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1 Introduction: historical developments

Compared to the ground state, the basic theoretical understanding of the mi-
croscopic structure of the excitations and of the physical processes involved is
relatively incomplete. On the experimental side, however, the elementary ex-
citation spectrum of liquid 4He, along with the underlying dynamic structure
function, are known to a high precision from x-ray and neutron scattering
experiments. (A review of the subject with references to earlier experimental
and theoretical work is given by Glyde in his book.[l]) Thus, modern many-
body methods face a demanding challenge of reproducing the correct spectrum;
a solid agreement would create confidence in the applied tools and indicate
that the essential physical ingredients have been understood and included into
the calculations. A fully microscopic approach is needed here, because these
phenomena defy a simple hydrodynamic Al description.

Before bringing the variational point of view into play, let us quickly summarize
the milestones on this path. The preliminary work on the subject was done by
Bijl and Landau in the 1940s.[2] Landau proposed that there are two separate
collective excitation modes in liquid 4He: phonons, thought of as collective
density (sound) modes having linear dispersion, and rotons, assumed to be a
collective rotation of the fluid having a separate dispersion curve. Later on, he
joined these excitations into a single collective mode dispersion curve continuous
in the wave vector.Phonons and rotons were then interpreted as the low- and
high-fc regions of the same collective excitation. (In this sense the name "roton"
is a misnomer.) Between them we have what is called the maxon region. This
seemed to be in qualitative agreement with experimental data and, at the same
time, consistent with the continuous dispersion curve for excitations in a dilute
Bose gas derived microscopically by Bogoliubov in his seminal paper.[3]

After these early developments Feynman took the first steps towards a micro-
scopic description by suggesting a specific trial excited-state wave function. [4]
Specifically, he wrote the wave function of the excited state \£k of momentum fi\a
as a product \I>k = Pk^o of the ground-state wave function \£0 and of a density-
fluctuation operator pk = X^exp^k-ry), offering thus a microscopic explanation
for phonons and rotons as collective density excitations at all k. Although the
spectrum calculated variationally using the proposed wave function, leading to
the dispersion relation

seemed to contain much of the relevant physics, quantitatively the agreement
was far from being satisfactory. The dispersion relation (1) does provide an
upper bound for the lowest-lying excitation and is exact in the long-wavelength
limit, but has severe deficiencies at shorter wavelengths.

For example, the computed roton energy is twice as large as the experimentally
observed value. Owing to this discrepancy, the theory was subsequently supple-
mented by Feynman and Cohen[5] to include so-called backflow corrections



which increased the flexibility of the wave function and, thus, lowered the roton
energy significantly towards measured values. The term backflow is used to de-
scribe the correlated motion of neighboring particles around a given reference
atom. In the initial picture put forward by Feynman and Cohen the form of
this backflow was not unconstrained: instead, they assumed that the particles
move in a dipolar flow field, behaving in a sense like a smoke ring.

After Feynman's original arguments the method of correlated basis functions
(CBF) was developed along the same lines to further improve the agreement
between theoretical predictions and experimental data, most notably by Feen-
berg and his collaborators,[6, 7, 8, 9, 10] In the CBF approach the excited-
state wave function \&k is written as \£k = ^k^o5 and the excitation operator
i<k is further expressed as a polynomial in the density-fluctuation opera-
tors {pk}- Thus, in the lowest order we have the usual Feynman form for the
excited states, and terms beyond the linear one introduce the backflow effects.
Attempts to calculate the dynamic structure function were also made. [11]

More recently the shadow wave function (SWF) method has been extended
to permit the investigations of excited states.[12, 13] By the provision that
the momentum-carrying factor in \I>k is a density fluctuation in the subsidiary
(shadow) variables, one has, in principle, a parameter-free wave function of the
Feynman form in which the fluctuations in the subsidiary variables allow for
the presence of backflow effects in the particle variables. Again, this backflow
is represented by terms of all orders in the density fluctuation {pk} of the real
variables. The CBF and SWF methods, along with the application of released-
node Monte Carlo simulations, all give results which agree reasonably well
with experimental data.

Three-dimensional vortex rings are also candidates for rotons, and expanding
rings could account for the lambda transition. [14] One additional view to the
problem is that unlike phonons, rotons might involve the motion of only few 4He
atoms, a group forming a quasi-particle. In the extreme case this quasi-particle
would be just one atom dressed in a superfluid backflow. [15] In the novel picture
put forward by Glyde and Griffin the roton is viewed as a renormalized single-
particle mode. This model has been used extensively to analyze neutron
scattering data. [1.6, 1, 1.7]

The excitation spectrum of liquid 4He is in two dimensions qualitatively very
similar to the three-dimensional spectrum, as one might expect since the physics
of liquid 4He is dominated by short-range correlations. What makes the 2D
system especially interesting, however, is that the vortex-antivortex pair
excitation occurs there naturally as a low-lying elementary excitation mode.
[18, 19, 20, 21, 22, 23] Therefore, this system forms an ideal framework within
which it is possible to study the specific differences between the roton and vortex
excitations.

The equation motion method for excited states and dynamics of quantum
fluids and fluid mixtures which I will present here has its roots in the early works
by Saarela and Suominen.[24, 25, 26] and by Krotscheck[27]. In that method



one starts with an Hamiltonian which contains an infinitesimal, external, dy-
namic interaction which drives excitations into the system and then one looks
for the response in the one- and two-particle density distributions. The time
dependence of the external interaction creates currents into the system, which
are solved together with the density fluctuations from the equations of mo-
tion. We limit ourselves into the linear response and thus calculate the linear
response function and from that the dynamic structure function. The
method has been applied to homogeneous and inhomogeneous quantum fluids
and their mixtures.

To summarize our present understanding of the dynamic structure of liquid
4He.
The nature of the collective excitations is fairly well understood.
The role of the Bose condensate in the excitations needs to be clarified.
Quantitative understanding of the behavior of the dynamic structure function
S(k,cj) is still missing.

2 Optimized ground state
In the microscopic variational theory we start from the empirical Hamilto-
nian for the system of N particles with mass m

Ho = -E^i+\tn\ri-rj\). (2)

We assume that the two-particle interaction V(\ri — Tj\ is known.
For the variational wave function we take the Jastrow-Feenberg ansatz [6,
28,7]

1 N

U(ru...,rN) = -Y^M*i,*j) (3)

The variational problem is to minimize the total energy

E° = <*o|*o> ( 4 )

with respect to the correlation functions ^( r^r^) and U2(ri,Tj,Tk). This leads
to the Euler equations

Su(rr2)



= 0 (6)

2.1 Feenberg's prime-derivative technique

Let's derive the Euler equation by using Feenberg's prime-derivative technique
[6]. By definition we have

u2(r- A) = u2(r) + A [y(r) - |^V 2t / 2(r)] (7)

where V(r) is the two-particle interaction. In the following we use the notation

=

A=0

and ignore A from the list of arguments of the functions. Then

u'2(r) = V(r) - —V2u2(r) (9)

Arturo Polls showed to you how to write the energy/particle in the form

V g(r) V(r) - — V2u2(r) (10)

where g(r) is the radial distribution function and the derived the Euler
equation (5) both in coordinate space

g'(r) = —S72g(r) (11)
4m

and in momentum space

S'(k) = (S(k) — 1) (12)

using the structure function S(k).

= l + p o / d 3 r ( 9 ( r ) - l ) e i k r (13)

Let us define two new quantities the induced potential in terms of the sum
of nodal diagrams N(r) as

Wind(r) = N'(r) + ̂ -V2N(r), (14)
4m



and the particle-hole effective interaction in terms of the direct correlation
function X(r)

Vp-h(r)=X'(r) + ̂ V2X(r) (15)

The HNC-equation connects these quantities

g(r) = eMr)+N(r)

=» u2(r) = logg(r) - N(r) (17)

g'(r)=g(r)(u'2(r) + N'(r)) (18)

Inserting U2{r) into the definitions (9) and (18) we get

g'{r) = g(r)V(r)+g(r)N'(r) (19)

Subtract N'(r) from both sides of Eq. (19) and use the definitions

X(r) = g(r)-l~N(r)

X'(r) = g'(r)-N'(r). (20)

Then

X'(r) = g(r)V(r) (21)

+ (ff(r)-l

Inserting the definitions (14) and (15) we get the expression for the particle-hole
potential

+ (g(r) - 1) wind(r)

On the other hand from the Ornstein-Zernike relation

N{\vx - ra|) = j#r3(g{\TX - rs|) - l)X(|r3 - r2|) (23)

together with the definition (20) we get

^ ( 2 4 )



The priming operation and the use of Eq. (12) gives

Am S2(k)

Inserting these into the definition (1.5) we get

S2(k) S(k)

h2k2 / 1
v l4m V S2{k)J

(26)

which is the Euler equation for the homogeneous one-component quantum
fluid,

S(k) = \ (27)

We still need to calculate the induced potential Wind(r) defined in Eq. (14).
From the Ornstein-Zernike we get

The priming operation and the use of Eqs. (12) and (25) gives

Inserting these into the definition (14) we get

4m v w ' V S(k)
(30)

3 Equation of motion method
We begin with an assumption that the correlation functions in the ground state
wave function are optimized. It means that the system is stable against small
perturbations (linear) around that solution. Let us assume that we disturb the
system with an infinitesimal, external interaction. The system responds to that
by changing its density, but because it is in the optimized ground state all terms
linear in small changes in correlation functions disappear.

E Eo , SE/N ^ , 1S2E/N

N N + 5U
SU + -

m i n 2 SU2 [5Uf + O[SU3] (31)



and one is left with the quadratic terms. Using the least action principle we can
derive the continuity equations which optimize the fluctuations in the correlation
functions and give the change in the density caused by the infinitesimal external
disturbance. These ideas lead to the linear response theory.

3.1 Linear response theory

Let us disturb the system using an external interaction Ueyit(k,(jo) with a given
frequency u and wave number k. The change in the density of a homoge-
neous system 8pi(k,uj) will have the same frequency and wave number and the
information of the dynamic properties of the system is contained in the linear-
response function defined as

f<*») (32)

The imaginary part of the linear-response function defines the dynamic struc-
ture function

^ ) l (33)

which is the measured quantity in the scattering experiments.

At low temperatures S(k,u) consists of a sharp peak and of a broad contribu-
tion. It is therefore customary to write S(k,uj) as

S(k,u>) = Z(k)8(u - uo(k)) + Smp(k,u>). (34)

This suggests that the linear response function can be written in the form

The quantity Z(k), the residue of the response function at the pole u = LJo(k),
can be evaluated from the derivative of the self energy

T _ * ! ( * , a,)

and gives the strength of the sharp peak, whereas Smp(k, UJ) gives what is called
the multi-phonon background, i.e. the contribution in which the neutron
probing the system exchanges energy with two or more excitations.

In addition, the relative weight Z(k)/S(k) gives the efficiency of the single
collective excitation scattering processes, as seen from the (zeroth-moment) sum
rule

r S(k, uj)duj = S(k) = (p-kPk)/N (37)
Jo



In other words it gives the fraction of the available scattering processes at a
given wave number, which go through a single collective mode. If the excitation
were a simple density wave, as assumed in the Feynman theory, this ratio
would be

Z{k)
S(k)

= 1 (38)

3.2 Time-dependent correlation functions
If a weak, time dependent interaction perturbs the system then the ground-
state wave function, \Po(i"i,... ,rjv) , is modified accordingly and the correlation
functions become time dependent,

* ( n , . . . ,rN;t) = e-iE°*IH(TU.. .,vN;t) (39)

with

(j){r1,...,rN;t) (40)

The excitation operator

^ ^ , ^ ^ ) (41)
* i<3

is a complex function and represents fluctuations in the correlation functions
due to this external perturbance.

The time-dependent one-body function Sui(ri]t) must be included into the
description since the dynamics will normally break the translational invariance
of the system, but restricting the time dependence to the one-body component
only would lead directly to the Feynman theory of excitations.
The time-dependent two-body component is significant in situations where
the external field excites fluctuations of wavelengths comparable to the inter-
particle distance, as explicitly demonstrated in Refs. [29, 25, 28, 24, 10] for
liquid 4He and in Ref. [30] for the bosonic Coulomb system. With these terms
included the excitation operator then has a two-phonon basis,

*ri J (2TT)6PO

In the wave function (40) the optimized ground state * 0 ( r i , . . . ,TN) satisfies
the Schrodinger equation

where Ho is the ground state Hamiltonian given in Eq. (2) and Eo appearing
in the phase factor of definition Eq. (39) is the ground state energy. The



normalization factor contains the ratio between the ground state and excited
state normalizations.

/ d 3 n . . . < , . . . TN)\2e*e[SU(i,..rN;t)]
(44)

3.3 Action integral
The new Hamiltonian

(45)

which contains the infinitesimal external potential UeKt(r;t) is now time depen-
dent and must satisfy the least-action principle [31, 32]

ft
SS = 5 dt'C(t')

ho

= 5 [ dt'
Jto

(46)

± * ( * ' ) ) = o,

We make two assumptions in the evaluation of the action integral. Firstly,
we require that the ground-state correlation functions are optimized. This is
important because it eliminates all contributions to the action integral that are
linear in the time-dependent correlation functions. Secondly, we assume that
the perturbation is weak which allows us to keep only the quadratic terms -
and warrants the use of the linear-response theory.

Using the ground state Schrodinger equation (43) we can write the integrand
in the form

Af(t)

-\(ijt+h.c.)+Uext(t) (47)

The potential energy term commutes with SU(t) and thus only the kinetic
energy gives contribution to the commutator. This can be evaluated with a
little bit of algebra,

10



= f dr\-e%5U* (i

= f dr\-

giving the result

8m

N

The evaluation of the time derivative gives

n l
2 \

where we have used the dot-notation f(t) = ^p-.
Collecting all together we have the integrand

C{t) =

(48)

(49)

(50)

3.4 Least action principle

In the least action principle we search for the correlation function which
minimizes the action integral (46). Let's assume that our excitation operator
SU = 5U(ri,...,rn]t) depends on n coordinates and the time. Then the varia-
tion of the action integral

with respect to SU* gives

ft
= S

Jto
dt'C(t') - 0

drn+1 ... -^J2Vj • (\*\2Vj6U)

l d\4>\2

U
ext Af(t) d6U*

(51)

(52)

11



The derivatives can be calculated from the definitions (40)

=
8SU* 2

i a/v
_ i r

2 J n+1'

—|$| 2 = |$|2 SfieJC/- / dri...drN\$\2<&e8U

and the least action principle can be written in the form

--5U + Uext = 0

(53)

3.5 Many-particle densities

In order to simplify Eq. (53) we define the n-particle density,

(54)

In the linear response theory one assumes that the time dependent perturbance
of the system is infinitesimal and hence we can separate the time dependent and
independent parts in the density,

p n ( r i , . . . r n ; t ) = p n ( r l 5 . . . r n ) + Spn(ru . . . r n ; t)

Expanding to the first order in 8U we get

(55)

5pn(r1,...rn]t) = ' / drn+1... drN\^0

- (*0 \6U\ ^o (56)

The physical density is a real quantity and 8U should be replaced with its real
part. Here we have generalized the definition to complex density fluctuations.

12



3.6 Many-particle currents

Similarly we define the n-particle current

j n ( r i , . . . r n ; t ) (57)

^T~-7TT \\ / d rn+i • • • d6rN

i (N - n)\ J

h N\
/ d6rn+1 ... d6rN

-n)\ J2mi (N •

~ 'jSU (58)

3.7 Continuity equations in homogeneous fluids

Let us assume that our system is homogeneous and the single-particle density
of the ground state is constant.

px (r) = pQ — constant (59)

It is convenient to introduce the n-particle distribution function

0 n (r i , . . . r n ) = -j-^Pn ( r i , . . . r n ) (60)

With these assumptions we derive the one- and two-particle continuity
equations from the general Euler equation (53). These are the equations of
motion of the system [29, 25, 26]

Vi • Ji(ri;*) + Wpi(ri;*) - £>i(ri;*) (61)

[Vi -J2(ri,r2;f) + same for (1 <-> 2)]

+«P2(ri,T2',t) = D2(ri, r2; t). (62)

The terms with time derivatives in Eq. (53) are exactly time derivatives
• of the density. Inserting the definition of the excitation operator (41) into the

definition of the density (56) we get for the one-particle density

Spi(ri;t) = po 6ui(rnt) (63)

+ p2
0

+ Po

j d3r2(g2(ruT2) -I)5u2(r2;t)

d3

y /

13



From the definition (56) one sees directly that the particle number is con-
served in the fluctuations

/ d3r5pi(r) = 0 (64)

and that the sequential relation is satisfied,

/ d3r2Sp2(r1,r2'1t) = (N - l)6pi(ri]t) (65)

The one- and two-particle currents are

*i(ri;*) (66)

f 1
° J /

j 2 ( r i , r 2 5^) = ;< p2(ri,r2)[Vi(5?ii(rij t)

•2;*)] (67)

/

The currents also satisfy the sequential condition

3 r 2 j 2 ( r 1 , r 2 ; t ) - ( i V - l ) j 1 ( r 1 ; t ) . (68)

The terms which depend on the external potential are collected into the
functions D\ (x\; t) and D2 (ri, r2; t) and they drive excitations into the system

Wri;t) ' (69)

/ d3r2[p2(ri,r2) - l] Uext(r2; t) \

D2(rUT2',t) = - ^

/ ^3r*3[p3(ri,r2,r3)-^2(ri,r2)j[/ext(r3^)|. (70)

4 Solving the continuity equations
Up to now, we have formulated the problem in terms of a Hamiltonian, a trial
wave function, and the action principle. What we still need to do is to find a

14



way to actually solve the continuity equations. They still contain four unknown
quantities, namely 5ui(r\t) and 8u2(T\,r2; t) and time derivatives of 5pi(r;£)
and Su2(ri, r2; t). Assuming that all ground state quantities are known. Clearly
they are not independent, but connected by the definition (56). In the following
we introduce various approximation schemas to put that definition into solving
the continuity equations.

In the homogeneous system fluctuations are weak and it is more convenient to
work in the Fourier space. We define the one-particle Fourier transform as

- p0 f d3r dt

and similarly for the two-particle Fourier transforms

3
rid

3r2 dt ei<k-

where R = (ri + r2)/2 is the center-of-mass vector, and r = ri — r2 the relative
position vector.

4.1 Feynman approximation

Let us first calculate the simplest approximation where we let only the one-
particle correlation function vary with time. This leads to the Feynman result
for excitations.
We need to solve the first continuity equation (61) in momentum space with the
assumption Su2 (ri, r2; i) — 0 Then the current is simply

J«i(n;t) (71)

and the time dependent part of the density

) (72)

+ Po /

with fo(ri,r2) = p(ri,r2) - 1. The Fourier transforms can be readily calculated
giving

6p! (k; UJ) = SifypoSv,! (k; u) (73)

and then
± i(k;a;) (74)

15



Similarly we can calculate the Fourier transform of the contribution from the
external potential (69). Inserting these results into the continuity equation (61)
we get

^ ^ ( f c , c ) ( 7 5 )

and we can solve the linear response function

. Spi(k;u) 2S(k)
7 6

The poles of x(k,w) give the elementary excitations of the system

^ ( 7 7 )

and the limit u = 0 the static response function

The imaginary part of the linear response function determines the dynamic
structure function (33)

^$Sm\x(k,u))] S(k)6(hueF(k)) (79)

which means that the Feynman approximation is a single pole approximation
and the strength of the pole is the structure function.
In 4He the excitation mode is linear in the long wave length limit and propor-
tional to the speed of sound c,

eF -> hkc. (80)

The structure function is also linear at small k

and the inverse of the static response function determines the incompressibility

-X~1(k,0)-^mc2 (82)

The elementary excitation modes of the system are obtained also directly by
setting the external potential Uext — 0 in the continuity equations. Using the
Feynman approximation and the results (71) and (72) we get a differential equa-
tion

-—;\/^SUI(TI:UJ) — i(jj\poSui(ri:uj) (83)
2mi [
2 f 3 1

J J

16



which has the solution (77) and

J«i(n;w)=e*- r i (84)

The excitation operator has then the Feynman form

^ (85)

5 CBF-approximation
When the two-particle correlation function is allowed to vary with time then the
first continuity equations (61) can be written in momentum space in a general
form

HLJ - eF(k) - E(fc,<j) = 2S(k)X~1(k,uj). (86)

where S(fe,cj) is the self energy and the linear response function as

( 8 7 )

For real values of the self-energy the response function can have poles which
define the collective, elementary excitations. When the decay of the excited
modes becomes possible then the self-energy acquires imaginary part and the
sharp (5-function in the imaginary part of the response function spreads into
a broader peak. The notation £F(&) stands for the energy of the Feynman
collective mode.

5.1 Convolution approximation

The derivation of the self-energy starts [29, 33] with a convolution approximation
of the three-particle distribution function, but including also a special set of
diagrams with the triplet correlation function uz (ri, r2, r3). The terms included
are shown in Fig. 1.

In the algebraic form it becomes

g3 (r i, r2, r3) = 1 + ft (n, r2) + ft (ri, r3) + h (r2, r3)
+ft(ri,r2)ft(ri,r3) + ft(ri,r2)ft(r2,r3)

+ft(ri,r3)ft(r2,r3) + / d3r4ft(ri,r4)ft(r2,r4)ft(r3,r4)

+ terms with triplet correlations (88)

We ignore triplet correlations for a moment and return to them at the end of
this section.

17
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Figure 1: Convolution approximation of ^3(ri,r2,r3). Circles are particle posi-
tions, black circles are integrated and open circles not. Dashed lines are func-
tions /i(ri,r2) and triangles are triplet correlation functions 3̂(1*1, r2 , r3) . The
second, third fifth and sixth diagrams have three of the same kind, but with
different particle coordinates.

5.2 Two-particle equation

Our aim is to get an approximation for Su2 (r 1, r2; t) using Eq. (62). The simplest
term to approximate is 1)2(1*1, r2;£) in Eq. (70)

Po f d3r3Uext(r3;t) (89)

/ ,r4) I .

The last two lines can be written in the form

po j d3r3Y(n,r2;r3)Di(r3; *) (90)

with y(r1(r2;r3) = /i(ri,r3)/i(r2,r3). The triplet correlation will have addi-
tional contribution to that. Thus we can express the two particle driving
term entirely in terms of £>i(r; t).

(91)

Similarly we can write an expression for the time dependent two-particle den-
sity

Sp2(r1,T2]t) = -^-\g2(r1,r2)(Sp1(r1]t) +<Jpi(r2;t))

18



+ Po / d3r3^(ri,r2;r3)(Jpi(r3;t) >

We have removed the dependence on Sui(r,i) in favor of Spi(r,t). The func-
tional T[Su2] contains all the rest of the terms with (5iz2(ri,r2;i). They can
be written explicitly using the definition (56), but they are not included in the
CBF-approximation.

The two particle current has a term with one-particle current, but also struc-
ture which comes from the time-dependent two-particle correlations.

j2(ri ,r2 ; t) = po^(ri,r2) j i (n) (93)
%Or\ I f o

4~ \ #2(1*1, r2)Vi(Ji i2( r i 5 r2j t) H~ Po I d v3

2mi { J
x [^3(1*1,r2,r3) — #2(1*15r2)#2(ri,r3)] Vifo/2(ri,r3) >

The final steps of the derivation are the approximations necessary to bring the
two-body equation in a numerically tractable form. Our scheme follows the
general strategy of the uniform limit approximation [6] which has been
quite successful for the calculation of the optimal static three-body correlations
[34, 35, 36]. The essence of the approximation is to consider all products of
two or more two-body functions small in coordinate space.

In our specific case, the uniform limit approximation amounts to taking
#2(1*1,r2)foz2(ri,r2) « <^2(ri,r2) and a similar expression for Vi<5^2(ri,r2).
While this approximation places more emphasis on the structure of 5^2(ri,r2)
it is physically appealing since it simply removes the redundant relevant short-
range structure shared by #2(ri,r2) and fo/2(ri,r2). Invoking the equivalent
uniform limit for the three-body distribution function, the terms in Eq. (93)
which depend on 5?i2(ri,r2) become

y d3r3

1
x [#3(n,r2,r3) -p2(ri,r3)p2(ri,r2)]Vife2(ri,r3)

J

We can now put together the approximate two-particle continuity equation

r
Vi • #2(ri,r2) ji(ri)

L
+ ^—. I d r3 [o(r3 — r2) + /i(r3,r2)J Vi()^2(ri,r3)
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+ same with

+

+ po j d3r3Y(rur2;r3) ( ^ i f o ; t) - Wpx

+ po^2(ri,r2;t) (94)

From the terms containing the time derivative (fa2(ri,r2;£) we have kept only
the leading term in accordance with the uniform limit approximation and left
out the term

If we further more use the one-particle continuity equation to replace the one-
particle quantities with one-particle currents we arrive at our final approximate
form

-fsame with (1 <-> 2) - <J62(ri,r2;t) (95)

-1- po Id r3y(ri , r2 ; r3)V3 • ji(r3; t)

Approximating now the one-particle current (66) by the Feynman current

n n^

(r;t) (96)

/

I
d3r2X(r1,r2)5pi(r2;0

J
allows us to decouple the equations of motion. In other words the fluctuating
two-point function can be expressed, in closed form, as a functional of one-body
quantities alone.

Within this approximation the second continuity equation can be given in
the form

x5( | |+p | )5( | | - P | )<5u 2 (k ,p ;a ; )

+eF(k)ak(P)5p1(k;uj)=0. (97)

20



Here 0"k(p) corresponds to

= - 1 [k • ( | + p) 5 ( | | - p|) + (P » -

(98)

This is an algebraic equation from which we can solve the fluctuating two-
particle correlation function,

needed for the self energy.

5.3 One-particle equation

Let us now return to the first continuity equation (61) and to the one-particle
current (66). We want again to remove Su\ (ri; t) in favor of 8p\ (ri; t) within
the convolution approximation. In that approximation the one-particle density
(63) can be written in the form

<Jpi(ri;*) =Po 5v1(r1;t)+pl / d3r2h(rur2;t)6v1(r2;t) (99)

with

+ Pof d3r292(Tur2)5u2(rur2;t) (100)

+ -pi I d3r2^3r3y(r2,r3;ri)fe2(r2,r3;t)j

Eq. (99) can be readily solved for 8v\ (ri; t)

) - «Pi(ri;t) - p0 I d3r2X(rur2)SPl(r2;t) (101)

where X(ri,r2) is the direct correlation function.

From that we can solve the one-particle correlation function,

) = Sp1(r1]t) - po / d3

-pi Id3r2d2(rur2)8u2(rur2;t) (102)

--pi I
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and taking its gradient and inserting into equation (66) we get the one-particle
current

\ f 1

j i ( r i ; t ) = Vi ( J p i ( n ; t ) - p 0 / d3r2X(r1,r2)Sp1(r2;t)\

-p2
0 Jd3r25u2{rur2',t)Vl92(rur2) (103)

--pi j d3r2d
3rsViY(rur2,r3)5u2(r2,r3]t)]

5.4 Self-energy

In momentum space the one-particle equation can now be written in the form

k;a;) (104)

)2k2

where crk(p) is the same as in the two-particle equation (98).
By dividing this equation with 8p\ (k; u) we get the self-energy and the inverse
of the linear response function

flu - eF(k) + E(k, w) = 25(A:)x~1(k,o;) (105)

with
N h2k2 f d3p

E(k,cj) = /
4m j (2TT)3PO

Let's change the variables | + p ->• p and | — p -> q and then introduce the
Dirac delta function to insure that p + q = k. The self energy correction is
written as

n2 1

where the three-plasmon/phonon coupling matrix element

(108)

[-k • pS(p) - k • q§(q) + k2S(p)S(q) (1 + «3(k,p,

IS(p)S(q)^ _j.,^ , u _+,^ 2

2m V S(k)
-[k • pX(p) + k • qX(q) - k2u3(k, p,q)].

22



is given in terms of the ground-state structure function S(k), the direct cor-
relation function X(k) — 1 - S(k)~1, and the three-body correlation function
us.

The integrand (107) can have poles, which makes the self energy a complex
function. Let us look next in detail how it is calculated numerically.
After integrating the 5- function and the (^-coordinate we are left with the double
integral

\V3(k;g,x)

where we have chosen the following variables

P = - (k + p)
p2 = k2 + 2k • q = k2 + q2 + 2kpx

( 1 0 9 )

Replacing yet x with p we write the integral in the form
-I />oo rk+p

SCBF(fc,a;) = - — - / qdq pdp
8n2pk Jo Jlk_pi

This integral has a pole when

hoj = eF(p) + eF(q) (111)

In other words when the energy of the excitation is equal to the energy of two
elementary Feynman modes. In such a case the self energy becomes a complex
function. Assuming that this pole is the only pole in the integrand and that
the integrand converges fast enough at infinity we can separate the real and
imaginary parts

r(fcj) (112)

by remembering that

—— = V— iir6(u' - UJ) (113)
UJ1 - UJ + IT) UJ1 - UJ

The imaginary part can then be calculated with one integration only

rOOi /-OO fk+p

r(fc,w) = —r qdq pdp (114)
^Pk Jo J\k-P\

x \V3(k;q,p)\26(hco-eF(p)-eF(q))
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The real part could be calculated from the above principle value integral, but
it is much more convenient for numerics to calculate it from the imaginary part
using Kramers-Kronic relations which connect the real and imaginary parts.
If f(uS) is a analytic complex function

f{u) = a(u) + ib(u) (115)

then
oo

duj'-
i

OO

a(u) = -V f

1 f°° , a{u'
7T J_oo

 U UJ1 -

Provided that a(uj) and b(u) converge fast enough at large u.
Using the first relation we can write the real part of the self energy in the form

The imaginary part is non-zero only when uJ > 0. In the numerical integration
of the principle value one distributes the integration mesh symmetrically around
LJ and leaves out the point UJ1 — u.

5.5 Analytic structure of the self-energy

The collective modes of the system are found by determining the poles (note
that all poles are on the real axis[37]) of the response function (87), in other
words by solving the implicit equation

(117)

and the strength of the collective mode is given by

Z(k) = 2S(k)
d

(118)

Prom our definition (107) of the self-energy follows the inequality

XCBF(k,uj) < £CBF(A;,0) < 0 (119)

from which one immediately sees that the lowest collective mode satisfies the
exact inequality [38]
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While it is reassuring that our microscopic approach satisfies known exact sum-
rules and inequalities as a consequence of its structure, we will see momentarily
that the inequality (120) is of rather limited use in determining features of ei-
ther the excitation spectrum, or the static response function. The reason is
that it gives neither information on the pole strength Z(k), nor on the exis-
tence of stable collective modes. We shall encounter examples of both: a case
where the pole strength of the lowest collective mode is infinitesimal, and a case
where no real collective mode exists. The latter example is in fact a well-known
consequence of anomalous dispersion.

In writing down Eq. (117) we have to assume that H(k,LJo(k)) is real. This is
the case when the energy denominator in Eq. (107) does not change sign, which
is true when the collective energy is below the critical value

hoocr'lt(k) = min [e(q) + e(|k + q|)] (121)
q

determining the continuum boundary. Above that energy, the self-energy is
complex. Moreover, for fiu < hcjcrit{k), it follows from Eq. (107) that

dE^,u) < 0 for h(jj < h(jJcr.t(fy . (122)

In order to determine if Eq. (117) has a solution, we must find out whether
£(fc,u;) becomes singular at the branch-cut UJ — uCTit{k) or not. This depends,
of course, on the details of the reference spectrum e(k) in the energy denominator
of Eq. (117). We shall study here two relevant cases.

5.6 Example: Anomalous dispersion in liquid 4He

The first case is that the reference spectrum e(k) is convex. This refers
typically to the regime of low momentum transfer in 4He where the sound
mode has an anomalous dispersion or to high momentum transfer where
the spectrum approaches the single particle kinetic energy. When
fiWcrit(k) = 2e(k/2) < e(k), this critical energy is below the reference energy.
In order to determine whether Eq. (117) has a solution, we must therefore
study the analytic behavior of S(fc, u) as a function of u near the branch-point
UJ = ojcrit(k). We shall treat only the simplest cases here, assuming a mono-
tonically growing, convex spectrum s'(k/2) > 0 and e"(k/2) > 0 and we are
interested in the singular behavior only.

To evaluate the imaginary part of the integral (107) for UJ « cjcrit it is sufficient
to consider the area where the angle 9 between k and q is close to zero, i.e.

2TT)2 eF(k)+eF(\k-q\)-huj + ir)

Next we expand the energy denominator in the vicinity of it's minimum value,
^crit(g)- Letting p = |k — q|, we have

eF(k)+eF(p) (124)
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\) + e'{p +k-q) + \e" ((A - | ) 2 + (p - |

where

and

dg2 (125)

(126)

For cos# « 1, we can also expand (recall that we are considering momentum
transfers k « i

'k2 + q2-2kq + 2kq(l-cos9)

q — k+ — (1 — cos 6)
[q — k)

:g-fc + (4]fe-g)(l-cos0) (127)

and therefore

4 - - l ) (1-cosfl)

2fc /A A 11
—l--coa0)+-\.
1 \Q ) 2J

(128)

This form of the energy denominator is correct, to second order in the momen-
tum, in the vicinity of it's minimum value and for small angles. We can now
carry out the angle integration and find

— ism
2

kdk

-——
(2TT)2

dv

with

and

A ( 4 | - 11 + ^ + ± | -

For k « | and w « 2ei?(|), we can further simplify

v42 - B2 = 2ks'e"(k - k-)(k -

(129)

(130)

(131)

(132)
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