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Tangent and Normal Cones to a Subset

Definition 3.1 (Contingent Cone) Let K be
a subset of a normed vector space X and x €
K belong to the closure of K. The contingent
cone Ty (x) is defined by
, K-z
TK(I') = leSUph_>()_|_T
That is
v € Tg(x) ifand only if 3 hy — 0+ vy — v
such that Vn, =+ hpv, € K

It implies that when K is convex,

Tk(x) = Yo MK — )

We also observe that

if x€ Int(K), then Tg(zx) = X
This situation may also happen when x does not
belong to the interior of K.

Theorem 3.2 Let X be a finite dimensional

vector-space and K be a closed subset of X.
Then for every x € K

Liminfy s 2Tk (y) = Liminfy— .;c0Tx (y) C Tk (x)



SUBNORMAL CONES

Definition 3.3 (Subnormal Cones) The sub-

normal cone N (z) is defined by

Ni(z) = {pe X*| <p,v><0 Vo e Tk(z)}

From the very definitions it follows that
Ep(Drp(20)) = Tgp(y) (%0, p(0))

where £p denotes the epigraph.

Proposition 3.4 Let ¢ : R" — R U {z£o0}

and o € Dom(p). Then the following state-
ments are equivalent

1) p € 0—p(z0)
i) Yu € R, (p,u) < Dyp(xp)(u)

iii) (p,—1) € Ny, (@0, 9(z0))
Lemma 3.5 (Rockafellar) Consider a lower

semicontinuous ¢ : R — R U {+oc0} and
zg € Dom(yp). Let p € R™ be such that

<p7 O) S ng(go)(zv()a 90(370))7 p 7£ 0
Then for every € > 0, there exist xz, pe in R"
and q: < 0 satisfying

lwe—soll+llpe—pll < & (e, ge) € Ny (e, ()



VIABILITY THEOREM

Let ' : R™ ~» R" be a set-valued map and
K C Dom(F) be a nonempty subset.

The subset K enjoys the viability property
for the differential inclusion

(1) v € F(z)

if for any initial state zg € K, there exists at
least one solution x(+) to (1) starting at xg which
is viable in K in the sense that z(¢t) € K for all
t > 0.

The viability property is said to be local if for
any initial state x(g € K, there exist T(xg) > 0
and a solution starting at xg which is viable in
K on the interval [0, T'(xg)] in the sense that for
every t € [0, T(xg)], z(t) € K.

We say that K is a viability domain of F’ if
VzeK, Flz)NTk(z) #0



Theorem 3.6 (Viability Theorem) If F' is
upper semicontinuous with nonempty compact
convex images, then a locally compact set K
enjoys the local viability property if and only
if it 1s a viability domain of F'. In this case,
of for some ¢ > 0, we have

K inf < 1
Vzek, vere T @ |v]] < e(fjz]| +1)

and if K 1s closed, then K enjoys the viability
property.

The following result provides a very useful du-
ality characterization of viability domains:

Proposition 3.7 (Ushakov) Assume that the
set-valued map F : K ~ R" is upper semicon-
tinuous with convex compact values. Then the
following three statements are equivalent:

i) Yeze K, Flx)NTg(x) # 0
i) Ve e K, F(x)Neo(Tk(x)) # 0

i) Ve e K.Vpe Ny(zx), Hz,—p) >0
where H(xz,—p) = SUPye F(z) < —D,V > .



Theorem 3.8 Suppose that F' : R" ~ R"

1s upper semicontinuous with compact convex
values and for some c > 0, we have

VzeR" sup ||v|| < c(||z]|+1)

vEF ()

For a closed subset K C R™ the following
conditions are equivalent:

JyVxe K, Flx)Neo(Tg(x)) # 0

i)V xg € K there is a solution x : [0, +00)
K to

2'(t) € F(z(t))

z(0) = g



Characterization of the Value Function

Consider a lower semicontinuous ¢ : R" — RU
{+o0}, a Lipschitz set-valued map F' : R™ ~»
R"™ with convex compact images and the differ-
ential inclusion

(2) 2'(t) € F(z(t)) almost everywhere

The value function is given by:
For all (tg, zg) € [0,T] x R",

(3)V (t0, z0) = inf{g(x(T)) | # € Sy, 7(w0) }
It 1s lower semicontinuous.

The value function is nondecreasing along solu-
tions to (2): Vx € S[tO,T](SCO),

Vg <tp <tg <T, V(ty,xz(ty)) < Vtg, z(ts))

Furthermore z € Sy, 1)(20) is optimal for prob-
lem (3) if and only if V (¢, z(t)) = g(z(T)).

These two properties characterize the value func-
tion.



Consider any W : [0,T] x R" — R U {+o0}
satisfying the boundary condition W(T),-) = g.
If W is nondecreasing along solutions to (2) and
for all (tg,zg) € [0,T] x R™ there exists T €
S[tO)T](CEO) such that W (tg,zg) > W(T,z(T)),
then W = V.

Indeed if x is as above, then

W (ty, mo) > W(T,z(T)) = g(z(T)) > V(ty, z0)

SoW > V. Next if ¢ € S[tO,T](xO) is optimal,
then

V(to, z0) = g(z(T)) = W (to, zo)
Hence V > W.
Define the Hamiltonian H : R" x R" + R by

H(z,p)= sup <p,v>
vEF (1)

Notice that H(z,-) is convex, positively homo-
geneous.



HAMILTON-JACOBI-BELLMAN

EQUATION |
Consider the Hamilton-Jacobi equation (HJB):
ov oV
_Zr Hlx === — D) = gf-
St H [ S a)] =0, V(T = g0)

Definition 3.9 An extended lower semicontin-
uous function V : [0,T] x R" — RU {400} is
called a lower semicontinuous solution to

the Hamilton-Jacobi- Bellman equation (HJB)
if 1t satisfies the following conditions:

V(T,-) = g¢(-) and for all (¢,z) €]0,T[xR",
V (pt,pr) € 0-V(t,z), —pt+ H(z,—pg) =0

V (ptap.’li) € 8“‘/(07 33)7 — Pt + H(l’, _pil?) Z 0

V (pt,pz) € 0-V(T,x), —pt+ H(z,—py) <0



VISCOSITY SOLUTIONS

Definition 3.10 An extended lower semicon-
tinuous function V : [0, T] x R" — RU{+o0}
is called a viscosity supersolution to (HJB) if
for allt €]0,T| and x € R"

\VI (ptapx) ~ 8_V(t,:1:), —pt‘|—H(t,ZU, —-p.’li) Z 0

An extended upper semicontinuous function V :
0, 7] x R" - RU {—00} is called a viscosity
subsolution to (HJIB) if for all t €]0,T[ and
reR"

Y (pt,pz) € 04V (t,x), —pt+H(t,z,—pz) <0

Let V : [0,T] x R®" — R be a continuous
function. It is called a viscosity solution
to (HIB) if for allt €]0,T| and z € R"

\V/ (pt7p$> S 8—V(t7 .CC), —Dt + H(t7 €I, _pl’) 2 0
V (pt,pg) € 04V (t,x), —pt+ H(t,x,—pz) <0
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UNIQUENESS OF SOLUTIONS

Theorem 3.11 Let V : [0,T] x R® — R U
{+o0} be an extended Isc function.
The following statements are equivalent:

i) V' is the value function
i1) V is a lsc solution to (HJB)

i1i) V is a contingent solution to (HJB) :
V(T,-) = g(-) and for all (¢t,x) € Dom(V),
0<t<T = infyepy D4V (¢, z)(1,0) <0
0<t<T = SUDyc F(x) DTV(t,x)(—l, —v) <

i) V(T,-) = ¢(-) and for all (¢,z) €]0,T[xR",
4 (pt7p$) € 8—V(t7 ZU), —Pt T+ H(CE’, _p:c) =0
vz e R", V(0,7)=liminf; o4 z—z V(¢ )
Vz e R", ¢g(z)=Iliminf; ;7 , zV(t, 1)

Finally, if V is continuous on [0,T] x R"
then the above statements are equivalent to:

v) V is a viscosity solution to (HJB)

11



FROM (HJB) EQUATION TO
VIABILITY CONDITIONS

Consider a set-valued map F' : R"™ ~» R™ with
nonempty compact images.

Theorem 3.12 Assume that F' is upper semi-
continuous and has convex images. Consider
an extended lower semicontinuous function V :

0,T] x R" = RU {+o00}.
The following statements are equivalent :
i) For all (t,x) € Dom(V') such thatt < T
and for every (pr,pz,4) € Ngypy (6,2, V (t,2)
—pt+ H(x,—pz) > 0
i) For all (t,x) € Dom(V), t < T, y >
V(t, )
({1} x F(z) x {0}) N Ty (t, 7,y) # 0
1i) For all (t,z) € Dom(V') such that t <T

] <
vel%lzx) DyV(t,z)(1,v) <0

w) For all (t,x) € Dom(V') such thatt < T
V (pt,pz) € 0-V(t,z), —pt+H(z,—ps) >0
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Theorem 3.13 Consider an extended lower semi-
continuous function V : [0,T] x R" — R U
{+o00} and assume that F is lower semicon-
tinuous.

The follounng statements are equivalent :

i) For all (t,z) € Dom(V') such that t > 0
and for every (pt, pz, ) € Ngyr) (6,2, V (8, 7))

—pr+H(x,—pz) <0

i) For all (t,x) € Dom(V) such that t > 0
and all y > V(t, )

{1} x (=F(2)) x {0} C Tgy(t,9)

i5i) For all (t,x) € Dom(V') such that t > 0

sup D4V (t, z)(—1,—v) <0
veEF (x)

w) For all (t,z) € Dom(V') such that t > 0
v(ptapx) S 8_V(t,£13), —pt—|—H(SU, _p$) S 0

13



MONOTONE BEHAVIOR OF
CONTINGENT SOLUTIONS

Consider a set-valued map F' : R"™ ~» R™ with
nonempty compact images and the differential in-
clusion

(4) 2'(t) € F(z(t)) almost everywhere

We investigate a relationship between mono-
tone behavior of a function V' along solutions to
(4) and contingent inequalities.

Theorem 3.14 Let V : [0,T] x R — R U
{+00} be an extended lower semicontinuous
function. Assume that F' 1s upper semicon-

tinuous with convex 1mages and linear growth
dc>0

V(t,x) € sup |l <1+ [xf])

veF (x)

Then the following statements are equivalent:
1) Vi <T, infyepz D4Vt 2)(1,0) <0

i) For every (tg,zg) € [0,T] x R™, there
exists T € Sy, 7)(0) such that V(t,z(t)) <
V (tg, zg) for all t € [ty,T].

14



Proof — i) = 41). Define F by

{1} x F(z) x {0} ift <T
F(t,z,z) =]

10,1] x eo(F'(z) U {0}) x {0} ift > T
and consider the viability problem
(t,z,2) € F(t,z,z)

(5) (@ z,2)(0) = (o, 0, V(to,z0))
(t,z,z) € Ep(V)

For all (t,z,2) € Ep(V)
F(t,z,2) ﬂTgp(V)(t,x,z) #

By the Viability Theorem, (5) has a solution
(0, T] > t = (t,7(¢),2(t) € Ep(V)
Thus V(t,z(t)) < z(t) = V(tg,xg) for all ¢t €
[tg, T| and 42) follows. Conversely, assume that
i1) is satisfied. Fix (g, zg) € Dom(V') with £y <
T and let T be as in 7). Let hy, — 0+ be such
that [x(tg+hn) —x(tg)]/hn converge to some v €
F(x0). On the other hand D4V (g, z)(1,v) <

V(tg+ hn,x(tg+ hn)) = V(¢
i uf (to + hn, 2{to + hn)) = V{to, 70) _
M= 0 hn,

A
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Theorem 3.15 Let V : [0,T] x R —» R U

{+o00} be an extended lower semicontinuous

function. If F' 1is locally Lipschitz, then the

following two statements are equivalent:

i)V(t,x) € Dom (V), sup D4V (¢, z)(—1,—v) <0
vEF (1)

i) V x € S[tO,T](m())f t € [tg, T],V(tg,zg) <

V(t,z(t)).

Proof — Assume ). Since ¢) does not involve
T, it is enough to prove the inequality in %¢) for
t = T. We know that for all 0 < ¢ < T and
z € R" such that (T —t,x) € Dom(V') and for
all z > V(T —t, ),

(~1} X (=F(2)) x {0} C Tepp(T —t,,2)
Let B denote the closed unit ball in R™ and cp

the Lipschitz constant of F' on Bg(0). There
exists a continuous f : R" X B+ R"and ¢ > 0

Vz e R, F(z) = f(z,B)

Yu€ B, f(-,u) is Ycg — Lipschitz on Bpg(0)
Ve R" andforall u,v € B,

|f(z,u) = fl@, )] < O(supyep(e) lyll) llu — vl

A\
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Fixx € S[tO,T] (xg). It is enough to consider the

case V(T,z(T)) < oo. Consider a measurable
map u : [tg, T| — B such that

'(t) = f(z(t),u(t)) ae

and continuous maps uy, : [tg, 1| — B converg-
ing to u in L(tg, T; B). Let z; denote the solu-
tion to

2h(t) = Flap(t), up(®)), t € [to, T), ox(T) = 2(T)
Then x;. converge uniformly to z. The map
t = (T —t,25(T — 1), V(T 2(T)))

is the only solution to

() =-1
(6 y'(t) = —fly(t), up (T — 1))
] Z(t) =0
v(0) =T,y(0) = z(T), 2(0) = V(T,z(T))

17



We know that for all (v,z,2) € Ep((V),

(=1, = f(z,u(7)), 0) € Tgp)(7, 7, 2)

The map (¢, ) ~» {—f(z, ur(T—t))} being con-
tinuous, by the Viability Theorem problem (6)
has at least one solution satisfying

0, T —t] > ¢t = (7(¢),y(t),2(t) € Ep(V)
Consequently, V0 <t < T —{,
(T —t,zp (T —t),V(T,2(T))) € Ep(V)

In particular, V (tg, zr(tg)) < V(T,z(T)). Tak-
ing the limit when £ — oo and using that V is
lower semicontinuous, we deduce i7) for ¢t = T.

18



VALUE FUNCTION &
CONTINGENT SOLUTIONS

Proposition 3.16 Let V' be the value func-
tion. Then for all (ty, xg) € Dom(V),

to<T = infvEF(xo) DTV(to, 513())(1, U) <0
tp >0 — SUPye F(z) DTV(tQ, zg)(—1,—v) <0

Proof — Fix (tg,zg) as above. Then 4 x €
S[t()’T](xO) such that V (¢, z(t)) = g(x(T)). The-
orem 3.14 ends the proof of the first statement.
The second one follows from Theorem 3.15.

Theorem 3.17 The value function is the only
lower semicontinuous function from [0, T|x R™
into RU {+o0} satisfying

V(T,-) =g(-) and for all (¢,z) € Dom(V),

10 <t <T = infyep, D4V (L z)(1,v) < 0

0 <t <T = supyep(y) DtV (¢, 2)(—1,—v) <0

19



REGULARITY OF VALUE
FUNCTION AT BOUNDARY
POINTS

Theorem 3.18 If an extended lower semicon-
tinuous function V : [0,T] X R" —» RU {+o0}
satisfies

'V (t,z) € 10, T[x R",

V (pt, pz) € 0-V(t,z), —pt + H(z, —pg) = 0

Vz e R", V(0,7) = liminf; 0y z—zV (¢, 2)

VzZeR", V(T, T) = liminfy_yp_ , zV (¢, 1)
then for all (t,z) € Dom(V),

0 <t <T = supyep(y) D1V (¢ 2)(—1,—v) <0
0<t<T = infycpy DtV (¢, z)(1,v) <0

20



UNIQUENESS OF VISCOSITY
SOLUTIONS

Theorem 3.19 Let V : [0,T] x R® — R U
{+00} be an extended lower semicontinuous
function. Assume that F' is upper semicontin-
uous and has convex compact nonempty im-
ages.

Then the following two statements are equiv-
alent:

i) V is a viscosity supersolution of (HIB)

it) For all 0 <t < T and x € R" such that
V(t,x) # +00, we have

' <
vé}%{x) D4V (t,z)(1,v) <0

Notice next that

THyp(gp)(:EO)(P(xO)) — Hyp (D\LQO(CEO))

where Hyp denotes for the hypograph.
Thus p € O4p(xg) if and only if

(7) (_pa +1) S N'?—lyp (@)(3707 QO(CE()))
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Theorem 3.20 Let V : [0,T] x R®™ — R be
continuous. Assume that F' has compact nonempty
images and s Lipschitz.

Then the following two statements are equiv-
alent

i) V is a viscosity subsolution of (HJB)

i1) Vt E]O,T[,:I:,supvep(x) D4V (t, z)(—1,—v) <0

Proof — Assume that 47) holds true. Fix 0 <
to < T. We already know that for every t5 <
t1 < T and every z € Sy, 4(20) -

Vi€ [ty t1], Vito,z0) < V(¢ (1))

Fix v € F(tg, zg). Then there exist tg < t; < T
and z € Spy, 4,1(%o) such that z'(fg) = v. The
above inequality yields 0 < D V(ty, zo)(1,v).
Consequently,

\7/ (pt7p£l?) S 8‘|‘V(t07 xO)) O S 4; + <p$7 'U>

Since v € F'(tg, xq) is arbitrary, V is a viscosity
subsolution.
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Assume ¢). We claim that for all (¢,z) such
that 0 < ¢t < T and all z < V (¢, z) we have

Y (g, 45, 9) € Nigyp (v)(t, 7, 2), g+ H(z, gz) <0

(8)
Indeed it is enough to consider the case z =

V(t,z). Fix such (qt,qz,q). Clearly ¢ > 0. If
g > 0 then

(qqta qf? _I_l) E N7O-[yp (V)(t,fl'f, V(t7 ZC))

Hence, by (7) and i),

% 4 H (a:, Q{) <0
q q

and therefore ¢t + H(x,q;) < 0. If ¢ = 0, ap-
plying Rockafellar’s Lemma 3.5 to the extended
lower semicontinuous function (s, y) — —V (s, y),
we can find a sequence (t;,x;) — (t,x) and a se-
quence

S 0
(Q%7 qgrv qZ) € N'Hyp (V)(t,ZIZ,V(t, ZIZ'))
such that ¢ > 0 and (¢¢, ¢.) converge to (g¢, ¢z).

This and continuity of H yield (8).
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We next deduce from (8) and the separation
theorem that for all (¢,z) such that 0 < ¢t < T
and all z < V(t, )

{1} x F(z) x {0} C @ (Ty,, 1t z,2))
This and lower semicontinuity of F' imply that
for all (¢, x) satisfying 0 <t < T
{1} x F(z) x {0} C
. - ot
Limint 41 01 21y 5 (¢, 3, V (¢, 2)) ©Tryp (V) (2
(t', 2", 2) € Hyp (V)
C T’Hyp (V)(ta L, V<t7 33)) = Hyp (D\Lv(ta 513))
Thus for all (¢, z) satisfying 0 < ¢t < T,

' >
vellr%lzx) D\V(tz)(1l,v) > 0

Define W(t,z) = —V(T — t,z). Then for all
(t,z) such that 0 < ¢ < T and for all v € F(z),
we have

DWW (t,z)(—1,v) = =D, V(T—t,z)(1,0) < 0

Applying Theorem 3.15 to W and the set-valued
map



we deduce that for every solution y to the inclu-
sion |
y'(t) € F(y(t)) ae. in [to, ]
where 0 < tg < t; < T we have
Vi € [to,t1), Wi(to,z0) < W(E, y(t))

Fix any v € F(zg) and consider a solution y(-)
to the differential inclusion

y € F(y)
y(T —to) = z0, V(T —1ty) = —v
Then for all small s > 0,
W(T —ty,zg) < W(T —tg+ s,y(T —tg+ s))
and therefore for a sequence vs — v we have
V(ty — s, xg — svs) < V(tg, )

This yields that D4V (to, zo)(—1, —v) < 0. Since
v € F(xq) is arbitrary, i) follows.
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