

international atomic energy agency the **abdus salam**

international centre for theoretical physics

SMR1327/11

Summer School on Mathematical Control Theory

(3 - 28 September 2001)

Value Function in Optimal Control Lecture 2

Hélene Frankowska

CNRS, CREA Ecole Polytechnique 1, rue Descartes 75005 Paris France

These are preliminary lecture notes, intended only for distribution to participants

2. VALUE FUNCTION & OPTIMALITY

Outline

- 2.1 Sufficient Optimality Conditions
- 2.2 Necessary and Sufficient Conditions
- 2.3 Hamiltonian System
- 2.4 Co-state and Superdifferentials of Value
- 2.5 Uniqueness of Optimal Solution and Differentiability of Value Function
- 2.6 Semiconcavity of Value Function
- 2.7 Differentiability along Optima
- 2.8 Regularity of Optimal Feedback

Generalized Differentials of Nonsmooth Functions

Definition 2.1 Let X be a normed vector space, $\varphi : X \mapsto \mathbf{R} \cup \{\pm \infty\}$ be an extended function and $x_0 \in X$ be such that $\varphi(x_0) \neq \pm \infty$.

The superdifferential of φ at x_0 is the closed convex set $\partial_+\varphi(x_0)$ equal to:

$$\{p \in \mathbf{R}^n | \limsup_{x \to x_0} \frac{\varphi(x) - \varphi(x_0) - \langle p, x - x_0 \rangle}{\|x - x_0\|} \le 0\}$$

where $\langle \cdot, \cdot \rangle$ denotes the scalar product.

The subdifferential $\partial_{-}\varphi(x_0)$ is defined as the set:

 $\{ p \in \mathbf{R}^n | \liminf_{x \to x_0} \frac{\varphi(x) - \varphi(x_0) - \langle p, x - x_0 \rangle}{\|x - x_0\|} \ge 0 \}$ We always have $\partial_+ \varphi(x_0) = -\partial_- (-\varphi)(x_0).$ The super and subdifferentials may also be characterized using *contingent epiderivatives*:

Definition 2.2 Let X be a normed vector space, $\varphi : X \mapsto \mathbf{R} \cup \{\pm \infty\}$ be an extended function, $v \in X$ and $x_0 \in X$ be such that $\varphi(x_0) \neq \pm \infty$.

The contingent epiderivative of φ at x_0 in the direction v is given by

$$D_{\uparrow}\varphi(x_0)(v) = \liminf_{h \to 0+, v' \to v} \frac{\varphi(x_0 + hv') - \varphi(x_0)}{h}$$

and the contingent hypoderivative of φ at x_0 in the direction v by

$$D_{\downarrow}\varphi(x_0)(v) = \limsup_{h \to 0+, v' \to v} \frac{\varphi(x_0 + hv') - \varphi(x_0)}{h}$$

Clearly

$$D_{\uparrow}\varphi(x_0) = -D_{\downarrow}(-\varphi)(x_0)$$

By a direct verification $D_{\uparrow}\varphi(x_0)$ is a lower semicontinuous map taking its values in $\mathbf{R} \cup \{\pm \infty\}$. When $\varphi : \mathbf{R}^n \mapsto \mathbf{R}$ is Lipschitz at x_0 , then the contingent epi and hypoderivatives are reduced to the *Dini lower and upper derivatives*:

$$D_{\uparrow}\varphi(x_0)(v) = \liminf_{h \to 0+} \frac{\varphi(x_0 + hv) - \varphi(x_0)}{h}$$

and

$$D_{\downarrow}\varphi(x_0)(v) = \limsup_{h \to 0+} \frac{\varphi(x_0 + hv) - \varphi(x_0)}{h}$$

Proposition 2.3 Let $\varphi : \mathbf{R}^n \mapsto \mathbf{R} \cup \{\pm \infty\}$ be an extended function. Then $\partial_-\varphi(x_0) =$

 $\{ p \in \mathbf{R}^n \mid \forall v \in \mathbf{R}^n, \ D_{\uparrow} \varphi(x_0)(v) \ge < p, v > \}$ and $\partial_+ \varphi(x_0) =$

 $\{ p \in \mathbf{R}^n \mid \forall v \in \mathbf{R}^n, \ D_{\downarrow}\varphi(x_0)(v) \le < p, v > \}$

Notice that φ is Fréchet differentiable at x_0 if and only if both super and subdifferentials of φ at x_0 are nonempty. Moreover in this case

$$\partial_+\varphi(x_0) = \partial_-\varphi(x_0) = \{ \nabla\varphi(x_0) \}$$

Definition 2.4 Let $\varphi : \mathbb{R}^n \mapsto \mathbb{R}$ be Lipschitz at x_0 . We denote by $\partial^* \varphi(x_0)$ the set of all cluster points of gradients $\nabla \varphi(x_n)$, when x_n converge to x_0 and φ is differentiable at x_n , *i.e.*,

 $\partial^{\star}\varphi(x_0) = \operatorname{Limsup}_{x \to x_0} \{ \nabla \varphi(x) \}$

Proposition 2.5 (Clarke) If $\partial^* \varphi(x_0)$ is a singleton, then φ is differentiable at x_0 .

We recall that the directional derivative of a function $\varphi : \mathbf{R}^m \mapsto \mathbf{R}$ at $x_0 \in \mathbf{R}^m$ in the direction $v \in \mathbf{R}^m$ (when it exists) is defined by

$$\frac{\partial \varphi}{\partial v}(x_0) = \lim_{h \to 0+} \frac{\varphi(x_0 + hv) - \varphi(x_0)}{h}$$

Semiconcave Functions

Definition 2.6 Consider a convex subset K of \mathbb{R}^n . A function $\varphi : K \mapsto \mathbb{R}$ is called **semiconcave** if $\exists \omega : \mathbb{R}_+ \times \mathbb{R}_+ \mapsto \mathbb{R}_+$ such that $\lim_{s \to 0^+} \omega(\mathbb{R}, s) = 0$,

 $\begin{array}{l} \forall r \leq R, \ \forall s \leq S, \omega(r,s) \leq \omega(R,S) \\ and \ \forall R > 0, \ \lambda \in [0,1] \ and \ all \ x,y \in K \cap RB \\ \lambda \varphi(x) + (1-\lambda)\varphi(y) \leq \\ \varphi(\lambda x + (1-\lambda)y) + \lambda(1-\lambda) ||x-y|| \omega(R, ||x-y||) \end{array}$

 ω is called a modulus of semiconcavity of φ .

Proposition 2.7 Let $\varphi : \mathbb{R}^n \mapsto \mathbb{R}$ be Lipschitz and semiconcave at x_0 . If $\partial_+\varphi(x_0)$ is a singleton, then φ is differentiable at x_0 and

 $\partial^{\star}\varphi(x_0) = \{ \nabla\varphi(x_0) \}$

In particular, if $\partial_+\varphi(x)$ is a singleton for all xnear x_0 , then φ is continuously differentiable at x_0 . **Theorem 2.8** Let $K \subset \mathbb{R}^n$ be a convex set, $x_0 \in K$ and let $\varphi : K \mapsto \mathbb{R}$ be Lipschitz and semiconcave at x_0 . Then for every v

 $\lim \inf_{\substack{v' \to v, h \to 0+ \\ x' \to_K x_0, x' + hv' \in K}} \frac{\varphi(x' + hv') - \varphi(x')}{h}$ $= \lim_{\substack{v' \to v, h \to 0+ \\ x_0 + hv' \in K}} \frac{\varphi(x_0 + hv') - \varphi(x_0)}{h}$ In particular, if $x_0 \in \text{Int}(K)$, then

$$\partial_+\varphi(x_0) = co\left(\partial^\star\varphi(x_0)\right)$$

Proposition 2.9 Let $K \subset \mathbb{R}^n$ and $\varphi : K \mapsto R$ be locally Lipschitz. Define the set-valued map $Q : K \rightsquigarrow \mathbb{R}^n$ by:

for all $x \in K$, Q(x) is equal to

$$\begin{cases} v | & \liminf \\ v' \to v, h \to 0+ \\ x' \to_K x, x' + hv' \in K \end{cases} \qquad \frac{\varphi(x' + hv') - \varphi(x')}{h} \leq 0$$

Then Q has nonempty images and Graph(Q)is closed in $K \times \mathbb{R}^n$.

Corollary 2.10 Let $V : [0, T[\times \mathbb{R}^n \mapsto \mathbb{R}]$ be locally Lipschitz and semiconcave. Define

$$\Psi(t,x) := \{ v \mid \frac{\partial V}{\partial(1,v)}(t,x) \le 0 \}$$

Then Ψ has nonempty images and $\text{Graph}(\Psi)$ is closed in $[0, T[\times \mathbb{R}^n]$.

VALUE FUNCTION FOR MAYER PROBLEM

Consider T > 0, a complete separable metric space U and a map $f : \mathbb{R}^n \times U \mapsto \mathbb{R}^n$. We associate with it the control system

(1)
$$x'(t) = f(x(t), u(t)), u(t) \in U$$

Let an extended function $g : \mathbb{R}^n \mapsto \mathbb{R} \cup \{+\infty\}$ and $\xi_0 \in \mathbb{R}^n$ be given. Consider the minimization problem, called **Mayer's problem**:

min $\{g(x(T)) \mid x \text{ is a solution to } (1), x(0) = \xi_0\}$ The value function associated with this problem is defined by: for all $(t_0, x_0) \in [0, T] \times \mathbb{R}^n$ $V(t_0, x_0) = \inf\{g(x(T)) \mid x \text{ solves } (1), x(t_0) = x_0\}$

Define the Hamiltonian $H: \mathbb{R}^n \times \mathbb{R}^n \mapsto \mathbb{R}$ by $H(x, n) = \sup_{x \to \infty} \langle n, n \rangle \geq \sup_{x \to \infty} \langle n, n \rangle \langle n, n \rangle \leq n$

$$H(x,p) = \sup_{v \in f(x,U)} < p, v >= \sup_{u \in U} < p, f(x,u) >$$

In all the results of today lecture it is assumed that f(x, U) are compact and for some $k \ge 0$, $f(\cdot, u)$ is k-Lipschitz for all $u \in U$.

Lipschitz Continuity of the Value Function

More generally consider $g : \mathbf{R}^n \mapsto \mathbf{R} \cup \{+\infty\}$, a set-valued map $F : \mathbf{R}^n \rightsquigarrow \mathbf{R}^n, \xi_0 \in \mathbf{R}^n$ and the differential inclusion

(2) $x'(t) \in F(x(t))$ almost everywhere and the minimization problem

 $\min \{g(x(T)) \mid x \text{ solves } (2), \ x(0) = \xi_0)\}$ The corresponding value function is given by: For all $(t_0, x_0) \in [0, T] \times \mathbf{R}^n$, $(3)V(t_0, x_0) = \inf\{g(x(T)) \mid x \in \mathcal{S}_{[t_0, T]}(x_0)\}$

The value function is nondecreasing along solutions to (2): $\forall x \in S_{[t_0,T]}(x_0)$, $\forall t_0 \leq t_1 \leq t_2 \leq T, V(t_1, x(t_1)) \leq V(t_2, x(t_2))$ and satisfies the following *dynamic programming principle*: $\forall t \in [t_0, T]$,

 $V(t_0, x_0) = \inf \left\{ V(t, x(t)) \mid x \in \mathcal{S}_{[t_0, T]}(x_0) \right\}$ Furthermore $x \in \mathcal{S}_{[t_0, T]}(x_0)$ is optimal for problem (3) if and only if $V(t, x(t)) \equiv g(x(T))$. **Theorem 2.11** Assume that F is Lipschitz with compact nonempty images and g is locally Lipschitz. Then for every R > 0, there exists $L_R > 0$ such that

i) For all $(t_0, x_0) \in [0, T] \times B_R(0)$ and every solution $x \in S_{[t_0, T]}(x_0)$

 $\forall t \in [t_0, T], \|x(t)\| \leq L_R$

and the map $[t_0, T] \ni t \mapsto V(t, x(t))$ is absolutely continuous.

Furthermore for almost every $t \in [t_0, T]$, the directional derivative

$$\frac{\partial V}{\partial (1, x'(t))}(t, x(t))$$

does exist.

ii) For all R > 0, V is L_R -Lipschitz on $[0,T] \times B_R(0)$

SUFFICIENT CONDITIONS FOR OPTIMALITY

Theorem 2.12 Assume that g is locally Lipschitz and let $(t_0, x_0) \in [0, T] \times \mathbb{R}^n$. Consider a solution $z \in S_{[t_0,T]}(x_0)$. If for a.e. $t \in [t_0,T]$, $\exists p(t) \in \mathbb{R}^n$

(4) $(\langle p(t), z'(t) \rangle, -p(t)) \in \partial_+ V(t, z(t))$ then z is optimal.

Proof — The map $\psi(t) := V(t, z(t))$ is absolutely continuous. Let $t \in [t_0, T]$ be such that the derivatives $\psi'(t)$ and z'(t) do exist and (4) holds true. Then

 $0 = \left\langle (< p(t), z'(t) >, -p(t)), (1, z'(t)) \right\rangle$

 $\geq D_{\downarrow}V(t,z(t))(1,z'(t))$

 $\geq \limsup_{h\to 0+} \frac{V(t+h, z(t+h)) - V(t, z(t))}{h}$ This yields that ψ is nonincreasing. Since the value function is also nondecreasing along solutions, the map $t \mapsto V(t, z(t))$ is constant. So z is optimal.

NECESSARY AND SUFFICIENT OPTIMALITY CONDITIONS

Theorem 2.13 Assume that f is differentiable with respect to x, and g is differentiable and locally Lipschitz. A trajectory-control solution (z, \overline{u}) with $z(t_0) = x_0$ is optimal **if and only if** the solution $p : [t_0, T] \mapsto R^n$ to the adjoint system

 $-p'(t) = \left(\frac{\partial f}{\partial x}(z(t), \overline{u}(t))\right)^* p(t), \ p(T) = -\nabla g(z(T))$ satisfies the maximum principle

 $\langle p(t), f(z(t), \overline{u}(t)) \rangle = H(z(t), p(t))$ a.e. and the generalized transversality conditions $(5) (H(z(t), p(t)), -p(t)) \in \partial_+ V(t, z(t))$ a.e.

 $-p(t) \in \partial_+ V_x(t, z(t))$ for every $t \in [t_0, T]$ where $\partial_+ V_x(t, z(t))$ denotes the superdifferential of $V(t, \cdot)$ at z(t).

Furthermore, if V is semiconcave, then (5) holds true everywhere in $[t_0, T]$.

The map $p(\cdot)$ given by the above theorem is called **the co-state or the adjoint variable** corresponding to the optimal control \overline{u} .

EXPRESSING NECESSARY CONDITIONS USING HAMILTONIANS

If H is differentiable, then z, p satisfy the **Hamil**tonian system

$$\begin{cases} z'(t) = \frac{\partial H}{\partial p}(z(t), p(t)) \\ p'(t) = -\frac{\partial H}{\partial x}(z(t), p(t)) \text{ a.e. in } [t_0, T] \end{cases}$$

Proposition 2.14 Let $(z, \overline{p}) \in \mathbb{R}^n \times \mathbb{R}^n$ and $\overline{u} \in U$ be such that

$$\langle \overline{p}, f(z, \overline{u}) \rangle = H(z, \overline{p})$$

i) If $H(\cdot, \overline{p})$ is differentiable at z, then

$$\frac{\partial H}{\partial x}(z,\overline{p}) = \left(\frac{\partial f}{\partial x}(z,\overline{u})\right)^{\star}\overline{p}$$

ii) If $H(z, \cdot)$ is differentiable at \overline{p} , then ∂H

$$\frac{\partial \Pi}{\partial p}(z,\overline{p}) = f(z,\overline{u})$$

In particular $H(z, \cdot)$ is not differentiable at zero, when f(z, U) is not a singleton.

'

CO-STATE & SUPERDIFFERENTIALS OF VALUE

Theorem 2.15 Assume that f is differentiable with respect to x and g is differentiable and locally Lipschitz. Suppose further that $V(t_0, \cdot)$ is differentiable at x_0 and let (z, \overline{u}) be an optimal state-control pair. Then the co-state p: $[t_0, T] \mapsto R^n$ corresponding to (z, \overline{u}) verifies

 $\{-p(t)\} = \partial_+ V_x(t, z(t)) \text{ for all } t \in [t_0, T]$

In particular if $V(t, \cdot)$ is differentiable at z(t), then

$$\frac{\partial V}{\partial x}(t, z(t)) = -p(t)$$

HAMILTONIAN SYSTEM AND OPTIMALITY

Define $W(\cdot) = V(t_0, \cdot), \ \partial^* V_x(t_0, x_0) = \partial^* W(x_0).$ **Theorem 2.16** Assume f is differentiable with respect to x, g is differentiable and locally Lipschitz, and H is differentiable on $\mathbb{R}^n \times (\mathbb{R}^n \setminus \{0\}).$

Further assume that the sets f(x, U) are convex and for every R > 0, $\exists l_R > 0$ such that for all $x, y \in RB$ and $p, q \in RB \setminus \frac{1}{R}B$ $\|\nabla H(x, p) - \nabla H(y, q)\| \leq l_R(\|x - y\| + \|p - q\|)$ Let $(t_0, x_0) \in [t_0, T] \times R^n$ and $p_0 \neq 0$ be such that $-p_0 \in \partial^* V_x(t_0, x_0)$. Then the Hamiltonian system

$$x'(t) = \frac{\partial H}{\partial p}(x(t), p(t)), \qquad x(t_0) = x_0$$

$$p'(t) = -\frac{\partial H}{\partial x}(x(t), p(t)), \qquad p(t_0) = p_0$$

 $p(t) \neq 0$ for all $t \in [t_0, T]$ has a unique solution $(z(\cdot), \overline{p}(\cdot))$ defined on $[t_0, T]$. Moreover $z(\cdot)$ is optimal.

Furthermore, if $\nabla g(\cdot)$ is continuous at z(T), then $\overline{p}(\cdot)$ is the co-state corresponding to $z(\cdot)$.

UNIQUENESS OF OPTIMA AND DIFFERENTIABILITY OF VALUE

Theorem 2.16 yields that if $\partial^* V_x(t_0, x_0) \setminus \{0\}$ is **not a singleton**, then optimal solution is **not unique**. We prove a similar statement under less restrictive regularity assumptions on $H(x, \cdot)$.

Theorem 2.17 Assume that $g \in C^1$, f is differentiable with respect to x, f(x, U) are convex and $\frac{\partial H}{\partial x}$ is continuous.

Further assume that for every R > 0, there exists $l_R > 0$ such that

 $\forall x, y, p \in RB, \left\| \frac{\partial H}{\partial x}(x, p) - \frac{\partial H}{\partial x}(y, p) \right\| \leq l_R \|x - y\|$ If the Mayer problem has a **unique optimal solution** z, then for all t, $\partial^* V_x(t, z(t))$ is a **singleton** and $V(t, \cdot)$ is differentiable at z(t). **Theorem 2.18** We posit all hypothesis of Theorem 2.16 and we assume that $g \in C^1$. Then

 $V(t_0, \cdot)$ is differentiable at x_0 with the derivative different from zero if and only if there exists a unique optimal solution zsatisfying $\nabla g(z(T)) \neq 0$.

SEMICONCAVITY OF VALUE

We assume the following

$$\begin{cases} \exists \ \omega : R_+ \times R_+ \mapsto R_+, \ \forall \ r \le R, s \le S, \\ \omega(r,s) \le \omega(R,S), \ \lim_{s \to 0+} \omega(R,s) = 0 \end{cases}$$
$$\begin{cases} \forall \ R > 0, x_1, x_2 \in B_R(0), u \in U \\ || \frac{\partial f}{\partial x}(x_1, u) - \frac{\partial f}{\partial x}(x_2, u)|| \le \omega(R, ||x_1 - x_2||) \\ g : R^n \mapsto R \end{cases} \text{ is semiconcave, loc. Lipschitz} \end{cases}$$
(6)

Theorem 2.19 Assume (6). Then the value function is semi-concave on $[0,T] \times \mathbb{R}^n$.

Example Consider the control system $x' = f_0(x) + \sum_{i=1}^{k} f_i(x)u_i, \quad u_i \in [a_i, b_i]$ If $f_i \in C^1$ for all $i \ge 0$, then (6) holds true. Furthermore f(x, U) is convex and compact, where $U = [a_1, b_1] \times ... \times [a_k, b_k]$ and $f(x, U) = [a_1, b_1] \times ... \times [a_k, b_k]$

$$f(x, u_1, ..., u_k) = f_0(x) + \sum_{i=1}^{\kappa} f_i(x)u_i$$

DIFFERENTIABILITY ALONG OPTIMAL SOLUTIONS

Theorem 2.20 Under assumptions of Theorem 2.17, suppose that the Mayer problem has a unique optimal solution z and V is semiconcave. Then V is differentiable at (t, z(t)) for all $t \in [t_0, T]$.

Corollary 2.21 Under hypothezis of Theorems 2.16, assume that g is continuously differentiable and V is semiconcave. Then $V(\cdot, \cdot)$ is **differentiable** at (t_0, x_0) with the partial derivative $\frac{\partial V}{\partial x}(t_0, x_0)$ different from zero if and only if **there exists a unique optimal solution** z satisfying $\nabla g(z(T)) \neq 0$.

Theorem 2.22 Assume that V is semiconcave, g is convex and

 $\operatorname{Graph}(f(\cdot, U))$ is convex

Then $V(t, \cdot)$ is convex and V is continuously differentiable on $[0, T] \times \mathbb{R}^n$.

OPTIMAL SYNTHESIS

The optimal synthesis is a mapping $u : [0, T] \times \mathbb{R}^n \mapsto U$, i.e. $u(t, x) \in U$ such that **for every** $(t_0, x_0) \in [0, T] \times \mathbb{R}^n$ the solution $x(\cdot)$ to $\begin{cases} x' = f(x, u(t, x)) \\ x(t_0) = x_0 \end{cases}$

is optimal, i.e. $V(t_0, x_0) = g(x(T))$.

BUT

- The optimal feedback may be discontinuous
- It may be not unique

Example For instance for g(y) = -|y| and the control system

$$x' = u, \ u \in [-1, 1]$$

Set

$$G(x) = \begin{cases} +1 & \text{if } x > 0\\ -1 & \text{if } x < 0\\ \{-1, +1\} & \text{if } x = 0 \end{cases}$$

Then $x(\cdot; t_0, x_0, u)$ is optimal if and only if $x'(t) \in G(x(t))$ almost everywhere

OPTIMAL FEEDBACK

We introduce the following **feedback map** G: $[0,T] \times \mathbb{R}^n \rightsquigarrow \mathbb{R}^n \colon \forall (t,x) \in [0,T] \times \mathbb{R}^n$ $G(t,x) = \left\{ v \in F(x) \mid \frac{\partial V}{\partial (1,v)}(t,x) = 0 \right\}$ (notice that the sets G(t, x) may be empty.) **Theorem 2.23** Assume that F is Lipschitz and g is locally Lipschitz and let $t_0 \in [0,T]$. The following two statements are equivalent: i) x is a solution to the differential inclusion (7) $x'(t) \in G(t, x(t))$ a.e. in $[t_0, T]$ $ii) \ x \in \mathcal{S}_{[t_0,T]}(x_0) \ and \ V(t,x(t)) \equiv g(x(T)).$ **Proof** — Fix $x \in \mathcal{S}_{[t_0,T]}$ and set $\varphi(t) = V(t, x(t))$. Then φ is absolutely continuous and for a.e. $t \in$ $[t_0, T]$

$$\varphi'(t) = \frac{\partial V}{\partial (1, x'(t))}(t, x(t))$$

Assume that i) holds true. Hence, for almost every $t \in [t_0, T]$, the set G(t, x(t)) is nonempty and $\varphi'(t) = 0$ almost everywhere in $[t_0, T]$. **Corollary 2.24** A solution $x \in S_{[t_0,T]}(x_0)$ is optimal for the problem

 $\inf\{g(x(T)) \mid x \in \mathcal{S}_{[t_0,T]}(x_0)\}$

if and only if *it is a solution to the differential inclusion*

 $x'(t) \in G(t, x(t))$ a.e. in $[t_0, T]$

satisfying the initial condition $x(t_0) = x_0$.

The set-valued map G may be **very-very irregular.** In the true (and most) nonlinear cases

- G is not single-valued
- the sets G(t, x) are not convex
- $G(t, \cdot)$ is not locally Lipschitz and even not upper semicontinuous

However if f, g are sufficiently smooth (C^1) , G is upper semicontinuous.

REGULARITY OF OPTIMAL FEEDBACK

The **feedback map** is defined by

$$G(t,x) = \left\{ v \in F(x) \mid \frac{\partial V}{\partial (1,v)}(t,x) = 0 \right\}$$

Theorem 2.25 If V is semiconcave, then G has compact nonempty images and its graph is closed in $[0, T[\times \mathbb{R}^n]$.

Corollary 2.26 If in addition G is single-valued on a subset $K \subset [0, T[\times \mathbb{R}^n, \text{ then the map} \\ K \ni (t, x) \mapsto G(t, x) \text{ is continuous.}$

Theorem 2.27 If $V \in C^1$ on $[0,T] \times R^n$, then G has convex compact images and is upper semicontinuous. Furthermore, if for every x the set f(x,U) is strictly convex, then G is single valued and continuous on the set

$$\left\{ (t,x) \in [0,T[\times R^n \mid \frac{\partial V}{\partial x}(t,x) \neq 0 \right\}$$