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Correlated Basis Functions Theory

Beyond Jastrow-Feenberg theory...
Beyond the ground state....

(1) CBF Theory: What, Why, and How ?
(2) Perturbation theory in a non-orthogonal basis
(3) Calculation of effective interactions
(4) Interpretation of effective interactions
(5) Systematics: Coupled clusters with correlations
(6) Dynamics: Linear response in correlated systems
(7) Systematics: Correlated ring diagrams
(8) Conclusions: The view from the top
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Correlated Basis Functions:
The What, the How, and the Why

Objectives:
=> Mostly fermion systems
=̂> Expansions, classifications, resummations
=> Moving the nodes of the wave function
=> Better results, better understanding, dynamics

Early reference material:
P. M. Morse and H. Feshbach, Methods of Theoretical Physics, Vol. II.
P.-O. Lowdin, J. Chem. Phys. 18, 365 (1950).
J. W. Clark and E. Feenberg, Phys. Rev. 113, 388 (1959).
E. Feenberg Theory of Quantum Fluids, Academic, NY (1969),
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Beyond Jastrow-Feenberg Theory-
-With Jastrow-Feenberg ideas

Jastrow-Feenberg wave function:

o(l, • • •, N) = F(TU . . . , TN)$O(1, • • •, N)

F(ru...,rN) =
N N

omit

Note:
• $o(l? • • • 5 N) is normally a Slater determinant of single-particle orbitals;
• The correlation operator F ( l , . . . , iV) may be chosen in a more general

form, but one needs accurate methods for evaluating matrix elements;
• We will deal with the uniform system only, i.e. ui(r) = 0.
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Wanted first: Energy (Polls lectures)

= Hnn =OO

Optimal choice of the correlations:

SHr
= 0

Question: Is the optimal way practical ? (Yes if there is one).

Concern: Even for the most general local correlation operator F,
^o(l5 • • • 5 N) is normally not an exact wave function.
Even the optimal F may not be good enough.
(The nodal surface problem !)

Way out: Correlated Basis Functions (CBF).
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A correlated basis of the Hilbert space:

Let m be any set of single particle orbitals, and

o>
kErn

the corresponding Slater determinant: Define a basis of the Hilbert space by

m) = :FN(l,...,N)\$m)
mm

Imm =mm ..., N)FN(1, ...,

The correlated ground state:

o)=
7OO

where |$o) is the filled Fermi-sea.

Keep Fjv(l) • • • 5 ^0 the same for all (a matter of practicality.)
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Correlated Basis Sets :
The generic quantities

Generating functionate G m m , normalization integrals J m m , and their ra-
tios:

o — nl [1 mm/ loo\ >

Correlated diagonal matrix elements of H and their differences

- Hoo = (m\ H \m) — (o\ H \o) ,

Correlated off-diagonal matrix elements of H and i:

= {m H n) , (m ^ n), H =

J m n = (m\ i |n) , (m^n), J = ( J m n )
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Auxiliary quantities:

H'mn = {m\H- Hoo \n) , (m ^ n)

vrmn = tlrnn — yilrnrn -\- -tlnn ^-H-oo
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An second quantized formulation
.Shorthand notation

,tCreation operators (aJ
k) and annihilation operators (ak) for correlated states

im) =aim) =

akm) =

The correlated operators obey the same (anti-) commutation rules as their
uncorrelated cousins, but they are not hermitian conjugates.

Alternative notation: label correlated states by the orbitals in which the
corresponding model state, |$m) , differs from the model ground state |$o):

\P) = IPiP =
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Single Particle Spectrum
An introductory exercise

Increase/decrease in energy of a Fermi liquid upon adding/removing a par-
ticle of momentum p (h):
The N + 1 (or N — 1) particle state obtained by inserting a particle of
momentum p (removing a particle of momentum h) is

w\ — ryto\ e = H — H — (n\ H v) — (o H o)
P/ — p / 5 P — PiP •L±o,o — Y F | •L± P/ \U ±J- U/

\h) = \aho), eh = Hoo - Hh,h = (o\ H \o) - (h\ H \h)

Particle-hole energies: \ph) = alah°

eph = (ph\ H \ph) - (o\ H \o) = ep - eh +

Note: The energy difference is unaffected by a change of correlations:
. SHOO SF

e(p) =
SF ̂  8p
=0
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Non-orthogonal perturbation expansions
Similar to CIM !

Expand the exact state in correlated basis states

m

Write Schrodinger equation as matrix equation

Lowdin transformation to an orthogonal metric:

' = Q
c ' =

• Expand

Do orthogonal perturbation theory
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Non-orthogonal perturbation expansions
Integral equation methods

Write down an exponential ansatz for the wave function:

eso

Q —

n>2

/ J bpi...Pn;h1...hnC*p1 - • • a— —7 / J

upi...nn

• Choose the level of approximation in which one is willing to work, eg. n = 2
• Determine the Sm v -h, h by variation

^ | * o ) n
= U

or by correlated coupled cluster equations.
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The big perturbation formula

771 Tj

h, = noo —oo

TJl TTl
rLora£1mo

H,
m mm H,oo run

TJl TJl TJl TJl
£1 om £1 mn £1 up £1 po

mnp

I

E
mn

TJl TJl TJl TJl
om mo on no

T TT TT TJ
om-nrnorLonrLno

TJl TJl TJl
-^ ommn no

±looj

TJl T TJl TJl
rLomJrno£1on£:Lno

Oops - the last three terms are naively not proportional to the particle
number ! -> Must dig into the structure of matrix elements !
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Simple approximations
First and.second generation CBF theory

Choose {|ra)} = {\p1P2h1h2)} to be correlated two-particle-two-hole states:

\PlP2hih2) =

Then:
- " r a m - t l o o = & p \ ~T~ & p 2 & h i ^ h ^ ' U l v

and we can formally write

Km = {hih2\H(l,2)\plP2-p2p1) = {h1h2\H{l,2)\pl,p2)a

Thus

(AE) =-- V
4r 79i I ^"Do

looks like second-order Rayleigh-Schrodinger perturbation theory.
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Calculating matrix elements
Where the work begins

Jackson-Feenberg-Identity:

FV2F = \ F2V2) + \F2 [V, [V,lnF]] - - [V, [V,F2]]

For Jastrow correlations F ( l , . . . , N) =

4m
- r,)

Hamiltonian matrix elements can be done with "prime equation" tech-
nique !
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Let's look at the terms

h
4m

and

Define

and

F(f3) = exp

mm\P) =
V -̂  ram (M J -t nn

Observe: Jmm(/3)and Jmn(fi) can be calculated with the same effort as
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Then
d

In Imm
/3=0

=» local part of the Hmm !

Similar:

d
J,mn

0=0 V-L nn

d
•ln/mm(/3) + d

1=0
nn

1=0
mn

local part of the Wmn !

Put in kinetic energy corrections "by hand".

Single particle spectrum and Wmn can be calculated without extra effort !
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Evaluating matrix elements,
.1. Diagonal quantities

uGenerating functional" (suppress /3-dependence)

vJ" 7T7.ro. m 1>mm 5

is the sum of all irreducible
diagrams without external points

oc N for large N
differs from the ground state Goo only by the exchange function

N

— Goo = 0(1) for states that deviate from the ground state only by
a few orbitals.
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=> Algorithm: For o), get

mm ^ oo
3 SGQOa r

6£{rkF)

OO [eip-r -

where

because

5£(rkF)

- £(rkF) =
N
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Algorithm:

• Write down the diagrammatic expansion of G

1

2

1

2

2 *

1
4 :
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Calculate 5Goo/5£(rkF) by removing exchange lines:

—o

(a)

(e)

(i)

(b)

(f)

(j)

(c)

(g)

- 2

(k)

(d)

(h)

(1)
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Identify diagrammatic structures and resum:

'cc"-chain diagrams:

Non-nodal "cc" diagrams:

Combinations:

(a) (b)

+

(c) (d)

(h) (i)

1

3*

(g)

(e)

-2 /

(k) (1)

Result: SG(k) = -In 1 - Xcc(k)
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Single-particle spectrum:

h2k2 dSG(k;
h

ZlTl KJi<y o Q
+ const.

= t(k) -\ ££±_L 1_ c o n s t .
l-Xcc{k)

Note: Some kinetic energy terms are not spelled out !
Note: t(k) — %^- will be used repeatedly.
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Evaluating matrix elements.
II.. Off-Diagonal quantities

Algorithm as before:
• Specify the orbitals d in which |$m ) and |$ n) differ.

' • ' amd
and ' ' ' Ojn1

Define non-local d—body operators

\n\... rid yv ( 1 , . . . , a; n) mi . . . mn)a =
V•*-mm-*-\nn

Af(l, ...,d;n)= Af(l, ...,d;o) + O(l/N) for d < N.

Derive expansions for the operators A/"(l,... ,d) = ^ s t(AJ\fys ( 1 , . . . , d).
Obtain Hamiltonian matrix elements by "diagrammatic differentiation":

Wmr, =run i -^nn)
ran

= ( n i . . . nd\ W ( l , . . . , d; n)
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Consider especially d = 2:

Any p-body contribution to J m n has the form

i... hp-2\ D(r^ . . . rp) p

hi ...hv—2

where D(ri,.. .rp) is some combination of h{rij) = exp(^(r^)) — 1 bonds
with 1 < i,j < p, and the hi the occupied ground state orbitals ("hole
states").
Depending on the exchange structure, we can have three types:

=

.. . rp)
- 2

jl.--.7p-2
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Therefore
A/*(l,2)

A/^(12,1'2')

A^c(12,1'2')

A/"cc(12,l'2')

Symmetry:

Simplest case:
(ni7i2h

== (77-^77

—— \ 77/i 77

= ^dd(12,

= A/*dd(ri2

= A^,cc(ri

= A/*cc,cc(r

A/*(12,

L Zt ) \ J\l(IQ[±.ZIJ Y A \ 1 JV(IQ

)8{Y1 - YII)5{Y2 - r '2)

,r2;r/i,r/
2)^(ri - r'i)

1^2;^!, r'2)

V21) =A/'(21,2/1/) =Af(l'

Two-body approximation

3 . . . /ijv I I

-2/13 . • • h]y

2 | / 2(r 1 2)-

i<jf
2(rij)\m1m2h3...hN

V1'mm Inn

- I | m i m 2 ) a + . . .

Generalize to

^w(l ,2)=r < w ( r 1 2 )

(21,2'1')+A^C(12,1'2')

2', 12).

)a

,2h3 . . . hN)a + . . .
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Expansion of ,A/dc(12,1'2') in dressed bonds

o

(a)

+ o -

(e)

.0

o

(i)
6

o

(b)

o
O--0

(f)
6

(J)

4

(C)

+ o

(g)

Of' + O -

(k)

_
4

(d)

+ o -

(h)

+ o -

(1)

Factorizable diagrams have only a nodal path from point 1 to point 1'
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Factorization theorem for A/*(12,1'2'):

(m1m21 A/"(l, 2) \n1n2)a = z(m1)z(m2)z(n1)z(n2) (raira2| A/* (1,2)

"Basic" part of AT(12,1'2')

o
o o O--0

o
o

6

of1 + o-

o - - o

O - - O

9x f?

O D \
- - O
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Local part of >V(12,l/2/):
(a) Replace F^(r) by r^d(r) obtained from fermion Euler equation
(b) Add kinetic energy acting on coordinates 1 and 2 (All others are included

in r>dd(r))

ft
(n1n2h3 ... hN\

8m

Hence

h-
4m

V

i=l,2

\(m1m2)i(hs

\m1m2)a

\m1m2)a
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CBF effective interactions
Physical interpretation and properties

Objectives:

=>• Interpretation I: Landau's quasiparticle interaction
Interpretation II: BCS interaction
Optimization
Static screening, kinetic energy, and phonon exchange
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Landau Fermi-Liquid Theory
A crash-course

Reference Material:

L. D. Landau, Sov. Phys. JETP 3, 920 (1957).
L. D. Landau, Sov. Phys. JETP 5, 101 (1957).
D. Pines and P. Nozieres, The Theory of Quantum Liquids Vol. I.

(Benjamin, New York, 1966).
G. E. Brown, Many Body Problems

(North Holland, Amsterdam, 1972).
G. Baym and C. Pethick, Landau Fermi Liquid Theory

(Wiley, New York, 1991).

and many more....
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Landau's quasiparticle concept:

There is a one-to-one relationship between the (low-lying) states of a non-
interacting Fermi-system, and the states of the interacting system

non-interacting interacting

=> no level crossings

no gaps in the spectrum

The states of the non-interacting system are characterized by quantum
numbers k, a and corresponding particle occupation numbers nk,a-
The states of the interacting system are characterized by quantum numbers
k, a and corresponding quasiparticle occupation numbers
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The energy is a functional of the quasiparticle occupation number

E []

Changes in the system are due to changes of

The quasiparticle spectrum is the first variation
5E

n
(0 )

The quasiparticle interaction is

/k<7,k'cr' =
S2E

n
(o)
k,cr

Excitation spectrum:

: ' , c r '

k',0-'
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"Effective mass'

m dk

Spin-dependence: Let (recall that k = k1 — kF)

/kt,k't = /£> + /£,* = V (// + ft)
oo

E
£=0

OO

Qm*k
(F? + F?) Pt(cos£)

OO

£=0
CO

£=0

Physical observables:

Specific heat:

Sound velocity:

Magnetic susceptibility:

Effective mass:

cv =
C2 =

XM
m*

- |m*i

h2k%
3mm*

= 1 +
—i+

m
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Interpretation I:
Landau's quaslpartlcle interaction

Microscopic theory: The mapping is produced by the correlation operator F
which may in principle depend on the occupation numbers

= Hoo [F(n^a);£(n^a)] = Hoo

In practice, F cannot depend on the occupation number. How bad is this ?
Assume, for all quasiparticle occupation numbers

v SHOO [nk > g] = J £ # Q Q [nk><y] =
nk'CT 5F dnic „ SF

Then

S2Hf oo

02Hoo \ _ f «52ffoo [nk,g] JF *F K f ^ ^
\ <JF2
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Explicit construction:
• For the variation, interpret the density factor as "1-point" exchange loop

1
JV2

1

52Htoo

5l(rijkF)5l(rkikF)

j] Fit,

€f

blue oriented lines represent exp(ik • (r
crossed-out diagrams do not occur
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/ / the crossed-out diagrams were present, we could write /^ r
k / (T, as anti-

symmetrized matrix elements of W(l, 2)

k a k V ) a

o o - e © G-4 ' L • 1

Consider the diagonal limit

Urn (k + qcr, kV ; | W(ri2) Ikcr, k' +

Sample diagrams
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Um (k + q, k'
^0

i I
i i

0 O O
k, k' + q)

= Um
N
1

h2(q)(SF(q)-l)

for short-ranged correlations.

Rule: The variational quasiparticle interaction is the sum of all those con-
tributions to W(l,2) that survive in the diagonal limit.

or

Rule: The variational quasiparticle interaction is the sum of all those contri-
butions to (k<7, k'cr'l W(r 12) |ka, k'cr')a where the path between the plane-
wave orbitals is non-nodal.
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Interpretat ion II:
Superfluidity with strong interactions

Historical reference material:
J. Bardeen, L. N. Cooper, and J. R. Schrieffer, Phys. Rev. 108, 1175
(1957).

N. N. Bogoljubov, V. V. Tolmachov, and D. V. Shirkov, A New Method
in the Theory of Superconductivity, Consultants Bureau, New York, 1959.

S. T. Beliaev, Lecture notes of the 1957 Les Houches Summer School.

Many newer books on superconductivity and superfluidity.

Pairing theory with correlations:

S. Fantoni, Nucl. Phys. A 363, 381 (1976)
E. K. and J. W. Clark, Nucl. Phys. A 328, 73 (1979); Nucl. Phys. A333,
77 (1980).
E. K., R. A. Smith and A. D. Jackson, Phys. Rev. B 24, 6404, 1981
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Wave function for s-wave superfluidity in a weakly interacting system:

|BCS) = ;Q(«k + «k4,ta-k,4) 1°) '
k

Normalization for the "Bogoljubov amplitudes"

+ VIL = 1 ^k = cos77k, ^k = sin77k

(o)Normal state v^ = O(fci? — fc).
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Energy of the BCS state (spin sums implied)

(BCS| £ -/iiV|BCS> = 2T
k

(k t, -k i\ V |k' t, -k'
k,k'

Variational determination of the Bogoljubov amplitudes:

(BCS|£-^iV|BCS) = 0,

subject to the constraint
(N) = V v?

k
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Resulting "gap equations":

t(k) - fi + V (k, k'l V |k, k')o

"Decoupling approximation" v%. = n(k) is accurate to 10 3 in the defini-
tion of
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Features of the superfluid state:

• |BCS) is not an eigenstate of
N.

• Excitation spectrum has a
gap A(kF)

0.0

Energy shift is oc A(fc^)//x2

Deviations from normal be-
havior in ares \A(kp) / ii\
around Fermi surface

\A(kp)/n\ « 0.05 in nuclear
matter, 10~3 in 3He

1.2

1.0

0.8

* 0.6

0.4

0.2

0.0
0.

1.2 1.4
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Stability of the normal state
Another way to look at pairing

Stability condition:

<BCS|ff

Equivalent to
(0)

be positive definite, where

= t(k) - fJL

|BCS)

kk'

V

Sufficient condition for pairing:
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BCS theory with correlations
Strongly interacting systems:

Procedure:
• Write down BCS many-body state,
• Project on complete sets of states $m '
• Correlate with TV-body operators F^(l,.
• Add all states:

|CBCS) =

with particle numbers TV,

.. , TV) and normalize,

BCS),
m,N

Calculate correlated expectation value

(CBCS|i7-//iV|CBCS)
(CBCS|CBCS)

Simplify by keeping terms of leading order in
approximation").

only ("decoupling
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Consider any operator 0 (specifically H or N), calculate

_ (CBCS| 6 |CBCS>

(CBCS|CBCS)

|CBCS) = £ |mW) (*W | P.V I l K + «k4,ta-k^) 1°)
ra,iV

Expand the expectation value in the deviation of the Bogoljubov-amplitudes
^k, ^k from their normal-state values v^ = n(k) = @(kp — k) (First order
terms are zero because of momentum conservation). Keep all terms that give
a non-zero contribution to

82

* (CBCS|CBCS)

Define

/3k =
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{0)s = o

k>kF

k<kF

E
k>kF,k'<kF

k<kF,k'<kF

k<kF,k'>kF

0(N+2) _

0(N-2) _

o

oo

oo

O(iV+2) _ 1,0

o
>t

OO o
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Let O — H — JJ,N, evaluate the terms
Diagonal terms:

k >

Off-diagonal terms:

k > <

o H(N) _

= (k', -k'

, 2)

,2) k

Hence

_ H(N+2)

(ek

(\ek

1 Zi\ \r\j•) rZ

ek,){k',-k'\M(l,2)\k, -k

,2)\k,-k)

H - = const. + 2^[ek ~ lAvl +
k k,k'
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Summary of "Correlated BCS theory

Correlations have mapped the strongly interacting system to a weakly
interacting system with the BCS energy functional
"effective pairing interaction" is

= (k' t,-k' l\W(l,2)\kl,-k I)
+ (\ek - n\ + \ek, - /JL\) (kf f, -k' i\ AT(1,2) \k t , -k

Since A(k)/^t;2(k) + A2(fc) is peaked around fci?, the second term is
unimportant.
The "sufficient condition" for pairing needs only the first term

=> We can identify W(l,2) with an effective pairing interaction.
Full FHNC analysis for |CBCS) is also feasible and necessary if A <C
is violated.
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More on effective interactions:
FHIMC diagrammatic structures and operations:

Non-nodal

Xdd(r)
Xde(r)
Xee(r)
Xcc(r)

Nodal

Ndd(r)
Nde(r)
Nee(r)
Ncc(r)

Sum

rdd(r)
Tde(r)
ree(r)
rcc(r)

Momentum space FHNC for the static structure function

S(k)
1 + Xee(k) 1 + 1+Xee(k) rdd(k)

l-Xde{k)
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Exact properties (important for optimization !)

1 + Xee(k) ~ SF(k) + O(k2) as k -> 0.

~ k as k —> 0.

Free static structure function

SF(k) =

Reason for long-wavelength behavior: Projector property of the fermion
exchange function, recall

P f n
I / f Of* • V ( *Y* • • l^* 1—1 I V ( ^Y* • 1 K* - n 1 V ( ff* • T K* 1—! I

V J

v is the degeneracy of the single-particle states.
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CBF and the optimization problem

1
o| (H - c.c.

= - d3rd3r'6u2(r, r') (o| (H - Hoo)(p(r)p(r') - 5(r - r')p(r)) |o) + c.c

1 f d3qd3q'
47.oo

X E
hh'

1
4

- Hoo)Fa\1+(lal1,+Ci,ahah' | $ 0

E 2 ) lh + <i>h'

= 0 because 5u2(<i, q') is arbitrary

QMBT-2001 - 51 -



E
hh'

Imm

OO

The Fermi-sea average of the effective CBF
interaction vanishes for optimal correlations.
"The strength of CBF theory is the weakness
of its effective interactions".

Note: Since there is no "Fermi-sea" for bosons, there is no CBF perturbation
expansion for an optimized bosonic Jastrow-Feenberg ground state.

Observe: Optimizing correlations means that (a) the effective interactions
come for free, and (b) they are as small as possible.

Watch out: "Average-zero" does not mean "everywhere small" !
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Optimization
FHNCf - equations

Formal Euler equation:

h2k2

4ra

The "priming operation"

Replace, in turn, each line

Replace, in turn, each pair

=> For off-diagonal matrix elements, replace, in turn, each pair
exp(ip • r^)exp(iq • r^) —> (7i2/8m)Vf exp(ip • r^)exp(iq • rik)
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Simplest version FHNC consistent with optimization:

Xee(k)

Tdd(r) = e

SF(k)-l, Xde(k) =
[u2(r)+Ndd(r)] _

Xdd(k) =

S(k) =

rdd(k)
+ fdd(k)SF(k)'

SF(k)
- XM(k)SF(k)

Ndd(k) = tdd(k) - Xdd(k)

= SF(k) 1 + f M(k)SF(k)

Algorithm to generate fermion Sf(k):

Sf
F(k) = — |t(fc)(S'jp(fc) — 1) (Single-loop approximation).

T'dd(r) = (1 + Tdd(r)) [v(r) - £v 2« 2(r) + Ndd(r)
Choose Fdd(r) as independent variable.
Use U2{r) — In [1 + F^(r)] — A^^(r) to eliminate U2(r).
Solve for S(k)
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Define "particle-hole interaction"
1

Vp.h(k) = X'dd(k) - -t(k)Xdd(k)

Then "optimized fermion S(k)":

S(k) =
SF(k)

+ Tdd(r)]v(r)^
2 2

m

wi(k)
m

_SF(k) S(k)_

What do these equations mean ? (Later....)
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Simplified efFective interactions
Not necessarily the best I

= ^ ( r )

Look at the pieces of W(r):

W{r) = v(r) —

Tdd(r)} v(r)

2

4m

h2

lib

2
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Interpretation: (3He at saturation)

W(r) effective potential

[1 +

ti
m

[1 +

v(r) screened potential „

(r) kinetic energy

wi(r) phonon exchange
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