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Generalized Differentials of Nonsmooth
Functions

Definition 2.1 LetX be a normed vector space,
if : X \-+ R U {±00} be an extended function
and XQ G X be such that (p(xo) ̂  ±00.

The superdifferential of (p at XQ is the closed
convex set <9+(£>(xo) equal to:

G R nmsup < 0
^ \\x — XQ\\

where < •, • > denotes the scalar product.
The subdifferential d-(^(XQ) is defined as the

set:

liminf <P(*)-<P(*0)-<P,z-X0> > Q}

We always have d+<p(xo) = —d-(—(p)(xo).



The super and subdifferentials may also be char-
acterized using contingent epiderivatives:

Definition 2.2 LetX be a normed vector space,
(p : X \-± TlU {±00} be an extended function,
v G X and XQ 6 X be such that (P(XQ) ^ ±00.

The contingent epiderivative of <p at XQ in the
direction v is given by

D^<p(xo){v) = Jimmf
1 ft—>-0+, V'-¥V It

and the contingent hypoderivative of tp at XQ in
the direction v by

= hmsup

Clearly

By a direct verification D^(p(xo) is a lower semi-
continuous map taking its values in R U {±00}.



When ip : R n i-> R is Lipschitz at XQ, then the
contingent epi and hypoderivatives are reduced
to the Dini lower and upper derivatives:

DfpM(v) = hmmf

and

D\<p{xo){v) = km sup
+ ft»0+

Proposition 2.3 Lei <p : Rn H- RU{±oo}
an extended function. Then d-(f(xo) =

t > < p, v

and d+(p(xo) =

{p G R n | V v € Rn ,

Notice that <p is Prechet differentiable at XQ if and
only if both super and subdifferentials of <p at
are nonempty. Moreover in this case

= d-<p(xQ) =



Definition 2.4 Let cp : Rn i-> R 6e Lipschitz
at XQ. We denote by d*(p(xo) the set of all
cluster points of gradients V(p(xn), when xn

converge to XQ and tp is differentiable at

d*(p(x0) = Limsupx^xo { V(p(x)

Proposition 2.5 (Clarke) Ifd*(p(xo) is a sin-
gleton, then (p is differentiable at

We recall that the directional derivative of a
function ip : R m i—>> R at XQ G R m in the direc-
tion v G R m (when it exists) is defined by

dip (P{XQ + hv) - <p(xo)
-r-urn = lim
dvK u ; h^0+ h



Semieoncave Functions

Definition 2.6 Consider a convex subset K
of Rn. A function <p : K •->• R is called semi-
concave if 3 ui : R+ x R+ \-t i?+ such that
lims_Mj+ w(i2, s) = 0,

V r < R, V s<S, uj(r, s) < u(R, S)

and V R > 0, A € [0,1] and allx,y G K f\ RB

\ip{x) + (1 - \)<p{y) <
p(\x + (1 - X)y) + A(l - A)||a; - y||u;(i2, ||x -

uo is called a modulus of semiconcavity
of<P-

Proposition 2.7 Let cp : Rn \-t R be Lips-
chitz and semieoncave at XQ. If d+<p(xo) is a
singleton, then ip is differentiable at XQ and

In particular, ifd+<p(x) is a singleton for all x
near XQ, then <p is continuously differentiable
at



Theorem 2.8 Let K C Rn be a convex set,
XQ G K and let (p : K \-t R be Lipsehitz and
semiconcave at XQ. Then for every v

liminf
v' ->• v, h ->• 0+

lim
v' - > u, /i ->• 0 +

hv' e K
In particular, if XQ G Int(K),

= co (d*(p{xo))



Proposition 2.9 Let K C Rn and (p : K
R be locally Lipschitz. Define the set-valued
map Q : K ~> Rn by:

for all x G K, Q(x) is equal to

limmf -̂  —- < 0
v, /i -^ 0+ ^

Then Q has nonempty images and Graph(Q)
is closed in K x Rn.

Corollary 2.10 Let V : [0,T[xRn ^ R be
locally Lipschitz and semiconcave. Define

dV

Then \P has nonempty images and Graph(^)
is closed in [0,T[xRn.



VALUE FUNCTION FOR MAYER
PROBLEM

Consider T > 0, a complete separable metric
space U and a map / : Rn x U \-> Rn. We
associate with it the control system

(1) x'(t) = f(x(t),u(t)), u(t) e U

Let an extended function g : Rn \-t RU {+00}
and £0 £ Rn be given. Consider the minimiza-
tion problem, called Mayer's problem:

min {g(x(T)) \ x is a solution to (1), x(0) =

The value function associated with this problem
is defined by: for all (t0, XQ) G [0, T] x Rn

V{to,xo) = inf{g(x(T)) \ x solves (1), x(t0) = x0}

Define the Hamiltonian H : Rn x Rn i-> R by

H(x, p) = sup < p, v >= sup < p,
vef{x,U) u

In all the results of today lecture it is
assumed that f(x,U) are compact and
for some k > 0, f(',u) is A:—Lipschitz for
all ueU.



Lipschitz Continuity of the Value
Function

More generally consider g : R n 4 R U
a set-valued map F : R n ^ Rn , £0 £
the differential inclusion

(2) x\t) G F(x(i)) almost everywhere

and the minimization problem

min {g(x(T)) | x solves (2), x(0) =

The corresponding value function is given by: For
all(to,a;o) G [0,T] x Rn ,

{3)V(to,xo) = mf{g(x(T)) \ x e

The value function is nondecreasing along solu-
tions to (2): Vx

Vto<h<t2 < T, V{thx{h)) < V{t2,x{t2))
and satisfies the following dynamic programming
principle: Vt G [to,?1],

i{{{)) I x €V{to,xo) = mi{V{t,x{t))

Furthermore x G «Ŝ  yi(xo) is optimal for prob-
lem (3) if and only if V(t, x(t)) = g{x(T)).
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Theorem 2.11 Assume that F is Lipschitz with
compact nonempty images and g is locally Lip-
schitz. Then for every R > 0; there exists
LJI > 0 such that

i) For all (*o?^o) e [0>^l x ^i?(0) an^ every
solution x G Su ^1 (

and the map [to,T]
/^te/y continuous.

Furthermore for almost every t G [to,T]; the
directional derivative

dV

does exist.

ii) For all R > 0, V is L^-Lipschitz on
[0, T] x BR(p)

11



SUFFICIENT CONDITIONS FOR
OPTIMALITY

Theorem 2.12 Assume that g is locally Lips-
chitz and let (to, XQ) € [0, T] x Rn. Consider a
solution z G Sun Tl (^O) • Iffor a-e- t £ fob^i?
3 P(t) e Rn

(4) {{P(t),z'(t)}, -P(t))ed+V(t,z(t))
then z is optimal.

Proof— The map t/j(i) := V(t,z(i)) is abso-
lutely continuous. Let t G [£Q, T] be such that
the derivatives ifr'it) and z\t) do exist and (4)
holds true. Then

This yields that ^ is nonincreasing. Since the
value function is also nondecreasing along solu-
tions, the map t \-± V(t, z(t)) is constant. So z
is optimal.

12



NECESSARY AND SUFFICIENT
OPTIMALITY CONDITIONS

Theorem 2.13 Assume that f is differentiable
with respect to x, and g is differentiable and
locally Lipschitz. A trajectory-control solution
(z,u) with z(to) = XQ is optimal if and only
if the solution p : [£Q, T] \-> Rn to the adjoint
system

(Bf \
-At) = [^(z(t)Mt))) Pit), P(T) = -Vg(z(T))
satisfies the maximum principle

{p(t)J(z(t):u(t))) = H(z(t),p(t)) a.e.
and the generalized transversality conditions
(5) (H(z(t),p{t)), -p(t)) e a+y(t, z(t)) a.e.

-p(t) G d+Vx{t,z{t)) for every te[t^T]
where 9+V^(t, z(t)) denotes the super differen-
tial ofV(t, •) at z(t).

Furthermore, if V is semiconcave, then (5)
holds true everywhere in \t^T].

The map p(-) given by the above theorem is
called the co-state or the adjoint variable
corresponding to the optimal control u.

13



EXPRESSING NECESSARY
CONDITIONS USING

HAMILTONIANS

If H is differentiable, then z, p satisfy the Hamil-
tonian system

At) =

a.e. in [to,T\

Proposition 2.14 Let (z,p) € Rn x Rn and
u € U be such that

(p,f(z,u)) = H(z,p)

i) If H(-,p) is differentiable at z, then

ii) IfH(z,-) is differentiable atp, then
dH
dp

In particular H(z, •) is not differentiable
at zero, when /(z, U) is not a singleton.

14



CO-STATE
SUPERDIFFERENTIALS OF VALUE

Theorem 2.15 Assume that f is differentiable
with respect to x and g is differentiable and
locally Lipschitz. Suppose further that V(£Q, •)
is differentiable at XQ and let (z,u) be an op-
timal state-control pair. Then the co-state p :
[to,T] •-> Rn corresponding to (z,u) verifies

{-p{t)} = d+Vx(t,z(t)) for all te[to,T\

In particular ifV(t, •) is differentiable at z{t),
then Qv

= -Pit)

15



HAMILTONIAN SYSTEM AND
OPTIMALITY

Define W(-) = V{t0, •), d*Vx(t0,x0) = d*W(x0).
Theorem 2.16 Assume f is differentiable with
respect to x, g is differentiable and locally Lip-
schitz, andH is differentiable onRnx(i?n\{0}).

Further assume that the sets f(x,U) are con-
vex and for every R > 0; 3 IR > 0 such that
for all x, y G RB and p,q G RB\j^B

\\VH(x,p) - VH{y, q)\\ < lR(\\x - y\\ + \\p - q\\)

Let (to,xo) G [to,T] x Rn and po ^ 0 be such
that —po G d*Vx{t(),X(y). Then the Hamilto-
nian system

p(t) ^ 0 for all * G [to,T]
has a unique solution (z(-),p(-)) defined on [to,
Moreover z(-) is optimal

Furthermore, ifVg(-) is continuous at z(T),
thenp(-) is the co-state corresponding to z(-).

16



UNIQUENESS OF OPTIMA AND
DIFFERENTIABILITY OF VALUE

Theorem 2.16 yields that if <9*yx(£0, ^o)\{O} is
not a singleton, then optimal solution is not
unique. We prove a similar statement under less
restrictive regularity assumptions on H(x, •).

Theorem 2.17 Assume that g G C , f is dif-
ferentiable with respect to x, f{x,U) are con-
vex and ^ is continuous.

Further assume that for every R > 0; there
exists IR > 0 such that

dH d #
dx ' dx <lR\\x-y\\

If the Mayer problem has a unique optimal
solution z, then for all t, S^Vxit^zit)) is a
singleton and V(£, •) is differentiable at z(t).

Theorem 2.18 We posit all hypothezis of The-
orem 2.16 and we assume that g G C . Then
V(to, -) is differentiable at XQ with the deriva-
tive different from zero if and only if
there exists a unique optimal solution z
satisfying Vg(z{T)) ^ 0.

17



SEMICONCAVITY OF VALUE

We assume the following

3 u : R+ x R+ i-). R+, V r < R, s < S,
, s) < UJ(R, S), lims_j.o+ w(R, s) = 0

V R > 0 , x i , x 2 e B R { 0 ) , u e U

\xi - x2\\)

g : Rn i->- i? is semiconcave, loc. Lipschitz
(6)

Theorem 2.19 Assume (6). Then the value
function is semi-concave on [0,T] x Rn.

Example Consider the control system
k

1=1

If fi e C1 for all i > 0, then (6) holds true. Fur-
thermore f{x,U) is convex and compact, where
U = [ai,&i] x ... x [afc,&fc] and

k
= fo(x) + .£

z = l

18



DIFFERENTIABILITY ALONG
OPTIMAL SOLUTIONS

Theorem 2.20 Under assumptions of Theo-
rem 2.17, suppose that the Mayer problem has
a unique optimal solution z and V is semicon-
cave. Then V is differentiable at (t, z(t)) for
allte [to,T\.

Corollary 2.21 Under hypothezis of Theorems
2.16, assume that g is continuously differen-
tiate and V is semiconcave. Then V(-,-) is
differentiable at (to, XQ) with the partial deriva-
tive ^r(to? XO) different from zero if and only
if there exists a unique optimal solution
z satisfying Vg(z(T)) ^ 0.

Theorem 2.22 Assume that V is semiconcave,
g is convex and

Graph(/(-, U)) is convex

Then V(t, •) is convex and V is continuously
differentiable on [0,T] x Rn.

19



OPTIMAL SYNTHESIS
The optimal synthesis is a mapping u : [0, T] x
Rn \-t U, i.e. u(t, x) G U such that for every
(t0, XQ) G [0, T] x Rn the solution #(•) to

xf = f(x,u(t,x))

is optimal, i.e.

BUT

• The optimal feedback may be discontinuous

• It may be not unique

Example For instance for g(y) = —\y\ and
the control system

xf — u, u G [—1,1]

Set
+1 if x > 0

G{x) = - 1 if x < 0

Then x(-\tQ,Xfau) is optimal if and only if

x\t) G G(x(i)) almost everywhere

20



OPTIMAL FEEDBACK

We introduce the following feedback map G
[0, T]xRn^ Rn: V (t, x) e [0, T] x Rn

dV

(notice that the sets G(t,x) may be empty.)

Theorem 2.23 Assume that F is Lipschitz and
g is locally Lipschitz and let to G [0,T]. The
following two statements are equivalent:

i) x is a solution to the differential inclusion

(7) x\t) e G(t,x(t)) a.e. in [to,T\

ii) x e S[to,T](xo) and V(t,x{t)) = g(x(T)).

Proof— Fix x G <Sr̂  ^ and set (p{t) — V(t, x(i))
Then cp is absolutely continuous and for a.e. t G

Assume that i) holds true. Hence, for almost
every t G [£o,T], the set G(t,x(t)) is nonempty
and (//(£) = 0 almost everywhere in [to, T].

21



Corollary 2.24 A solution x G <Sr̂ n 7-1(̂ 0) ^s

optimal for the problem

mi{g(x(T)) I x <= SKT](x0)}

if and only if it is a solution to the differ-
ential inclusion

x\t) e G(t,x(t)) a.e. in [to,T\

satisfying the initial condition x{t(y) = XQ.

The set-valued map G may be very-very ir-
regular. In the true (and most) nonlinear cases

• G is not single-valued

• the sets G(t, x) are not convex

• G(t, •) is not locally Lipschitz and even not
upper semicontinuous

However if / , g are sufficiently smooth (C1), G
is upper semicontinuous.
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REGULARITY OF OPTIMAL
FEEDBACK

The feedback map is defined by

G(t, x) =
dV

(t,x)=0

Theorem 2.25 If V is semiconcave, then G
has compact nonempty images and its graph
is closed in [0,T[xRn.

Corollary 2.26 If in addition G is single-valued
on a subset K C [0,T[xi?n

; then the map
K 3 (£, x) \-> G(t, x) is continuous.

Theorem 2.27 IfV e C1 on [0,T] x Rn, then
G has convex compact images and is upper
semicontinuous. Furthermore, if for every x
the set f(x,U) is strictly convex, then G is
single valued and continuous on the set

dV
{t,x) e [0,T[xi?n| -T^&X) ± 0
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