitrary.
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0.060 0.065
P

0.070
(A"2)

0.075

Figure 14: The energies of the m = 6 mode are shown in 2D 4He at densities
0.060, 0.065, 0.070 and 0.075 A"2 .
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o «

Figure 15: The change in the relative two-body structure corresponding to
the first mode to become soft at 0.070. Lighter shade indicates increased
propability to find a particle at given coordinates. The gray scale in the middle
is th correlation hole. Superimposed rings are the lattice sites in the hexagonal
crystal at the same density.
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Figure 16: Phase diagrams of the 2D Yukawa Bose fluid as a function of rs and
the interaction range. The thick solid line separates the liquid and solid phases
as obtained from our calculations. In the shaded area the point-group of the
most stable structure has the m = 2 symmetry.

The critical values of rs for Wigner crystallization in the charged Bose fluid
are rs — 97 in 3D and rs — 41 in 2D, but somewhat unexpectedly the symmetries
of the soft modes are L = 2 and m = 2 in 3D and 2D, respectively. As we
gradually decrease the range of the potential, we see a change in the critical
density. The minimum range at which a Wigner crystal is obtained is l//x =
138a0 in 3D and l//i = 60a0 in 2D in units of the Bohr radius a0. Also the
point-group symmetry of the soft mode changes from L = 2 to L = 6 symmetry
in 3D and similarly from m = 2 to m = 6 symmetry in 2D. A more detailed
view of the softening of the modes is given in Fig. 17 for 2D fluid the interaction
range is l//x = lOOao. When 45 < rs < 270 in 2D we find a Wigner crystal, but
the point-group symmetry of the crystal structure changes as indicated by the
symmetry of the lowest mode.

In concluding, our microscopic theory of the soft excitation modes in quantum
Bose fluids gives clear indications of the liquid-solid phase transition and the
calculated melting densities are in good agreement with experiments and Monte
Carlo estimates in the case of 4He. Our analysis of the charged fluid both with
the 1/r and the Yukawa interaction suggests a new phase with L = 2 (ra = 2
in 2D) symmetry between the homogeneous fluid and the cubic (hexagonal in
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Figure 17: Energies of the lowest excitation modes which become soft in the
2D (upper figure) and 3D (lower figure) Yukawa Bose fluid as a function of rs.
The range of the interaction l/fi is 100a0 in 2D. The quantum numbers of the
modes are indicated in the figures.

2D) crystal phases.
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Figure 18: Phase diagrams of the 3D Yukawa Bose fluid as a function of rs

and the interaction range. The thick solid line separates the liquid and solid
phases as obtained from our calculations. The dotted and dashed-dotted lines
are the corresponding Green's function and variational Monte Carlo results. [?]
The thick dotted line gives the critical density where the L = 6 mode drops
below the L = 2 mode. In the shaded area the point-group of the most stable
structure has the L = 2 symmetry.
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7 Sum rules

Sum rules have frequently been applied in estimating various physical properties
of quantum liquids, such as ground-state structure and characteristics of the
response function, or used as a consistency check for the calculations. We want
to see if the proposed theory satisfies known exact sum rules.
We would like to examine specifically the excited states. We therefore consider
the nth energy-moment sum rule, defined as

f ^ ) . (178)
-oo 2 7 r

The lowest (raw) moments are

JJ (180)

= l im/ ^ ^ ± d u . (181)
2rac2

These sum rules are generally referred to as the zeroth-moment sum rule, the
/-sum rule or the Thomas-Reiche-Kuhn sum rule, and the compressibility sum
rule, respectively.

We want to see if these sum rules are satisfied by the linear response function.
The notations follow Jackson's notations in Ref. [37],

) (182)

with

G(k, LJ) = * _ , . r (183)
v ' } ftcj-£(/c) + £(k,a;) v J

In Eq.(113) the self energy was divided into real and imaginary parts

E(fc, J) = A(k, UJ) - ir(k, u) (184)

which gives us

With these notations the dynamic structure function becomes

) = - ^ ^ m G ( k , a ; ) (186)

S(k)

- £(k) - A(k, u)Y + T2 (k, u)
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From the properties of the structure function we know that F(k,u;) must be a
positive function and we can assume that F(k, UJ) = 0 when UJ < 0 . We also
assume that G(k, UJ) is analytic in the upper half plane.
The self energy of our full solution behaves like

lim S(k,u;) = A(k) (187)
UJ —>OO

where A(k) is a function independent of UJ.

The rao sum rule can be easily calculated by choosing the integration path in
the upper half plane. Then

d(huj)
m 0 = $sm I

^ Jo HUJ - e(k) - A(k, UJ) 4- iF(k, UJ)

Jo Reie-i

Giving

m o = ̂ U m i T 6 = S(k) (188)

In the calculation of the ra_i sum rule

m_i = lim
7T k-+0

f00 d(huj)

/ -V^ G ( k » w ) (189)
Jo AicjWe need to know the limits

lim G(k,Rei9) =
R-+oo

Then
i0

= i limS(fc)9?m /

= l i m / i x S i ^
k->o£(k) - E ( k , 0 )

When k -> 0 then
E(k,0)-^A:2 (192)

and we get
Sfjfe) 2mS(k) 1 , x

m_i = lim -77T = lim — s - ^ - = ^r—5- (193)
1
 fc->o e(jfc) jfe-o ^2/c2 2mc2 v ;

The f-sum rule gives some problems if the self-energy does not vanish when
UJ —> 00

mi = _ M c j m / d(huj)hujG{k,uj) (194)
7T J

rd(huj)huj[G(k,uj)-G*(k,uj)}
Jo
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Performing the contour integration as before we get

m i = ^.[e(k) + A(k)+e(k) + A*(k)]

= S(k) [e(k) + MeA(k)} (195)

That does not satisfy the f-sum rule unless the

In order to show that this is the case we solve the continuity equations in the
limit UJ -» oo

ri;t) = 2Uext(r1;t) + 2

J^rslgsir^r^rs) - g2{rur2)]Uext{r3-t) (197)

Prom the first equation we get Uext(ri]t)

J ^ ) (198)

and insert that into the second equation

Sp2(TUT2]t) = p2^(ri,r2)[e(n;t) + e(r2;t)] (199)

- Po /

/

We have solved now Sp2 (ri, r2; £) entirely in terms of the one-particle density and
can insert that back into the one-particle current and show that its divergence
gives the Feynman spectrum

Ji(r i ; t )=2^[Vi*pi(n; t ) (200)

- J d3r2Sp2(r1,r2;t)Vu2(r1,r2)} (201)

= ^-[v i<Vi(n;*) (202)

- pi J dsr2g2{r1,r2)Vu2(r1,r2m(r1;t) + £(r2;t)
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- Po / d 3

- p i d3r2 d3r3[g3(r1,r2,r3) -

; t)-poj d3r4X(r3, r4)£(r4; t)l (203)

Using the BGY-equations Eqs. (146) and (.147) we end up with

ji(ri;t) = — I Vi5pi(n;t) - p§ / ^3r2Vi^2(ri,r2)

x |"g(r2; t) - po y ^3r3X(r2, r3)e(r3; t)l J (204)

Finally using the Ornstein-Zernike relation (23) we get

)X(r1,r2)l (205)

In the momentum space this gives exactly the Feynman spectrum

| ^ ^ ) (206)

Hence we have shown that the corrections term in collective mode (161) cancels
exactly the asymptotic behavior A(k) in the self energy.
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8 Dynamics of a single impurity

This section reviews the method[47, 48] to calculate the dynamics of an impurity
atom in liquid 4He in its ground state. The basic guidelines are the same as for
the bulk fluid where we examined pure liquid 4He. Therefore, we summarize
the necessary generalizations to the basic formalism.

8.1 Continuity equations

The start by assuming that the wave function for the ground state of a single
impurity atom is optimized. As for the one-component liquid, the dynamics of
this system is determined by the response to a weak, external time-dependent
perturbation Uext(^o]t)- The kinematic and dynamic correlations are again
separated by writing the wave function in the form

-iEN+1t/h

$(3>(r0,r1,.-rN;t) (207)

Here .Ejv+i is the variational ground-state energy of the system containing the
N + 1 particles, and \l/(3)(ro,ri, ...TN]t) contains the time-dependent correla-
tions,

¥3\r0,r1,...vN;t) = e^u^-r^¥3\r0,r1,...,rN), (208)

with
5U(n ...rN)= [6u^(T0;t) + ^5 u ( 3 4 ) (r 0 , r i ; t ) ] (209)

The correlation functions are determined from the action principle

SS = 6 J dt' $*(t') (H^ + Uext(r0;t) - ih-^\ *(f) = 0, (210)

The Hamiltonian of the impurity-background system, H(3\ is

f
where Ho is obtained from Eq. (2) for 7V3 = 1.
The variation with respect to Su^3\ro]t) and <5i^34)(ro,r^;£) leads to the conti-
nuity equations

and

r i -1) _j_ y 1 . j(3 4)(rn r i ' t ) (213)

o,r i ; t ) = | ^ e x t ( r o ; * ) ^ 3 4 ) ( r 0 , r i ) .
dt
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The transition currents are defined in terms of the fluctuating one-particle den-
sity and pair correlation function,

(214)

j(34>(ro,ri;i) = -L j (

and
J( 3 4)(r o , r i ; i ) =

( 2 1 5 )

(216)

The ground-state quantities needed here are the impurity-background pair and
triplet distribution functions p(34)(i*o,i*i) and //344)(ro,ri,r2), respectively.

8.2 Linear response and self energy

The poles of the linear response function

^ } f t " > (217)
)

determine the elementary excitation modes, which are obtained by setting
ZJext(k,uj) = 0. This leads to the implicit equation

2ms
(218)

with the self-energy

Here S^34\p) is the 3He-4He structure function, t^(k) the kinetic energy of
the impurity, and s^4\p) the background phonon-roton spectrum. The function
^ J ( p ) is to be solved from the second continuity equation (214).
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The result is

d*q

(2TT) _ i(3) (k + q) -

with the kernel

(221)

The linear response function has then a simple form

Again, note that the self energy can become complex in case the denominator
in Eq. (219) is positive for some value of p,

0. (223)

If this condition is satisfied, then it is kinematically possible that the 3He im-
purity loses energy by emitting a phonon-roton mode s^4\p) while making a
transition into a low-energy impurity mode ^3^(k + p).

The strength of the pole Z(k) can be evaluated from the derivative of the self
energy,

(224)
d(hu)

Note also that the singularity structure of Eq. (220) is the same as that of the
self energy. For real frequencies to the imaginary part of (3^ J (q) is zero if the
energy denominator is negative for all values of q. Modes with an energy hu>
high enough to satisfy the inequality (223) can decay into a phonon-roton mode
and the solution has a non-zero imaginary part.
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8.3 Hydrodynamic effective mass
The long-wavelength limit of the excitation energy defines the hydrodynamic
effective mass ra#,

h2k2

hto = — r , when k -> 0 . (225)
2mH

Inserting this into Eq. (218) we get

^ = JL (226)
m3 1 - /

with

1 / ^ ^P^^C^P) (227)

where c<;o = hk2/2m^j. Using Eqs. (224) and (225), we find that in the long-
wavelength limit the pole strength is inversely proportional to the effective mass,

- ^ - . (228)
k-*o m*H

In the so-called "uniform limit approximation" [6] one neglects all coordinate-
space products of two functions, i.e. we approximate, for example,
p(34)(ro,ri)fo/34)(ro,ri) « p^p^Su^M\ro,ri), but convolution products are
retained. Then, ^ 3 j o (p ) has a simple form[47]

This, together with the equations (226) and (227), gives the "un-renormalized
effective mass" derived by Owen. [49]

8.4 Results
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Table 1: Pressure dependence of the hydrodynamic effective mass from various
calculations and experiments. The second column contains the result of our mi-
croscopic calculation, the next two column contains the hydrodynamic effective
mass as obtained from the fit to the experiments of Refs. [50] and [51].

P (atm) m*H/m
This work Ref. [50] Ref. [51]

0
5
10
15
20

2.09
2.22
2.34
2.45
2.55

2.18
2.31
2.44
2.54
2.64

2.15

2.39

2.62

Figure 19: Our theoretical hydrodynamic mass (solid line), and our zero-
concentration extrapolations of the data of Ref. [50] (long dashed line) and
[5.1] (short dashed line).
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to

Excitation spectrum

0.0 2.0

Figure 20: The excitation spectrum of the 3He impurity. The solid curve is the
result of the present theory. It is compared with the measurements by Greywall
(Ref. [52]) (long dashed line), Fak et al. (Ref. [53]) ( short dashed line) and
Owers-Bradley et al. (Ref. [54]) (dash-doted line). The dotted line shows, for
reference, the experimental phonon-roton spectrum. [40]
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Figure 21: The pole strength of the elementary impurity excitation mode is
plotted as a function of momentum (solid line). The measured strength of the
particle-hole excitation at 1% concentration and saturation vapor pressure from
Fig. 11 of Ref. [53] is shown with circles. For comparison we also show the
effective mass as a function of momentum.
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0,0

Figure 22: The impurity dynamic structure function S(3\k,ou) plotted in the
k,ui plane. Also shown are the phonon-roton spectrum of the background 4He
(heavy solid line, the data are from [40]), and the decay threshold of the impurity
excitation mode (dashed line).
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9 Summary

Detailed derivation of the equation of motion method has been described to
you. It is a general method which can be applied to study dynamic of quantum
Bose systems. I have pointed out its strengths and weaknesses for applications
ranging from single impurity dynamics to liquid-solid phase transition. Many
aspect of the method require more work and clever new ideas.
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