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Abstract

Due to recent progress in advanced technologies in many fields of engineering sci-
ences, applications of flow control are developing very quickly. In this paper we survey
only a tiny and theoretical part of the recent results obtained in flow control, namely
some results on the controllability and on the stabilizability of the equations of incom-
pressible fluids which have been obtained by means of the return method.

1 Introduction

For finite dimensional system one knows many powerful sufficient conditions for local con-
trollability of a nonlinear control system. This is not the case in infinite dimension, where,
roughly speaking, the only known general result is that if the linearized control system at an
equilibrium is controllable, then the nonlinear control system is locally controllable at the
equilibrium. The return method, that we have introduced in [11] for a stabilisation problem
in finite dimension and first used in infinite dimension for the controllability of the Euler
equations in [13], allows in some cases to get the local controllability at the equilibrium of
the nonlinear control system even if the linearized control system at the equilibrium is not
controllable. The idea of the return consists in the following one. If one can find a trajectory
of the nonlinear control system such that

• it starts and ends at the equilibrium,

• the linearized control system around this trajectory is controllable,

then, in general, the implicit function theorem allows to conclude that one can go from any
state close to the equilibrium to any other state close to the equilibrium.

In this paper, we sketch some results in flow control which has been obtained by this
method, namely

• Global controllability results of the Euler equations of incompressible fluids,



• Global controllability results for the Navier-Stokes equations of incompressible fluids,

• Local controllability of a 1-D tank containing a fluid modeled by the shallow water
equations

• Null global asymptotic stabilizability by means of explicit boundary feedback laws for
the 2-D inviscid incompressible fluids on simply connected domains

2 Return method

In order to explain this method, let us just consider the problem of local controllability of a
control system in finite dimension. So we consider the control system

where x £ Rn is the state and u 6 Rm is the control ; we assume that / i s of class C°° and
satisfies

) = 0.

There are various possible definitions of local controllability. Here we use the following one,
called the small time local controllability,

Definition 1 The control system x — f(x,u) is small time locally controllable if for every
T > 0 there exist e > 0 in (0, +oo) such that, for every XQ 6 Rn and X\ G Rn both of norm
less than s, there exists a bounded measurable function u : [0,T] —> Rm such that, if x is the
('maximal) solution of x = f(x,u(t)) which satisfies x(0) — x0, then x(T) = X\.

One does not know any interesting necessary and sufficient condition for small time local
controllability but there are many useful necessary conditions and sufficient conditions which
have been found during the last thirty years. See for example the papers by A. Agrachev [2],
R.M. Bianchini and G. Stefani [5, 6], H. Hermes [38], M. Kawski [43], H.J. Sussmann [70, 71],
H.J. Sussmann and V. Jurdjevic [72], and A. Tret'yak [73]. Note that all these conditions rely
on Lie bracket and that this geometric tool does not seem to give good results for distributed
control systems - in this case x is an infinite dimensional space -. On the other hand for
linear distributed control systems there are powerful methods to prove controllability - e.g.
the H.U.M. method due to J.-L.Lions, see [52]. The return method consists in reducing the
local controllability of a nonlinear control system to the existence of - suitable - periodic
(or "almost periodic" -see below the cases of the Navier-Stokes control system and of the
shallow water equations) trajectories and to the controllability of linear systems. The idea is
the following one: assume that, for every positive real number T, there exists a measurable
bounded function u : [0,T] —> Rm such that, if we denote by x the (maximal) solution of
k = f(x,u(t)), x(0) = 0, then

0, (2.1)
the linearized control system around (x,u) is controllable on [0, T]. (2.2)



Then it follows easily from the inverse mapping theorem - see e.g. [65], Theorem 7 p. 126 -
that x = f(x,u) is small time locally controllable. Let us recall that the linearized control
system around (x,u) is the time-varying control system

y = A(t)y + B(t)v, (2.3)

where the state is y € Rn, the control is v € Rm and A(t) = (df/dx)(x(t),u(t)), B(t) =
(df/du)(x(t),u(t)).

For the linear control system (2.3), controllability on [0, T] means, by definition, that for
every j/o and yi in Rn, there exists a bounded measurable function v : [0, T] —» Rm such that
if y = A(t)y + B(t)v and y(0) = yo5 then y(T) = y\. There is a well known Kalman-type
sufficient condition for the controllability of (1.5) due to Silverman and Meadows [62] -see
also [65, Prop. 3.5.16]-. This is the following one.

Proposition 2 Assume that for some t in [0,T]

Span I (j - A(t)J B(t)[t=jv; v <E Rm, i > 0 I = Rn, (2.4)

then the linear control system (2.3) is controllable on [0, T]. Moreover if A and B are analytic
on [0,T] and if the linear control system (2.3) is controllable on [0,T]; then (2.4) holds for
alii in [0,T].

Note that if one takes u = 0, then the above method just gives the well known fact that if
the time-invariant linear system

§ ( , )
OU

is controllable, then the nonlinear control system x = f(x,u) is small time locally control-
lable. But it may happen that (2.2) does not hold for u = 0, but holds for other choices of
u. Let us give simple examples.

Example 3 We take n — 2, m — 1 and consider the control system

Let us take u — 0 ; then x = 0 and the linearized control system around (x,u) is

yi = 0, y2 = v.

which is clearly not controllable. Let us now take u G C°°([0,T];R) such that

r-T/2

u(t)dt = 0,

u(T-t)=u(t),Vte [0,T].



Then one easily checks that

x2(T/2)=0,

In particular, we have

The linearized control system around (#, u) is

, 2/2

Hence

and one easily sees that (2.4) holds if and only if

3 i € N such that ^j-(i) ^ 0. (2.5)

Note that (2.5) holds for at least a t in [0,T] if (and only if) u ^ 0. So (2.2) holds if (and
only if) u ^ 0.

Example 4 We take n = 3; m — 2 anc? t^e control system is

x1 = u 1 ? i 2 = ^27 ^3 — ^1^2 ~" ^2^1- (2-6)

Again one can check that the linearized control system around (x,u) is controllable on [0, T]
if and only ifu^.0. Note that, for the control system (2.6), it is easy to achieve the ^'return
condition" (2.1). Indeed, if

then -
x(T-t) = x(t),vte [o,r]

and, in particular,
x(T) - x(0) = 0.

Example 5 Let us now give an example, which has some relations with the 1-D tank studied
in section 4, where the return method can be used to get large time local controllability. For
this example the control system is

xi = £2, x2 = —xi + u, x3 = £4, £4 = —£3 + 2xix2, (2.7)



where the state is (xi, x2, £3, £4) G R4 and the state is u G R. Let us first point out that that
this control system is not small time locally controllable. Indeed if (x,u) : [0,T] —> R4 x R
is a trajectory of the control system (2.7) such that x(0) — 0 then

(2.8)
f

x3(T)= / xl(t)cos(T -t)dt,
Jo

fT

x4(T) = x\(T) - / x\(i) sin(T - t)dt
Jo

(2.9)

In particular if x1(T) — 0 and T ^ TT then x4(T) ^ 0 with equality if and only if x = 0. So7

if for T > 0 we denote by V(T) the following controllability property

V(T) There exists e > 0 in (0, +co) such that, for every x0 G Rn and xx 6 Rn both of norm
less than e, there exists a bounded measurable function u : [0,T] —> R such that, if #
is the (maximal) solution of (2.7) which satisfies x(0) = x0, then x{T) = a?i,

then, for every T G (0, TT], V(T) is false. Let us show how the return method can be used to
prove that

Let T > TT. Let

V(T) holds for every T G (?r, +00).

77 = rMin (T-7r,7r).

Let xi : [0, T] -> R be a function of class C°° such that

Let x2 : [0, T]

xx(t + n) = Xl(t)vt e [0,77].

and w : [0, T] -> R be such that

(2.10)

(2.11)

(2.12)

In particular

x2(t + Tr) = x2(t)Vte

Let x3 : [0, T] -> R and x4 : [0, T] ->• R be defined by

x3(0) = 0, x4(0) = 0.

(2.13)

(2.14)

(2.15)

(2.16)

So (x^u) is a trajectory of the control system (2.7). Then, using (2.8), (2.9), (2.11), (2.13),
(2.12), (2.14), one sees that

x(T) = 0.

If xi = 0, (x,u) = 0 and the linearized control system around (x,u) is not controllable.
But, as one easily checks using the Kalman-type sufficient condition for the controllability of
linear time-varying control sytem clue to Silverman and Meadows (Proposition 2), if xi ^ 0
then the linearized control system around (x,u) is controllable. This shows (2.10).
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One may wonder if the local controllability of x = f(x,u) implies the existence of u in
C°°([0,T];Rm) such that (2.1) and (2.2) hold. It has been proved to be true by Sontag in
[64]. Let us also remark that the above examples suggest that for many choices of u then
(2.2) holds. This in fact holds in general. More precisely let us assume that

h(0);he Liej|^(-,O), a e N m | | = R " , (2.17)

where Lie T denotes the Lie algebra generated by the vector fields in T ; then for generic u
in C°°([0,T];Rm) (2.2) holds; this is proved in [12], and in [67] if/ is analytic. Let us recall
that by a theorem due to Sussmann and Jurdjevic [72], (2.17) is a necessary condition for
local controllability if / is analytic.

The return method does not seem to give any new interesting controllability result if x
lies in a finite dimensional space ; in particular

• The small time local controllability in Example 3 follows from the Hermes condition
[38, 71],

• The small time local controllability in Example 4 follows from Rashevski-Chow's the-
orem [59, 9],

• The large time local controllability (more precisely (2.10)) follows from a general result
obtained by R. Bianchini about unilateral variations in [7] (one considers the trajectory
(*,«) = (0,0)).

But it gives some new results for the controllability of distributed control system as we are
now to show in the following sections.

3 Controllability of the Euler and Navier-Stokes equa-
tions

Let us introduce some notations. Let / G {2, 3} and let 0 be a bounded nonempty connected
open subset of R* of class C°°. Let To be an open subset of Y := <9Q and let Oo be an open
subset of O. We assume that

The set Fo is the part of the boundary and O0 is the part of the domain Vt on which the
control acts. The fluid that we consider is incompressible so that the velocity field y satisfies

div y = 0.

On the part of the boundary r\Fo where there is no control the fluid does not cross the
boundary: it satisfies

y.n = 0 on r \ r 0 , (3.2)



where n denotes the outward unit normal vector field on F. When the fluid is viscous it
satifies on F\F0 , besides (3.2), some extra conditions which will be specified later on. For
the moment being, let us just call by BC all the boundary conditions (including (3.2))
satisfied by the fluid on F\Fo.

Let us introduce the following definition.

Definition 6 A trajectory of the Navier-Stokes control system (resp. Euler control system)
on the interval of time [0,T] is an application y : 0 x [0,T] —>- Rl of class C°° such that, for
some function p : fi x [0, T] —̂  R of class C°°}

^ - vAy + (y • V)y + Vp = 0 in (O\H0) x [0,T], (3.3)

(resp. ^ + (y • V)y + Vp = 0 m (ft\ft0) x [0, T]) (3.4)

dwy = 0 m O x [0,T], (3.5)

y(-,i) satisfies the boundary conditions BC on F\Fo, \/t G [0,T]. (3.6)

The real number v > 0 appearing in (3.3) is the viscosity. J.-L. Lions' problem of control-
lability is the following one: let T > 0, let y0 and yi in C°°(£l; M,1) be such that

div y0 = 0 in 0, (3.7)

div yi = 0 in fi, (3.8)

y0 satisfies the boundary conditions BC on F\F0, (3.9)

yi satisfies the boundary conditions BC on F\Fo, (3.10)

does there exist a trajectory y of the Navier-Stokes or the Euler control system such that

y(- ,0)=yoinfi , (3.11)

and, for an appropriate topology -see [53, 54]-,

y(-, T) is "close" to Vl in. O? (3.12)

That is to say, starting with the initial data y0 for the velocity field, we ask whether there are
trajectories of the control system considered (Navier-Stokes if v > 0, Euler if v — 0) which,
at a fixed time T, are arbitrarly close to the given velocity field y\. If this problem has
always a solution one says that the control system considered is approximately controllable.



Note that (3.3), (3.5), (3.6) and (3.11) have many solutions. In order to have uniqueness
one needs to add extra conditions. These extra conditions are the controls.

In the case of the Euler control system one can even require instead of (3.12) the stronger
condition

y(-,T) = yi inf t . (3.13)

If y still exists with this stronger condition, one says that the Euler control system is exactly
controllable. Of course, due to the smoothing of the Navier-Stokes equations, one cannot
expect to have (3.13) instead of (3.12) for general yx. We will see in subsection 3.2 a way
to replace (3.13) in order to recover a natural definition of (exact) controllability of the
Navier-Stokes condition.

This section is organized as follows

• In subsection 3.1 wre consider the case of the Euler control system,

• In subsection 3.2 we consider the case of the Navier-Stokes control system.

3.1 Controllability of the Euler equations

In this section the boundary conditions BC in (3.6), (3.9), and (3.10) are respectively

y(x,t).n(x) = 0, V(M) € ( r \ r 0 ) x [0,T], (3.14)

yo{x).n(x) = 0, V i e T\r0 , (3.15)

yi(x).n(x) = o, v.rer\r0. (3.16)

For simplicity we assume that

i.e. we study the case of boundary control (see [14] when Oo ̂  0 and / = 2). In that case a
control is given by y.n on Fo with fr y.n — 0 and by curl y if / = 2 and (curl y).n if / = 3
at the points of Fo x [0,T] where y.n < 0: these boundary conditions, (3.14), and the initial
condition (3.11) imply the uniqueness of the solution to the Euler equations (3.4) -up to an
arbitrary function of t which may be added to p-; see also [44] for the existence of solution.

Let us first point out that in order to have (exact) controllability one needs that

Fo intersects every connected component of F. (3.17)

Indeed, let C be a connected component of F which does not intersect Fo and assume that,
for some smooth Jordan curve 70 on C (if / = 2 one takes 70 = C),

yo-ds + 0, (3.18)
70



but that

yi(x) = O,VxeC. ' (3.19)

Then there is no solution to our problem, that is there is no y G C°°(ft x [0,T];R2) and
p e C°°(ft x [0,T];R) such that (3.5), (3.4), (3.11), (3.13), and (3.14) hold. Indeed, if such
a solution (y,p) exists, then, by Kelvin's law,

/ y(-,t).ds= I yo . ^ ( eR) , (3.20)

where j(t) is the Jordan curve obtained, at time t, from the points of the fluids which at
time 0 where on 70; in other words j(t) is the image of 70 by the flow map associated to the
time-varying vector field y. But (3.13), (3.18), (3.19) and (3.20) are in contradiction.

Conversely, if (3.17) holds, then the Euler control system is exactly controllable:

Theorem 7 Assume that TQ intersects every connected component of dVt. Then the Euler
control system is exactly controllable.

Theorem 7 has been proved in

• [13] when ft is simply-connected and / = 2,

• [14] when ft is multi-connected and / = 2,

• [34] when ft is contractible and / = 3,

• [35] when ft is not contractible and / = 3.

The strategy of the proof of Theorem 7 relies on the "return method" Applied to the con-
trollability of the Euler control system the return method consists in looking for (y,p) such
that (3.5), (3.4), (3.11), (3.13) hold, with y = y,p = p, y0 = J/i = 0 and such that the
linearized control system around around the trajectory y is controllable under the assump-
tions of Theorem 7. With such a (y,p) one may hope that there exists (y,p) -close to (y,p)-
satisfying the required conditions, at least if yo and ij\ are "small". Finally, by using some
scaling argument, one can deduce from the existence of (y,p) when y0 and yx are "small"
the existence of (y,p) even if y0 and y\ are not "small".

Let us emphasize that one cannot take (y,p) = (0, 0). Indeed, with such a choice of (y,p),
(3.5), (3.4), (3.11), (3.13) hold, with y = y,p — p, y0 = yi = 0, but the linearized control
system around y — 0 is not at all controllable. Indeed the linearized control system around
y = 0 is

div* = 0 in ft x [0,T], (3.21)

^ 0 inSTx[0 , r ] , (3.22)

{x,t).n{x) = 0, V(z,<) € (r \ r 0) x [0,T].



Taking the curl of (3.22), one gets
<9curl

which clearly shows that the linearized control system is not controllable. So one needs to
consider other (y,p). Let us briefly explain how one constructs "good" (y,p) when / = 2 and
0 is simply connected. In such a case one easily checks the existence of a harmonic function
0 in C°°(Tt) such that

Let a 6 C°°(0,T) vanishing 0 and T. Let

l) , -a\t)6{x) - l-a\t) \ V6{x) |2) .

Then (3.5), (3.4), (3.11), (3.13) hold, with y — y,p•= jp, y0 = J/i = 0. Moreover, using
arguments relying on an extension method analogous to the one introduced by D.L. Russell
in [60], one can see that the linearized control system around y is controllable.

When To does not intersect all the connected components of To one can get, if / = 2,
approximate controllability and even exact controllability outside every arbitrarily small
neighborhood of the union F* of the connected components of F which does not intersect IV
More precisely, one has

Theorem 8 [14]. Assume that 1 = 2. There exists a constant c0 depending only on 0 such
that, for every Fo as above, every T > 0, every e > 0; and every y0? J/i in C°°(O; R2) satisfying
(3.7), (3.8), (3.15) and (3.16), there exists a trajectory y of the Euler control system, on [0,T]
satisfying (3.11) such that

:y(x, T) = yi(x), Vx G 0 such that dist(x, T*) ^ e, (3.23)

co(\yo\L2 + |yi|L2 + \curly0\Loo + \curlyi\Loo). (3.24)

In (3.23), dist(x, F*) denotes the distance of # to F*, i.e.

dist (x, r*) = Min {\x - x*\;x* G F^}. (3.25)

We use the convention dist (x,0) = +oo and so Theorem 8 implies Theorem 7. In (3.24)
| l^r, for r G [l,+oo], denotes the Lr—norm on 0. Let us point out that, yo?J/i5

 a n ( i 71 as in
Theorem 8 being given, it follows from (3.23) and (3.24) that, for every r in [l,+oo),

l im |2 / (0 , r ) - y i | L r = 0; (3.26)
>0 +

that is Theorem 8 implies approximate controllability in the //-space for every r in [1, +00).
Let us notice that, if F* 7̂  0, then, again by Kelvin's law, approximate controllability for the
L'^-norm does not hold. More precisely let us consider the case / = 2 and let us denote by

10



F j , . . . , F£ the connected components of F which does not meet Fo. Let j/o?j/i in C°°(^; R2)
satisfying (3.7), (3.8), (3.15) and (3.16). Assume that for some i G { 1 , . . . , A;}

ijQ.dS y

Then for e > 0 small enough there is no trajectory y of the Euler control system on [0,T]
satisfying (3.11) such that

|y ( - ,T) - j/i|z,oo < £ (3 .2/)

One may wonder if, on the contrary one assumes that

/ yo.ds= I yi.ds, V z G { l , . . . , fc}. (3.28)

Then 0 . Glass has proved that one has approximate controllability in L°° and even in the
Sobolev spaces WlfP for every p G [1, +oo). Indeed he has proved in [36]

Theorem 9 Assume that I = 2. For every T > 0, and every yo?2/i in C°°(fi;]R2) satisfying
(3.7), (3.8), (3.15), (3/16) and (3.28). there exists a sequence (yk)keN of trajectories of the
Euler control system on [0,T] satisfying (3.11) such that

yk(x,T) = yi(x), Wx G 0 such that dist(x,T*) ^ 1/fc, VA; e N, (3.29)

/ ( • , T) -+ yx in Whp(tt) as k -> +oo, Vp G [1, +oo). (3.30)

Again the convergence in (3.30) is optimal: since the vorticity curl y is conserved along the
trajectories of the vector field y one cannot have the convergence in Wl'°°. In order to have
convergence in Wl'°° one needs to add a relation between curl j/o and curl y\ on the Ft- for
i G { 1 , . . . , / } . In this direction 0 . Glass has proved in [36]

Theorem 10 Assume that I = 2. Let T > 0; and let j/o,J/i ^ (^(OjR2) 6e such that (3.7),
(3.8), (3.15). (3.16) and (3.28) hold. Assume that, for every i G { 1 , . . . ,1}, there exits a
diffeomorphism Di of F^ preserving the orientation such that

curl j/i = (curl yo) ° Di-

Then there exists a sequence (yn) of trajectories of the Euler control system on [0, T] satisfying
(3.11), (3.29) and

yk(-,T) -> Vl in W2'P(VL) as k -> +oo, Vp G [1, +oo). (3.31)

Again, one cannot expect a convergence in W2'°° without an extra assumption on y0 and j/i
-see [36]-.

11



3.2 Controllability of the Navier-Stokes equations

In this section v > 0. We now need to specify the boundary -conditions BC. Three types of
conditions are considered

• Stokes boundary condition,

• Navier boundary condition,

• curl condition.

The Stokes boundary condition is the well known no-slip boundary condition

y = 0 on r \ r 0 , (3.32)

which of course implies (3.2).
The Navier boundary condition [57] imposes, condition (3.2), which is always assumed,

and

ay.r + (1 - a)n> f^r + | 0 rJ = 0 on T\r0, (3.33)

where a is a constant in [0,1), n — (n1 , . . . , nl) and r = ( r 1 , . . . , rl) is any tangent vector
field on the boundary F. In (3.33) we also have used the usual summation convention. Note
that the Stokes boundary condition (3.32) corresponds to the case ~a = 1, which we will not
include in the Navier boundary condition considered here. The boundary condition (3.33)
with <J = 0 corresponds to the case where there the fluid slips on the wall without friction.
It is the appropriate physical model for some flow problems; see [33] for example. The case
a G (0,1) corresponds to a case where there the fluid slips on the wall with friction; it is also
used in models of turbulence with rough walls; see, e.g., [49]. Note that in [10] F. Coron has
derived rigorously the Navier boundary condition (3.33) from the boundary condition at the
kinetic level (Boltzmann equation) for compressible fluids. Let us also recall that C. Bardos,
F. Golse, and D. Levermore have derived in [4] the incompressible Navier-Stokes equations
from a Boltzmann equation.

Let us point out that, using (3.2), one sees that, if / = 2 and if r is the unit tangent
vector field on <9O such that (r, n) is a direct basis of R2, (3.33) is equivalent to

ay.r + curl y = 0 on F\F0

with a G C°°(r; R) defined by

a(x) =
1 — (7

where K, is the curvature of F defined through the relation |^ = KT. In fact we will not use
this particular character of (3.34) in our considerations; Theorem 14 below holds for every
a GCCO(F;R).

12



Finally the curl condition is considered in dimension 2 (/ = 2). This condition is, condition
(3.2) which is always assumed, and

curly = 0 on T\r0. (3.35)

It corresponds to the case a = 0 in (3.34).
As mentionned in the introduction, due to smoothing property of the Navier-Stokes

equation, one cannot expect to get (3.13), at least for general y\. For these equations, the
good notion for exact controllability is not passing from a given state (y0) to another given
state (j/i). As proposed by A. Fursikov and 0. Yu Imanuvilov in [28, 29], the good definition
for exact controllability is passing from a given state (y0) to a given trajectory (yi). This leads
to the following, still open, problem of exact controllability of the Navier-Stokes equation
with the Stokes, or Navier, or curl condition.

Open Problem 11 Let T > 0. Let yx be a trajectory of the Navier-Stokes control system
on [0,T], Let y0 € C0 0^;!^) satisfying (3.7) and (3.9). Does there exist a trajectory y of
the Navier-Stokes control system on [0,T] such that

y(x,0) = yo(x), V*GO, (3.36)

y(x,T) = y1(x,T),Vxen? (3.37)

Let us point out that the (global) approximate controllability of the Navier-Stokes control
system is also an open problem. Related to the open problem 11 one knows two types of
results

• local results,

• global results,

which we briefly describe in the next subsections

3.2.1 Local results

These results do not rely on the return method, but on the HUM and difficult Carleman's
ineaqualities. Let us introduce the following definition.

Definition 12 The Navier-Stokes control system is locally (for the Sobolev H1 — norm)
exactly controllable along the trajectory yx on [0,T] of the Navier-Stokes control system if
there exists e > 0 such that, for every y0 <E CC°(O;R/) satisfying (3.7), (3.9) and

I Do ~ 2 / i ( * , 0 (

there exists a trajectory y of the Navier-Stokes control system on [0,T] satisfying (3.36) and

(3.37).

Then one has the following results.

Theorem 13 The Navier-Stokes control system is locally exactly controllable
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(i) along every trajectory for the curl condition or the Navier boundary condition in di-
mension 2 (1=2),

(ii) along every trajectory if Fo = F;

(Hi) along every stationary trajectory with compact support for the Stokes condition.

Case (i) has been obtained by A.V. Fursikov and 0. Yu Imanuvilov in [29, 30]. Case (ii) has
been obtained by A.V. Fursikov in [27]. Case (iii) has been obtained by 0 . Yu Imanuvilov
in [41] and [42].

3.2.2 Global results

Let d G C°(JT; R) be defined by

d ( x ) = d i s t ( x , F ) = M i n {\x - x f \ ; xf G F } .

In [15] the following theorem is proved

Theorem 14 Let T > 0, let y0 and yx in C°°(Tl,R2) be such that (3.7) and (3.8) hold. Let
us also assume that y0 and iji satisfies the Navier boundary condition (3.33). Then there
exists a sequence (yk;k G N) of trajectories of the Navier-Stokes control system on [0,T] with
the Navier boundary condition (3.33) such that, as k —> +oo ;

l^\y'(-,T) — yi\ —> 0, V/i > 0, (3.38)

\yk(',T)~-yi\w~i,oo{a) -»05 (3.39)

and, for all compact K included in O U Fo;

\yk(-,T) - j/i|Loo(K) + |curl yk{-,T) - curl yi|Loo(K) -> 0. (3.40)

In this theorem W~liOO(Cl) denotes the usual Sobolev space of first derivatives of functions
in L°°(fi) and | |VK—1»co(n) o n e °f it's usual norms, for example the norm given in [1, Section
3.10].

As in the proof of the controllability of the 2-D Euler equations of incompressible inviscid
fluids (see section 3.1), one uses the return method. Let us recall that it consists in looking
for a trajectory of the Navier-Stokes control system y such that

and such that the linearized control system around the trajectory y has a controllability in
a "good" sense. With such a y one may hope that there exists y - close to y - satisfying
the required conditions, at least if y0 and j/i are "small". Note that the linearized control
system around y is

^-iyAz + (y-V)z + (z. V)y + VTT = 0 in (JT\n0) x [0,T], (3.42)

14



= 0 in 0 x [0,T], (3.43)

^.n = Oon (r\r0) x [0,T], (3.44)

az.T + curl z = 0 on (r \r0) x [0, T]. (3.45)

In [29, 30] A. Fursikov and 0. Immanuvilov have proved that this linear control system is
controllable (see also [51] for the approximate controllability). Of course it is tempting to
consider the case y = 0. Unfortunately, it is not clear how to deduce from the controllability
of the linear system (3.42) with y = 0, the existence of a trajectory y of the Navier-Stokes
control system (with the Navier boundary condition) satisfying (3.11) and (3.12) if y0 and iji
are mot small. For this reason, one does not use y — 0, but y similar to the one constructed
in [14] to prove the controllability of the 2-D Euler equations of incompressible inviscid
fluids; these y are chosen to be "large" so that, in some sense, "A" is small compared to

Remark 15 In fact with the y we use, one does not have (3.J±1): we have only the weaker
property

y(.,0) = 0, y(-,T) is "close" to 0 in ft. (3.46)

But the controllability of the linearized control system around y is strong enough to take care
of the fact that y(-,T) is not equal to 0 but only close to 0.

Note that (3.38), (3.39), and (3.40) are not strong enough to imply

\yk(;T)-yi\L2(n)^0, (3.47)

i.e. to get the approximate controllability in L2 of the Navier-Stokes control system. But, in
the special case where Fo = F, (3.38), (3.39), and (3.40) are strong enough to imply (3.47).
Moreover, gluing together the proofs of Theorem 13 and of (ii) of Theorem 14, one gets

Theorem 16 [19] The open problem 11 has a positive answer when Fo = F and I — 2.

This result has been recently generalized by A. Fursikov and 0. Immanuvilov in [32] to
the case / = 3 Let us also mention that, in [24], C. Fabre has obtained, in every dimen-
sion, an approximate controllability result of two natural "cut off" Navier-Stokes equations.
Her proof relies on a general method introduced by E. Zuazua in [74] to prove approxi-
mate controllability of semilinear wave equations. This general method is based on H.U.M.
(Hilbert Uniqueness Method, due to J.-L. Lions [52]) and on a fixed point technique; see
also [25] where C. Fabre, J.-P. Puel and E. Zuazua use this method to prove approximate
controllability of semilinear heat equations.

Remark 17 It is usually accepted that the viscous Burgers equation provides a realistic
simplification of the Navier-Stokes system in fluid Mechanics. But J.I. Diaz has proved in
[22] that the viscous Burgers equation is not approximately controllable; see also [28]. For
the nonviscous Burgers equation, results have been obtained by F. Ancona and A. Marson in
[3] and by Th. Horsin in [40].
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4 Local controllability of a 1-D tank containing a fluid
modeled by the shallowm water equations

In this section, we consider a 1-D tank containing an inviscid incompressible irrotational fluid.
The tank is subject to one-dimensional horizontal moves. We assume that the horizontal
acceleration of the tank is small compared to the gravity constant and that the height of the
fluid is small compared to the length of the tank. This motivates the use of the shallow water
equations to describe the motion of the fluid; see e.g. [21, Sec. 4.2]. Hence the dynamics
equations considered are -see [23]-

/ v2\
vt(t,x)+ \gH + — ) (t,x) = -u(t), (4.2)

V 2JX
v(t,O) = v(t,L) = O, (4.3)

ds
j j ( O = «(«)• (4-4)
AD , x
- f = 5 ( t ) , (4.5
at

where (see figure 1),

• L is the length of the 1-D tank,

• H (i, x) is the height of the fluid at time t and for # £ [0, L],

• i; (£,#) is the horizontal water velocity of the fluid m a referential attached to the tank
at time t and for x £ [0, L] (in the shallow water model, all the points on the same
vertical have the same horizontal velocity),

• u (t) is the horizontal acceleration of the tank in the absolute referential,

• g is the gravity constant,

• .s is the horizontal velocity of the tank,

• D is the horizontal displacement of the tank.

This is a control system, denoted E, where

• the state is Y = (H,v,s,D),

• the control is u £ R.

Our goal is to study the local controllability of this control system S around the equilibrium
point

(ye ,ue):=((#e ,0,0,0),0).

This problem has been raised by F. Dubois, N. Petit and P. Rouchon in [23].
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Figure 1: Fluid in the 1-D tank

Of course, the total mass of the fluid is conserved so that, for every solution of (4.1) to
(4.3),

(4.6)

(One gets (4.6) by integrating (4.1) on [0, L] and by using (4.3) together with an integration
by parts.) Moreover, if H and v are of class C1, it follows from (4.2) and (4.3) that

Hx(t,0) = Hx(t,L) (=-u(t)/g). (4.7)

Therefore we introduce the vectorial space E of functions Y = (H,v,s,D) G Cx([0, L\) x
Cx([0, L ] ) x R x R such that

Hx(0) = HX(L),

v(0) = v(L) = 0,

and consider the affine subspace y C E of Y = (H,v,s,D) <E E satisfying

H{x)dx = LHe.

The vectorial space E is equipped with the usual norm

(4.8)

(4.9)

(4.10)
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where, for w G^QO,!]),

H i := Max{\w(x)\ + \wx(x)\; x G [0, L]}.

With these notations, we can define a trajectory of the control system S.

Definition 18 Let T\ and T2 be two real numbers satisfying T\ ^ T2. A function (Y,u) =
((H,v,s,d),u) : [Ti,T2] —> y x R. zs a trajectory of the control system, E if

(i) the functions H and v are of class C1 on [ri,T2] x [0,L],

(ii) the functions s and D are of class C1 on [Ti,T2] and the function u is continuous on

(Hi) the equations (4.1) to (4.5) hold for every (t,x) G [TUT2} x [0 ,L] .

Our main result states that the control system S is locally controllable around the equilibrium
point (Ye,ue). More precisely, one has the following theorem.

Theorem 19 There exists T > 0; Co > 0 and 77 > 0 such that, for every YQ =
(HQ, VQf so? Do) G y2, and for every Y\ = (i/i, ̂

\H0- ) , \EX - He

there exists a trajectory (Y, u) : [0, T] ->
control system E such that

Y(0) =

L ,Di) G y2 such that

?7, \s\ — So + \D\ — 5oT — Do| < ̂ 7,

x l . i H ) ((/T (t) ,v(t),s (t), ( t ) ) , u (<)) o/ ^ e

= y l s (4 . i i )

?̂  every t G [0,T];

Co (y/\H0 - He\x (4.12)

As a corollary of this theorem, any steady state Y\ — (0 ,0 ,0 ,Di ) can be reached from any
other steady state Yo — (0,0,0, Do)- More precisely, one has the following corollary.

Corollary 20 Let T, Co and rj be as in Theorem 19. Let Do and D\ be two real numbers
and let ?/i G (0,77]. Then, there exists a trajectory (Y,u) : [0,T(|Di — D0\ + ?7i)/?7i] —>
3^xR, t h-> ((H (t) , v (t), s (t), (t)), u (t)) of the control system S such that

Y(0) - (0,0,0, Do) and Y{T{\DX - DQ\ +

\H (t) - He\x + |t; (t)|x + \u (t)\ < Com Vt G [0,

) = (0,0,0,^), (4.13)

- Do\ + 7/1)/^]. (4.14)
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Let us give the main steps of the proof of Theorem 19. Let us first point out that by
scaling arguments one can assume without loss of generality that

Indeed, if we let

H*(t,x):=—H
L\Jtieg LJ \Jtieg

t x

u* (t) :=
LHeg

u ' \-•(*)== 4=-
with x G [0,1], then equations (4.1) to (4.5) are equivalent to

(4.15)

' \D'{t):=LD< *

v*t(t,x)+{H* + —
*2

From now on, we always assume that we have (4.15). Since (Y,u) — ((i?, v,6, D),u) is a
trajectory of the control system S if and only if ((if, v,s — a^D — at — 6), u) is a trajectory
of the control system S, we may assume without loss of generality that ,s0 = Do = 0.

The proof of Theorem 19 relies again on the return method. So one looks for a trajectory
(Y\ it) : [0, T] —> y x R of the control system S satisfying

Y (0) = Y(T) = Yei

the linearized control system around (Y, it) is controllable.

(4.16)

(4.17)

Let us point out that, as already noticed by F. Dubois, N. Petit and P. Rouchon in [23], prop-
erty (4.17) does not hold for the natural trajectory (Y,u) — (Ye,ue). Indeed the linearized
control system around (Fe,ue) is

(So)

+ vx = 0,
+ hx = -u (t),

(4.18)

f
where the state is (/i, u ,5 , D) G 3̂ o, with

yo:=Uh,v,s,D)eE; I hdx = o | ,
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and the control is wGR. But (4.18) implies that, if

h(0,l -x) = -h(0,x) and u(O,l - x) = v(QJx) Vx G [0,1],

then
h(t, l-x) = -h(0, x) and v(t, 1 - x) = v(0, z) Vz G [0,1], V*.

Remark 21 £t>en z/ the control system (4-23) is not controllable, F. Dubois, Ar. Petit and
P. Rouchon have proved in [23] that one can move from any steady state (/io, Vo> ô? Do) —
(0,0,.so, Do) to any steady state (hi,vi,Si,Di) = (0, 0,si,Z?i) for this control system (see
also [58] when the tank has a non-straight bottom). This does not imply that the same
property also holds for the nonlinear control system S ; but it follows from Corollary 20, that
this property indeed also holds for the nonlinear control system E. Moreover the fact that
this motion is possible for the control system (4-23) explains why, in the right hand side of
(4-12), one has \s± — SQ\ + \Di — So'T — Do| and not (\s\ — <so| + \D\ — SoT — DQ\) .

As in [11, 13, 14, 19, 32, 34, 35, 66] one has to look for more complicated trajectories (Y,u)
in order to have (4.17). In fact, as in [15], one can require instead of (4.16), the weaker
property

y(0) - Ye and Y(T) is close to Ye (4.19)

and hope that, as it happens for the Navier-Stokes control system -see above and [15]-, the
controllability around (lz, u) will be strong enough to tackle the problem that Y(T) is not
Ye but only close to Ye. Moreover, since as it is proved in [23], one can move for the linear
control system So, from Ye = (0,0,0,0) to (0, 0,5i, Di), it is natural to try not to "return"
to Ye, but requires instead (4.19) the property

Y(0) = Ye and Y(T) is close to (0 ,0 ,^ , Dx). (4.20)

In order to use this method, one first needs to have trajectories of the control system
E such that the linearized control system around these trajectories are controllable. Let us
give an example of a family of such trajectories. Let us fix a positive real number T* in
(2, +oo). For 7 G (0,1] and"(a, b) G R2, let us define (Y^^\ u1) : [0, r ] - > } ^ x R by

Y™>b(t,x):= ( l + 7 f g ~x) ,0 , 7 t + a , 7 - + at + 6J \ft G [0,T*], Vx G [0,1], (4.21)

u^(t) : = 7 ViG [0,T*]. (4.22)

Then, (y7jO '6,u7) is a trajectory of the control system S. The linearized control system
around this trajectory is the following control system

+ hx = -u (t),
'*,o) = i>(M) = °̂  (4-23)
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where the state is (/i, u, s, D) G Jo and the control is it G R. This linear control system E7 is
controllable if 7 > 0 is small enough (see [18] for a proof). Unfortunately the controllability
of E7 does not seem to imply directly the local controllability of the control system S around
the trajectory (K7'0'6, u7). Indeed the map from y x C°([0,T]) into y which associates to
any initial data YQ — (#0? 0̂? s0, A)) G 3̂  and to any u G C°([0, T]) such that

HOx(0) = #0,(1) = -u(0)

the state Y(T) € ^ , where F = (H,v,s,D) : [0,T] ->• ^ satisfies (4.1) to (4.5) and
1(0) = YQ is well-defined and continuous on a small open neighborhood of (1^,0) (see e.g.
[50]) but is not of class C1 on this neighborhood. So one cannot use the classical inverse
function theorem to get the desired local controllability. To take care of this problem, one
adapts the usual iterative scheme used to prove the existence of solutions to hyperbolic
systems (see e.g. [20, p. 476-478], [39, p. 54-55], [50, p. 96-107], [55, p. 35-43] or [61,
p. 106-116] -see also [13, 14, 19, 32, 34, 35] for the Euler and the Navier control system
for incompressible fluids): one uses the following inductive procedure (hn,vn,sn

J Dn
1u

n) \-¥
(hn+1, vn+\ sn+1, Dn+1, un+l) so that

h?+1 + vnhn
x
+1 + (l + 7 Q - x) + hA < + 1 - 7v

n+1 = 0 (4.24)

0)=un+1(t,L) = 0, (4.26)

— — (t) = un+1 (t), (4.27)

dDn+1

- ^ - (*) = *n+1 (*), (4.28)

and (hn+\vn+\sn+\Dn+\un+1) has the required value for t = 0 and for t = T*. Unfortu-
nately we have only been able to prove that the control system (4.24)-(4.28), where the state
is (hn+1, vn+1

: sn+1, Dn+1) and the control is un+l, is controllable under a special assumption
on (hn,vn), see [18]. Hence one has to insure that, at each iterative step, (hn,vn) satisfies
this condition, which turns out to be possible. So one gets the following proposition, which
is proved in [18].

Proposition 22 There exist C\ > 0;/i > 0 and j 0 G (0,1] such that, for every 7 G [0,7o],
for every (a, 6) G R2 and for every (YQ,YI) G y2 satisfying

\YQ — Y u ' (U)| ^ / i 7 " a n d | l i — r r' ' ( i ) | ^ ^ 7 ,

Pierre exists a trajectory (Y,u) : [0,T*] - y ^ x R of the control system S such that

= Y0 andY(T*) = Yu

((t) | + |w(t)| ^ C17 Vt G [0,T*]. (4.29)

One now needs to construct, for every given 7 > 0 small enough, trajectories (Y,u) :
[0, T°] —> y x R of the control system E satisfying

F(0) = (1,0,0,0) and \Y(T°) - F7 'a '6(0)| ^ / i7
2 , (4.30)
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and trajectories (Y, u) : [T° + T*, T° + T* + T1] -^ J x R of the control system S such that

Y(T° + T1 + T*) = (l,0,s1,D1) and \Y(T° + T*)-Y~i>a'b(T*)\^w\ (4.31)

for suitable choice of (a, 6) £ R2, T° > 0, T1 > 0. Let us first point out that it follows from
[23] that one knows explicit trajectories (Y\ul) : [0,T°] -> y x R of the linearized control
system around (0, 0) (i.e. the control system So) satisfying Yl(0) = 0 and Yl(T°) = Y7'a'6(0).
(In fact F. Dubois, N. Petit and P. Rouchon have proved in [23] that the linear control system
So is fiat -a notion introduced by M. Fliess, J. Levine, P. Martin and P. Rouchon in [26]-.
They have given a complete explicit parametrization of the trajectories of So by means of an
arbitrary function and a 1-periodic function.) Then, the idea is that, if one moves "slowly",
the same control ul gives a trajectory (Y, u) : [0, T°] -s> J x R of the control system S such
that (4.30) holds. More precisely, let /0 € C4([0,4]) be such that

/o = 0in[0,l/2]U[3,4], (4.32)
fo(t) = s/2 We [1,3/2], (4.33)

/ fo(ti)dn = 0. (4.34)
Jo

Similarly, let f\ € C4([0,4]) and f2 € C4([0,4]) be such that

/i = 0 in [0,1/2] U [1,3/2] and fr = 1/2 in [3,4], (4.35)

/ / i(t i)dt1 =O, (4.36)
Jo

/2 = 0in[0, l /2]U[l ,3/2]U[3,4] , (4.37)
/ f2(h)dt1 = 1/2. (4.38)

Jo
Let

D:= {(s,D) e R2; \s\ ̂  1, \D\ ̂  1} .

For (s, D) G D, let /5iD G C4([0,4]) be defined by

/s,S := /o + 5/i + 5/2. (4.39)

For e € (0,1/2] and for 7 G R, let u ^ : [0, 3/e]•->• R be defined by

<-'J (*) := 7/ifl(^) + 7/ifl(c(< + I))- (4-40)

Let ( /< - i , ^ J ,4J ,^ - J j : [0,3/e] -)• ^([0,1]) x ^([0,1]) x R x R be such that (4.18)

holds for (h,v,s,D) = (^:-'J,^J,<^,^-£)), u = u l j and
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From [23] one gets that

lt'l (t,x) = -lfs,D(e(t + x)) + lfh 1 - x)),

fSt

«>=fr 1
e2 1)),

(4.41)

1)), (4.42)

(4.43)

(4.44)

wnth

In particular, using also (4.32) to (4.38), one gets

> ^) = 7 Q - *) and t,^ 0 + t, ̂  = 0

7 7
e 2

]\ , (1 , 7
J + U + 2

£l7 /
-% n - =

= ° and

- 5 and

0,

' 2 f

= 0

1 - 2 e
2e

, V.TG [0,1],

(4.45)

(4.46)

0,
1 - 2 e

2e

[0,1],

Let i / £ = 1 + /,:J and

7 _ 7 =
= —s + — Z?.

^ ) . Consider

(4.47)

(4.48)

(4.49)

0 = 7 + |,

Using (4.21), (4.45), (4.46) and (4.47), one has

T

and, if eG(0,l/(2(T*

(4.50)

e
b*l (4.51)

The next proposition, which is proved in [18], shows that one can achieve (4.30) with u = uf1^
for suitable choices of T°, e and 7.
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Proposition 23 There exists a constant C2 > 2 such that, for every e G (0,1/C2], for every
(,s, D) G D and for every 7 G [0, e/C'2]; £/iere exists one and only one map Yl^ • [0,1/e] —> J/*
satisfying the two following conditions

{Y^^uf^) is a trajectory of the control system, E (on [0,1/e]),

ra(o) = (1,0,0,0),

and this unique map Y-.'Z, verifies-.Z,

sfi (*) - n 'n W ^C2e7
2VtG[O,l/e].

/n particular, by (4.45),

(4.52)

(4.53)

Similarly, one has the following proposition, which shows that (4.31) is achieved with
u = ufjj for suitable choices of T1, e and 7.

Proposition 24 There exists a constant C3 > 2(T* + 1) such that, for every e G (0,1/C3],
for every (s,D) G D; and for every 7 G [0,e/Cy, there exists one and only one map Yl'^ :
[(1/e) + T*,3/e] —> 3̂  satisfying the two following conditions

"l6'̂ , wl'^ ) z*5 a trajectory of the control system S (on [(1/e) + T*, 3/e]),

ê

and this unique map Ye^ verifies

T*,3/e].

/n particular, by (4-45),

Let us choose

e:= Mm( —, —, ^ - , - ^ , ^ ^

Let us point out that there exists C4 > 0 such that, for every (s, D)

C2([0,3/£]x[0,l]) C2([0,3/e]x[0,l])
-^4,

(4.54)

(4.55)

(4.56)

and for every

(4.57)

which, with straightforward estimates, leads to the next proposition, whose proof is omitted.
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Proposition 25 There exists C$ > 0 such that, for every (s,D) G D, /or euen/ 1Q
{HQ,VQ,SO,DO) G 3

/or every 7 G [0, e/Cy, there exists one and only one Y : [0,1/e] —> 3̂

(Y, w!'^ — jffoa;(0)) z*5 a trajectory of the control system S,

this unique map Y satisfies

Similarly, (4.57) leads to the following proposition.

Proposition 26 There exists C6 > 0 such that, for every (5, 5 ) G D; for every 7 G [0,
and for every Y\ = (Hi,vi,Si,Di) G 3

e 2e e2 ) C6 t

there exists one and only one Y : [(1/e) + T*,3/e] —>• 3̂  5wc/

(y,uf'^ — Hix(0)) is a trajectory of the control system S

and this unique map Y satisfies

Y(t)-Y°$(t) ^C6 Vi-K^(3/e) , Vie

Finally define

rj := Min

T:=3-,
t

e t 1

2C5(C| + CD' 2C6{C'I + Cl)' C2' C3' C 5 ' C 6 ' 26'5 ' 2C6 'r.7o

(4.58)

(4.59)

We want to check that Theorem 19 holds with these constants for a large enough Co Let
l 0 = (iJ09 VOj 0, 0) G y and Yi = (i7l5 vu su Dx) e y be such that

\H0 - l | x

Let

7 : = Max Ho - 11! + Kli,

7

2

7

(4.60)

(4.61)

(4.62)
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so that, thanks to (4.49),

(4.63)

(4.64)

(4.65)

Then, by Proposition 25, (4.59), (4.60) and (4.65), there exists a function Y° =
{H°, v°, s°, D°) : [0, l/e] ^ y such that

(4.66)

(4.67)

(4.68)

Note that, by (4.56), (4.60), (4.61) and (4.62),

(s, D) G D.

By (4.59), (4.60) and (4.61), we obtain that

0,Min (4r,

(V , u ^ — HQX(0)) is a trajectory of the control system S on [0, l/e],

y°(o) = [o,

y° l7s,D c5 |y0 - ye| vt e [o,

By (4.61) and (4.68),

y° (4.69)

By Proposition 23, (4.56) and (4.65),

s , l

7:SD

(0)

which, with (4.69), gives

y ° [ -
A S » ^

(4.70)

Similarly, by Propositions 24 and 26, (4.56), (4.58), (4.59), (4.60), (4.61), (4.63) and (4.65),
there exists Y1 = (H\v\s\Dv) : [(l/e) + T*,T] -+ y such that

( y \ ufD - Hlx(0)) is a trajectory of the control system E on [(l/e) + T*, T], (4.71)

(4.72)

(4.73)V<G[( l /e)+T*,T] ,

-^ i +

By (4.59), (4.60) and (4.61),

7 ^ 7o-

(4.74)

(4.75)
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From Proposition 22, (4.70), (4.74) and (4.75), there exists a trajectory (Y*,u*) : [0,T*] ->
y of the control system E satisfying

F*(0) = Y° (-} , (4.76)

Y* (t) - Y™<-Th'« (t)\ ^ d / i 7 Vi G [0, r ] , (4.77)

y(T*) = F1 ( - + T* j . (4.78)

The map (Y, u) : [0, T] —¥ y defined by

(Y (t), u it)) = (Y° (t), u!J (t) - HoM) V* € [0,1/e],

(y (*), u (*)) = (Y*(t - (1/e)), u*(t - (1/e))) W G [1/e, (1/e) + T*],
(F (t), u (*)) = (F1 (0 , u!J (t) - ffliB(0)) Vt € [(1/e) + T*, T],

is a trajectory of the control system S which, by (4.67) and (4.72), satisfies (4.11). Finally
the existence of CQ > 0 such that (4.12) holds follows from the construction of (Y,u), (4.7),
(4.29), (4.41) to (4.44), (4.52), (4.54), (4.60), (4.61), (4.68), (4.73) and (4.77).

5 Null asymptotic stabilizability of the 2-D Euler con-
trol system

In subsection 3.1 we have considered the problem of the controllability of the Euler control
system of incompressible inviscid fluid in a bounded domain. In particular we have seen that,
if the controls act on an arbitrarily small open subset of the boundary which meets every
connected component of this boundary, then the Euler equation are exactly controllable.

For linear control systems, the exact controllability implies the asymptotic stabilizability
by means of feedback laws. This is well known for linear control systems of finite dimension
and, by M. Slemrod [63], J.-L. Lions [52], I. Lasiecka-R. Triggiani [48] and V. Komornik [46],
it also holds in infinite dimension in very general cases. But, as pointed out by H. J. Sussmann
in [69], by E.D. Sontag and H.J. Sussmann in [68], and by R.W. Brockett in [8], this is no
longer true for nonlinear control systems, even of finite dimension. For example (see [8]) the
nonlinear control system (2.6) is globally controllable but 0 G i 3 cannot be, even locally,
asymptotically stabilized by means of feedback laws. Let us also notice that, as in this
counter-example, the linearized control system of the Euler equation around the origin is
not controllable.

Therefore it is natural to ask what is the situation for the asymptotic stabilizability of
the origin for the 2-D Euler equation of incompressible inviscid fluid in a bounded domain
when the controls act on an arbitrarily small open subset of the boundary which meets every
connected component of this boundary. In this section we are going to see that the null
global asymptotic stabilizability by means of feedback laws holds if the domain is simply
connected.



Let ft be a nonempty bounded connected and simply connected subset of R2 of class C°°
and let To be a non empty open subset of the boundary dft of ft. This set To is the location
of the control. Let y be the velocity field of the inviscid fluid contained in ft. We assume
that the fluid is incompressible, so that

divj/ = O. (5.1)

Since ft is simply connected, y is completely characterized by to := curl y and y.n on dft
where n denotes the unit outward normal to dft. For the problem of controllability, one
does not really need to specify the control and the state: one considers the "Euler control
system" as an under-determined system by requiring y.n = 0 on 3 ft \ Fo instead of y.n = 0
on 3ft as for the uncontrolled usual Euler equation. For the stabilization problem, one needs
to specify more precisely the control and the state. In this paper the state is to. For the
control there are at least two natural possibilities

(a) The control is y.n on Fo and the time derivative dto/dt of the vorticity at the points
of Fo where y.n < 0, i.e. at the points where the fluid enters into the domain ft,

(b) The control is y.n on Fo and the vorticity to at the points where y.n < 0.

Let us point out that, by (5.1), in both cases y.n has to satisfy J^y-n = 0. In this paper
we study only case (a); for case (b), see [16].

Let us give stabilizing feedback laws. Let g £ C°°(3ft) be such that

Support g C Fo, (5-2)

TQ := {g > 0} and F^ := {g < 0} are connected, (5.3)

9^0, (5.4)

f+nrv = 0, (5.5)

9 = 0. (5.6)
i an,

For every / £ C°(Cl), we denote

Our stabilizing feedback laws are

y.n = M \uj\og on F o ,

dco _
— = -M \LO\0LJ on F o if |CJ|0 ^ 0,

where M > 0 is large enough. With these feedback laws, a function to : I x ft —> R, where /
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is an interval, is a solution of the closed loop system S if

- ^ + div (toy) = 0 in / x ft, (5.7)

div y = 0 in / x ft, (5.8)
O

curl y = to in / x ft, (5.9)

V t G / , (5.10)

^ ow on {*; Lj{t) + 0} x r0". (5.11)

where, for t G ft, u;(tf) : ft —> E and y(t) : ft —y R2 are defined by requiring u(t)(x) = u;(i, x)
and y(t)(x) = y(t,x),\/x G ft . More precisely, the definition of a solution of system S is

Definition 27 Let I be an interval A function to : / —> C°(ft) is a solution of system S if

(i) a;GC°(/;

("n'J For y G C°(/ x ft; R2) defined by requiring (5.8) and (5.9) in the sense of distributions
and (5.10), one has (5.7) in the sense of distributions,

o

(in) In the sense of distributions on the open manifold {t G /; co(t) / 0} x FQ one has
dco/dt = -M\co(t)\0uj.

Our first theorem says that, for M large enough, the Cauchy problem for system S has
at least one solution defined on [0,+oo) for every initial data in C°(ft). More precisely one
has

Theorem 28 There exists Mo > 0 such that, for every M ^ Mo, the following two properties
hold

(i) For every coo £ C°(ft); there exists a solution of system E defined on [0, +oo) such that
u;(0) = uj0,

(ii) Any maximal solution of system S defined at time 0 is defined on [0, +oo) (at least).

Remark 29 a. In this theorem, property (i) is in fact implied by property (ii) and Zorris
lemma. We state (i) in order to emphasize the existence of a solution to the Cauchy problem
for system S. b. We do not know if the solution to the Cauchy problem is unique for positive
time. (For negative time, one does not have uniqueness since there are solutions to of system
S defined on [0, +oo) such that o;(0) ^ 0 and to(T) = 0 for T G [0, +oo) large enough.) But
let us emphasize that, already for control system in finite dimension, one considers feedback
laws which are merely continuous; with these feedback laws, the Cauchy problem for the
closed loop system may have many solutions. It turns out that this lack of uniqueness is not
a real problem. Indeed, in finite dimension at least, if a point is asymptotically stable for a
continuous vector field, then there exists, as in the case of regular vector fields, a (smooth)
strict Lyapounov function. This result is due to Kurzweil [47].It is tempting to conjecture
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that a similar result hold in infinite dimension under reasonable assumptions. The existence
of this Lyapounov function insures some robustness to perturbations. This is precisely this
robustness which makes the interest of feedback laws compared to open loop controls. We
ivill see that, for our feedback laws, there exists also a strict Lyapounov -see Proposition 33
below- and therefore our feedback laws provide some kind of robustness.

Our next theorem shows that, at least for M large enough, our feedback laws globally
and strongly asymptotically stabilize the origin in C°(O) for system E.

Theorem 30 There exists a positive constant M\ ^ M® such that, for every e £ (0,1]; every
M ^ M\je and every maximal solution to of system S defined at time 0,

Ht)\0^ Mm{\cu(0)\o,~},Vt>0. (5.12)

Remark 31 Due to the term \uj(t)\Q appearing in (5.10) and in (5.11) our feedback laws do
not depend only on the value of to on IV Let us point out that there is no asymptotically
stabilizing feedback law depending only on the value of to on YQ such that the origin is asymp-
totically stable for the closed loop system. In fact, given a nonempty open subset fi0 of ft,
there is no feedback law which does not depend on the values of u on Oo- This phenomenon is
due to the existence of "phantom vortices": there are smooth stationary solutions y : Vt -> R2

of the 2-D Elder equations such that Support y C O0 and Co := curl y ^ 0; see, e.g., [56].
Then co(t) — UJ is a solution of the closed loop system if the feedback law does not depend on
the values of u on fi0 -and vanishes for to = 0,

Remark 32 Let us emphasize that (5.12) implies that

| a ; ( i ) | 0 ^ e , V * ^ l , (5.13)

for every maximal solution to of system S defined at time 0 (whatever is LO(0)). It would be
intreresting to know if one could have a similar result for the 2-D Navier-Stokes equations of
viscous incompressible flows, that is if, given e > 0, does there exist a feedback laiu such that
(5.13) holds for every solution of the closed loop Navier-Stokes control system? Note that
y = 0 on To is a feedback which leads to asymptotic stabilization of the null solution of the
Navier-Stokes control system. But this feedback does not have the required property. One may
ask a similar question for the Burgers control system; for the null asymptotic stabilization of
this control system, see the paper [45] by M. Krstic and the references therein.

The detailed proofs of Theorem 28 and of Theorem 30 are given in [16]. Let us just mention
that Theorem 30 is proved by giving an explicit Lyapounov function. Let us give this
Lyapounov function. Let V : C°(O) —>• [0, +oo) be defined by

where 9 G C°°(Tl) satisfies

= Oinfl, (5.14)

(5.15)
an

(Let us point out that the existence of 6 follows from (5.6).) Theorem 30 is an easy conse-
quence of the following proposition.
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Proposition 33 There exists M2 ^ Mo and fi > 0 such that, for every M ^ M2 and every
solution to : [0, +oo) -> C°(fi) of system E; one /zas; /or et;e? /̂ t £ [0,+oo);

[-oo,0] 9 F(t) := -j^V(u(t)) ^ -iiMV2(u(t)), (5.16)

where d/dt+V(u(t)) := lime_,0+(V(u;(< + e)) - V(

Let us end this section by some comments for the case where O is not simply connected In
this case, in order to define the state, one adds to u> the real numbers Ai, • • • ,Xg defined by

where, if one denotes by CQ,CI, • • • , C5 the connected components of F, the functions T{ G
C°°(JT), Z G {1, • • • ,#}are defined by

AT, = 0 ,
Ti =0onan\C»,
r, = 1 on C,-7

and where V1^- denotes VT; rotated by TT/2. One has the following open problem

Open Problem 34 Assume that g > 1 and that Fo meets every connected component ofT.
Does there exist always a feedback law such that 0 G C°(fi) x M.9 is globally asymptotically
stable for the closed loop system?

Brockett's necessary condition [8] for the existence of asymptotically stabilizing feed-
back laws cannot be directly applied to our situation since our control system is of infinite
dimension. But it leads to the following question.
Question Assume that Fo meets every connected component of Y. Let f G C°°(fi). Does
there exit y G C°°(Tt; R2) and p G C°°(JT) such that

/ inVt , (5.17)

div y = 0 m f i , (5.18)

y.n = 0 o n F \ F 0 ? (5.19)

Let us point out that, by scaling arguments, one does not have to assume that / is "small"
in this question. It turns out that the answer to this question is indeed positive. This has
been proved in [17] if 0 is simply connected and by 0. Glass in [37] for the general case.
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