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Preface

These notes contain a short course on the linear quadratic controls problems
in Hilbert spaces.

We have essentially followed the book: A, Bensoussan, G. Da Prato, M.
Delfour and S.K. Mitter, Representation and Control of Infinite Dimensional
Systems, Birkhauser, (1992).

See the book above for generalizations and references.

Pisa, September 11, 2001 Giuseppe Da Prato
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Chapter 1

Control in finite horizon

1.1 Introduction and setting of the problem

We are concerned with a dynamical system governed by the following differ-
ential equation

* > 0,
(1.1.1)

2/(0) =xeH,

where A : D(A) C H —> H, B : U —± H are linear operators defined on the
Hilbert spaces H (state space) and U (control space). We shall also consider
another Hilbert space Y (observation space). The inner product and norm
in if, U, Y will be denoted by (•, •) and | • | respectively.

Given T > 0, we want to minimize the cost function

J{u) = fT [\Cy(s)\2 + \u(s)\2] ds + (Poy(T),y(T)), (1-1-2)
J

where Po • H —> if, C : H -> F are linear operators defined in H and F
respectively, over all controls u G L2(0,T;C/) subject to (1.1.1).

Concerning the operators A,B,C and Po we shall assume that

Hypothesis 1.1 (i) A generates a strongly continuous semigroup etA on
H.

1



2 Control in finite horizon

(ii) B eL{U,H) (1).

(Hi) PQ G L(H) is symmetric and nonnegative.

(iv) CeL(H,Y).

Under Hypothesis 1.1—(i)—(ii) problem (1.1.1) has a unique mild solution y
given by the variation of constants formula (see Appendix A),

y(t) = etAx + / e{t~s)ABu{s)ds. (1.1.3)
Jo

A function u* £ L2(0,T; U) is called an optimal control if

J(u*) < J(u), V u G L2(0, T; C/). (1.1.4)

In this case the corresponding solution y* of (1.1.1) is called an optimal state
and the pair (̂ x*,y*) an optimal pair.

Under Hypothesis 1.1 it is easy to see that there is a unique optimal
control (since the quadratic form J(u) on L2(0,T;U) is coercive). However
we are interested in showing that the optimal control can be obtained as a
feedback control (synthesis problem). For this reason we shall describe the
Dynamic Programming approach which consists in the following two steps:

Step 1. We solve the Riccati operator equation

Pf = A*P + PA- PBB*P + C*C,
(1.1.5)

P(0) = Po,

where A*, B* and C* are the adjoint operators of A, B and C respectively.

Step 2. We prove that the optimal control u* is related to the optimal
state y* by the feedback formula

u*(t) = -B*P(T-t)y*(t), te[0,T], (1.1.6)

2Let X,Y be Hilbert spaces. We denote by L(X,Y) the Banach space of all linear
bounded operators T : X -> Y endowed with the norm ||T|| = sup{|Ta:| : x G X, \x\ < 1}.
We set L(X,X) = L(X).
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and moreover that y* is the mild solution of the closed loop equation

y'(t) = [A- BB*P(T -t)]y(t), t>0,
(1.1.7)

2/(0) = x € H.

Finally the optimal cost is given by

J*:=(P(T)x,x).

Example 1.1.1 Let D be an open subset of W1 with regular boundary dD.
Consider the equation

Dty(t, 0 = (A£ + c)y(t, f) + u(t, £), in (0, T] x D,

(1.1.8)

We choose /f = 17 = y = i 2 (D) , we set 5 = C = Po = I and we denote by
A the linear operator in H :

Ay =
(1.1.9)

It is well known that A generates a strongly continuous semigroup on H —
L2(D).

Setting y(t) = y(t, •), n(t) = u(t, •), we can write (1.1.8) in the abstract
form (1.1.1).

In this case the control problem consists in minimizing the cost

= [T f[\y(t,O\2 + \u(t,Z)\2}dtdZ+ f \y(T,O\2dt. (1.1.10)
Jo JD JD

Note that the control is distributed on all D.

1.2 Riccati equation

Let us introduce some notation. We set

E(H) = {T e L(H) : T is symmetric} ,



4 Control in finite horizon

E+(if) = {t G E(if) : (Tz, x> > 0, V x G if} .

E(if) is a closed subspace of L(H), and E+(if) is a cone in L(H).
For any interval [a, 6] C R, we shall denote by C([a, 6];E(if)) the set of

all continuous mappings from [a, b] to E(JJT).

C([a, 6]; E(if)), endowed with the norm

| |F| |= sup||F(*)||, F€C([a , &];£(#)),
te[a,b]

is a Banach space.
We shall also need to consider the space C8([a, 6]; S(jff)) of all strongly

continuous mappings F : [a, b] —» E(if), that is such that F(-)x is continuous
on [a, 6] for any x G if. A typical mapping belonging to C5([0,T];E(if)) is
F{t) = etA.

Let F, {Fn} C Cs([a, 6];E(if)). We say that {Fn} is strongly convergent
t o F i f

lim Fn(-)x = F(-)x, V x G if.

In this case we shall write

limFn = F, in Ca([a, 6];
n-^-oo

If F e C8([a, 6]; £(#)) , then the quantity

||F|| = sup
te[a,b]

is finite by virtue of the Uniform Boundedness Theorem. Endowed with
the norm above Cs([a, 6];S(if)) is a Banach space that we shall denote by
Cu([a,b];E(H)).

Let A,B,C and Po be given linear operators such that Hypothesis 1.1 is
fulfilled. This section is devoted to solve the following Riccati equation

P' = A*P + PA- PBB*P + C*C,
(1.2.1)

P(0) = Po,



Chapter 1 5

We first notice that if A G L(H) then it is easy to see that (1.2.1) is equivalent
to the following integral equation

rt
P(t)x = etA*Poe

tAx + esA*C*CesAxds
Jo

(1.2.2)
ft

- e{t-s)A*P(s)BB*P(s)e{t-s)Axds, x G H.
Jo

Now, since the mapping

[0 ,T] ->£(# ) , t-+etA*TetA,

belongs to Cs([a, &]; £ ( # ) ) , equation (1.2.2) is meaningful in C3([a, &]; £ ( # ) )
and we will try to solve it in this space.

Definition 1.2.1 (i) A mild solution of equation (1.2.1) in the interval [0,T]
is a function P G Cs([a, 6];£(if)) that verifies the integral equation (1.2.2).
(ii) A weak solution of equation (1.2.1) in the interval [0, T] is a function
P G Ca ([a, 6] ; £ ( # ) ) such that P(0) = Po and for any x,y G £>(-A), (P(-)x,y)
is differentiate in [0, T] and verifies the equation

dt (1.2.3)

- (B*P(*)x, B*P(t)i/> + (Cx, Cy).

Proposition 1.2.2 Let P G Cs([a, 6]; £ ( # ) ) . T/zen P is a rai/d solution of
equation (1.2.1) i/ anrf on/?/ z /P is a tt;eaA; solution of equation (1.2.1).

Proof. If P is a mild solution of equation (1.2.1), then for any x, y G if we
have

(P(t)s, 2/) - (PoeMx, eMj/> + / (CesAx, CesAy)ds
Jo
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Now if x,y G D(A) it follows that (P(t)x,y) is differentiate with respect to
t and, by a simple computation, that (1.2.3) holds. Conversely if P is a weak
solution, then it is easy to check that for all re, y G D(A)

-(B*P(t)e{t-s)Ax,B*P{t)e{t-s)Ay).

Integrating from 0 to t we see that (1.2.2) holds for any x G D(A). Since
D(A) is dense in H the conclusion follows. •

It is convenient to introduce the following approximating problem

Pf
n = A*nPn + PnAn - PnBB*Pn + C*C,

(1.2.4)
Pn(0) = PO,

where An — n2R(n, A) — nl is the Yosida approximation of A and R(n, A)
is the resolvent of A. Problem (1.2.4) is equivalent to the following integral
equation

_ /
Jo

/ eaA'»C*CesAnxds
Jo

(1.2.5)

, xeH.

We now solve problem (1.2.1). We first prove the local existence of a solution.
We recall that by the Hille-Yosida Theorem (see Appendix A) for any T > 0
there exists MT > 0 such that

\\etA\\ < M T , \\etAn\\ < M T , V t G [0,T], neK

L e m m a 1.2.3 Assume that Hypothesis 1.1 holds, fix T > 0, set

p = 2M|| |P0 | | (1-2.6)

and let r be such that

re[Q,T], r(||C||2 + ^||B||2)<||Po||, 2prM^\\Bf <\. (1.2.7)
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Then problems (1.2.1) and (1.2.5) have unique mild solutions P and Pn in
the ball

: \\F\\ < p} .

Moreover

lim Pn = P, in Cs{[a, b}; E(ff)). (1.2.8)
n > o o

Proof. Equation (1.2.2) (resp. the integral version of equation (1.2.5)) can
be written in the form

where for x G H

j(P){t)x = etA*Poe
tAx

rt

[ (*-5)A* [C*C - P(s)BB*P(s)]e{t-s)Axds
o

and

jn(P)(t)x =

[ e^-s)A"[C*C - Pn{s)BB*Pn(s)]e{t-s)Anxds.
Jo

Choose now p and r such that (1.2.6) and (1.2.7) hold. We show that 7
and 7n are 1/2-contractions on the ball BPiT of Cw([0,r]; E(i/)) . Let in fact
P G BP,T. It follows that

\l{P)(t)x\ < M

and analogously

It follows that

< A hn(P)(t)\\ <P, V* € [0,r], n G N, P €
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so that 7 and j n map BpT into BpT.
For P , Q G BP^T we have

rt
= /

and a similar formula holds for jn(P)(t)x — 7n(Q)(£)#. It follows that

Il7(^)(*) " 7(Q)(*)II < 2prM2
T\\B2\\\\P -Q\\<\ \\P ~ Q\l

\\ln(P)(t) ~ 7n(Q)(*)|| < 2pTM*\\B2\\\\P -Q\\<\ \\P ~ Q\l

Thus 7 and 7n are 1/2-contractions on BPjT and there exists unique mild
solutions P and Pn in PPjT. Finally (1.2.8) follows from a generalization of
the classical Contraction Mapping Principle (see Appendix B). •

We now prove global uniqueness.

Lemma 1.2.4 Assume that Hypothesis 1.1 holds, let T > 0 and let P, Q be
two mild solutions of problem (1.2.1) in [0, T]. Then P — Q.

Proof. Set

a= sup max{||P(t)|U|Q(t)||}.
te[o,T]

a is finite by the Uniform Boundedness Theorem. Choose p > 0 and r G
[0,T] such that

p = 2M|a , T (\\C\\2 + P
2\\B\f) < a, 2prM2

T\\Bf < \

By Lemma 1.2.3 it follows that P(t) = Q(t) for any t e [0, r]. It is now
sufficient to repeat this argument in the interval [r, 2r] and so on. •

The main result of this section is the following theorem.

Theorem 1.2.5 Assume that Hypothesis 1.1 holds. Then problem (1.2.1)
has a unique mild solution P e C s([0,+oo);£+(#)). Moreover for each n G
N problem (1.2.5) has a unique mild solution Pn G C([0,+oo);£+(i/)) and

n = P in
n->oo

/or ems/ T > 0.
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Proof. Fix T > 0, set 0 = M% (\\P0\\ + T||C||2), and choose p > 0 and r > 0
such that

p = 2M|/3, r( | |C| |2 + p W ) < & 2prM2
T\\Bf <\.

By Lemma 1.2.3 there exists a unique solution P (resp. Pn) of (1.2.1) (resp.
(1.2.5)) in [0,T] and Pn -> P in Cs([0,r];E(ff)). We now prove that

Pn(t)>0, Vt€[0, r ] . (1.2.9)

This will imply

P(t) >0 , Vt£ [0,r]. (1.2.10)

To this end we notice that Pn is the solution of the following linear problem
in[0,r]

P^ = L*nPn + PnLn + C*C, Pn(0) = P0,

where Ln = An - \BB*Pn. Denote by Un(t, s), 0 < s < t < r, the evolution
operator associated to L*, that is the solution to

DtUn(t, s) = L*n(s)Un(t, s), Un(s, s) = /, , 0 < s < t < r.

Then we can write the solution Pn(t) as

Pn(t) = Un{t,0)P0l%{t,0)+ [ Un(t,s)C*CU*(t,s)ds.
Jo

Thus (1.2.9) and (1.2.10) follow immediately.
Note that, arguing as in Lemma 1.2.3, we have

We now prove that we have a better estimate

P(t)<pl, V i e [0,r]. (1.2.11)

This inequality will allow us to repeat the previous argument in the interval
[T, 2T] and so on. In this way the theorem will be proved. We have in fact

(P(t)x,x) = (Poe
tAx,etAx) + / \CesAx\2ds

Jo

- f \B*P{s)e{t~s)Ax\2ds < f3\x\2.
Jo
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Since P(t) > 0 this implies (1.2.11). The proof is complete. •
We now prove continuous dependence with respect to data. Consider a

sequence of Riccati equations

(pky = {Akypk + pkAk - p*Bk(Bkypk + (ckyck,
(1.2.12)

under the following assumption.

Hypothesis 1.2 (i) For any k G N, (Ak, Bk, Ck, Pg) fulfil Hypothesis 1.1.

(ii) For allT > 0 and all x G H,

lim etA x = etAx, uniformly in [0, Tl.

fm; The sequences {Bk}, {(Bk)*}, {Ck}, {(Cfc)*}, {Pg} are strongly conver-
gent to B,B*,C, C*,P0; respectively.

Theorem 1.2.6 Assume that Hypotheses 1.1 and 1.2 hold. Let P (resp.
Pk) be the mild solution to (1.2.1) (resp. (1.2.12),/. Then, for any T > 0 we
have

Proof. Fix T > 0. By the Uniform Boundedness Theorem there exists
positive numbers p, 6 and c such that

IIAil < P, ll(Cfc)*Ci < c, ||s*(Bfc)'|| < p, v fc e N.

Set /? = M^(p + cT) and choose p and r £ [0, T] such that

p = 2/3M|, r(c + p26) < /3 2TM*\\B\\2 < \.
Li

Then, arguing as we did in the proof of Lemma 1.2.3, we can show that
Pk(-)x —> P(-)x for any x G H. Finally, proceeding as in the proof of Theorem
1.2.5, we prove that this argument can be iterated in the interval [r, 2r] and
so on. •

We conclude this section by proving an important monotonicity property
of the solutions of the Riccati equation (1.2.1).
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Proposition 1.2.7 Consider the Riccati equations:

P[ = A*P% + PXA - PiB^Pi + Cfd,
(1.2.13)

^ ( 0 ) = ^ , i = l , 2 .

Assume that (A, .B^C^P^o) verify Hypothesis 1.1, and, in addition, that

Pi,o < -̂ 2,0? C{C\ < C2C2, B2B2 < BiB{.

Then we have

Pi(t) <P2(t), V * > 0 . (1.2.14)

Proof. Due to Theorem 1.2.5 it is sufficient to prove (1.2.14) when A is
bounded. Set Z — P2 — Pi, then, as easily checked, Z is the solution to the
linear problem

Z' = X*Z + ZX- P2[B2BZ - BxBl]P2 + C%C2 - C^CU

(1.2.15)
Z(0) = P2j0 - Pi,o,

where

Let V(t,s) be the evolution operator associated with X*, that the solution
to the problem is

DtV(t, s) = X(t)*(s)V(t, s ) , V(s, s ) = / , , 0 < s < t < T .

Then we have

Z(t) = V(t,0)(P2,o-Pi,0)V*(t,0)

ft

V (6, 5j[G2O2 — C1Ci\V (t, <sjas

+ / y(<,5)P1(s)[B lJB1*-B2B2*]P1(s)y(<,s)ds,

so that Z(t) > 0 and the conclusion follows. •
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1.3 Solution of the control problem

In this section we consider the control problem (1.1.1)—(1.1.2). We assume
that Hypothesis 1.1 is fulfilled and we denote by P G C5([0,T]; £+(#) ) the
mild solution of the Riccati equation (1.2.1). We first consider the closed
loop equation

y\t) = Ay{t) - BB*P(T - t)y(t), t G [0,T],
(1.3.1)

2/(0) =xeH.

We say that y G C([0,T];if) is a mild solution of equation (1.3.1) if it is a
solution of the following integral equation

y(t) = e
tAx - / e{t-s)ABB*P(T - s)y{s)ds.

Jo

Proposition 1.3.1 Assume that Hypothesis 1.1 is fulfilled and let
x G H. Then equation (1.3.1) has a unique mild solution y G C([0, T]; if).

Proof. It follows by using standard successive approximations. •
We now prove a basic identity.

Proposition 1.3.2 Assume that Hypothesis 1.1 is fulfilled and let
u G L2(0,T, U) x G if. Let y be the solution of the state equation (1.1.1)
and let P be the mild solution of the Riccati equation (1.2.1). Then the
following identity holds

rT

J(u)= / \u(s) + B*P(T - s)y(s)\2ds + (P(T)x,x). (1.3.2)
Jo

Proof. Let Pn be the mild solution of the approximated Riccati equation
(1.2.5), and let yn be the solution of the problem

Now, by computing the derivative
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and completing the squares, we obtain the identity

j-(Pn(T-s)yn(s),yn(s))
as

= \un(s) + B*Pn(T - s)yn(s)\2 - \Cyn(s)\2 - \u(s)\2.

Integrating from 0 to T and letting n tend to infinity we obtain (1.3.2). •
We are now ready to prove the following result.

Theorem 1.3.3 Assume that Hypothesis LI is fulfilled and let x G H. Then
there exists a unique optimal pair (u*,y*). Moreover

(i) y* G C([0, T]; H) is the mild solution to the closed loop equation (1.3.1).

(ii) u* G C([0, T];U) is given by the feedback formula

u*(t) = -B*P(T-t)y*(t), t e [0,T]. (1.3.3)

(in) The optimal cost J(u*) is given by

J(u*) = (P(T)x,x). (1.3.4)

Proof. We first remark that by identity (1.3.2) it follows that

J(u*)>(P(T)x,x), (1.3.5)

for any control u G C([0,T];E/). Let now y* be the mild solution to (1.3.1)
and let u* be given by (1.3.3). Setting in (1.3.2) u ~ u* and taking into
account (1.3.5) it follows that (u*,y*) is an optimal pair and that (1.3.4)
holds.

It remains to prove uniqueness. Let (u, y) be another optimal pair. Set-
ting in (1.3.2) u = u and y = y we obtain

T
\u{s) + B*P{T - s)y(s)\2ds = 0,

so that u(s) — —B*P(T — s)y(s) for almost every s G [0,T]. But this implies
that y is a mild solution of (1.3.1) so that y — y* and consequently u — u*.
D
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Control in infinite horizon

2.1 Introduction and setting of the problem

As in Chapter 1 we are concerned with a dynamical system governed by the
following state equation

), t > o,
(2.1.1)

xeH.

We shall assume that

Hypothesis 2.1 (i) A generates a strongly continuous semigroup etA on
H.

(ii) BeL(U,H).

(Hi) C eL{H,Y).

We want to minimize the cost function

Joo(ti)= / [\Cy(s)\2 + \u(s)\2}ds, (2.1.2)

over all controls u G I/2(0, +oo, U) subject to (1.1.1).
We say that the control u G £2(0, +00; U) is admissible if Joo(u) < +00.
An admissible control u* G £2(0, +00; U) is called an optimal control if

fa), V u G L2(0, +00; C7).

15
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In this case the corresponding solution y* of (2.1.1) is called an optimal state
and the pair (u*,y*) an optimal pair.

An admissible controls can fail to exist, as the following simple example
shows.

Example 2.1.1 Let H = U = Y = R, B = 0,A = C = 1. Then for any
w G £2(0, +oo; [/) we have y(t) = e*:r and

/»H-oo

/
JO

\u{s)\2] ds =

If for any x G if an admissible control exists, we say that (A, B) is
stabilizable with respect to the observation operator C, or, for brevity, that
(A, B) is C-stabilizable. In this case is still possible to solve problem (2.1.1)-
(2.1.2) following the steps,

Step 1. We show that the minimal nonnegative solution Pmin(t) to the
Riccati equation

P1 = A*P + PA- PBB*P + C*C,

that is the solution to (1.2.1) corresponding to Po = 0, converges, as t —> oo
to a solution P^in to the algebraic Riccati equation:

A*X + XA- XBB*X + C*C = 0 (2.1.3)

Step 2. We show that the optimal control u* is given by the feedback
formula

u*(t) = -B*P™ny*(t), t>0, (2.1.4)

where y* is the mild solution of the closed loop equation

y'(t) = [A- BB*P~n]y(t), t > 0,
(2.1.5)

y(0) = x e H.

Example 2.1.2 (i). Assume that A is of negative type. Then (A,B) is
C-stabilizable since the control u(t) = 0 is clearly admissible.
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(ii). Assume that B — I. Then (A,B) is C-stabilizable. In fact let M, uo
be such that \\etA\\ < Mewr, t > 0. Choose u(t) = -(UJ + l)e^A^'l\ t > 0.
Then y(t) = e ^ " ^ 1 ) , £ > 0 so that J^u) < +oo.

(iii). Assume that there is a > 0, ft > 0, if > 0 such that

Then (A,B) is C-stabilizable. In fact setting u(t) = -2aB*e^A-2aBB*\ t >
0, one has y(t) = e^~2 a B B*), t> 0, and so Joo(u) < +oc.

Moreover we shall show that equation (2.1.3) has a nonnegative solutions
if and only if (A, B) is C-stabilizable.

2.2 The Algebraic Riccati Equation

We assume here that Hypothesis 2.1 holds and consider the system (2.1.1).
We consider the Riccati equation

P' = A*P + PA- PBB*P + C*C, (2.2.1)

and the corresponding stationary equation

A*X + XA- XBB*X + C^C = 0. (2.2.2)

In the sequel we shall consider only nonnegative solutions of (2.2.1) and
(2.2.2).

Definition 2.2.1 We say that X G E+(iJ) is a weak solution of (2.2.2) if

(Xx, Ay) + (Ax, Xy) - (B*Xx, B*Xy) + (Cx, Cy) = 0 (2.2.3)

for all x,y e D(A).

Definition 2.2.2 We say that X G E+(i7) is a stationary solution of (2.2.1)
if it coincides with the mild solution of (2.2.1) with initial condition P(0) =
X.

Recalling Proposition 1.2.2 the following results follows immediately.

Proposition 2.2.3 Let X G £ + ( i f ) ; then the following statements are e-
quivalent
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(i) X is a weak solution of (2.2.2).

(ii) X is a stationary solution of (2.2.1).

We are going to study existence of a solution of the Algebraic Riccati
equation. To this purpose it is useful to consider the solution of the Riccati
equation (2.2.1) with initial condition 0. This solution will be denoted by
Pmin- It is the minimal nonnegative solution of (2.2.1). In fact if Po G T,+ (H)
and P is the mild solution of (2.2.1) such that P(0) = Po? then by Proposition
1.2.7 we have

Pmin(t) < P ( t ) , V t > 0 .

In particular if X is a solution of (2.2.2), then

Pmin(t)<X, Vt>0.

We now prove the following properties of Pmin-

Proposition 2.2.4 (i) For any x G H, (Pmin(')%jx) is non decreasing,

(ii) Assume that for some R G E + (H), we have

Pmin(t)<R, V * > 0 .

Then for all x G H the limit

)x, (2.2.4)

exists, and P™in is a solution of (2.2.2).

In other words there exists a nonnegative solution of (2.2.2) if and only
if Pmin is bounded.
Proof. Let e > 0, t > 0 and let P be the solution of (2.2.1) such that
P(0) = Pmin(e). By Proposition 1.2.7 we have

P{t) = Pmin(t + S) = P(t) >

and (i) is proved. Assume now Pmin(t) < R; since Pmin(t) is nondecreasing
and bounded we can set

j(x) = lim (Pmin(t)x,x), V x G H.
t—>+oo
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For x, y 6 H we have

2(Pmin(t)x,y)

= (Pmin(t)(x + V),(X + y)) - (Pmin{t)x, x) - <Pmi

So the limit

T(x,y) = lim {Pmin(t)x,y), V x,y e H,

exists and the following operator P™in e S+(i7) can be defined

Hill \r^ min\L)'L's y) — \rrnin'L"> 91? v X5i/ ^ - r z -

It follows that

lim ([P^ n - Pmin(t)]x, x) = 0, V x e H,

which is equivalent to

^ l i m [ P ^ n - P m i n ( t ) f 2 x = 0, V x e H

This implies that

so that (2.2.4) holds.
It remains to show that P™in is a solution of (2.2.2). For this we denote by

Ph the solution of (2.2.1) for which Ph(0) = Pmm(/i), i.e. Ph(t) = Pmin(/i + t).
Since

lim Pmin(h)x =

by Theorem 1.2.6, we have

lim Ph(-)x = P~.nx in C([0,T];F), V x G ff, T > 0.

Moreover P™in is a solution of (2.2.1) (hence stationary). •
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Remark 2.2.5 Assume that there exists a solution X G S+(if) of (2.2.2).
Then by Proposition 2.2.4 the solution P™in defined by (2.2.4) exists. By the
above proposition it follows that

for all solutions X G £+(i7) of (2.2.2). Thus P™in is the minimal solution of
the algebraic Riccati equation (2.2.2).

We now prove that a nonnegative solution of the algebraic Riccati equation
exists if and only if (A, B) is C-stabilizable.

Proposition 2.2.6 Assume that Hypothesis 2.1 is fulfilled and that (A, B) is
C-stabilizable. Then there exists a minimal solution P^in of equation (2.2.2).

Proof. We first recall that by the basic identity (1.3.2) we have

(Pmin(t)x,x)+ f \u(s)+B*Pmm(t-s)y(s)\2ds
Jo

(2.2.5)

= [\\Cy(s)\2+\u(s)\2}ds,
Jo

for any x G H and any u G £2(0, +oo; U), where y is the solution to (2.1.1).
Let u be a control in Z/2(0, +oc; U) such that the corresponding solution of
(2.1.1) is such that Cy G L2(0,+oo;F). By (2.2.5) it follows that

r+oo
snp(Pmin(t)x,x) < / [\Cy(s)\2 + \u(s)\2}ds < +oo
t>0 Jo

for any x G H. By the Uniform Boundedness Theorem it follows that Pmin(i)
is bounded, so that, by Proposition 2.2.4, there exists a solution of equation
(2.2.2). •

In order to prove the converse it is useful to introduce, for any t > 0, the
following auxiliary optimal control problem over the finite time horizon [0, t}\
to minimize

Jt(u)= I [\Cy(s)\2 + \u(s)\2]ds (2.2.6)
Jo
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over all controls u G £2(0, t; U) subject to (2.1.1). By Theorem 1.3.3 we know
that there exists a unique optimal pair {ut,yt) for problem (2.2.6), where yt

is the mild solution to the closed loop equation

y't(s) = Ayt(s) - BB*Pmin(t - s)yt(s), s G [0,t],

Vt(0)=x,

and ut is given by the feedback formula

ut{s) = -B*Pmin(t - s)yt(s), s G [0,*].

Moreover the optimal cost is given by

(Pmin{t)x,x) = f\\Cyt(s)\2 + \ut(s)\2}ds. (2.2.7)
Jo

Lemma 2.2.7 Assume that the minimal solution P^in of (2.1.2) exists. De-
note by T/OO the corresponding mild solution of the problem

y^is) = Ayoo(s) - BB*P™nyoo(s), s > 0,

2/oo (0) = x,

and set

Uoo(s) = -B*P™nyoo(s), s > 0. (2.2.8)

Then we have

lim yt(s) = yoo{s), s > 0. (2.2.9)

lim ut(s) = itoo(s), s > 0. (2.2.10)

Proof. Fix T > t and set zt = yt — y<x>', then zt is the mild solution to the
problem:

{ z[{s) = [A-BB*Pmin{t-s)]zt{s)

+ BB*[Pmm(t-s)-P™n}yoo(s) (2-2.11)

{ zt(0) = 0.
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Denote by U(r, s) the evolution operator corresponding to A — BB*Pmin(t — ')
then for x G H

U(r, a)x = e^Ax - f e^r'^ABB*Pmin(t - p)U(p, a)xdp,
J a

U(a, a) = I.

It follows that

\\U(r,a)\\ < Me^« + M\\B\\2\\P~n\\ f e^«\\U(p,a)\\dp.
J a

By Gronwall's Lemma we have

\\U(r,a)\\ < MeM[w + M l lB l l2 l lF-«],O< a<r<T. (2.2.12)

We now return to problem (2.2.11) which we write in the form

*t(s) =" I* U(s,a)BB*[Pmin(t - a) - P™n]yoo(a)da.
Jo

By (2.2.12) and the dominate convergence theorem we obtain zt(s) —> 0 as
t -> +oo. So (2.2.9) and then (2.2.10) follow. •

We can now prove the following proposition.

Proposition 2.2.8 Assume that there exists a solution of (2.2.2). Then
(A, B) is C-stabilizable.

Proof.Let yt and ut be defined as in Lemma 2.2.7. By (2.2.7) we have for
t > T

(P%nx,x) > [T[\Cyt(s)\2 + \ut(s)\2]ds (2.2.13)
Jo

and7 as t —> +oo,

rT

/poo r T \ > / \\cit (^\\2 4- \ii (<i)\2]d<i (2c2^4-)
\ rain "> I — / v^ " OQ\^ ) \ ' | " / oov^/ l Ju"-:>* y6.6.±i±j

Jo

But, since T is arbitrary we find
DO

Cyoo(s)\2 + |uoo(s)|2]ds, (2.2.15)

and thus Moo G L2(0, +OO; U) is an admissible control. •
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2.3 Solution of the control problem

We now consider the control problem (2.1.1)-(2.1.2) and prove the following
result.

Theorem 2.3.1 Assume that Hypothesis 2.1 is fulfilled, that (A, B) is C-
stabilizable, and let x G H. Then there exists a unique optimal pair (n*,y*).
Moreover

(i) y* G C([0, +oo); H) is the mild solution to the closed loop equation
(2.1.5).

(ii) u* G C([0, +oc); U) is given by the feedback formula

«•(*) = -£*P~ n y*( i ) , t > 0. (2.3.1)

(Hi) The optimal cost Joo{u*) is given by

,x). (2.3.2)

Proof. Let u G L2([0,+oo); [/) and let y be the corresponding solution of
the state equation (2.1.1). By the identity (2.2.5) we have

(Pmin(t)x,x) < f [\Cy{8)\2 + \u(s)\2]ds < J^u).

Jo

It follows that

Joo(u) > {P%n(t)x, x), V u 6 £2([0, +OD); U).

Let now u^ be defined by (2.2.8); by (2.2.15) we have

so that u^ is optimal. Formula (2.3.1) with u* = u^,, y* — y^ follows from

(2.2.9)-(2.2.10).
It remains to to show uniqueness. Let (u, y) be another optimal pair, then

Joo(«) = {P£inx, x). Fix T > 0. By applying (2.2.5) with t>T we obtain

/ \u(s) + B*Pmin(t - s)y{s)\2ds < J^u) - (Pmin{t)x,x)
Jo
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As t —> +00 we have

/ \u(s) + B*P™J(s) \2ds = 0, thatyields
Jo

u(s) = —B*P™iny(s). Consequently y = y* and u = u*. •



Chapter 3

Examples and generalizations

3.1 Parabolic equations

We consider here Example 1.1.1. Let D be an open subset of Kn with regular
boundary dD. Consider the state equation

f Dty(t, 0 = (A* + c)y(t, 0 + u(t, £), in (0, T] x D,

y(t,£)=O, on (0,T]x dD, (3.1.1)

[ 3/(0,0 = *(0, ™D-

Let H = U = y = L2(D), B = C = PQ = / and define the linear operator
by AinH:

Ay = (Af + c)y
(3.1.2)

It is well known that A is self-adjoint and consequently is the infinitesimal
generator of a strongly continuous semigroup on H — L2(D). Moreover there
exists a complete orthonormal system {e^} in L2(D) and a sequence {A^} of
positive numbers such that

Aek = -\kek, k G N.

Setting y(t) = y(t,-), u(t) — w(t, •)? w e write (3.1.1) in the abstract form

25
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We want to minimze the cost

J{u)= f [[\y(t,0\2 + W(t,0\2}dtdZ+ I \y(T,O\2dt. (3.1.3)
JO JD JD

By Theorem 1.3.3 there exists a unique optimal pair (u*,y*) where y* is the
solution of the closed loop equation

Dty(t, 0 = (A4 + c)y(t, 0 - P(T - t)y(t, •)(£)> in (0, T] x D,

y(t,0 = 0, on (0,T]xdD, (3.1.4)

Moreover u* is given by

and the Riccati equation reeds as follows

P' = 2AP-P2 + I, P(0) = / . (3.1.5)

For any t > 0 we can find explicitly P(t) as

P{t)ek=pk(t)ek, fcGN,

where p^ is the solution to the ordinary differential equation

p'k(t) = -2A,(i)^(t) - p2
k(t) + 1,

Let us consider now the infinite horizon problem, T — +oo. We want to
minimze the cost

Joo(u) = / / [|2/(t,O|2 + Ht,0\2\dtd£+ / |y(T,OI2de. (3.1-6)
Jo JD JD

By Example 2.1.2—(ii) (A, I) is /-stabilizable, and consequently by Theorem
2.3.1 there exists a unique optimal pair (u*,y*) where y* is the solution of
the closed loop equation

+ c)y(t, 0 - Pooy(t, •)(£)> in (0, +00) x D,

y(t, £) = 0, on (0, +00) x dD, (3.1.7)
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Moreover u* is given by

and the Algebraic Riccati equation reeds as follows

2AP - P2 + 1 = 0

Consequently

and

(3.1.8)

3.2 Wave equation

Let D be an open subset of En with regular boundary dD. Consider the state
equation

t,Z), in (0,T] x D,

,£) = O, on(0,T}xdD,

We want to minimze the cost

J(u)= [
O J D

D

Setting y(i) = y(t, •), u(i) = u(t, •), we write (3.2.1) as

y{0)=x0, y'(O) = x1,

(3.2.1)

(3.2.2)

(3.2.3)
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where A is defined by (3.1.2). Now, setting y'(t) = z(t), Y(t) =

and X = I ° I , we reduce the problem to a first order problem

DtY{t) = AY(t) + Bu(t)

(3.2.4)
y(0) - X,

where

and

Now we choose if = F = Ho
a(D) ®L2{D),U = L2(D) and

1 0c = V o
Thus

D{A) = {H2(D) 0 Hl
0(D)) © #o<

and A generates a strongly continuous semigroup of contractions on H given
by:

cos( \J—A t) -j= s in(v / r ^

Finally the cost can be written as

J(n) = f f \Y{t)\2
H + \u(t)\lHD)]dt + \Y(T)\2

H. (3.2.6)
JO J D

By Theorem 1.3.3 there exists a unique optimal pair (ix*,y*).
Finally we can show that (A, B) is C-stabilizable. For this we shall fulfill

the conditions of Example 2.1.2-(iii) by proving that for all a < y/X^ (2.1.6)
holds. We have in fact, by a direct computation

ot{A-2«BB*) = ,-t* ( cos(Et)_+ f sm(Et) i sin(Et)
-%sin(Et)+cos(Et)

(3.2.7)

6

where E = y/—A — a2l.
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3.3 Boundary control problems

Let us consider the following state equation

f Dty(t,0 = A^y(t,O, in (0,T] x [0,1],

29

y(t,0) = uo{t), y(t, 1) = ui(t), on (0,T],

h S/(0,O = *(O, m£>.
Here the control is given on the boundary of D.

We want to minimize the cost

J(u) — / / l«. /^ ^ M 2 ^ - A -7<̂  i / TL. /+M2 , rt. /Vt |2l

(3.3.1)

[ [ [ {\Uo(t)\
2 + Ul(t)\

2]dt f
o Jo Jo Jo

(3.3.2)
In order to reduce this problem to the standard form (1.1.1), it is convenient
to introduce the Dirichlet mapping

where

5(a0,

Notice that 6(a0, a.i) is the unique harmonic function on [0,1] that holds a0

at {0} and ai at {1}.
Let us now proceed formally by setting

[0,1], t > 0,

= (uo(t),Ui(t)), and we can write problem (3.3.1) as

f Dtz(t,0 = A ^ ( t , 0 - (J«'(*), in (0,T] x [0, l],

= y{t, e) -

so that z(t, 0) = z(t, 1) = 0. Then

where

^(t,o) = = 0, on (3.3.3)
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Now this problem can be written in the abstract form

z'(t) = Az{t)-6uf{t),

z(0) = z(t,l) = x-Su(0),

where A denotes the operator (3.1.2) (with D = [0,1]). Using the variation
of constants formula we find

rt

z(t) = etA(x - 6u(0)) - / e{t-s)A5u'(s)ds,
Jo

and, integrating by parts, we find (always formally),

y(t) = etAx - [ Ae^-s)A8u{s)ds. (3.3.4)
J
[

Jo
We show now that this formula is meaningful. For this we recall that

and consequently 5(t) G D((—A)£) for any e G [0,1/4). This implies that, for
a suitable constant c > 0 we have

so that formula (3.3.4) is meaningful.
Equation (3.3.4) can be considered as the mild form of the state equation

y'(t) = Ay(t) - A6u(t), t > 0,
(3.3.5)

2/(0) = xeH,

so that B — —AS. This is not meaningful because the intersection of the range
of S with the domain of A is {0}. However one is able to give a meaning to
the Riccati equation by writing

where 7 G (0,1/4) and consequently the operator S1 is bounded. In this way
the term PBB*P can be written as

Now the idea is to try to write an equation for P(—A)1"7.



Appendix A

Linear Semigroups Theory

In all this appendix X represents a complex Banach space (norm | • |), and
L(X) the Banach algebra of all linear bounded operators from X into X
endowed with the sup norm:

||T|| = sup{|Tx| : x G X, \x\ < 1}.

A.I Some preliminaries on spectral theory

Let A : D(A) C X —> X be a linear closed operator. We say that A G C
belongs to the resolvent set p(A) of A if A — A is bijective e and (A — A)'1 G
L(X)] in this case the operator R(\,A) := (A - A)~l is called the resolvent
of A at A. The complementary set a (A) of p(A) is called the spectrum of A.

Example A.1.1 Let X — C([0,1]) be the Banach space of all continuous
functions on [0,1] endowed with the sup norm, and let Cx([0,1]) be the
subspace of C([0,1]) of all functions u that continuously differentiate. Let
us consider the two following linear operators on X :

D(A) = ^([0,1]) , An = ul , V u G D(A),

D(B) = {ue ^([0,1]); u(0) = 0}, Bu = u' V u G D(B).

We have

p(A) = 0, a(A) = C.

31
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In fact, given A G C, the mapping A — A is not injective since, for all c G C
the function u(£) — cex^ belongs to D(A) and (A — A)u — 0.

For as the operator B is concerned, we have

p(B) = C, a(A) = 0.

and

(i*(A,B)/)(0 = - / e A < { -%)4VA6C,V/GX,V^[0 , l ] .
Jo

In fact A G p(S) if and only if the problem

Ati(O - u'(£) = /(O

u(0) = 0

has a unique solution / G X.

Let us prove the important resolvent identity.

Proposition A.1.2 If \,/JL G p(-A) we /ia?;e

J?(A, A) - i?(//, i4) = (/x - A)i?(A, i4)i2(/x, A) (A.I.I)

Proof. For all x G X we have

(/i - A)i2(A, A)x = (/i-A + A- A)i?(A, A)x = (/x - A)R(\, A)x - x

Applying i?(/i, A) to both sides of the above identity, we find

(/i - A)i?(/i, A)R(\, A)x = i?(A, 4)x - R(fi, A)x

and the conclusion follows. •

Proposition A. 1.3 Let A be a closed operator. Let Ao G p{A), and |A —

i?(A, A) = i?(A0, A)(l + (A - A0)i?(A0, /L))'1 (A.1.2)

is open and c(A) is closed. Moreover

oo

R(\,A) - J](-1)*(A - A0)
fc

A ; = l

and so R(\,A) is analytic on p(A).
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Proof. The equation Ax — Ax = y is equivalent to

(A - A0)x + (Ao - A)x = y,

and, setting z = (Ao — A)x, to

z + (\-\0)R(\0,A)z = y.

Since ||(A - \0)R(\0,A)\\ < 1 it follows

z = {l + {\-\Q)R{\0,A))-1y,

that yields the conclusion. •

A.2 Strongly continuous semigroups

A strongly continuous semigroup on X is a mapping T : [0, oo) —> L(X), t ~>
T(t) such that

(i) T(t + s) = T(t)T(s),V t, s > 0, T(0) = / .

(ii) T(-)x is continuous for all x G X.

Remark A.2.1 ||T(-)|| is locally bounded by the uniform boundedness the-
orem.

The infinitesimal generator A of T(-) is defined by

D(A) = [x e X : 3 lim
[ fc->0H

Ax = lim
/i->0H

where

T(/i) — /
&h ~ 7 7 h > 0

Proposition A.2.2 JD(A) Z*5 cfen ê m X.

(A.2.1)
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Proof. For all x G H and a > 0 we set

1 fa

xa = - /
a Jo

Since lima_>0£a — x, it is enough to show that xa G D(A). We have in fact
for any h G (0, a),

A&za = — / T(s)xds - /ah Ua Jo

and, consequently xa G ̂ D(̂ 4) since

lim Ahxa = Aax.

•
Exercise A.2.3 Prove that D(A2) is dense in X.

We now study the derivability of the semigroup T(t). Let us first notice
that, since

AhT(t)x = T(t)Ahx,

if x G £>(,4) then T(i)x G D(A),Vt> 0 and ^T(t)x = T(t)Ax.

Proposition A.2.4 Assume that x G £*(A), t/zen T(-)x is differentiate
\ft>0 and

4- T{t)x = AT(t)x = T(t)Ax (A.2.2)
at

Proof. Let t0 > 0 be fixed and let h > 0. Then we have

+ fe)x - T(to)x
a o)x

This shows that T(-)x is right different iable at t0. Let us show left differen-
tiability, assuming t0 > 0. For h G]0, to[ we have

— 1 (to — n)/\hx -> 1 [to)Ax,
a

since ||T(t)|| is locally bounded by Remarl A.2.1. D
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Proposition A.2.5 A is a closed operator.

Proof. Let (xn) C D(A), and let x , j / E l b e such that

Then we have
h

T(t)yndt.

As h —> 0 we get x G D(A) and y = Ax, so that A is closed. •
We end this section by studying the asymptotic behaviour of T(-). We

define the type of T(-) as

Clearly u0 G [—oo, +oo).

Proposition A.2.6 We have

Proof. It is enough to show that

.tosup^M
t—*OO t

Let e > 0 and tF > 0 be such that

e.
te

Set

t = n(t)te + r(t), n(t) € N, r(t) G [0, te).

Since ||T(-)|| is locally bounded, there exists Me > 0 such that

||T(<)||<Me, <€[0,*e].
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We have

log||T(t)|| log
t t

r?/7^ IOP- TY/ ^ -I- lop- T(V(7^ l o g i (t£)\\ H 7^

n(t)t£ + r(t)

As t —> +00, we obtain

u
Corollary A.2.7 Lei T be of type Uo- Then for all e > 0 there exists N£ > 1

||T(t)|| < N£e
{uJ0+£)tyt > 0 (A.2.4)

Proof. Let t£,n(t),r(t) as in the previous proof. Then we have

||T(t)|| < \\T(t£)\\
n{t)\\T(r(t))\\ < e^W^M^ < Mtee^+^.

and the conclusion follows.•
In the sequel we shall denote by Q{M, 00) the set of all strongly continuous

semigroups T such that

||T(t)|| <Meu\t>0

E x a m p l e A.2 .8 Let X = Lp(R),p > 1, (T ( t ) / ) (O = / ( £ -t),f € L"(R).
Then we have | |T(t) | | = 1 and so LO0 = 0.

Example A.2.9 Let X = Lp(0,T),T > 0,p > 1, and let

0 iff e[0, t [

Then we have T(t) = 0 if t > T and so UJ0 = -00 .

Exercise A.2.10 Let A € C(X) compact and let {A;};eN be its eigenvalues.
Set T(t) = etA. Then we have

UJQ = sup Re A;.
ten
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A.3 The Hille-Yosida theorem

We assume here that T G Q(M,u). We denote by A its infinitesimal genera-
tor.

Proposition A.3.1 We have

p(A) D {X G C Re A > u} (A.3.1)

R(\, A ) y = / e ~ X t T ( t ) y d t , y G X , R e A > w (A.3.2)
Jo

Proof. Set

S = {A € C; Re A > 00}

F(X)y = / e-MT(t)ydt, y e X, Re A > LO.
Jo

This is meaningful since T G Q{M, uo). We have to show that, given A G E and
y G X the equation Ax — Ax — y has a unique solution given by x = F(X)y.

Existence

Let A G E, y G X1 x = F(X)y. Then we have

1 1 f̂ 1

A u T _ _ { V A / l _ 1 \ T _ _ p M i / p-XtT(t\iidt

h h JQ

and so, as /i —> 0,

lim A^x = Ax — y = Ax

that is x is a solution of the equation Ax — Ax = y.

Uniqueness

Let x G £>(A) be a solution of the equation Xx — Ax — y. Then we have

Jo Jo

r°° d
- / e~xt—

Jo dt
so that x = F{X)y.

We are now going to prove the Hille-Yosida theorem.
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Theorem A.3.2 Let A : D(A) C X —> X be a closed operator. Then A is
the infinitesimal generator of a strongly continuous semigroup belonging to
Q(M,uo) if and only if

(i) p{A) D {X G M; A > LJ}

(ii) \\ir(\,A)\\<T^,VnenV\>u> (A.3.3)

{Hi) D(A) is dense in X.

Given a linear operator A fulfilling (A.3.3) it is convenient to introduce a
sequence of linear operators (called the Yosida approximations of A). They
are defined as

An = nAR(n, A) = n2R(n, A) - n (A.3.4)

Lemma A.3.3 We have

lim nR(n, A)x = x, V x G X, (A.3.5)
n—»oo

and

lim Anx = Ax, V x G ̂ D(^). (A.3.6)

Proof. Since D(A) is dense in X and ||n,R(n,,4)|| < ̂ , to prove (A.3.5)
it is enough to show that.

lim nR(n,A)x = x, V x e D(A).
n-»oo

In fact for any x G D(A) we have

M
\nR(n, A)x - x\ = \R(n, A)Ax\ < \Ax\,

n — UJ

and the conclusion follows.
Finally if x G D(A) we have

Anx = nR(n, A)Ax -^ Ax,

and (A3.6) follows.D
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Proof of Theorem A.3.2. Necessity, (i) follows from Proposition
A.3.1 and (iii) from Proposition A.2.2. Let us show (ii). Let k G N and
A > CJ. It follows

d\k

from which

d\k

that yields the conclusion.

Sufficiency.

Step 1. We have

\\

In fact, by the identity

R(X, A)y = / {-t)ke-XtT(t)ydt, y

/»O

<M /
Jo

G X,

tAn\ - ,VnGN.

O
-nttn2R(n,A)

U t R (n, A)

it follows

(A.3.7)

Step 2. There exists C > 0 such that, for all m,n> 2u, and x e

7 ^ r
(m — u>)(n — UJ)

(A.3.8)

Setting un(t) = etAnx, we have

at
un(t) - um(t)) = An{un{t) - um(t)) - {Am - An)um(t)

= An(un{t) - um{t)) - (n - m)A2R(m,A)R(n,A)um(t).
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It follows

un(i) - um(t) = (n - m)A2R(m, A)R(n, A) / eit~s)Anum(s)ds
Jo

= (n-m)R{m,A)R(n,A) f e{t~s)AnesA™A2x.
Jo

Step 3. For all x G X there exists the limit

lim etAnx =: T(t)x (A.3.9)
n—»oo

and T : [0, oo) —>- L(X),t —> T(t) is strongly continuous.

^From the second step it follows that the sequence (un(t) is Cauchy, uni-
formly in t on compact subsets of [0,+oo[, for all x G D(A2). Since D(A2)
is dense in X (see Exercise A.2.3) this holds for all x G l . Finally it is easy
to check that T(-) is strongly continuous.

Step 4. If x G £>(̂ 4), then T(-)x is differentiable and

— T(t)x - T(t)Ax = AT(t)x.

In fact let x G D(A), and vn(t) = ftun(t).Then

Since x G -D(A) there exists the limit

lim vn(t) = etAAx
n—>oo

This implies that u is differentiable and u'(t) = v(t) so that u G Cfl([0, +00); X).
Moreover

A(nR(n, A)un(t)) = ^ ( t ) -> v(t)

Since 4̂ is closed and nR(n,A)un(i) —> u(t) it follows that u(t) G D(A) and
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Step 5. A is the infinitesimal generator of T(-).

Let B be the infinitesimal generator of T(-). By Step A B D A C1). It is
enough to show that if x G D(B) then x G D(A). Let x G D(B), Ao > a;,
setting z = Aox — JBX we have

- Aoi?(Ao, A)z - BR(XOl A)z = (Ao - B)R(\0, A)z.

Thus x = i?(A0, B)z = i2(A0, A)z G

Remark A.3.4 To use the Hille-Yosida theorem requires to check infinite
conditions. However if M — 1 it is enough to ask (ii) only for n = 1. In such
a case T G Q(1,(JJ). If u < 0 we say that T(-) is a contraction semigroup.

Example A.3.5 Let X — Co([O, TT]) the Banach space of all continuous func-
tions in [0, TT] that vanish at 0 and TT. Let A be the linear operator in X defined
as

D(A) = {ye C2([0,7r]);2/(0) - ^ (0) = y(ir) = y"(7r) = 0}

Ay = y \ Mye D(A)

It is easy to check that a (A) = {—n2; n G N}. Moreover any element oia(A)
is a simple eigenvalue whose corresponding eigenvector is given by

cpn(£) = sin n£, VnG N.

We have

Aipn = -n2ipn

Moreover if A G p(A) and / G C0([0, n]) , u = i?(A, .A)/ is the solution of the
problem

u(0) = «(7r) = 0.
xThat is D(B) D D(A) and Ax = Bx V x €
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By a direct verification we find

f / - v)]f(V)dV

(A.3.10)

+ S1^v . . ^ / T N / sinh.[y/\rj\f{rj)drj.
VAsmh(vA7r) Jo

/,From (A.3.10) it follows that

< \ , V A > 0 . (A.3.11)
A

Therefore the assumptions of the Hille-Yosida theorem are fulfilled.

A.4 Cauchy problem

Let A G G(M,CJ), and let T(-) be the semigroup generated by A.
We are here concerned with the following problem

u'(t) = Au(t)+g(t), te[0,T\
(A.4.1)

u(0) = x,

where x e H and g e C([0,T];X).
We say that u : [0, T] —> X is a 5inct solution of problem (A4.1) if

(i) «G

(ii) U(i)

(iii) M'(<) = >!«(*) + g(t), V t e [0, T], u(0) = x

We first cosider the homogeneous problem

u'{t) = Au(t), te [0,T]
(A.4.2)

u(0) = x,

Theorem A.4.1 Let x G D(A). Then problem (A.4.2) has a unique strict
solution given by u(t) = T(t)x.
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Proof. Existence follows from the Hille-Yosida theorem. Let us prove u-
niqueness. Let v be a strict solution of (A4.2). Let us fix t > 0 and set

f{s)=T{t-s)v(s), se[0,t].

f(s) is differentiable for s £ [0,t), since

vis + h)-v{s) (A.4.3)sh)
h

T(t-s- h)v(s) - T{t - s)v(s)
+ h '

As h —y 0 we find

f'(s) = T{t-s)v'(s)-T{t-s)v(s)

= T(t - s)Av(s) - AT(t - s)v(s) = 0.

Therefore / is costant and T(t)x = v(t). D
We now consider problem (AA.I).

Theorem A.4.2 Let x G D(A) and g e ^{[O.T^X). Then there is a u-
nique strict solution u(-) di (A.4.1) given by

u(t) = T(t)x + [ T(t- s)g(s)ds. (A.4.4)
Jo

Proof. Uniqueness can be proved as in Theorem A4.1. Let us prove exis-
tence. We shall prove that the function u(-), defined by (A.4.4) is a solution
of (A4.1) and

u e C1(%T]]X)nC([0,T];D(A)).

First it is easy to check that u G ̂ ([O.T^X) and

'(*) = T(t)g(0) + [ T(t- s)gf(s)ds. (A.4.5)
Jo
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Let us prove now that v(t) G D(A). We have in fact

l(T(h)u(t)-u(t))

= \\f T(* + %(* - s)ds - f T(s)g(t - s)ds\

I ft+h j r-h
+ - / T(s)g(t - s + h))ds - - / T(s)p(i -

" Jt h Jo

As /i —>• 0 we have

YimhT(h)u(t) - u(t))

= [ T(s)g'(t-s)d8 + T(t)g(O)-g(t).[
o

(A.4.6)

^From (A.4.5) and (A.4.6) it follows that « 6 C([0,T]; D(A)) and the con-
clusion follows. •

Let a; G iJ and /eC([0,T];ff). The the function u denned by

u{t) = T(t)x + T(t- s)g(s)ds (A.4.7)
Jo

clearly belongs to C([0, T]; if). We say that u is a mild solution of (A.4.1).
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Linear Semigroups Theory

In all this appendix X represents a complex Banach space (norm | • |), and
L(X) the Banach algebra of all linear bounded operators from X into X
endowed with the sup norm:

||T|| = sup{|Tx| : x G X, \x\ < 1}.

A.I Some preliminaries on spectral theory

Let A : D(A) C X —» X be a linear closed operator. We say that A G C
belongs to the resolvent set p(A) of A if A — A is bijective e and (A — A)'1 G
L{X)\ in this case the operator R(\,A) := (A — A)~l is called the resolvent
of A at A. The complementary set a (A) of p(A) is called the spectrum of A.

Example A.1.1 Let X = C([0,1]) be the Banach space of all continuous
functions on [0,1] endowed with the sup norm, and let C1([0,l]) be the
subspace of C([0,1]) of all functions u that continuously differentiate. Let
us consider the two following linear operators on X :

D(A) - ^([0,1]) , An = u' , V u G D(A),

D(B) = {ue ^([0,1]) ; u(0) = 0}, Bu = v! V u G DfJB).

We have

p(A) = 0, a(A) = C.

45
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In fact, given A G C, the mapping A — A is not injective since, for all c G C
the function u(£) = cex^ belongs to D(A) and (A — A)u — 0.

For as the operator B is concerned, we have

p(B) = C, a(A) = 0.

and

(i2(A, J?)/)(0 = - [eW-")f(ri)dri,V A G C,V / G X,V£ G [0,1].
Jo

In fact A G p(B) if and only if the problem

«(o) = o
has a unique solution f E X.

Let us prove the important resolvent identity.

P r o p o s i t i o n A . 1 . 2 If X , f i e p(A) we have

R(X, A) - R(n, A) = (fi- X)R{X, A)R(fjL, A) (A.I.I)

Proof. For all x e X we have

{fi - X)R{X, A)x = (fi-A + A- X)R(X, A)x =(fi- A)R(X, A)x - x

Applying R(fi, A) to both sides of the above identity, we find

(ft - X)R(fi, A)R(X, A)x = R{\, A)x - R(fi, A)x

and the conclusion follows. •

Proposition A.1.3 Let A be a closed operator. Let Ao € p{A), and \X —
Aol < \\R(X0,A)W

R{X, A) = R(X0, A)(l + (A - X0)R(X0, A))'1 (A.1.2)

Thus p(A) is open and cr(A) is closed. Moreover
oo

R(X, A) = J](- l )
k=l

and so R(\,A) is analytic on p{A).
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Proof. The equation Xx — Ax — y is equivalent to

(A - X0)x + (Ao - A)x = y,

and, setting z — (Ao — A)x, to

Since ||(A - \Q)R(\0,A)\\ < 1 it follows

z = (l + {\-\0)R{\(hA))-1y,

that yields the conclusion. •

A.2 Strongly continuous semigroups

A strongly continuous semigroup on X is a mapping T : [0, oo) —y L(X), t
T(t) such that

(i) T(t + s )=T( t )T(s) ,Vt , s>0, T(O) = 7.

(ii) T(-)x is continuous for all x £ X.

Remark A.2.1 ||T(-)|| is locally bounded by the uniform boundedness the-
orem.

The infinitesimal generator A of T(-) is defined by

D(A) = {xeX :3 lim Ahx
(A.2.1)

Ax — lim A/>x,

where

h '

Proposition A.2.2 JD(-4) is dense m X.
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Proof. For all x G H and a > 0 we set

1 fa

xa — - \ T(s)xds.
a Jo

Since lim^o^a = x, it is enough to show that xa G D(A). We have in fact
for any ft G (0, a),

-i r ra+h ph

Ahxa = — / T(s)xds - I T{s)xds
o-n lJa Jo

and, consequently xa G i)(A) since

lim AhXa — Aax.

D

Exercise A.2.3 Prove that D(A2) is dense in X.

We now study the derivability of the semigroup T(t). Let us first notice
that, since

AhT(t)x = T(t)Ahx,

if x G D(A) then T(t)x G D(i4),Vt > 0 and i4T(t)x - T(t)Ax.

Proposition A.2.4 4̂55?/me that x G -D(-A), iften T(-)x is differentiate
\/t>0 and

4 T(t)x = AT(t)x = T(t)Ax (A.2.2)
at

Proof. Let t0 > 0 be fixed and let h > 0. Then we have

T(tp + fe)^ ~ T(to)x h^p Arp(, v= AhT[to)x -> AT(t0)^.
ft

This shows that T(-)x is right differentiable at to- Let us show left differen-
tiability, assuming i0 > 0. For ft G]0,to[ we have

T(t0 - h)x - T(to)x h^p , v A= T(t0 - h)Ahx -> T(to)Ax,
ft

since ||T(t)|| is locally bounded by Remarl A.2.1. D
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Proposition A.2.5 A is a closed operator.

Proof. Let (xn) C D(A), and let x , j / G l b e such that

xn -» x, Axn = yn-± y

Then we have

Afcxn = \ f T(t)yndt.
n Jo

As h —> 0 we get x G D(A) and y = Ax, so that A is closed. •
We end this section by studying the asymptotic behaviour of T(-). We

define the type of T(-) as

Clearly o;o G [—oo,+cxo).

Proposition A.2.6 We have

Wo = lira •"gITOII. (A .2 .3)

Proof. It is enough to show that

log||T(t)||
limsup 6 " w " <o;0.

t

Let e > 0 and t£ > 0 be such that

log ||r(*e

Set

i = n(*)te + r(t), n(t) € N, r(<) e [0, te).

Since H^-)!! is locally bounded, there exists Me > 0 such that
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We have

log||T(*)||

t t

n(t) log||r(te)|| + log||T(r(t))|

As £ —> +00, we obtain

Corollary A.2.7 Le£ T 6e 0/ type LOQ. Then for all e > 0 i/iere esiste Ne > 1

< iVee
(wo+£)t, V t > 0 (A.2.4)

Proof. Let te,n(t),r(t) as in the previous proof. Then we have

\\T(t)\\ < \\T(t£)\\
n^\\T(r(t))\\ < etM

and the conclusion follows.•
In the sequel we shall denote by Q(M, to) the set of all strongly continuous

semigroups T such that

Example A.2.8 Let X = V(R),p > 1, (T(t)/)(O = / ( ^ -t),f G
Then we have ||T(t)|| = 1 and so u;0 = 0.

Example A.2.9 Let X = D>(0,T),T > 0,p > 1, and let

^ t ) i f e G [ t ' r ]

0 i f £ G [ o , t [

Then we have T(t) = 0 if t > T and so UQ — — oo.

Exercise A.2.10 Let A G £(X) compact and let {A^}^ be its eigenvalues.
Set T{t) = eM. Then we have

UJQ = sup Re Â .
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A.3 The Hille-Yosida theorem

We assume here that T G Q(M,LJ). We denote by A its infinitesimal genera-
tor.

Proposition A.3.1 We have

p(A) D {X G C Re A > co} (A.3.1)

R(X,A)y = / e-xtT(t)ydt, y e X, Re A > u (A.3.2)
Jo

Proof. Set

£ = {A G C; Re A > u}

/»OO

F(A)y = / e-xtT(t)ydt, y e X, Re A > w.
JO

This is meaningful since T G G{M, uo). We have to show that, given A G £ and
I / G l the equation Ax — Ax — y has a unique solution given by x = F(X)y.

Existence

Let A G S, y G X, x = F(A)y. Then we have

1 1 /^
Ahx = -(eA/l - l)x - -eA / l / e-xtT(t)ydt

and so, as h —> 0,

lim A/jX = Ax — y = Ax

that is x is a solution of the equation Ax — Ax = y.

Uniqueness

Let x G Z?(-A) be a solution of the equation Ax — Ax = y. Then we have

/ e"A tT(t)(Ax-Ax)dt = A / e~xtT{t)xdt
JO JO

- /
JO

= ar,

so that x = F(X)y.
We are now going to prove the Hille-Yosida theorem.
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Theorem A.3.2 Let A : D{A) C X -> X be a closed operator. Then A is
the infinitesimal generator of a strongly continuous semigroup belonging to
Q(M,uo) if and only if

(i) p(A) D { A G R ; A > u}

(n) \\Rn(\, A)\\ < ^ r , V n e N V A > u ; (A.3.3)

(in) D(A) is dense in X.

Given a linear operator A fulfilling (A.3.3) it is convenient to introduce a
sequence of linear operators (called the Yosida approximations of A). They
are defined as

An = nAR(n, A) = n2R(n, A) - n (A.3.4)

Lemma A.3.3 We have

lim nR(n, A)x = x, V x G l , (A.3.5)
n-»oo

and

lim Anx = Ax, V x G D(A). (A.3.6)
n—>oo

Proof. Since D(A) is dense in X and ||rijR(n,i4)|| < ^ , to prove (A.3.5)
it is enough to show that.

lim nR(n, A)x = x, V x G D(A).

In fact for any x G D(A) we have

M
Ini2(n, A)x - x\ = |i?( A ) A | < n — u

and the conclusion follows.
Finally if x G D(A) we have

ylnx = nR(n, A)Ax —>

and (A.3.6) follows.•
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Proof of Theorem A3.2. Necessity, (i) follows from Proposition
A.3.1 and (iii) from Proposition A.2.2. Let us show (ii). Let k e N and
A > u). It follows

from which

dA* v '

dk

/»oo

= (-t)ke-xtT{t)ydt,yeX,
Jo

d\k

that yields the conclusion.

Sufficiency.

Step 1. We have

ii-
In fact, by the identity

R(\,A) r
<M

Jo

tAn\ K

— e
k=0

n2HkRk(n,.
jfe!

it follows
0 0 ^2k+k

(A.3.7)

Step 2. There exists C > 0 such that, for all m,n > 2co, and x € -D(-42),

(m — a;)(n — cu)
(A.3.8)

Setting un(t) = etAnx, we have

d
dt

- (Am - An)um(t)

= >!„(«„(*) - um(t)) - (n
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It follows

u,
rt

n(t) - um(t) = (n - m)A2R(m, A)R(n, A) / e{t~s)Anum(s)ds
Jo

rt

(n-m)R{m,A)R(n,A) / e{t-s)Ane8AmA2x.
Jo

Step 3. For all x G X there exists the limit

lim etAnx =: T(t)x (A.3.9)
n—>oo

and T : [0, oo) -> L(X), t -> T(t) is strongly continuous.

^From the second step it follows that the sequence (un(t) is Cauchy, uni-
formly in t on compact subsets of [0,+oo[, for all x G D(A2). Since D(A2)
is dense in X (see Exercise A.2.3) this holds for all x G X. Finally it is easy
to check that T(-) is strongly continuous.

Step 4. If x G D(A), then T(-)x is differentiable and

^ - T(t)Ax =

In fact let x G D(A), and vn(i) = | ^ n ( t

vn(t) = eMni4nx

Since x G -D(̂ 4) there exists the limit

lim vn(t) = etAAx
n—>oo

This implies that u is differentiable and w;(i) = v(t) so that ix G Crl([0, +CXD); X).
Moreover

A(nR(n, A)un(t)) = <( t ) -> v(t)

Since A is closed and nR(n,A)un(t) —> it(i) it follows that u(t) G U(-A) and
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Step 5. A is the infinitesimal generator of T(-).

Let B be the infinitesimal generator of T(-). By Step 4 B D A (1). It is
enough to show that if x G D(B) then x G £>(A). Let x G £>(£), Ao > CJ,
setting z = Aox — 5 x we have

= Aoi?(Ao, ;4)z - £#(A0 , A)z = (Ao

Thus a: = #(A0, B)z = i?(A0, ^L)^ G D(A).D

Remark A.3.4 To use the Hille-Yosida theorem requires to check infinite
conditions. However if M = 1 it is enough to ask (ii) only for n = 1. In such
a case T G Q(1,UJ). If UJ < 0 we say that T(-) is a contraction semigroup.

Example A.3.5 Let X = C0([0, TT]) the Banach space of all continuous func-
tions in [0, TT] that vanish at 0 and TT. Let A be the linear operator in X defined
as

D(A) = {ye C2([0,7r]);?/(0) = j,"(0) = y(ic) = ^(TT) = 0}

= y;/, V y G

It is easy to check that a (A) = {—n2; n G N}. Moreover any element ofa(A)
is a simple eigenvalue whose corresponding eigenvector is given by

ipn(£) = sin n^, VnG N.

We have

Moreover if A G p(A) and / G C0([0, TT]) , u = i?(A7 A) / is the solution of the
problem

u(0) = U(TT) = 0.
lrrhat is D(B) D D(A) and Aa; = Ba: V x



56 Linear Semigroups

By a direct verification we find

\/Asinh(\/A7r)
(A.3.10)

\ZAsinh(-\/A7r) Jo

^From (A3.10) it follows that

\\R(X,A)\\<j, VAX). (A.3.11)

Therefore the assumptions of the Hille-Yosida theorem are fulfilled.

A.4 Cauchy problem
Let A G Q(M,UJ), and let T(-) be the semigroup generated by A.

We are here concerned with the following problem

u'(t) = Au(t)+g(t), te[0,T]
(A.4.1)

u(0) = x,

where x G J? and g G C([0, T]; X).
We say that ^ : [0, T] —> X is a 5<nci solution of problem (A4.1) if

(i) u e

(ii) «(t)

(iii) u'(t) = Au(t) + g(t), V t € [0, T], u(0) = x

We first cosider the homogeneous problem

u'(t)=Au(t), te [0,T]
(A.4.2)

w(0) = x,

Theorem A.4.1 Let x G D(A). Then problem (A4.2) has a unique strict
solution given by u(t) = T(t)x.
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Proof. Existence follows from the Hille-Yosida theorem. Let us prove u-
niqueness. Let v be a strict solution of (A4.2). Let us fix t > 0 and set

f(s)=T(t-s)v(s), 5 6[04

f(s) is differentiate for s G [0,i), since

{ l s + h)v(s + h)-T(t-s)v(s))

v{s + h)-v{s) (A.4.3)s h )
h

T(t-s- h)v(s) - T(t - s)v{s)
+ h '

As h —> 0 we find

f'(s) = T(t-s)v'{s)-T'(t-s)v(s)

= T(t - s)Av(s) - AT(t - s)v(s) = 0.

Therefore / is costant and T(i)x = v(t). O
We now consider problem (A4.1).

Theorem A.4.2 Let x G D(A) and g G Cl([0,T];X). Then there is a u-
nique strict solution u(-) di (A.4.1) given by

u(t) = T{t)x + f T(t - s)g(s)ds. (A.4.4)
Jo

Proof. Uniqueness can be proved as in Theorem A A.I. Let us prove exis-
tence. We shall prove that the function rx(-), defined by (A A A) is a solution
of (A4.1) and

u e C'dO^X) nC([0,T};D(A)).

First it is easy to check that u G C1([0, T]; X) and

u'(t) = T{t)g{0) + [ T(t- s)gf(s)ds. (A.4.5)
J
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Let us prove now that v(i) G D(A). We have in fact

l(T(h)u(t)-u(t))

= - / T(s + h)g(t-s)ds- / T(s)g(t - s)ds\

1 rt+h i rh

+ - / T(S)^(t - s + h))ds - - / T(s)g(t - s))ds.
h Jt n Jo

As h —>• 0 we have

Urn i(T(A)«(t)-«(*))
/i->o n

(A.4.6)
= [ T(s)g'(t-s)ds + T(t)g(O)-g(t).

J

^Frorn (A.4.5) and (A.4.6) it follows that u G C([0,T];D(i4)) and the con-
clusion follows. •

Let x G H and / G C([0, T]; H). The the function ix defined by

u(t) = T(t)x + [ T(t- s)g(s)ds (A.4.7)

clearly belongs to C([0, T]; i7). We say that u is a mild solution of (A.4.1).



Appendix B

Contraction Principle

Let T > 0, and let {-fn} be a sequence of mappings from Cu([0,T];E(iJ))
into itself such that

||7n(P) " 7»(Q)II < <*\\P-Q\\, VP,Q E a([0,T]; £(#)), n G N,

where a £ [0,1).
Moreover assume that there exists a mapping 7 from the space Cw([0, T];

into itself such that

for all P G Cu([0, T\; E(H)) and all m e N, where 7m and 7™ are defined by
recurrence as

for m = 2, 3,... and P G Cs([0, T]; £(#))• It is easy to check that

- 7(0)II < <*\\P - Qil, V P, Q G Ctt([0, T];

Then, by the classical Contraction Mapping Principle, there exists unique Pn

and P in Cu([0,T]; E(if)) such that

7n(Pn) = Pn rm and 7(P) = P.
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However, since we do not assume that

in CU(%T

we cannot conclude that Pn —> P in CU([Q,T]]Y,(H), but a weaker result
holds.

Lemma B.0.3 Under the previous hypotheses on the sequence of mappings

{in},

Proof. Set

p°-n P°-n

and define

Pm = 7m(P°) P m = 7m(P°) ra E N

By the classical Contraction Mapping Principle, we have

lim Pm = P, lim P™ = Pn in Cu([0, T]; S(#)) , n G N.
m—>-oo ra—>-oo

Moreover
CO OO

11 T~) TyTn 11 ^" ^^ ^ 1 1 / 7~)t) \ 11 i i T ~ ) T y m 11 ^̂ " ^̂  ^ ^c 11 / TD*J \ 11I ± — i I \ ^^ x O / 11 ''V ( i ^ I I I II _ i ^ — _f^ 11 * \ x f^V I ^ I _ t ^ 111

k—m k=m

Now ftxx <E H, then for all t G [0, T]

(B.0.2)

Given e > 0 there exists m£ G N such that

|| + ||7n(P0)||] < | , (B.0.3)

for all m>m£ and all n G N. By (B.0.2) and (B.0.3) it follows that

Now (B.0.1) yields the conclusion. •


