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VALUE FUNCTION FOR MAYER
PROBLEM

Consider T > 0, a complete separable metric
space U and a map / : Rn x U i-> 7?n. We
associate with it the control system

(1) x\t) = f(x(t),u(t)), u(t) e U

Let an extended function g : Rn y-^ RU {+00}
and £0 G Rn be given. Consider the minimiza-
tion problem, called Mayer's problem:

min {g(x(T)) \ x is a solution to (1), x(0) — £0}

The value function associated with this problem
is defined by: for all (*0, x0) G [0, T] x Rn

= mf{g(x(T)) \ x solves (1), x(t0) = x0}

We replaced one problem by a family of
problems.

In general V is nonsmooth, but still contains a
lot of information about optimal solutions.



The concept of control can be described as the
process of influencing the behavior of a
dynamical system so as to achieve the de-
sired goal:

to maximize a profit, to minimize the energy,
to get from one point to another one, to remain
at a given point with the minimum effort, etc.

"After correctly stating the problem of optimal
control and having at hand some satisfactory ex-
istence theorems, augmented by necessary condi-
tions for optimality, we can consider that we have
sufficiently substantial basis to study some special
problems, as for instance Moon Flight Problem".

From a book on Optimal Control, 1969



"Control of nonlinear dynamical systems is an
area that has seen some major theoretical devel-
opments in the last fifteen years. At the same
time, it contains major unsolved mathematical
problems, some of which relate to very practical
application issues. In engineering practice, non-
linear systems are omnipresent; however, most of
them have been designed by using traditional lin-
ear regulation techniques."

"The vast bulk of the theory is linear. More-
over, the control paradigms involved are gener-
ally linear also. This leaves the subject in the
strange position of treating highly nonlin-
ear physical systems being controlled by
discrete combinatorial mechanisms (computers)
using linear models. Surely a case of look-
ing, not where the penny is lost, but where the
street lamp shines!"

From the Report of the Panel
"Future Directions in Control Theory:

A Mathematical Perspective", 1988



OUTLINE

1. Differential Inclusions and Control Systems.
Basic theorems of Differential Inclusions.

2. Value Function and Optimal Feedback.
Necessary and sufficient conditions for optimal-
ity. Uniqueness of optimal solutions and dif-
ferentiability of value function.

3. Hamilton-Jacobi-Bellman equation.
Viability Theorem, lower semicontinuous and
viscosity solutions.

4. Value Function of Bolza problem.
Hamilton-Jacobi equation and characteristics.
Riccati equations and chocks of characteristics.
Smoothness of Value Function.

5. Hamilton-Jacobi-Bellman Equation for
constrained optimal control problems.
Neighbouring Feasible Trajectories Theorem.



Nonlinear Control Systems and
Differential Inclusions

Consider a complete separable metric space
real numbers to < T and a map (describing the
dynamics)

/ : [to,T] x R n x 2 4 R n

Let U C Z. We associate with these data the
control system

(2) xf = f { t , x , u { t ) \ u(t) e u , t e [to,T\

An absolutely continuous function x : [to, T] i->
Rn is called a solution to (2) if there exists a mea-
surable map u : [to, T] K> [/, called admissible
control, such that

xr(t) — /(t, x(i), u(t)) almost everywhere in [to, T]

A map x G C(to,T; Rn) is called absolutely
continuous if for almost all t G [to, T] the deriva-
tive x\t) exists, a/ e L 1 ^ , T; i?n) and

Vt G [<o,T], ^(t) = x(t0) + flx\s)ds



Reduction to Differential Inclusion
Define the set-valued map from [to, T] x R n to

R n b y

F(t,x) = f(t,x,U) = Uu€U{f(t,x,u)}
and consider the differential inclusion

(3) x\t) e F{t,x{t)) a.e. in [to,T\

Clearly every solution x to control system (2) sat-
isfies (3).

Solutions to Differential Inclusions
Consider a set-valued map F from [to,T] x Rn

into subsets of Rn, i.e. for every (£, #), F(t, x) C
Rn. We associate with it the differential inclusion

(4) x1 G F(t,ar)

An absolutely continuous function x : [to, T] i->
i?n is called a solution to (4) if

(5) xr(t) G F(t,x(t)) a.e. in [£0,T]

We denote by Su ^i (XQ) the set of solutions to
the differential inclusion (4) starting at XQ G Rn

at time to and defined on the time interval

^ solves (4) on [to,T],



The natural question arises whether (3) has the
same solutions than the control system (2)? The
answer is positive for a large class of maps / .

We impose the following assumptions on / and
U:

V (x, u), /(•, x, u) is measurable
(6) < V t G [to? T], /(£, •, •) is continuous

[/ is nonempty and closed
Theorem 1.1 Assume that (6) holds true. Then
the set of solutions to control system (2) co-
incide with the set of solutions to differential
inclusion (3).

State Dependent Control Systems
Let Z be a complete separable metric space and

U : R n -v* Z
be a given set-valued map, i.e. U(x) C Z. Con-
sider the control system

(7) x' = f(t,x,u), ueU(x), te[to,T\
An absolutely continuous function x : \t$,T\ i->
R n is called a solution to (7) if for some measur-
able selection u{t) G U{x(t)) we have
x\t) = f(t,x(t),u(t)) almost everywhere in [£o,T]



Reduction to Differential Inclusion

We introduce the set-valued map F : [to, T] x
R n ~» R n defined by

F(£, X) = /(£, x, U(x)) = {/(*, #, v) | v G

and replace (7) by the differential inclusion

(8) x\t) e F(t,x(t)) a.e. in [to,T]

We impose the following assumptions:

V (x, i/), f(-,x,u) is measurable
V £ G [̂ o, T], /(£,-,-) is continuous
[/ is continuous with closed images

Theorem 1.2 If (9) holds true, then the sets
of solutions to control system (7) and differ-
ential inclusion (8) do coincide.

(9)



Nonlinear Implicit Control Systems

Let / : Rn x Rn x Z \-± Rm be a continuous
map and U C Z be a given closed set. Consider
the implicit control system

( io) / ( * , *', u(t)) = o, u(t) e u , t e [t0, T]
An absolutely continuous function x : [to,T] \->
R n is called a solution to (10) if there exists a
measurable map u : [to, T] \-> U such that

f(x(t),x\t),u(t))=0

almost everywhere in [£o,T].

Reduction to Differential Inclusion

Define the set-valued map F : R n ~> R n by

F(x) = {v e Rn | 3 u G U with f(x, v, u) = 0}

and consider the differential inclusion

(11) x\t) e F{x(t)) a.e. in [to,T\

Clearly every solution to (10) solves (11).

Lemma 1.3 / / / is continuous, then the solu-
tion sets of (11) and (10) do coincide.

10



REGULARITY OF SET-VALUED
MAPS

Let X, Y be metric spaces and

be a set-valued map. For every x e l the subset
F(x) is called the image of F at x.

A set-valued map F is called upper semicon-
tinuous at x if and only if for any neighborhood
WofF(x),

3 rj > 0 such that V x1 e Bv{x), F{x') C U

The map F is called lower semicontinuous
at x if and only if for any open subset U C Y
such that U n F{x) ^ 0,

3 rj > 0 such that V x ; e ^ ( z ) , F(x')DU ^ 0

If F is single-valued both notions coincide.

F is called continuous if it is both lower and
upper semicontinuous.



Definition 1.4 When (X, dx) is a metric space
and Y is a normed space, we shall say that
F : X ^>Y is Lipschitz (L—Lipschitz) on a
subset K C X if there exists L > 0 such that

Vxhx2eK, F(xi) C F(x2)+Ldx{xhx2)B

where B denotes the closed unit ball in Y.
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FILIPPOV'S THEOREM

Consider an absolutely continuous

Filippov's theorem provides an estimate of the
distance from y to the set S\t yi (XQ) under the
following assumptions on F:

i) \/x G Rn, F(x) is closed
ii) 3 (3 > 0, V t, F is k-Lipschitz on y{t) + /3B

Theorem 1.5 Let S > 0 and set

7(5) - dist(y\s),F(y(s)))

V(t) = eW-^s + k-yWeW-'Us
Ifv(T) < P, thenM x0 G Rn with ||x0 - 2/(*o)II <
5, there exists x G <Sr+nTi(£o) su°h that

w-)-1 j v '

y a.e. in

13



LIPSCHITZ DEPENDENCE ON
INITIAL CONDITIONS

Corollary 1.6 Let y0 G Rn, y G ^j
Assume that F has closed images and is k—
Lipschitz on a neighborhood ofy{\t^ T]). Then
there exists S > 0 depending only on k such
that for all XQ G B(y§, 5) we have

inf \\x-y\\wi+ <

Filippov's theorem allows to estimate the effect
on the solutions of perturbations of dynamics
F or initial conditions. It is as useful as Gron-
wall's lemma...

14



EXAMPLE OF APPLICATION OF
FILIPPOV'S THEOREM

Corollary 1.7 We assume that F is locally
Lipschitz at XQ and has closed images. Then
for every u G F(XQ) there exist t\ > to and a
solution x(-) G Su ti\(xo) w^ x\^) ~ u-

Proof— Fix u G F(XQ). It is enough to con-
sider the absolutely continuous function

Vt G [to,T\, y{t) = x0 + {t-to)u

Then for all t G [t0, T\ such that (t-tQ) \\u\\ < (5

d{u, F(y(t))) < d{u, F{x0)) + k \\y{t) - xo\\

= k(t — to) \\u\\
By Filippov's Theorem there exist t\ > to a nd a
solution x G Su ^i(^o) s u ch that

\W)-y{t)\\ <

- to)2 \\u\\
for all t G [£o, £].]• Thus

V t G [*o,*l], \\x(t) -XQ-(t- to)u\\ = o(t-t0)

15



RELAXATION T H E O R E M S

Let XQ G Rn* We compare next solutions to
the differential inclusion

K ()) a-e-in
X(to) = XQ

and to the convexified (relaxed) differential inclu-
sion:

' x\t) G coF{x(t)) a.e. in [to,T\
x(t0) = XQ

Observe that if F is Lipschitz on a set K, then
so does the set-valued map x ^> coF(x)1 where
co denotes the closed convex hull.

(13)

Theorem 1.8 Let y : [to,T\ ^ Rn be a so-
lution to the relaxed inclusion (13). Assume
that F has closed images and is Lipschitz on
a neighborhood of y([to,T]).

Then for every e > 0 there exists a solution
x to (13) such that \\x — y\\c < e.

16



Example Consider two control systems

x1 — u, u G {—1, 1}, x(0) = XQ

x1 = u, u G [—1, 1], x(0) — XQ

The goal is not to move from XQ.

In the second case it is enough to apply the
control u = 0.

In the first case there is no solution, but it is
possible to remain in any small neighborhood of
XQ by switching controls between -1 and +1 often
enough.

Theorem 1.9 (Relaxation) Let F : Rn ^
Rn be a locally Lipschitz set-valued map with
closed images and XQ G Rn.

Then solutions to the differential inclusion

' xf{t) G F(x{t)) a.e. in [tQ,T\

are dense (in C(tQ,T;Rn)) in solutions to
the relaxed inclusion

x\t) G coF(x(i)) a.e. in [to,T\
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COMPACTNESS OF THE
SOLUTION SET

Theorem 1.10 Let F : Rn ^ Rn be a Lips-
chitz set-valued map with compact images and
XQ G Rn and Sff 1̂ (#o) denote the set of so-
lutions to the relaxed inclusion. Then the clo-
sure of Su T}(XO) in the metric of uniform

convergence is compact and is equal to Sf°

Corollary 1.11 Assume that for every x, f(x, U)
is convex and compact and for some k > 0
f{-,u) is k—Lipschitz for all u G U. If g is
lower semicontinuous, then the Mayer prob-
lem has an optimal solution and the value func-
tion is lower semicontinuous.

Corollary 1.12 Assume that for every x, /(#, U)
is compact and for some k > 0 /(-, u) is k—Lipschit
for all u G U. If g is continuous, then the
value functions of the Mayer problem and the
relaxed Mayer problem coincide and are con-
tinuous.

18



LIMITS of SETS
Let X be a metric space supplied with a distance
d. When K is a subset of X, we denote by

dj((x) := d(x, K) := inf d(x, y)

the distance from x to K.

Definition 1.13 Let (ifn)neN be a sequence
of subsets of a metric space X. We say that

, Kn) =

is the upper limit of the sequence Kn and

Liminfn_^oo^n := {x e X \ limn^ood(x, Kn) = 0}

is its lower limit. A subset K is said to be the
limit or the set limit of the sequence Kn if

K =

In this case we write K = Li

Naturally, we can replace N by a metric space
X, and sequences of subsets n ~> Kn by set-
valued maps x ~> F(x) (which associates with a
point x a subset F(x)) and adapt the definition
of upper and lower limits to this case, called the
continuous case.

19



DERIVATIVES OF SET-VALUED
MAPS

Let X, Y be normed spaces, F : X ^ Y be a
locally Lipschitz set-valued map and y G F(x).

The adjacent derivative D^F(x,y) is de-
fined by: for all u G X

^( +D»F(x,y)(u) :=

Proposition 1.14 //£/ie images of F are con-
vex and F is Lipschitz around x, then for any
y G F{x), D9F{x^y) has convex images and

, y){u) + DbF(x, y)(0) = DbF(x, y)(u)

Example F{x) = f{x,U). Assume that F
has convex images. Fix x, u G U and set y =
f(x,u). Then for all w

bF(xy= DbF(x,y)(0)

C DbF(x,y)(w)

20



VARIATIONAL INCLUSIONS

Theorem 1.15 Consider the solution map Su
as the set-valued map from Rn to the (Sobolev)
space Wljl(£o, T] Rn) and a solution y(-) to the
differential inclusion

xf{t) G F(x(t)) a.e. in [to,T\

(14)

Assume that F has closed images and is Lip-
schitz around y([to,T]). Let v G Rn and w G
W ' (to, T] Rn) be a solution to the linearized
inclusion

w\t) G &F{y(t),y\t)){w{t)) a.e.
w(t0) = v

Then for all v^ G Rn converging to v when
h —K 0+ and for all small h > 0; there ex-
ists Xfr G S\tQT\(x0 + hvh) such that the dif-
ference quotions (x^ — x)/h converge to w in

%T]Rn) whenh^0+.
In particular, w G D S(xQ,y(-))(v).

21



Asking Less Convergence Allows to
Relax the Differential Inclusion

Theorem 1.16 Consider the solution map Su yn(•)
as the set-valued map from Rn to C{t^ T; Rn).
Let y be a solution to the differential inclusion

x\t) e F(x(t)) a.e. in [to,T\
x{t0) = x0

Assume that F has closed images and is Lip-
schitz around y([to,T]), v G i?n. Let w be a
solution to the inclusion

w\t) G D\cdF)(y(t),y'(t))(w(t)) a.e. in [to,T\
w{tQ) = v

Then for all v^ G Rn converging to v when
h -> 0+ and for all small h > 0, there ex-
ists Xfr G S\tQ,T\ix0 + hvh) such that the dif-
ference quotions (x^ — x)/h converge to w in

22



INFINITESIMAL GENERATOR of
REACHABLE MAP

Consider a set-valued map F : R n ~* Rn . For
all 0 < to < h and £ G R n set

R{thto)Z := {x{ti)\ x €
This is the so-called reachable set of the differ-
ential inclusion from (£o?£) a^ time £]_.

The set-valued map R enjoys the following semi-
group properties: for all 0 < t\ < t<i <

V C e Rn, Rfo, t2)R{t2,

When F is sufficiently regular, the set-valued map
coF(-) is the infinitesimal generator of the semi-
group R(-jm) in the sense that the difference quo-
tients (R(t + /i, t)£ — £)/h converge to coF(£).

Theorem 1.17 Let XQ G Rn. Assume that F
is locally Lipschitz around XQ and has nonempty,
compact images. Then

COF{XQ) =

In other words R(h, 0)XQ = XQ+hcoF(xo)+o(h)

23



PARAMETRIZATION OF
SET-VALUED MAPS

If it was always the case, one could get
back to single-valued maps and to avoid
the curved arrows.

Consider a metric space X and F : X ~> Rn.

Definition 1.18 Let U be a metric space. We
say that a single-valued map

f :X xU .-> Rn

is a Lipschitz parametrization of F if

i) Vx G X, F(x) = f{x,U)
ii) 3 k > 0, V u G £/, /(•, u) is fc-Lipschitz
iv) \/ x G X, /(#, •) is continuous

Theorem 1.19 Assume that F is k-Lipschitz
and has nonempty compact convex images. Then
there exist 5n > c > 0 and a Lipschitz parametriza-
tion f of F with U equal to the closed unit ball
B in Rn such that: V (x, u) G Rn x U, v G U

f(-,u) is ck — Lipschitz
\\f(x,u) - f{x,v)\\ < c(maxyGF(x) \\y\\) \\u-v\\
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