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VALUE FUNCTION FOR MAYER
PROBLEM

Consider T" > 0, a complete separable metric
space U and amap f : R" x U — R"™ We
associate with it the control system

(1) 2'(t) = f(=(t),ult), ut) € U

Let an extended function g : R" — R U {+o0}
and £y € R"™ be given. Consider the minimiza-
tion problem, called Mayer’s problem:

min {g(x(7T)) | z is a solution to (1), x(0) = &}
The value function associated with this problem

is defined by: for all (¢g, zg) € [0,T] x R"

V(tg, xg) = inf{g(x(T)) | x solves (1), z(tg) = zp}
We replaced one problem by a family of

problems.

In general V' is nonsmooth, but still contains a
lot of information about optimal solutions.



The concept of control can be described as the
process of influencing the behavior of a
dynamical system so as to achieve the de-
sired goal:

to maximize a profit, to minimize the energy,
to get from one point to another one, to remain
at a given point with the minimum effort, etc.

“After correctly stating the problem of optimal
control and having at hand some satisfactory ex-
istence theorems, augmented by necessary condi-
tions for optimality, we can consider that we have
sufficiently substantial basis to study some special
problems, as for instance Moon Flight Problem”.

From a book on Optimal Control, 1969



“Control of nonlinear dynamical systems is an
area that has seen some major theoretical devel-
opments in the last fifteen years. At the same
time, it contains major unsolved mathematical
problems, some of which relate to very practical
application issues. In engineering practice, non-
linear systems are omnipresent; however, most of
them have been designed by using traditional lin-
ear regulation techniques.”

“The vast bulk of the theory is linear. More-
over, the control paradigms involved are gener-
ally linear also. This leaves the subject in the
strange position of treating highly nonlin-
ear physical systems being controlled by
discrete combinatorial mechanisms (computers)
using linear models. Surely a case of look-
ing, not where the penny is lost, but where the
street lamp shines!”

From the Report of the Panel
“Future Directions in Control Theory:
A Mathematical Perspective”, 1988



OUTLINE

1. Differential Inclusions and Control Systems.
Basic theorems of Differential Inclusions.

2. Value Function and Optimal Feedback.
Necessary and sufficient conditions for optimal-
ity. Uniqueness of optimal solutions and dif-
ferentiability of value function.

3. Hamilton-Jacobi-Bellman equation.
Viability Theorem, lower semicontinuous and
viscosity solutions.

4. Value Function of Bolza problem.
Hamilton-Jacobi equation and characteristics.
Riccati equations and chocks of characteristics.
Smoothness of Value Function.

5. Hamilton-Jacobi-Bellman Equation for
constrained optimal control problems.
Neighbouring Feasible Trajectories Theorem.



Nonlinear Control Systems and
Differential Inclusions

Consider a complete separable metric space Z,
real numbers ¢ty < T and a map (describing the
dynamics)

f:lto,T] x R"x Z— R"
Let U C Z. We associate with these data the
control system
(2) &' = f(t,z,u(t), u(t) € U, t € [t, T]

An absolutely continuous function x : [tg, T'] —
R™ is called a solution to (2) if there exists a mea-
surable map u : [tg, T] — U, called admissible
control, such that

z'(t) = f(t,z(t),u(t)) almost everywhere in [ty, T

A map z € C(tyg, T; R") is called absolutely
continuous if for almost all ¢ € [tg, T'| the deriva-
tive 2/(t) exists, 2’ € L(tg, T; R™) and

Vit € [ty, T], x(t) = z(tg) + /ttoatl(s)ds



Reduction to Differential Inclusion

Define the set-valued map from [tg, 7] x R" to
R" by

F(tvx) — f(t,:l?, U) — UUEU{f(taxau)}
and consider the differential inclusion
(3)  2'(t) € F(t,z(t)) ae. in [tg, T]
Clearly every solution x to control system (2) sat-
isfies (3).

Solutions to Differential Inclusions
Consider a set-valued map F' from [ty, 7] x R"
into subsets of R", i.e. for every (¢, x), F(t,z) C
R™. We associate with it the differential inclusion
(4) ' € F(t,x)

An absolutely continuous function x : [ty, T —
R" is called a solution to (4) if

(5)  2'(t) € F(t,z(t)) ae. in [tg,T]
We denote by S[tO,T] (o) the set of solutions to

the differential inclusion (4) starting at zg € R"
at time ¢ and defined on the time interval [tg, T

S|

to,

7)(z0) = {z | @ solves (4) on [to, T, z(tp) = zo}



The natural question arises whether (3) has the
same solutions than the control system (2)? The
answer is positive for a large class of maps f.
We impose the following assumptions on f and
U: |
'V (z,u), f(-,z,u) is measurable
(6) {Vte€lty,T], f(t,-,-)is continuous
U is nonempty and closed
Theorem 1.1 Assume that (6) holds true. Then
the set of solutions to control system (2) co-
incide with the set of solutions to differential
inclusion (3).

State Dependent Control Systems
Let Z be a complete separable metric space and
U:R" ~ Z
be a given set-valued map, i.e. U(z) C Z. Con-
sider the control system

() 2’ = f(t,z,u), we Ulx), t € [ty, T]
An absolutely continuous function z : [tg, T'] —

R is called a solution to (7) if for some measur-
able selection u(t) € U(x(t)) we have

z'(t) = f(t,z(t),u(t)) almost everywhere in [to, T
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Reduction to Differential Inclusion

We introduce the set-valued map F' : [tg, T] X
R"™ ~» R" defined by

Flt,z) = f(t,z,U(x)) = {f(t,,v) | v € U()}
and replace (7) by the differential inclusion

(8) 2'(t) € F(t,z(t)) ae. in [tg, T]

We impose the following assumptions:

'V (z,u), f(-,z,u) is measurable
Vit e lty,T], f(t,-,-) is continuous
U is continuous with closed images

Theorem 1.2 If (9) holds true, then the sets
of solutions to control system (7) and differ-
ential inclusion (8) do coincide.

v

(9)




Nonlinear Implicit Control Systems

Let f: R"xR"x Z +— R"™ be a continuous

map and U C Z be a given closed set. Consider
the implicit control system

(10) f(z,z",u(t)) =0, u(t) € U, t € [ty, T]

An absolutely continuous function z : [tg, T| —
R is called a solution to (10) if there exists a
measurable map w : [tg, 7| — U such that

f(a(t),2'(t), u(t)) = 0
almost everywhere in [tg, T').

Reduction to Differential Inclusion
Define the set-valued map F' : R" ~» R" by

F(z)={v € R" Ju € U with f(z,v,u) =0}
and consider the differential inclusion

(11)  2'(t) € F(z(t)) ae. in [ty, T
Clearly every solution to (10) solves (11).

Lemma 1.3 If f is continuous, then the solu-
tion sets of (11) and (10) do coincide.

10



REGULARITY OF SET-VALUED
MAPS

Let X, Y be metric spaces and
F:X~Y

be a set-valued map. For every £ € X the subset
F'(x) is called the image of F' at .
A set-valued map F' is called upper semicon-

tinuous at x if and only if for any neighborhood
U of F(x),

3n >0 suchthat V2’ € By(z), F(z')cU

The map F' is called lower semicontinuous
at x if and only if for any open subset Y C Y

such that U N F(z) # 0,
37 >0 such that V' € By(z), F(z"\nid # 0
If F'is single-valued both notions coincide.

F' is called continuous if it is both lower and
upper semicontinuous.

11



Definition 1.4 When (X,dx) is a metric space
and Y 1s a normed space, we shall say that
F : X ~ Y is Lipschitz (L—Lipschitz) on a
subset K C X if there exists L > 0 such that

Vi, 12 € K, F(z1) C F(zo)+Ldx(z1,79)B

where B denotes the closed unit ball in Y .
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FILIPPOV’S THEOREM
Consider an absolutely continuous
y : [to, T] — R"

Filippov’s theorem provides an estimate of the
distance from y to the set Sy 7)(zo) under the
following assumptions on F':

i) Vx € R" F(x) is closed
i1) A8 > 0,V t, F is k-Lipschitz on y(t) + 8B

Theorem 1.5 Let 0 > 0 and set
v(s) = dist(y'(s), F(y(s)))
n(t) = 05 4 y(s) ds

If1(T) < B, then¥ g € R™ with |lzg — y(to)]| <
0, there exists © € Sy, 1(x0) such that

|z(t) —y(@t)|| < n(t) forallt € [ty, T]
l2'(t) — 4/ (t)] < En(t) +(t) ae. in[ty, T]

13



LIPSCHITZ DEPENDENCE ON
INITIAL CONDITIONS

Corollary 1.6 Let yg € R™, y € S[to,T](yO)-
Assume that ' has closed images and s k—
Lipschitz on a neighborhood of y([tg, T]). Then
there exists 0 > 0 depending only on k such
that for all zo € B(yp,d) we have

k(T —to) |

inf ||z -yl < e 2o — yol|

xES[tO,T] (.’IZQ)

Filippov’s theorem allows to estimate the effect
on the solutions of perturbations of dynamics
F' or initial conditions. It is as useful as Gron-
wall’s lemma...

14



EXAMPLE OF APPLICATION OF
FILIPPOV’S THEOREM

Corollary 1.7 We assume that F' 1is locally
Lipschitz at T¢ and has closed 1mages. Then
for every u € F(xq) there exist t; > tg and a

solution x(-) € Sy, 1,1(z0) with 7' (tg) = u.

Proof — Fix u € F(xq). It is enough to con-
sider the absolutely continuous function

Vi € lto,T], y(t) = zo + (t—to)u
Then for all £ € [tg, T'] such that (t—tg) ||u]| < B
d(u, F(y(t))) < d(u, F(zo)) + k|ly(t) — zol|

= k(t —to) ||ull
By Filippov’s Theorem there exist t; > ¢y and a
solution € Sp, 1.1(20) such that

lz(8) =yl < o k(s — to) [[ull FEds

< geFmtk(t — 10)?||u]
for all t € [tg, t1]. Thus
Vi e [to,t1], llz(t) —zo— (¢ —to)ull = oft—to)

15



RELAXATION THEOREMS

Let zg € R"™. We compare next solutions to
the differential inclusion

r'(t) € F(z(t)) ae. in [tg,T]
12) {ﬂf(to) = 70 O

and to the convexified (relaxed) differential inclu-

| 7'(t) € eo F(z(t)) ae. in [tg,T]
(13) {a?(to) = ) :

Observe that if F' is Lipschitz on a set K, then
so does the set-valued map = ~» ¢oF'(x), where
co denotes the closed convex hull.

Theorem 1.8 Let y : [tg, T] — R™ be a so-
lution to the relazed inclusion (13). Assume
that F' has closed images and is Lipschitz on
a neighborhood of y([tg, T)).

Then for every € > 0 there exists a solution
x to (13) such that ||z — y||lc < €.

16



Example Consider two control systems

' =wu, ue {-11} =z0) = x

' =u, uwel[-11], =z(0) = z
The goal is not to move from .

In the second case it is enough to apply the
control u = 0.

In the first case there is no solution, but it is
possible to remain in any small neighborhood of
xo by switching controls between -1 and +1 often
enough.

Theorem 1.9 (Relaxation) Let F' : R"™ ~»
R"™ be a locally Lipschitz set-valued map with
closed images and zg € R".
Then solutions to the differential inclusion
7'(t) € F(z(t)) a.e. in [tg,T]
z(to) = 2o
are dense (in C(tp,T; R")) in solutions to
the relaxed inclusion
[:c'(t) € co F(x(t)) ae. in [ty, T)
z(to) = zo

17



COMPACTNESS OF THE
SOLUTION SET

Theorem 1.10 Let F' : R" ~ R" be a Lips-
chitz set-valued map with compact images and
rg € R" and Sﬁg,T](fﬁO) denote the set of so-
lutions to the relaxed inclusion. Then the clo-
sure of S[tO,T](xO) in the metric of uniform
convergence is compact and is equal to S[‘;’f‘é,T](xo).

Corollary 1.11 Assume that for every z, f(xz,U)
1s convex and compact and for some k > 0
f(-,u) is k—Lipschitz for all w € U. If g is
lower semicontinuous, then the Mayer prob-
lem has an optimal solution and the value func-
tion 1s lower semicontinuous.

Corollary 1.12 Assume that for every z, f(xz,U)
is compact and for some k > 0 f(-,u) is k— Lipschit
for all w € U. If g is continuous, then the
value functions of the Mayer problem and the
relaxed Mayer problem coincide and are con-
tinuous.
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LIMITS of SETS

Let X be a metric space supplied with a distance
d. When K is a subset of X, we denote by

di(x) = d(z,K) = yiél%{d(a;,y)

the distance from x to K.

Definition 1.13 Let (Kp),eN be a sequence
of subsets of a metric space X. We say that

Limsup,,_s oo Kpn == {:L' € X | liminf d(z, Kp) = O}
1s the upper limit of the sequence Ky and
Liminfy, 0o Kp := {x € X | limp—o0d(z, Kp) = 0}

15 its lower limit. A subset K is said to be the
limit or the set limit of the sequence Ky, if

K = Limint;, 00 Ky = Limsup,,_, o Kn,
In this case we write K = Limy,_so0 Knpy.
Naturally, we can replace N by a metric space
X, and sequences of subsets n ~ K, by set-
valued maps x ~ F(x) (which associates with a
point x a subset F'(x)) and adapt the definition

of upper and lower limits to this case, called the
continuous case.
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DERIVATIVES OF SET-VALUED
MAPS

Let X, Y be normed spaces, F' : X ~ Y be a
locally Lipschitz set-valued map and y € F(z).

The adjacent derivative DbF(x,y) is de-
fined by: for all u € X

F(x+ hu) —y
h
Proposition 1.14 If the images of F are con-
vex and F' is Lipschitz around x, then for any
y € F(z), D’F(z,y) has conver images and

D’F(z,y)(0) = Tr(y)(y) == UrsoMF(z) — )
D°F(z,y)(u) + D°F(z,y)(0) = D"F(z,y)(u)

Example F(x) = f(z,U). Assume that F
has convex images. Fix T, @ € U and set § =
f(z,u). Then for all w

7 w(w) € DF@E,5)w)

D’F(z,y)(u) := Liminf;_,q.

20



VARIATIONAL INCLUSIONS

Theorem 1.15 Consider the solution map S[to,T](')
as the set-valued map from R"™ to the (Sobolev)
space Whl(tg, T; R™) and a solution y(-) to the
differential inclusion
[az’(t) € F(z(t)) ae. in [tg, T]
z(to) = o

Assume that F' has closed images and s Lip-
schitz around y([tg,T]). Let v € R" and w €

Whl(ty, T; R™) be a solution to the linearized
inclusion

/ b /
(14) ‘Z (%)) i f F(yt), v (®)(w(t) ae.

Then for all vy, € R"™ converging to v when
h — 0+ and for all small h > 0, there ezx-
ists xp € Sy 1)(0 + hvp) such that the dif-
ference quotions (xj, — x)/h converge to w in
Whl(te, T; R™) when h — 0+.

In particular, w € D® S(zg, y(-)) ().

21



Asking Less Convergence Allows to
Relax the Differential Inclusion

Theorem 1.16 Consider the solution map Sy, 1)(-)
as the set-valued map from R™ to C(ty,T; R™).

Let y be a solution to the differential inclusion
7'(t) € F(z(t)) ae. in [ty, T)
[l’(to) = 170
Assume that ' has closed images and is Lip-

schitz around y([tg,T]), v € R"™. Let w be a
solution to the inclusion

w'(t) € D"(co F)(y(t),y'(1)(w(t)) ae. in [to,T]
w(tp) = v

Then for all vy, € R"™ converging to v when

h — 0+ and for all small h > 0, there ex-

ists xj, € S[tO,T](QjO + hvy) such that the dif-

ference quotions (xy, — x)/h converge to w in
C(tg, T; R™) when h — 0+.
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INFINITESIMAL GENERATOR of
REACHABLE MAP

Consider a set-valued map F' : R" ~» R"™. For
all 0 < tg <ty and £ € R" set

R(t1,%0)6 = {z(t1) | 2z € Spyq(8) }
This is the so-called reachable set of the differ-
ential inclusion from (#g, £) at time ¢;.

The set-valued map R enjoys the following semi-
group properties: for all 0 < t1 < t9 < 13

Ve R", Rlts, t2)R(t2,t1)€ = Rlts, 11)¢

VEeR" R(t,t) = &

When F' is sufliciently regular, the set-valued map
coF'(+) is the infinitesimal generator of the semi-

group R(-, ) in the sense that the difference quo-
tients (R(t + h,t)€ — &)/h converge to coF'(§).

Theorem 1.17 Let zg € R". Assume that F

1s locally Lipschitz around xg and has nonempty,
compact images. Then

R(h,0)xg — xg
h
In other words R(h, 0)xg = xg+hcoF' (zg)+o(h).

co F(xg) = Limp_,o4
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PARAMETRIZATION OF
SET-VALUED MAPS

If it was always the case, one could get
back to single-valued maps and to avoid
the curved arrows.

Consider a metric space X and F': X ~» R"™.

Definition 1.18 Let U be a metric space. We
say that a single-valued map

f:XxU — R"

i1s a Lipschitz parametrization of F' if
i) Vz € X, F(z)= f(z,U)
Yit) 3k >0, Vu e U, f(-,u) is k-Lipschitz
w)Vz € X, f(z,) is continuous
Theorem 1.19 Assume that F' is k-Lipschitz
and has nonempty compact convex images. Then
there exist 5n > ¢ > 0 and a Lipschitz parametriza-
tion f of F' with U equal to the closed unit ball
B in R™ such that: ¥V (z,u) € R" x U, ve U

f(-,u) is ck — Lipschitz

If (z,u) — f(z,0)|| < c(maxye py lyll) lu — o]
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