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Preface

These notes contain a short course on the linear quadratic controls problems
in Hilbert spaces.

We have essentially followed the book: A, Bensoussan, G. Da Prato, M.
Delfour and S.K. Mitter, Representation and Control of Infinite Dimensional
Systems, Birkhauser, (1992).

See the book above for generalizations and references.

Pisa, September 11, 2001 Giuseppe Da Prato
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Chapter 1

Control in finite horizon

1.1 Introduction and setting of the problem

We are concerned with a dynamical system governed by the following differ-
ential equation

y'(t) = Ay(t) + Bu(t), t > 0,
(1.1.1)
y(0) =z € H,

where A : D(A) C H — H, B: U — H are linear operators defined on the
Hilbert spaces H (state space) and U (control space). We shall also consider
another Hilbert space Y (observation space). The inner product and norm
in H,U,Y will be denoted by {(-,-) and | - | respectively.

Given T > 0, we want to minimize the cost function

J(u) = /0 [Cy(s)* + lu(s)I*] ds + (Poy(T), y(T)), (1.1.2)

where Py : H —- H, C : H — Y are linear operators defined in H and Y
respectively, over all controls u € L2(0,T;U) subject to (1.1.1).
Concerning the operators A, B, C and P, we shall assume that

Hypothesis 1.1 (i) A generates a strongly continuous semigroup et on
H.
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(1) B e LU, H) ().

(iii) Py € L(H) is symmetric and nonnegative.

(iv) C € L(H,Y).

Under Hypothesis 1.1-(i)—(ii) problem (1.1.1) has a unique mild solution y
given by the variation of constants formula (see Appendix A),

t
y(t) = ez +/ e"=4 By(s)ds. (1.1.3)
0

A function u* € L?(0,T;U) is called an optimal control if
J(u*) < J(u), Yu € L*(0,T;U). (1.1.4)

In this case the corresponding solution y* of (1.1.1) is called an optimal state
and the pair (u*,y*) an optimal pair.

Under Hypothesis 1.1 it is easy to see that there is a unique optimal
control (since the quadratic form J(u) on L%(0,T;U) is coercive). However
we are interested in showing that the optimal control can be obtained as a
feedback control (synthesis problem). For this reason we shall describe the
Dynamic Programming approach which consists in the following two steps:

Step 1. We solve the Riccati operator equation
P'=A*P+ PA—- PBB*P + C*C,
(1.1.5)
P(O) == Po,
where A*, B* and C* are the adjoint operators of A, B and C' respectively.
Step 2. We prove that the optimal control u* is related to the optimal
state y* by the feedback formula

w*(t) = —=B*P(T — t)y*(t), tel0,T], (1.1.6)

Let X,Y be Hilbert spaces. We denote by L(X,Y) the Banach space of all linear
bounded operators T : X — Y endowed with the norm ||T'|| = sup{|Tz|: z € X, |z| < 1}.
We set L(X, X) = L(X).
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and moreover that y* is the mild solution of the closed loop equation

y'(t) =[A—-BB*P(T - t)y(t), t > 0,
(1.1.7)
y(0) =z € H.

Finally the optimal cost is given by
J* = (P(T)z,x).

Example 1.1.1 Let D be an open subset of R* with regular boundary 0D.
Consider the equation

Diy(t,€) = (A¢ + )y(t, &) +u(t,§), in (0,T] x D,
y(t,€) =0, on (0,T] x 8D, (1.1.8)

y(oa 6) = .’E(f), inD.

We choose H =U =Y = L?(D), we set B=C = Py = I and we denote by
A the linear operator in H :

Ay = (A¢ + o)y
(1.1.9)
D(A) = HX(D) n H(D).

It is well known that A generates a strongly continuous semigroup on H =
L*(D).

Setting y(t) = y(t,), u(t) = u(t,-), we can write (1.1.8) in the abstract
form (1.1.1).

In this case the control problem consists in minimizing the cost

, T
J(u) = / /D u(t, &) + lu(t, ) Pldtde + /D W(T,e)Pde. (1.1.10)

Note that the control is distributed on all D.

1.2 Riccati equation

Let us introduce some notation. We set,

Y(H)={T € L(H) : T is symmetric},
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YHT(H)={teZ(H): (Tz,z) >0,VzeH}.

Y(H) is a closed subspace of L(H), and ¥*(H) is a cone in L(H).

For any interval [a,b] C R, we shall denote by C([a,b]; Z(H)) the set of
all continuous mappings from [a, b] to Z(H).

C([a,b]; (H)), endowed with the norm

|Fl| = sup |F@®)Il, F € C([a,b]; ©(H)),

t&(a,b)

is a Banach space.

We shall also need to consider the space Cs([a, b]; 2(H)) of all strongly
continuous mappings F : [a,b] — X(H), that is such that F(-)z is continuous
on [a,b] for any z € H. A typical mapping belonging to C,([0,T]; £(H)) is
F(t) = et4.

Let F,{F,} C Cs([a,b}; Z(H)). We say that {F,} is strongly convergent
to F'if

lim F,()x = F(-)z, Vx € H.

n—oo

In this case we shall write

lim F, = F, in Cs({a, b]; 2(H)).

n—oo

If F € Cs([a,b]; (H)), then the quantity

|Fl| = sup [[F(®)]l,

t€[a,b)

is finite by virtue of the Uniform Boundedness Theorem. Endowed with
the norm above C([a,b]; Z(H)) is a Banach space that we shall denote by
Cu([a, b; S(H)).

Let A, B,C and P, be given linear operators such that Hypothesis 1.1 is
fulfilled. This section is devoted to solve the following Riccati equation

P' = A*P+ PA - PBB*P + C*C,
(1.2.1)
P(0) = Py,
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We first notice that if A € L(H) then it is easy to see that (1.2.1) is equivalent
to the following integral equation

t
P(t)z = e Pyetz +/ e C*Ce*xds
0
(1.2.2)

4
_/ e(t—s)A*P(s)BB*P(s)e(t"s)Axds, r € H.
0
Now, since the mapping
[0,T] = S(H), t = " Tet4,

belongs to Cs([a, b]; ©(H)), equation (1.2.2) is meaningful in Cs([a, b]; Z(H))
and we will try to solve it in this space.

Definition 1.2.1 (i) A mild solution of equation (1.2.1) in the interval [0, T)
is a function P € Cs([a,b]; £(H)) that verifies the integral equation (1.2.2).

(1) A weak solution of equation (1.2.1) in the interval [0,T] is a function
P € Cs([a,b]; Z(H)) such that P(0) = Py and for any z,y € D(A), (P(:)z,y)
is differentiable in [0, T] and verifies the equation

SRy = (Pl)z,Ay) + (P()As,y)
(1.2.3)
— (B*P(t)z, B*P(t)y) + (Cz, Cy).

Proposition 1.2.2 Let P € Cy([a,b]; £(H)). Then P is a mild solution of
equation (1.2.1) if and only if P is a weak solution of equation (1.2.1).

Proof. If P is a mild solution of equation (1.2.1), then for any z,y € H we
have

t
(P(t)z,y) = (Pyetdx, ey) +/ (Ce*Ax, Ce*ty)ds
0

t
— / (P(s)BB*P(s)el=94g et=9)44\ds.
0
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Now if z,y € D(A) it follows that (P(t)z,y) is differentiable with respect to
t and, by a simple computation, that (1.2.3) holds. Conversely if P is a weak
solution, then it is easy to check that for all z,y € D(A)

d :
7 <P(3)e(t—s)Ax7 e(t—s)Ay> — <Ce(t—s)ASL‘, Ce(t..s)Ay>

—(B*P(t)et=)4g B*P(t)et=94y).

Integrating from 0 to ¢ we see that (1.2.2) holds for any = € D(A). Since
D(A) is dense in H the conclusion follows. O
It is convenient to introduce the following approximating problem

P! = A*P, + P,A, — P,BB*P, + C*C,
(1.2.4)
P, (0) = Py,

where A,, = n®R(n, A) — nl is the Yosida approximation of A and R(n, A)
is the resolvent of A. Problem (1.2.4) is equivalent to the following integral
equation

t
P, (t)z = e Pyeldnz + / e C*Ce*Arads
0
(1.2.5)

t -
”/ e~ Po(5)BB" Pa(s)e* " ads, @ € H.
0

We now solve problem (1.2.1). We first prove the local existence of a solution.
We recall that by the Hille-Yosida Theorem (see Appendix A) for any 7' > 0
there exists Mt > 0 such that

el < Mg, ||| < My, Vt€[0,T), n€N.
Lemma 1.2.3 Assume that Hypothesis 1.1 holds, fir T > 0, set
p=2M7|| Rl (1.2.6)
and let T be such that

1
7€ [0,7), 7(ICI°+°IBI°) <[IPoll, 2prMz|IBIP <35 (127)
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Then problems (1.2.1) and (1.2.5) have unique mild solutions P and P, in
the ball

Br = {F € C,([0, 7 S(H)) : |IF]| < o}
Moreover

lim P, = P, in Cy([a, b]; S(H)). (1.2.8)

n—ro0

Proof. Equation (1.2.2) (resp. the integral version of equation (1.2.5)) can
be written in the form

P = fy(P)(resp. Pn = 'Yn(Pn))7

where forz € H
Y(P)(t)xr = &4 Ptz

i
+ / =94 [C*C — P(s)BB*P(s)]e*94zds
0

and

W(P) e = e Ppetdng

t
+ / et~ [C*C — Po(5) BB Py(s))e" ™M zds.
0

Choose now p and 7 such that (1.2.6) and (1.2.7) hold. We show that v
and v, are 1/2—contractions on the ball B, , of C,(]0,7]; 2(H)). Let in fact
P € B, ;. It follows that

[V(P)(t)z] < MF [II1Poll + IICI? + 70*| BI?] 2] < 2MZ|| Folll],
and analogously
[ (P) ()] < 2MZ|| Poll |-
It follows that

V@YU < o lm(PYOI < p, YVE€[0,7], neN, P€B,,,
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so that v and 7, map B, , into B, ;.
For P,Q € B, ; we have

Y(P) )z —(Q)(t)x

t
- / =94 [PBB*(Q — P) + (Q — P)BB*Q)(s)e" ) xds,
0
and a similar formula holds for v, (P)(t)x — v,(Q)(t)x. It follows that

Ih(P)(®) - 1@ < 2o MAIBIP - QI < 5 1P - QI

a(P)(8) ~ 3@ < 20 MAIBIIP — QI < 5 1P~ Q.

Thus v and 7, are 1/2-contractions on B,, and there exists unique mild
solutions P and P, in B, .. Finally (1.2.8) follows from a generalization of
the classical Contraction Mapping Principle (see Appendix B). O

We now prove global uniqueness.

Lemma 1.2.4 Assume that Hypothesis 1.1 holds, let T > 0 and let P,(Q be
two mild solutions of problem (1.2.1) in [0, T). Then P = Q.

Proof. Set
a = sup max {||P(¢)|],|Q®)|I}

t€[0,7T]

« is finite by the Uniform Boundedness Theorem. Choose p > 0 and 7 €
[0, T] such that

1
p=2Mka, 7(ICI+FIBIP) <, 2pr MBI < .

By Lemma 1.2.3 it follows that P(t) = Q(t) for any t € [0,7]. It is now
sufficient to repeat this argument in the interval [r, 27] and so on. O
The main result of this section is the following theorem.

Theorem 1.2.5 Assume that Hypothesis 1.1 holds. Then problem (1.2.1)

has a unique mild solution P € C([0,+00); X1 (H)). Moreover for each n €

N problem (1.2.5) has a unique mild solution P, € C([0,+00); X, (H)) and
lim P, = P in C5([0, T); =4 (H)),

n—00

for any T > 0.
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Proof. Fix T > 0, set 8 = M2 (|| Pol| + T||C||?), and choose p > 0 and 7 > 0
such that

- 1
p=2M38, 7 (ICIP+p*IBIP) < 6, 20rMEIBI < .

By Lemma 1.2.3 there exists a unique solution P (resp. P,) of (1.2.1) (resp.
(1.2.5)) in [0, 7]} and P, — P in C([0, 7]; £(H)). We now prove that

P.(t) >0, Vtelo,1]. (1.2.9)
This will imply
P(t) >0, Vtel0,7] (1.2.10)

To this end we notice that P, is the solution of the following linear problem
in [0, 7]

P, = L3Py + PyL, + C*C, P,(0) = P,

where L, = A, — %BB*Pn. Denote by U,(t, s), 0 < s < t < 7, the evolution
operator associated to L, that is the solution to

DyU,L(t,s) = L, (s)Un(t,8), Un(s,s) =1, ,0<s<t<T.

Then we can write the solution P, (t) as
t
P, (t) = Un(t, 0) RU,(¢,0) —l—/ Un(t, s)C*CU; (1, s)ds.
0

Thus (1.2.9) and (1.2.10) follow immediately.
Note that, arguing as in Lemma 1.2.3, we have

IP®)|| < p=2M7B
We now prove that we have a better estimate
P(t) < pI, Yte|o,r]. (1.2.11)

This inequality will allow us to repeat the previous argument in the interval
[7,27] and so on. In this way the theorem will be proved. We have in fact

i
(P(t)z, ) = (Poe'x, ex) +/ |Ce*Az|?ds
0

t
—/ |B*P(s)e!*"94z)2ds < Blz|*.
0
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Since P(t) > 0 this implies (1.2.11). The proof is complete. [J
We now prove continuous dependence with respect to data. Consider a
sequence of Riccati equations

(Pk)/ — (Ak)*Pk + PkAk _ PkBk(Bk)*Pk + (Ck)*Ck,
(1.2.12)
P*0) = F¥,

under the following assumption.
Hypothesis 1.2 (i) For anyk € N, (A*, B¥ C*, P¥) fulfil Hypothesis 1.1.
(ii) For ollT >0 and all z € H,

A tA

. k
lim ez =e¢

k—o0

z, uniformly in [0, T).

(i) The sequences {B*}, {(B*)*}, {C*}, {(C*)*}, {P¥} are strongly conver-
gent to B, B*,C, C*, Py, respectively.

Theorem 1.2.6 Assume that Hypotheses 1.1 and 1.2 hold. Let P (resp.
P*) be the mild solution to (1.2.1) (resp. (1.2.12)). Then, for any T > 0 we
have

lim P¥ = P in C,([0,T); T4 (H)).

n—o0

Proof. Fix T > 0. By the Uniform Boundedness Theorem there exists
positive numbers p, b and ¢ such that

IFsl < po WCH)CHI < e, BB <p, VEEN
Set 8 = M2(p + cT) and choose p and 7 € [0, 7] such that

1
p=28M;z, T(c+pb) < B 2rMz||B|’ < 3.

Then, arguing as we did in the proof of Lemma 1.2.3, we can show that
Pk(Yz — P(-)z for any z € H. Finally, proceeding as in the proof of Theorem
1.2.5, we prove that this argument can be iterated in the interval [r, 27] and
so on. [

We conclude this section by proving an important monotonicity property
of the solutions of the Riccati equation (1.2.1).
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Proposition 1.2.7 Consider the Riccati equations:
P/ = A*P,+ P,A— P,B;B}P, + C;C;,
(1.2.13)
P,(0) =P, 1 =1,2.
Assume that (A, B;, C;, P, o) verify Hypothesis 1.1, and, in addition, that
Py < Py, CIC1 < C5C,, ByB; < B Bj.
Then we have

P(t) < Pa(t), Yt > 0. (1.2.14)

Proof. Due to Theorem 1.2.5 it is sufficient to prove (1.2.14) when A is
bounded. Set Z = P, — P, then, as easily checked, Z is the solution to the
linear problem

{ 7' = X*Z + ZX — Py[ByB; — BiB:|Py + C3Cy — CCh,
(1.2.15)

Z(0) = Pao — P1y,
where
1

Let V (¢, s) be the evolution operator associated with X*, that the solution
to the problem is

DV (t,s)=X®)"(s)V(t,s), V(s,s)=1,,0<s<t< T

Then we have

Z(t) = V(t? 0)(P2,0 - PI,O)V*(ta O)

t
n / V(t, 5)[C3Ca — CICLV*(t, 8)ds
0

+ /t V(t,s)Pi(s)[B1By — BoB3|Pi(s)V* (¢, s)ds,

so that Z(t) > 0 and the conclusion follows. O
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1.3 Solution of the control problem

In this section we consider the control problem (1.1.1)—(1.1.2). We assume
that Hypothesis 1.1 is fulfilled and we denote by P € C,([0,T];Z*(H)) the
mild solution of the Riccati equation (1.2.1). We first consider the closed
loop equation

y'(t) = Ay(t) - BB*P(T — t)y(t), t € [0, T],
(1.3.1)
y(0)=z € H.

We say that y € C([0,T}; H) is a mild solution of equation (1.3.1) if it is a
solution of the following integral equation
¢
y(t) = ez — / e=94BB*P(T — s)y(s)ds.
0
Proposition 1.3.1 Assume that Hypothesis 1.1 is fulfilled and let
z € H. Then equation (1.3.1) has a unique mild solution y € C([0,T]; H).

Proof. It follows by using standard successive approximations. [J
We now prove a basic identity.

Proposition 1.3.2 Assume that Hypothesis 1.1 1is fulfilled and let
u € L?(0,T,U) z € H. Let y be the solution of the state equation (1.1.1)
and let P be the mild solution of the Riccati equation (1.2.1). Then the
following identity holds

J(u) = /0 |u(s) + B*P(T — s)y(s)|*ds + (P(T)x, z). (1.3.2)

Proof. Let P, be the mild solution of the approximated Riccati equation
(1.2.5), and let y, be the solution of the problem

Yn(t) = Any(t) + Bu(t), t € [0,T],
y(0) =z € H.

Now, by computing the derivative

L (PAT ~ (), (o))
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and completing the squares, we obtain the identity
2P ~ unls),unls)
ds n yn b yn

= |un(s) + B* P (T - S)yn(s)lz - Icyn(3)|2 - |u(8)|2

Integrating from 0 to 7" and letting n tend to infinity we obtain (1.3.2). O
We are now ready to prove the following result.

Theorem 1.3.3 Assume that Hypothesis 1.1 is fulfilled and let x € H. Then
there exists a unique optimal pair (u*,y*). Moreover

(1) y* € C([0,T}; H) is the mild solution to the closed loop equation (1.3.1).
(i1) u* € C([0,T);U) is given by the feedback formula

u*(t) = —B*P(T — t)y*(t), ¢ € [0,T]. (1.3.3)

(111) The optimal cost J(u*) is given by

J(w") = (P(T)z, 7). (1.3.4)

Proof. We first remark that by identity (1.3.2) it follows that
J(u*) > (P(T)z, ), (1.3.5)

for any control u € C([0,T};U). Let now y* be the mild solution to (1.3.1)
and let u* be given by (1.3.3). Setting in (1.3.2) v = u* and taking into
account (1.3.5) it follows that (u*,y*) is an optimal pair and that (1.3.4)
holds.

It remains to prove uniqueness. Let (%, 7) be another optimal pair. Set-
ting in (1.3.2) v = @ and y = ¥ we obtain

T
/ [u(s) + B*P(T — s)y(s)|*ds = 0,
0
so that @(s) = —B*P(T — s)y(s) for almost every s € [0, T]. But this implies

that 7 is a mild solution of (1.3.1) so that ¥ = y* and consequently © = u*.
O
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Control in infinite horizon

2.1 Introduction and setting of the problem

As in Chapter 1 we are concerned with a dynamical system governed by the
following state equation

{ y'(t) = Ay(t) + Bu(t), t > 0,

y(0) =z € H.

(2.1.1)

We shall assume that

Hypothesis 2.1 (i) A generates a strongly continuous semigroup e** on
H.

(i) B € L(U, H).
(iii) C € L(H,Y).
We want to minimize the cost function
+00
Joo() = /0 [ICy(s)[2 + Ju(s)]?] ds, (2.1.2)
over all controls u € L?(0, +o00, U) subject to (1.1.1).

We say that the control u € L?(0, +o0; U) is admissible if Jo(u) < +o0.
An admissible control u* € L?(0, +o0; U) is called an optimal control if

Joo(0*) < Jo(u), Y u € L*(0, 400; U).

15
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In this case the corresponding solution y* of (2.1.1) is called an optimal state
and the pair (u*,y*) an optimal pair.

An admissible controls can fail to exist, as the following simple example
shows.

Example 2.1.1 Let H=U =Y =R, B=0,A = C = 1. Then for any
u € L?(0, +o0;U) we have y(t) = e’z and

Julw) = [ (€w()P + ()] ds = +oo.

If for any ¢ € H an admissible control exists, we say that (A, B) is
stabilizable with respect to the observation operator C, or, for brevity, that
(A, B) is C-stabilizable. In this case is still possible to solve problem (2.1.1)-
(2.1.2) following the steps,

Step 1. We show that the minimal nonnegative solution P, (t) to the
Riccati equation

P'= A*P+ PA—- PBB*P +C*C,

that is the solution to (1.2.1) corresponding to Py = 0, converges, as t — oo
to a solution P°  to the algebraic Riccati equation:

min

A'X +XA—-XBB*'X +C*C =0 (2.1.3)

Step 2. We show that the optimal control u* is given by the feedback
formula

u*(t) = —=B*P0 y*(t), t >0, (2.1.4)
where y* is the mild solution of the closed loop equation

y'(t) = {A — BB*P> Jy(t), t > 0,

(2.1.5)
y(0) =2z € H.

Example 2.1.2 (i). Assume that A is of negative type. Then (A, B) is
C-stabilizable since the control u(t) = 0 is clearly admissible.
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(ii). Assume that B = I. Then (A, B) is C-stabilizable. In fact let M,w
be such that ||e*4|| < Me“", t > 0. Choose u(t) = —(w + 1)etA=“=Y ¢ >0,
Then y(t) = 4=~ ¢ > 0 so that J,,(u) < +oo.

(iii). Assume that there is & > 0,8 > 0, K > 0 such that

||efA=22BB) || < Ke Pt ¢ > 0. (2.1.6)

Then (A, B) is C-stabilizable. In fact setting u(t) = —2aB*ef(4-22BB") ¢ >
0, one has y(t) = e4=2¢BB") ¢+ > 0 and so J(u) < +o0.

Moreover we shall show that equation (2.1.3) has a nonnegative solutions
if and only if (A, B) is C-stabilizable.

2.2 The Algebraic Riccati Equation

We assume here that Hypothesis 2.1 holds and consider the system (2.1.1).
We consider the Riccati equation

P'=A*P+PA—-PBB*P+C*C, (2.2.1)
and the corresponding stationary equation
A X+ XA-XBB'X+C*C=0. (2.2.2)

In the sequel we shall consider only nonnegative solutions of (2.2.1) and
(2.2.2).

Definition 2.2.1 We say that X € X1 (H) is a weak solution of (2.2.2) if
(Xx, Ay)y + (Az, Xy) — (B*Xz,B*Xy) + (Cz,Cy) =0 (2.2.3)
for all z,y € D(A).

Definition 2.2.2 We say that X € XV (H) is a stationary solution of (2.2.1)
if it coincides with the mild solution of (2.2.1) with initial condition P(0) =
X.

Recalling Proposition 1.2.2 the following results follows immediately.

Proposition 2.2.3 Let X € S (H), then the following statements are e-
quivalent
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(i) X is a weak solution of (2.2.2).
(i) X is a stationary solution of (2.2.1).

We are going to study existence of a solution of the Algebraic Riccati
equation. To this purpose it is useful to consider the solution of the Riccati
equation (2.2.1) with initial condition 0. This solution will be denoted by
Pin- It is the minimal nonnegative solution of (2.2.1). In fact if Py € ¥+ (H)
and P is the mild solution of (2.2.1) such that P(0) = F,, then by Proposition
1.2.7 we have

Prin(t) < P(t), V120
In particular if X is a solution of (2.2.2), then
Prin(t) < X, Vt>0.
We now prove the following properties of P,,;,.
Proposition 2.2.4 (i) For any x € H, (Ppin(-)z, ) is non decreasing.
(i) Assume that for some R € ¥ (H), we have
Pin(t) <R, Yt >0.
Then for all x € H the limit

min

P> x= lim Py,(t)z, (2.2.4)
t—+00
exists, and P, is a solution of (2.2.2).

In other words there exists a nonnegative solution of (2.2.2) if and only
if P,;, is bounded.
Proof. Let ¢ > 0, ¢ > 0 and let P be the solution of (2.2.1) such that
P(0) = Ppn(e). By Proposition 1.2.7 we have

P(t) = Pmm(t +€) = P(t) 2 Pmin(t)a

and (7) is proved. Assume now P,,;,(t) < R; since P, (t) is nondecreasing
and bounded we can set

y(z) = lim (Ppi,(t)z,z), V2 € H.

t—4o00
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For x,y € H we have
2<Pmin(t)$7 Z/)

= (Prin(t)(@ + 1), (2 +9)) = (Prin(t)2, 2) — (Prnin(t)y, v)-
So the limit

[(z,y) = lim (Pnin(t)z,y), Vz,y € H,

t—+00

exists and the following operator P € 2" (H) can be defined

min

lim (Pmin(t)x7y> = (POO z y>7 any € H.

min*?
t—4-00

It follows that

lim ([P5, — Pnin(t)]z,z) =0, Vx € H,

t—+4o0

which is equivalent to

lim [PZ, — Pnin(t)]Y?2 =0, Vo e H

h—+oo

This implies that

lim [P — Ppon(t)]z=0, Vz € H
t—+o0

so that (2.2.4) holds.
It remains to show that P20, is a solution of (2.2.2). For this we denote by
Py, the solution of (2.2.1) for which P, (0) = Pin(h), i.e. Py(t) = Pprin(h+1t).
Since
lim Pyin(h)x =P x, Vz € H,

h—4o0 mn

by Theorem 1.2.6, we have

lim Py( )z =Py,xinC(0,T);H),Yze H T >0.

h—+o00

Moreover P2, is a solution of (2.2.1) (hence stationary). O
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Remark 2.2.5 Assume that there exists a solution X € L+(H) of (2.2.2).
Then by Proposition 2.2.4 the solution P2, defined by (2.2.4) exists. By the
above proposition it follows that

P® < X,

min —

for all solutions X € ©*(H) of (2.2.2). Thus P2, is the minimal solution of
the algebraic Riccati equation (2.2.2).

We now prove that a nonnegative solution of the algebraic Riccati equation
exists if and only if (A, B) is C—stabilizable.

Proposition 2.2.6 Assume that Hypothesis 2.1 is fulfilled and that (A, B) is

C -stabilizable. Then there exists a minimal solution P2 of equation (2.2.2).

Proof. We first recall that by the basic identity (1.3.2) we have

(Ppin(t)z, ) + /0 |u(8) + B* Prin(t — 8)y(s)|*ds
(2.2.5)

- / [Cy()P + u(s)Plds,

for any z € H and any u € L?*(0, +oo; U), where y is the solution to (2.1.1).
Let u be a control in L?(0, +o0; U) such that the corresponding solution of
(2.1.1) is such that Cy € L%(0, +o0;Y). By (2.2.5) it follows that

stl;g(Pmm(t)x, z) < /OJroo[|C'y(s)|2 + |u(s)*)ds < +oo

for any x € H. By the Uniform Boundedness Theorem it follows that P, (%)
is bounded, so that, by Proposition 2.2.4, there exists a solution of equation
(2.2.2). O

In order to prove the converse it is useful to introduce, for any ¢ > 0, the
following auxiliary optimal control problem over the finite time horizon [0, t]:
to minimize

Ju(u) = / (Cy(s)? + [u(s))ds (2.2.6)
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over all controls u € L2(0,t; U) subject to (2.1.1). By Theorem 1.3.3 we know
that there exists a unique optimal pair (u¢, y;) for problem (2.2.6), where y;
is the mild solution to the closed loop equation

Y:(5) = Ayi(s) — BB* Prin(t — s)us(s), s € [0, 1],

y:(0) =z,
and u, is given by the feedback formula
u(8) = —B* Prin(t — s)ui(s), s € [0,¢].

Moreover the optimal cost is given by

(Ppin(t)z, z) = /0 [1Cys(s)]? + |ue(s)|*]ds. (2.2.7)

Lemma 2.2.7 Assume that the minimal solution P53, of (2.1.2) exists. De-

note by Yoo the corresponding mild solution of the problem

Yoo(s) = AYoo(5) = BB*Friiyeo(s), s 2 0,

Yoo(0) = =,
and set
Uso(S) = —B* P52 Yoo($), s > 0. (2.2.8)
Then we have
tkinoo Y1(S) = Yoo(s), s > 0. (2'2.9),
tE—IEIOO u($) = uo(s), s> 0. (2.2.10)

Proof. Fix T > t and set z; = Y; — Yoo; then z; is the mild solution to the
problem:

zi(s) = [A— BB*Pp(t — s)]z(s)
+ BB*[Ppin(t — s) — P5%]Yoo(8) (2.2.11)

Zt(O) = 0.
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Denote by U(r, s) the evolution operator corresponding to A—BB*P,,;,(t—")
then for x € H

Ur, o)z = eMq — / TPABB* Py (t — p)Up, o)dp,

U(o,0) =1.
It follows that
U (r, o)l < Me"= + MliBII2IIP%‘2nII/ e"P||U (p, 0) | dp.
By Gronwall’s Lemma we have
|U(r, 0)|| < Mer=+MIBIFIPZI 0 < 6 <7 < T. (2.2.12)

We now return to problem (2.2.11) which we write in the form
z(s) = / U(s,0)BB*[Ppin(t — 0) — P lyso(0)do.
0

By (2.2.12) and the dominate convergence theorem we obtain z(s) — 0 as
t — +00. So (2.2.9) and then (2.2.10) follow. O
We can now prove the following proposition.

Proposition 2.2.8 Assume that there exists a solution of (2.2.2). Then
(A, B) is C-stabilizable.

Proof.Let y; and u; be defined as in Lemma 2.2.7. By (2.2.7) we have for
t>T

(Ftua) 2 [ 1OUOP + futs) s (2213)
and, as t — +o0,
(B 2) 2 [ 1009} + (o). (22.14)
But, since T is arbitrary we find
Pur )= [ 1Cus(o) + husls) s, (2.2.15)

and thus ue, € L?(0,+0c0;U) is an admissible control. O
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2.3 Solution of the control problem

We now consider the control problem (2.1.1)-(2.1.2) and prove the following
result.

Theorem 2.3.1 Assume that Hypothesis 2.1 is fulfilled, that (A, B) is C-
stabilizable, and let x € H. Then there ezists a unique optimal pair (u*,y*).
Moreover

(1) y* € C([0,+0c0); H) is the mild solution to the closed loop equation
(2.1.5).

(11) u* € C([0,+00);U) is given by the feedback formula
u*(t) = —B*P® _y*(t), t > 0. (2.3.1)

(1ii) The optimal cost Joo(u*) ts given by
Joo(u*) = (Prin, 7). (2.3.2)

Proof. Let u € L?([0,+00);U) and let y be the corresponding solution of
the state equation (2.1.1). By the identity (2.2.5) we have

(Prin (t)z, 2) < /0 ICY(s)I* + [u(s)Plds < Joo(uw).

It follows that
Joo(u) > (Pos,(t)z,z), ¥V u € L*([0, +00); V).

min

Let now us be defined by (2.2.8); by (2.2.15) we have
(Prin(t)T,2) 2 Joo(thoo),

so that u, is optimal. Formula (2.3.1) with u* = us,, ¥* = Yo follows from
(2.2.9)~(2.2.10).
It remains to to show uniqueness. Let (@, §) be another optimal pair, then
Joo (1t ) (P2, z,z). Fix T > 0. By applying (2.2.5) with ¢t > T we obtain

/0 "&(5) =+ B*Pmin(t - S)Q(S)lzds S Joo(’&) - <Pmin(t)xax>

([ min mm(t)x,x).
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As t — 400 we have
T
f |a(s) + B*P, 4(s)ds = 0, thatyields
0

u(s) = —B*P>,4(s). Consequently § = y* and 4 = v*. O
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Examples and generalizations

3.1 Parabolic equations

We consider here Example 1.1.1. Let D be an open subset of R* with regular
boundary 0D. Consider the state equation

Dyy(t,€) = (A¢ + c)y(t, ) + u(t,€), in (0,T] x D,
y(t,€) =0, on (0,T) x 4D, (3.1.1)

y(0,€) = =(£), in D.

Let H=U =Y = L*(D), B=C = Py = I and define the linear operator
by Ain H :

(3.1.2)

Ay = (D¢ + )y
D(A) = H*(D) n H(D).

It is well known that A is self-adjoint and consequently is the infinitesimal
generator of a strongly continuous semigroup on H = L?(D). Moreover there
exists a complete orthonormal system {e} in L?(D) and a sequence {)\} of
positive numbers such that

Aek = —/\kek, ke N

Setting y(t) = y(¢,-), u(t) = u(t,-), we write (3.1.1) in the abstract form
(1.1.1).

25
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We want to minimze the cost

N@=L!LMQOF+WQQWMK+LWH%W%- (3.1.3)

By Theorem 1.3.3 there exists a unique optimal pair (u*,y*) where y* is the
solution of the closed loop equation

Dyy(t,€) = (A¢ + c)y(t, &) — P(T — t)y(t,-)(£), in (0,T] x D,
y(t,€) =0, on (0,T] x 0D, (3.1.4)

y(0,€) = z(£), in D.

Moreover u* is given by

u*(t,§) = —P(T — t)y(¢,-)(£),
and the Riccati equation reeds as follows

P'=2AP-P*+1, P(0)=1. (3.1.5)
For any ¢ > 0 we can find explicitly P(¢) as

P(t)er = pr(t)er, k€N,
where py is the solution to the ordinary differential equation
() = —2Xe(t)pe(t) — pi(8) + 1, pe(0) = 1.

Let us consider now the infinite horizon problem, T' = +400. We want to
minimze the cost

C&M=AwLM@M”W¢&WM+Lw@0W§ (3.1.6)

By Example 2.1.2-(ii) (A, I) is I-stabilizable, and consequently by Theorem
2.3.1 there exists a unique optimal pair (u*,y*) where y* is the solution of
the closed loop equation

Dty(tag) = (A§ + c)y(t, 6) - Pooy(t7 )(f)’ in (07 +OO) x D,
y(t,€) =0, on (0,+00) x 8D, (3.1.7)

y(0,€) = z(¢), in D.



Chapter 3 27

Moreover u* is given by

U*(tag) == ooy(ta )(g):

and the Algebraic Riccati equation reeds as follows

2AP - P*+1=0 (3.1.8)
Consequently

Po=VvVA24+ T+ A
and

Poer = (\/)\% +1— )\k)ek, keN

3.2 Wave equation

Let D be an open subset of R* with regular boundary dD. Consider the state
equation

Dy(t,€) = Agy(t, €) +u(t,§), in (0,T] x D,
y(t,€) =0, on (0,T] x 9D, (3.2.1)
y(O,é) = xO(g)a Dty(oa g) = x1(§)7 in D.

We want to minimze the cost

T
J(w) = / /D (956, ) + ly(t, ) + fult, &) dtde

(3.2.2)
+ [ IVuTOF + T e
Setting y(t) = y(t,-), u(t) = u(t,-), we write (3.2.1) as
{ y"(t) = Ay(t) + u(t)
(3.2.3)
y(0) = zo, ¥'(0) = 1,
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where A is defined by (3.1.2). Now, setting y'(t) = z(¢), Y(t) = ( y(t) ) :
and X = < io ) , we reduce the problem to a first order problem
1

DY (t) = AY (t) + Bu(t)
(3.2.4)

where

and

= O
Na——”

Thus
D(A) = (H*(D) ® Hy(D)) ® Hy(D),

and A generates a strongly continuous semigroup of contractions on H given
by:
" ( cos( V—At) 7= sin(v/ —At) ) (3.25)

© T\ VA sin(vV=At)  cos(vV—At).

Finally the cost can be written as

J(u) = / /D YR+ @t + Y DE. (326)

By Theorem 1.3.3 there exists a unique optimal pair (u*, y*).

Finally we can show that (A, B) is C-stabilizable. For this we shall fulfill
the conditions of Example 2.1.2—(iii) by proving that for all o < v/Xg (2.1.6)
holds. We have in fact, by a direct computation

JHA=20BBY) _ -ta cos(l;?t) ;%— £ sin(Et) = sin(Et)
4B sin(Et) — £ sin(Et) + cos(Et) )’

(3.2.7)
where F = vv—A — o?].
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3.3 Boundary control problems

Let us consider the following state equation
Dyy(t,€) = Aey(t,€), in (0,T] x [0, 1],

y(t,0) = up(t), y(t,1) = uy(¢), on (0,7, (3.3.1)

y(0,€) = z(§), in D.

Here the control is given on the boundary of D.
We want to minimize the cost

J(u) = / / lu(t, )t dé + / (o (8)? -+ (8) Pldt + / 1W(T, €)Pde.
(3.3.2)

In order to reduce this problem to the standard form (1.1.1), it is convenient
to introduce the Dirichlet mapping

o}

§:R* = L*(0,1), ( ) — 6(ap, ay)

(23]
where
6(ap, a1)(§) = (a1 — )& + ap.

Notice that 6(ag, a1) is the unique harmonic function on [0, 1] that holds aq
at {0} and oy at {1}.
Let us now proceed formally by setting

2(t,8) = y(t, ) — (uo(t), ua(t))

= y(t, &) — (ua(t) — uo(t))¢ — wo(t), £ €[0,1],2 20,
so that z(¢,0) = z(¢,1) = 0. Then
Dyz(t, &) = Day(t, §) — du'(t),
where u(t) = (uo(t), ui(t)), and we can write problem (3.3.1) as
Dyz(t, &) = Aez(t, &) — 0u'(t), in (0,7T] x [0, 1],

z(t,0) = 2(t,1) = 0, on (0,71, (3.3.3)

y(0,€) = z(£), in D.
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Now this problem can be written in the abstract form

2(t) = Az(t) — 5u/(4),

z(0) = z(¢,1) = & — du(0),
where A denotes the operator (3.1.2) (with D = [0, 1]). Using the variation
of constants formula we find
t
2(t) = e (z — ou(0)) — / e=450 (s)ds,
0
and, integrating by parts, we find (always formally),

t
y(t) = ez — / Ae=945u(s)ds. (3.3.4)
0

We show now that this formula is meaningful. For this we recall that

§ € L(R*; HY3(0, 1)),
and consequently 6(¢) € D((—A)°) for any ¢ € [0,1/4). This implies that, for
a suitable constant ¢ > 0 we have

(t—s)A < c
A =5u(s)| < "

so that formula (3.3.4) is meaningful.
Equation (3.3.4) can be considered as the mild form of the state equation

y'(t) = Ay(t) — Adu(t), t > 0,
(3.3.5)
y(0)=x € H,

so that B = —A4. This is not meaningful because the intersection of the range
of 6 with the domain of A is {0}. However one is able to give a meaning to
the Riccati equation by writing

B = (—A)[(~A4)8] = (~A)' 75,

where v € (0,1/4) and consequently the operator 6, is bounded. In this way
the term PBB*P can be written as

P(—A)'776,55[P(~A) ).

Now the idea is to try to write an equation for P(—A)!"7.
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Linear Semigroups Theory

In all this appendix X represents a complex Banach space (norm | - |), and
L(X) the Banach algebra of all linear bounded operators from X into X
endowed with the sup norm:

IT|| =sup{|Tz|: z€ X, |z| <1}

A.1 Some preliminaries on spectral theory

Let A : D(A) € X — X be a linear closed operator. We say that A € C
belongs to the resolvent set p(A) of A if A — A is bijective e and (A — A)" ! €
L(X); in this case the operator R(\, A) := (A — A)~! is called the resolvent
of A at A\. The complementary set o(A) of p(A) is called the spectrum of A.

Example A.1.1 Let X = C([0,1]) be the Banach space of all continuous
functions on [0,1] endowed with the sup norm, and let C'([0,1]) be the
subspace of C([0,1]) of all functions u that continuously differentiable. Let
us consider the two following linear operators on X :

D(A) = C*([0,1]), Au=u',Yu € D(A),

D(B) = {u € C*([0,1)); u(0) =0}, Bu=1v' Yu e D(B).
We have
p(A) =0, o(4)=C.

31
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In fact, given A € C, the mapping A — A is not injective since, for all c € C
the function u(£) = ce* belongs to D(A) and (A — A)u = 0.
For as the operator B is concerned, we have

p(B) = C, o(A) =

and

ROBINEO = - [ XD smin¥re Y e xyecnl
In fact A € p(B) if and only if the problem
Mule) - w'(6) = £(6)
{ w(0) = 0
has a unique solution f € X.

Let us prove the important resolvent identity.

Proposition A.1.2 If A\, u € p(A) we have
R\ A)— R(p, A) = (p— MR(A AR(u, A) (A.1.1)
Proof. For all z € X we have
(= NRANAzr=p—-—A+A-ANRMNAz=(p—ARNA)z -2
Applying R(u, A) to both sides of the above identity, we find
(b — NR(p, A)R(A, A)z = R(\, A)x — R(u, A)x
and the conclusion follows. [J

Proposﬂ;mn A.1.3 Let A be a closed operator. Let \g € p(A), and |\ —
Aol < Then X € p(A) and

I|R(>\ AN
R\ A) = R(Xg, A) (1 + (A = A)R(Ng, A))7H (A.1.2)
Thus p(A) is open and o(A) is closed. Moreover
R(MA) =) (=1)F(A = X)FRF (X, 4), (A.1.3)
k=1

and so R(\, A) is analytic on p(A).
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Proof. The equation Az — Az = y is equivalent to
A=)z + (Ao — A)z =y,
and, setting z = (A\p — 4)z, to
24+ (A= X)R(X, A)z = y.
Since ||[(A — o) R(Ao, A)|| < 1 it follows
z= (14 (A = Xo)R(Xo, 4)) 1y,

that yields the conclusion. [J

A.2 Strongly continuous semigroups

A strongly continuous semigroup on X is amapping T : [0,00) — L(X), t —
T(t) such that

(i) T(t+s)=T@t)T(s),Vt,s >0, T0)=1.

(ii) T'(-)z is continuous for all z € X.

Remark A.2.1 ||T(-)|| is locally bounded by the uniform boundedness the-
orem.

The infinitesimal generator A of T(-) is defined by

D(A) = {x € X:3 lim Ahx}
h—0+
(A.2.1)

Ax = lim Ayz,
h—0+

where

T(h) -1
Ahz%,h>0.

Proposition A.2.2 D(A) is dense in X.
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Proof. For all x € H and a > 0 we set

Ty = ! / T(s)zds.
0

a

Since lim,_,¢ 2, = z, it is enough to show that z, € D(A). We have in fact
for any h € (0,a),

1 at+h h
Az, = — [/ T(s)xds — / T(s)xds] ,
ah a 0

and, consequently z, € D(A) since

lim Apx, = Dgx.
h—0

(]
Exercise A.2.3 Prove that D(A?) is dense in X.

We now study the derivability of the semigroup T'(¢). Let us first notice
that, since

AT () = T(t) Az,
if x € D(A) then T(t)x € D(A),Vt¢ >0 and AT (t)z = T(t)Ax.

Proposition A.2.4 Assume that © € D(A), then T(-)x is differentiable
Vit>0 and

% T(t)r = AT (t)x =T (t)Ax (A.2.2)
Proof. Let ¢3 > 0 be fixed and let A > 0. Then we have
T(to + h)x — T(to)
h
This shows that T'(-)z is right differentiable at ¢,. Let us show left differen-
tiability, assuming to > 0. For h €]0, to[ we have
T(to— h)x — T(to)x
h

since ||T'(t)]|] is locally bounded by Remarl A.2.1. (0

d = AhT(tO)l' h:>0 AT(tO).'L'

= T(to — h)Apz "3 T(ty) Az,
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Proposition A.2.5 A is a closed operator.
Proof. Let (z,) C D(A), and let z,y € X be such that
Ty =%, AZp =1yYp >y
Then we have
1 [*
Ahxn = —/ T(t)yndt.
h Jo
As h — 0 we get £ € D(A) and y = Az, so that A is closed. O

We end this section by studying the asymptotic behaviour of T'(-). We
define the type of T'(-) as

1
oo — in BN
>0 t
Clearly wy € [—00, +00).
Proposition A.2.6 We have
wo = lim lo—gw. (A.2.3)
t—+oo t
Proof. It is enough to show that
1
sy EITON _
t—r00 t
Let € > 0 and t. > 0 be such that
| log ||T°(%,
BT,
£

Set
t =n(t)t. +7(t), n(t) € N,r(t) € [0,t.).
Since ||T(-)|| is locally bounded, there exists M, > 0 such that

TN < Me, t € [0,t].
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We have
log [T _ log IT(t)"OT ()

t t

_ n(t) log IT ()l +og |T(r(®))| _ 18 IT(E)I + 55

- n(t)t. + r(t) - t, + %

As t — +o0, we obtain

s 17O BT

t—00 - te

]

Corollary A.2.7 LetT be of type wy. Then for all € > 0 there exists N, > 1
such that

IT@)] < Nee®* 9" v >0 (A.2.4)
Proof. Let t.,n(t),r(t) as in the previous proof. Then we have
IT@ON S NTE) T (r(0))]] < e"OC*IN,, < My, eloter,

and the conclusion follows.[J
In the sequel we shall denote by G(M, w) the set of all strongly continuous
semigroups 7' such that

IT@)|| < Me*t,t >0

Example A.2.8 Let X = LP(R),p > 1, (T(¢)f)(§) = f(€ —t), f € L*(R).
Then we have | T(¢)|| = 1 and so wy = 0.

Example A.2.9 Let X = L?(0,7),T > 0,p > 1, and let

(T )(€) = { e it el

Then we have T'(t) = 0 if t > T and so wy = —o0.

Exercise A.2.10 Let A € £(X) compact and let {\; };en be its eigenvalues.
Set T'(t) = 4. Then we have

wo =sup Re ;.
ieN
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A.3 The Hille-Yosida theorem

We assume here that T € G(M,w). We denote by A its infinitesimal genera-
tor.

Proposition A.3.1 We have
p(A) D {1 € C Re X >w} (A.3.1)

R(\ Ay = / e MT(t)ydt, y€ X, Re A>w (A.3.2)
0

Proof. Set
E={1e€C; Re>w}

F(\)y :/ e MT(t)ydt, y € X, Re A > w.
0
This is meaningful since T € G(M, w). We have to show that, given A € ¥ and
y € X the equation Az — Az = y has a unique solution given by z = F(\)y.

Existence
Let A€ X,y € X, z = F()\)y. Then we have

L an Lo [ x
Apz = —(e™ -1z — —e e T (t)ydt

h ho Sy
and so, as h — 0,

hl_l)I(I)l+ Apr =z —y = Ax

that is z is a solution of the equation Az — Az = y.
. Uniqueness

Let z € D(A) be a solution of the equation Az — Az = y. Then we have

/ e MT(t) Nz — Az)dt = /\/ e~ MT(t)zdt
0 0

o0 d
— AT =
/0 e (t)zdt = =z,

so that z = F(\)y.
We are now going to prove the Hille-Yosida theorem.
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Theorem A.3.2 Let A: D(A) C X — X be a closed operator. Then A is
the infinitestmal generator of a strongly continuous semigroup belonging to
G(M,w) if and only if

(1) p(A) D{reR, X >w}

(i3) ||R*(\, A)|| < #, VneNVA>w (A.3.3)

(t13) D(A) is dense in X.

Given a linear operator A fulfilling (A.3.3) it is convenient to introduce a
sequence of linear operators (called the Yosida approzimations of A). They
are defined as

A, =nAR(n,A) = n*R(n, A) —n (A.3.4)

Lemma A.3.3 We have

im nR(n,A)z =z, Vz € X, (A.3.5)
n—o0
and
lim A,z = Az, Vz € D(A). (A.3.6)
n—oo

Proof. Since D(A) is dense in X and ||[nR(n, A)|| < 22 to prove (A.3.5)
it is enough to show that.

lim nR(n,A)z =z, Yz € D(A).

n—oo

In fact for any « € D(A) we have
M
InR(n, A)x — z| = |R(n, A)Azx| < m|A:c|,

and the conclusion follows.
Finally if z € D(A) we have

Apz =nR(n, A)Azx — Ax,

and (A.3.6) follows.OJ
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Proof of Theorem A.3.2. Necessity. (i) follows from Proposition
A.3.1 and (iii) from Proposition A.2.2. Let us show (ii). Let k¥ € N and
A > w. It follows

dd—;R()\,A)y = /Ooo(—t)ke_“T(t)ydt,v y € X,
from which
d* 0
) d_AI?R(’\’A)“ <M /0 theA+wtgy

that yields the conclusion.
Sufficiency.
Step 1. We have

et || < Men=s ¥ n e N. (A.3.7)

In fact, by the identity

o 2k 1k Dk
- 2 _ n“*t*R*(n, A
etAn e ntetn R(n,A) e nt E : ( ’ )

' b
—~ k!
it follows

o0
n?ktk‘

tAn < M —nt .
e[l < Me ; (n — w)kk!

Step 2. There exists C > 0 such that, for all m,n > 2w, and z € D(A?),

Im — n|

ez — etma|| < Ct | A%z]|. (A.3.8)

(m—w)(n - w)

Setting u,(t) = ez, we have

& (un®) = un(6) = An(un(8) = un(t)) = (A = Ar)un(0)

= Ap(un(t) — un(t)) — (n — m)A’R(m, A)R(n, A)un(t).
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It follows

Un(t) — U (t) = (n — m)A’R(m, A)R(n, A) /t elt=)Any, (s)ds
= (n — m)R(m, A)R(n, A) /t et=9)AngsdAn A2y
0

Step 3. For all z € X there exists the limit

lim etz =: T(t)z (A.3.9)

n—ro0

and T : [0,00) — L(X),t — T(¢) is strongly continuous.

i From the second step it follows that the sequence (u,(t) is Cauchy, uni-
formly in ¢ on compact subsets of [0, +oo[, for all z € D(A?). Since D(A?)
is dense in X (see Exercise A.2.3) this holds for all x € X. Finally it is easy
to check that T'(-) is strongly continuous.

Step 4. If x € D(A), then T'(-)x is differentiable and

d
p T(t)yx =T(t)Az = AT (t)z.

In fact let z € D(A), and v,(t) = Lu,(t). Then

Un(t) = e Az
Since x € D(A) there exists the limit

lim v,(t) = e Az
n—o0

This implies that u is differentiable and v'(t) = v(t) so that u € C([0, +00); X).
Moreover

A(nR(n, A)un(t)) = u,(t) — v(t)

Since A is closed and nR(n, A)u,(t) — u(t) it follows that u(t) € D(A) and
u'(t) = Au(t).
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Step 5. A is the infinitesimal generator of T'(-).

Let B be the infinitesimal generator of 7'(-). By Step4 B D A (}). It is
enough to show that if x € D(B) then z € D(A). Let x € D(B), X\ > w,
setting z = A\gz — Bz we have

z= (A — A)R(X, A)z
= AoR(X, A)z — BR(Ag, A)z = (Ao — B)R(Xg, A)z.
Thus z = R()\, B)z = R(X, A)z € D(A).O

Remark A.3.4 To use the Hille-Yosida theorem requires to check infinite
conditions. However if M = 1 it is enough to ask (ii) only for n = 1. In such
acase T € G(1,w). If w < 0 we say that T'(-) is a contraction semigroup.

Example A.3.5 Let X = Cy([0, 7]) the Banach space of all continuous func-
tions in [0, 7] that vanish at 0 and 7. Let A be the linear operator in X defined
as

D(A) = {y € C*([0,7]); y(0) = y"(0) = y(m) = y"(n) = 0}
Ay =", Vy € D(A)

It is easy to check that o(A) = {—n?; n € N}. Moreover any element of o(A)
is a simple eigenvalue whose corresponding eigenvector is given by

©n(&) =sin né, VneN.
We have
Agpn = _nQ(pn

Moreover if A € p(A) and f € Co([0,7]) , u = R(A, A)f is the solution of the
problem

{ Au() — u"(€) = f(§)

u(0) = u(w) = 0.
1That is D(B) D D(A) and Az = Bz ¥V z € D(A)
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By a direct verification we find

u(©) = ) " bl — ) o
(A.3.10)
sin T — ¢
+ \/2[3\1/31(( ﬁf))] /0 sinh[VAn]f (n)dn.
i From (A.3.10) it follows that
1RO, )] < % YA 0. (A.3.11)

Therefore the assumptions of the Hille-Yosida theorem are fulfilled.

A.4 Cauchy problem

Let A € G(M,w), and let T'(-) be the semigroup generated by A.
We are here concerned with the following problem

{ u'(t) = Au(t) + g(¢), t € [0,T)

u(0) = z,

(A4.1)

where z € H and g € C([0,T}; X).
We say that u : [0, 7] — X is a strict solution of problem (A.4.1) if

(1) uw e CY[0,T]; X).
(it) u(t) € D(A),Vt e [0,T].
(iii) o' (t) = Au(t) + g(t), V¢ € [0,T], u(0) ==
We first cosider the homogeneous problem
{ u'(t) = Aul(t), t € [0,T]

u(0) =z,

(A.4.2)

Theorem A.4.1 Let x € D(A). Then problem (A.4.2) has a unique strict
solution given by u(t) = T(t)z.
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Proof. Existence follows from the Hille-Yosida theorem. Let us prove u-
niqueness. Let v be a strict solution of (A4.4.2). Let us fix t > 0 and set

f(s) =Tt - s)v(s), se][0,t].

f(s) is differentiable for s € [0,¢), since

L+ = f5) = F(T(= s+ Ro(s +h) = T(¢ ~ sho(s)

(A.4.3)

As h — 0 we find
fi(s) = T(t—s)v'(s) =Tt - s)v(s)
= T(t—s)Av(s) — AT(t — s)v(s) = 0.

Therefore f is costant and T'(t)z = v(t). O
We now consider problem (A4.4.1).

Theorem A.4.2 Let x € D(A) and g € CY([0,T); X). Then there is a u-
nique strict solution u(-) di (A.4.1) given by

u(t) =T(t)z + /Ot T(t— s)g(s)ds. (A.4.4)

Proof. Uniqueness can be proved as in Theorem A.4.1. Let us prove exis-
tence. We shall prove that the function u(-), defined by (A.4.4) is a solution
of (A.4.1) and

u € CY([0,T]; X) N C([0,T); D(A)).

First it is easy to check that v € C'([0,T]; X) and

u'(t) = T(t)g(0) + / T(t— s)g'(s)ds. (A.4.5)

0
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Let us prove now that v(t) € D(A). We have in fact

1

L@ mut) - ute)

e % [/o T(s+ h)g(t — s)ds — /0 T(s)g(t — s)ds]

o /t " s)glt — s + B))ds — . /0 T(s)g(t — 5))ds.

As h — 0 we have

!
lim = (T (R)u(t) - u(t)

! (A.4.6)
— /0 T(s)g'(t — s)ds +T(t)g(0) — g(¢).

iFrom (A.4.5) and (A.4.6) it follows that v € C([0,T]; D(A)) and the con-
clusion follows. [J
Let z € H and f € C([0,T); H). The the function u defined by

u(t) = T(t)z + /0 Tt - s)g(s)ds (A.47)

clearly belongs to C([0,T}; H). We say that u is a mild solution of (A.4.1).
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Linear Semigroups Theory

In all this appendix X represents a complex Banach space (norm |- |), and
L(X) the Banach algebra of all linear bounded operators from X into X
endowed with the sup norm:

IT|| =sup{|Tz|: z € X, |z| < 1}.

A.1 Some preliminaries on spectral theory

Let A: D(A) C X — X be a linear closed operator. We say that A € C
belongs to the resolvent set p(A) of A if A — A is bijective e and (A — A)~! €
L(X); in this case the operator R(\, A) := (A — A)™! is called the resolvent
of A at A\. The complementary set o(A) of p(A) is called the spectrum of A.

Example A.1.1 Let X = C([0,1]) be the Banach space of all continuous
functions on [0,1] endowed with the sup norm, and let C'([0,1]) be the
subspace of C([0, 1]) of all functions u that continuously differentiable. Let
us consider the two following linear operators on X :

D(A) = C'([0,1]), Au=v' ¥V u e D(A),

D(B) = {u € C'([0,1)]); u(0) = 0}, Bu=u' Yuec D(B).
We have
p(A) =0, o(A) =C.

45
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In fact, given X € C, the mapping A — A is not injective since, for all ¢ € C
the function u(£) = ce*® belongs to D(A) and (A — A)u = 0.
For as the operator B is concerned, we have

p(B) =C, o(A)=0.

and

(ROLB)fE) = - [ FNEM fnydn Y A € CY f € X,V E € [0,1].

In fact A € p(B) if and only if the problem
{ Au(€) — v'(§) = f(§)

u(0) =0
has a unique solution f € X.
Let us prove the important resolvent identity.
Proposition A.1.2 If A\, u € p(A) we have
R(M\A)— R(p, A) = (u— AR\, A)R(p, A) (A.1.1)
Proof. For all z € X we have
(u—NRMNAz=p—A+A-NRNAz=(p—-A)RN Az -z

Applying R(u, A) to both sides of the above identity, we find

(u—NR(p, A) R\, A)x = R(\, A)x — R(u, A)z
and the conclusion follows. U

Proposition A.1.3 Let A be a closed operator. Let Ay € p(A), and |\ —

R\, A) = R(A\o, A)(1 4+ (A — Xo)R(Ng, A))7! (A.1.2)
Thus p(A) is open and o(A) is closed. Moreover
RN A) =) (—1)F(A = X)FRF (X, A), (A.1.3)
k=1

and so R(\, A) is analytic on p(A).
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Proof. The equation Ax — Ax = y is equivalent to
A=)z + (Mo — A)z =y,
and, setting z = (A — A)z, to
z+ (A= X)R(No, A)z = y.
Since ||(A — o) R(Mo, A)|| < 1 it follows
z=(14+ (A =X)R(g, 4)) 1y,

that yields the conclusion. U

A.2 Strongly continuous semigroups

A strongly continuous semigroup on X is a mapping 7T : [0,00) — L(X), t —
T(t) such that

(i) T(t+s)=T(t)T(s),Vt,s >0, T(0)=1.
(ii) T'(-)x is continuous for all z € X.

Remark A.2.1 ||T(-)]| is locally bounded by the uniform boundedness the-
orem.

The infinitesimal generator A of T(-) is defined by

D(A) = {x €X:3 lim Ahx}
h—0+
(A2.1)

Axr = lim Ayz,
h—0+

where

T'(h)—-1I
Ahz—(—lh———,h>0.

Proposition A.2.2 D(A) is dense in X.
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Proof. For all z € H and a > 0 we set

Ty = ! / T(s)xds.
0

a

Since lim,_,o 2, = z, it is enough to show that z, € D(A). We have in fact
for any h € (0,a),

1 a+h h
Apty = — [/ T(s)xds ~/ T(s)xdsJ ,
ah a 0

and, consequently z, € D(A) since
’lli_r)r(l) Apz, = Az,
(I
Exercise A.2.3 Prove that D(A?) is dense in X.

We now study the derivability of the semigroup T'(¢). Let us first notice
that, since

AhT(t)J} = T(t)AhI,
if z € D(A) then T(t)z € D(A),Vt >0 and AT (t)x = T(t)Az.

Proposition A.2.4 Assume that x € D(A), then T(-)x is differentiable
V>0 and

gt— T(t)x = AT(t)x = T(t)Ax (A.2.2)
Proof. Let tg > 0 be fixed and let A > 0. Then we have
T(to + h)x — T(to)x
h

This shows that T(-)z is right differentiable at t,. Let us show left differen-
tiability, assuming to > 0. For h €]0, t5[ we have

T(to — h).’E — T(to).’l)
h
since ||T'(t)|| is locally bounded by Remarl A.2.1. O

= AT (to)z "3° AT (to)z.

h—0

= T(to - h)Ah!L‘ — T(to)A.’L’,
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Proposition A.2.5 A is a closed operator.

Proof. Let (z,) C D(A), and let z,y € X be such that
Tpn =T, ATy =yYp =Y

Then we have

1 h
h Jo

As h — 0 we get x € D(A) and y = Az, so that A is closed. O
We end this section by studying the asymptotic behaviour of T'(-). We
define the type of T'(-) as

on — in BT

t>0 t

Clearly wy € [—00, +00).
Proposition A.2.6 We have

e JoBITON
t—+o00 t

(A.2.3)

Proof. It is enough to show that

log |70l _ _

lim sup
i—o00 t

Let € > 0 and ¢, > 0 be such that

log [|T°(¢) |l

<wg +E.
te

Set
t = n(t)t. +r(t), n(t) € N,r(t) € [0,¢).
Since ||T(-)|] is locally bounded, there exists M. > 0 such that

1T < M., t € 0,t].
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We have
log |T(t)|] _ log |T(t)"OT(r (1))l

t t

M,
o n(t) log | T(t)|| +log [Tr@)Il _ log TG + 755

< n(t)t. + r(t) - t+ ;:%

As t — 400, we obtain

log ||T log || T(te
s BT BTN

t—00 o te

g

Corollary A.2.7 Let T be of type wy. Then for all € > 0 there exists N, > 1
such that

IT@)| < Nee*%, Vi >0 (A.2.4)
Proof. Let t.,n(t),r(t) as in the previous proof. Then we have
TN < ITEIONTEE)) < O, < My et

and the conclusion follows.OJ
In the sequel we shall denote by G(M,w) the set of all strongly continuous
semigroups 7' such that

1T < Me*',t >0

Example A.2.8 Let X = LP(R),p > 1, (T(t)f)(§) = f(£ 1), f € LP(R).
Then we have ||T(¢)|| = 1 and so wp = 0.

Example A.2.9 Let X = L?(0,7),7 > 0,p > 1, and let

(T(1)F)(€) = { ! <§f-€t€> e it, 7]

Then we have T(t) = 0if ¢ > T and so wp = —o0.

Exercise A.2.10 Let A € £L(X) compact and let {);};en be its eigenvalues.
Set T'(t) = e*4. Then we have

wo =sup Re A;.
i€N
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A.3 The Hille-Yosida theorem

We assume here that T € G(M,w). We denote by A its infinitesimal genera-
tor.

Proposition A.3.1 We have
p(A) D {A € C Re A >w} (A.3.1)

R(A, A)y :/ e MT(t)ydt, y€ X, Re A>w (A.3.2)
0
Proof. Set
E={AeC Rel>uw}
F(\)y =/ e MT(t)ydt, y€ X, Re )\ > w.
0

This is meaningful since T' € G(M,w). We have to show that, given A € ¥ and
y € X the equation Az — Az = y has a unique solution given by z = F(\)y.

Existence
Let A€ X,y € X, z = F(\)y. Then we have
LY 1w [* _x
Apz = —(e™ — 1)z — —e e T (t)ydt
h A A

and so, as h — 0,

hl_1)r51+ Apx = Az —y = Ax

that is z is a solution of the equation Az — Az = y.
- Uniqueness

Let z € D(A) be a solution of the equation Ax — Az = y. Then we have

/ e MT(t)(\x — Az)dt = )\/ e MT(t)xdt
0 0

o0 d
- M T(H)zdt =
/Oe L1 (tyedt = a,

so that x = F(\)y.
We are now going to prove the Hille—Yosida theorem.
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Theorem A.3.2 Let A: D(A) C X — X be a closed operator. Then A is
the infinitesimal generator of a strongly continuous semigroup belonging to
G(M,w) if and only if

(i) p(A) D{AeR;, A > w}

(i) IR\ A < s, VR €N VA > w (A.3.3)

(13¢) D(A) is dense in X.

Given a linear operator A fulfilling (A.3.3) it is convenient to introduce a
sequence of linear operators (called the Yosida approzimations of A). They
are defined as

A, =nAR(n,A) = n*R(n, A) —n (A.3.4)

Lemma A.3.3 We have

li_>m nR(n,A)x =z, Yz € X, (A.3.5)
and
li_)m Apx = Az, Yz € D(A). ) (A.3.6)

Proof. Since D(A) is dense in X and ||nR(n, A)|| < X2 to prove (A.3.5)
it is enough to show that.

lim nR(n,A)z =z, Yz € D(A).

n—oo

In fact for any x € D(A) we have
‘ M
- w

and the conclusion follows.
Finally if z € D(A) we have

Apx =nR(n, A)Az — Az,

and (A.3.6) follows.OJ
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Proof of Theorem A.3.2. Necessity. (i) follows from Proposition
A.3.1 and (iii) from Proposition A.2.2. Let us show (ii). Let k¥ € N and
A > w. It follows

dlc

SeRO A = [ (ke M TWude, y € X,
0

that yields the conclusion.

from which

dk: oo B "
WR(/\,A)H < M/ theMHwt gy
0

Sufficiency.
Step 1. We have
e || < Men=s ¥ n € N. (A.3.7)
In fact, by the identity
0 2kik pk
tA, _ _—nt tn2R(n,A) _ _—nt n“t"R (nvA)
e'in = e ™e =e Z —
k=0
it follows

[e o]
n2ktk‘

tAn < M —nt .
e 1 < Me ; (n — w)kk!

Step 2. There exists C' > 0 such that, for all m,n > 2w, and = € D(A?),

Im —n

etz — etAm || < Ct | A%z]|. (A.3.8)

(m - w)(n —w)

Setting u,(t) = e!4~z, we have

© (n(8) = wn(8)) = An(atn(t) = n(£)) = (A — An)uin(2)

= Ap(tn(t) — un(t)) — (n — m)AR(m, A)R(n, A)un,(t).
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It follows

Un(t) — U (t) = (n — m)A’R(m, A)R(n,A)/0 elt=Any, (s)ds
— (n — m)R(m7 A)R(TL, A) /t e(t—s)AnesAmAZx‘

Step 3. For all x € X there exists the limit

lim ety =: T(t)z ‘ (A.3.9)

—00
and T : [0,00) — L(X),t — T'(t) is strongly continuous.

i From the second step it follows that the sequence (u,(t) is Cauchy, uni-
formly in ¢ on compact subsets of [0, +oo, for all z € D(A4?). Since D(A?)
is dense in X (see Exercise A.2.3) this holds for all x € X. Finally it is easy
to check that T'(-) is strongly continuous.

Step 4. If x € D(A), then T'(-)z is differentiable and

d
p T(t)yxr =T(t) Az = AT (t)z.

In fact let z € D(A), and v,(t) = Lu,(t).Then
v (t) = e Az
Since x € D(A) there exists the limit

lim v, (t) = e Az
n—o0

This implies that u is differentiable and v/(t) = v(t) so that u € C([0, +00); X).
Moreover

A(nR(n, A)un(t)) = u,(t) — v(t)

Since A is closed and nR(n, A)u,(t) — u(t) it follows that u(t) € D(A) and
u'(t) = Au(t).
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Step 5. A is the infinitesimal generator of T'(-).

Let B be the infinitesimal generator of T'(-). By Step 4 B D> A (1). It is
enough to show that if z € D(B) then z € D(A) Let x € D(B), A > w,
setting z = \gz — Bz we have

= ()\0 - A)R()\o, A)Z
= AR (Mo, A)z — BR(No, A)z = (Ao — B)R()o, A)z2.
Thus z = R(Ao, B)z = R(X, A)z € D(A).0

Remark A.3.4 To use the Hille-Yosida theorem requires to check infinite
conditions. However if M = 1 it is enough to ask (ii) only for n = 1. In such
acase T € G(1,w). If w < 0 we say that T'(-) is a contraction semigroup.

Example A.3.5 Let X = Cy([0, 7r]) the Banach space of all continuous func-
tions in [0, 7] that vanish at 0 and 7. Let A be the linear operator in X defined
as

D(A) = {y € C*([0,7]); y(0) = y"(0) = y(7) = ¢"(n) = 0}
Ay =", Vy € D(A)

It is easy to check that o(A) = {—n?; n € N}. Moreover any element of o(A)
is a simple eigenvalue whose corresponding eigenvector is given by

on(€) =sin n€, YneN
We have
Agon - _nQ(,Dn

Moreover if A € p(A) and f € Cy([0,7]) , u = R(A, A)f is the solution of the
problem

{ Au(g) — u"(€) = f(£)

u(0) = u(m) = 0.
LThat is D(B) D D(A) and Az = Bz ¥ z € D(4)
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By a direct verification we find

ey — SmhOAY T s
O= /5 bYA= o .
sinh[v (= &)] [¢ | B
N VAsinh(v/Ar) /0 sinh[V A7 () dr
JFrom (A.3.10) it follows that
1RO, A)|| < % VA0, (A.3.11)

Therefore the assumptions of the Hille-Yosida theorem are fulfilled.

A.4 Cauchy problem

Let A € G(M,w), and let T'(-) be the semigroup generated by A.
We are here concerned with the following problem

{ u'(t) = Au(t) + g(t), t € [0,T]
(A.4.1)
u(0) = =z,

where x € H and g € C([0,T}; X).
We say that u: [0,T] — X is a strict solution of problem (A.4.1) if

(i) ue CY[0,T]; X).
(i) u(t) € D(A),Vte€[0,T]
(i) u'(t) = Au(t) +g(t), Yt € [0,T], u(0) =z
We first cosider the homogeneous problem
{ u'(t) = Au(t), t € [0,T]

u(0) = z,

(A.4.2)

Theorem A.4.1 Let x € D(A). Then problem (A.4.2) has a unique strict
solution given by u(t) = T(t)x.



Appendix A 57

Proof. Existence follows from the Hille-Yosida theorem. Let us prove u-
niqueness. Let v be a strict solution of (A.4.2). Let us fix t > 0 and set

f(s)=T(t—s)v(s), se€]0,t].

f(s) is differentiable for s € [0, ), since
L5+ = f(9) = 75+ (s +h) =Tl — s)o(s))

v(s+ h) — v(s)
h

Tt—s—hv(s)—T(t— s)v(s).

+ T(t—s—h) (A.4.3)

As h — 0 we find
fl(s) = T(t—s)(s)=T(t—s)v(s)
= T(t— s)Av(s) — AT(t — s)u(s) = 0.

Therefore f is costant and T'(t)x = v(t). O
We now consider problem (A.4.1).

Theorem A.4.2 Let z € D(A) and g € C*([0,T]; X). Then there is a u-
nique strict solution u(-) di (A.4.1) given by

u(t) =T(t)z + /0 T(t — s)g(s)ds. (A.4.4)

Proof. Uniqueness can be proved as in Theorem A.4.1. Let us prove exis-
tence. We shall prove that the function u(-), defined by (A.4.4) is a solution
of (A.4.1) and

u € C([0,T); X) N C([0,T); D(A)).

First it is easy to check that u € C'([0,T]; X) and

u'(t) = T(t)g(0) + /0 T(t—s)g'(s)ds. (A.4.5)
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Let us prove now that v(t) € D(A). We have in fact

(T(R)u(t) — u(?))

= % [/Ot T(s+ h)g(t — s)ds — /OtT(s)g(t — s)ds]

1 t+h 1 h

—I——/ T(s)g(t — s+ h))ds — —/ T(s)g(t — s))ds.
hJ, h Jo

As h — 0 we have

1
lim E(T(h)u(t) — u(t))

h—0

| (A.4.6)
— /0 T(s)g'(t — s)ds + T(t)g(o) - g(t)'

JFrom (A.4.5) and (A4.4.6) it follows that v € C([0,T]; D(A)) and the con-
clusion follows. [J
Let z € H and f € C([0,T}; H). The the function u defined by

u(t) =Tz + /0 T(t— s)g(s)ds (A.4.7)

clearly belongs to C([0,T]; H). We say that u is a mild solution of (A.4.1).



Appendix B

Contraction Principle

Let T > 0, and let {v,} be a sequence of mappings from C,([0,T]; (H))
into itself such that

7(P) = (@ < allP = Qll, VP,Q € Cu([0,T]; 2(H)), n €N,

where o € [0,1).
Moreover assume that there exists a mapping v from the space C, ([0, T]; (H))
into itself such that

lim y*(P) = ~™(P) in C([0,T); ©(H)), (B.0.1)

n—oo

for all P € C,([0,T); 2(H)) and all m € N, where v™ and ™ are defined by
recurrence as

7=, Y (P) = (™ (P)),

Yo =T Mo+ (P) = (7 (P)),
form=2,3,... and P € C,([0,T); £(H)). It is easy to check that
1v(P) = v(@)Il < ellP = Qll, ¥V P,Q € Cu([0,T]; £(H)).

Then, by the classical Contraction Mapping Principle, there exists unique P,
and P in C,([0,T]; X(H)) such that

Y(Pn) = P, rm and v(P) = P.

59
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However, since we do not assume that
Tn(P) = v(P) in Cu ([0, T}; B(H)

we cannot conclude that P, — P in C,([0,T];2(H), but a weaker result
holds.

Lemma B.0.3 Under the previous hypotheses on the sequence of mappings

{7},
P, — P in C4([0,T); 2(H)).
Proof. Set
P*=0, P?=0,
and define

P™ =4™(P%, PM"=~™P%, meN.
By the classical Contraction Mapping Principle, we have

lim P" =P, lim P™ =P, in C,([0,T];=(H)), n € N.

m—ro0 m—o0

Moreover

1P = P™ < oF v (PO, 1B — PRI < D o[l (PO
k=m

k=m
Now fix x € H, then for all ¢t € [0,T]
|P(t)x — P,(t)x| < |P(t)x — P™(t)z| + |P™(t)x — P (t)x|

(B.0.2)
+ PRz — Pa(t)z]
Given £ > 0 there exists m, € N such that
& 3
> o [P+ I (PO < 3, (B.0.3)

k=m

for all m > m, and all n € N. By (B.0.2) and (B.0.3) it follows that
|P(t)z — Py(t)z] < % +|P™e () — P (8)z], Yt € [0, T).

Now (B.0.1) yields the conclusion. O



