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Tangent and Normal Cones to a Subset
Definition 3.1 (Contingent Cone) Let K be
a subset of a normed vector space X and x G
K belong to the closure of K. The contingent
cone Tj((x) is defined by

K — x
TK(x) := Li

That is
v G TK(X) if and only if 3 hn —>• 0+ , vn —> v
such that Vn, x + hnvn G K

It implies that when K is convex,

TK{x)= U X(K-x)v J A > 0
We also observe that

if x G Int(iT), then T^(
This situation may also happen when x does not
belong to the interior of K.

Theorem 3.2 Let X be a finite dimensional
vector-space and K be a closed subset of X.
Then for every x G K

= Liminfy-^KXcoTK(y) C TK(x)



SUBNORMAL CONES
Definition 3.3 (Subnormal Cones) The sub-
normal cone Nj((x) is defined by

<p,v><0 \fveTK(x)}

From the very definitions it follows that

(xOj <p(x0))

where 8p denotes the epigraph.

Proposition 3.4 Let if : Rn \-> RU {±00}
and XQ G Dom(^). Then the following state-
ments are equivalent

i) p e d-(p{x0)
ii) Mu G Rn, (p,u) <
iii) (p,- l) G

Lemma 3.5 (Rockafellar) Consider a lower
semicontinuous <p : Rn \-> R U {+00} and

G Dom((p). Let p G Rn be such that

(p,0) G N$p{(p){x0,(p{x0)), p ^ 0

/or every e > 0; t/iere exzsi x6, p e m i?n

and q£ < 0 satisfying



VIABILITY THEOREM

Let F : Rn ~> Rn be a set-valued map and
K C Dom(F) be a nonempty subset.

The subset K enjoys the viability property
for the differential inclusion

(l) x1 e F{x)

if for any initial state XQ G K, there exists at
least one solution #(•) to (1) starting at XQ which
is viable in K in the sense that x(i) G K for all
t>0.

The viability property is said to be local if for
any initial state XQ G K, there exist T(XQ) > 0
and a solution starting at XQ which is viable in
K on the interval [0, T(XQ)] in the sense that for
every. tG [0,T(x0)], x(t)

We say that K is a viability domain of F if

V x G K, F{x) n TK(x) ^ 0



Theorem 3.6 (Viability Theorem) IfF is
upper semicontinuous with nonempty compact
convex images, then a locally compact set K
enjoys the local viability property if and only
if it is a viability domain of F. In this case,
if for some c > 0, we have

inf lldl < c(||z||

and if K is closed, then K enjoys the viability
property.

The following result provides a very useful du-
ality characterization of viability domains:
Proposition 3.7 (Ushakov) Assume that the
set-valued map F : K ̂  R n is upper semicon-
tinuous with convex compact values. Then the
following three statements are equivalent:

i) V x e K, F(x) n TK{x) ^ 0

ii) VxeK, F(x)nco(TK(x)) ^ 0

in) VxeKypeN^(x), H(x,-p) >0
where H(x, —p) = sup^G^vx) < —p,v > .



Theorem 3.8 Suppose that F : Rn ~> Rn

is upper semicontinuous with compact convex
values and for some c > 0, we have

, sup \\v\\ <
veF(x)

For a closed subset K C R n the following
conditions are equivalent:

, F{x)nco{TK{x)) ^ 0

ii) V XQ € K there is a solution x : [0, +oo) •->•
K to

x'(t) e F(x(t))

x{0) =



Characterization of the Value Function

Consider a lower semicontinuous g : R n i-> RU
{+00}, a Lipschitz set-valued map F : R n -̂>
R n with convex compact images and the differ-
ential inclusion

(2) x\t) E F(x(i)) almost everywhere

The value function is given by:

For all (t0, xQ) G [0,T] x R n ,

(3)V(to,xo) = mi{g(x(T)) \ x G

It is lower semicontinuous.
The value function is nondecreasing along solu-

tions to (2): V x e Sfoffixo),

VtQ<tl<t2<T, V(ti,a;(ti)) < V{t2,x{t2))

Furthermore x G Su 7̂ 1(̂ 0) ^s optimal for prob-
lem (3) if and only if V(t, x{t)) = g{x{T)).

These two properties characterize the value func-
tion.



Consider any ^ : [ 0 , T ] x R n 4 i ? U {+00}
satisfying the boundary condition W(T, •) = g.
If W is nondecreasing along solutions to (2) and
for all (£OJ#O)

 e
 [OĴ TI

 x R n there exists x G
5 [ to3 i(xo) such that W(tOixo) > W(T,S(T)),
theA W = V.

Indeed if x is as above, then

, x0) > W(T, x(T)) = g(x(T)) > V(t0, x0)

So W > V. Next if x G S\tQT\(xo) ls optimal,
then

= g(x(T))>W(to,xo)

Hence V>W.

Define the Hamiltonian H : i?n x Rn \-> R by

, p) = sup < p, v >
veF(x)

Notice that H{x,-) is convex, positively homo-
geneous.



HAMILTON-JACOBI-BELLMAN
EQUATION

Consider the Hamilton-Jacobi equation (HJB)

dV_
~dt

(t,x)+H x,
dx

(t,x) = 0 ,

Definition 3.9 An extended lower semicontin
uous function V : [0, T] x Rn \-^ R U {+00} is
called a lower semicontinuous solution to
the Hamilton-Jacobi-Bellman equation (HJB)
if it satisfies the following conditions:

V(Tr) = g{>) and for all (t,x) G]0,T[xi?n,

V

V (pt,Px)

V (puPx) e d-V(T, x), -pt + H(x, -px) < 0

d-V(t, x), -Pt + H{x, -px) = 0

, x), -pt + H(x, -px) > 0



VISCOSITY SOLUTIONS

Definition 3.10 An extended lower semicon-
tinuous function V : [0, T] x Rn •->• RU {+00}
is called a viscosity supersolution to (HJB) if
for all t <E]0, T[ and x€Rn

V (pt,px) e d-V(t, x), -pt + H(t, x, -px) > 0

An extended upper semicontinuous function V :
[0, T] x Rn - ^ R U { - o o } is called a viscosity
subsolution to (HJB) if for all t G]0, T[ and

V {PhPx) e d+V{t,x), -pt + H(t,x,-px) < 0

Let V : [0, T] x Rn H-> R be a continuous
function. It is called a viscosity solution
to (HJB) if for all t e]0, T[ and x € Rn

V (puPx) € d-V{t,x), -pt + H{t, x, -Px) > 0
V (pt,Px) € d+V{t, x), -pt + //(t, x, -px) < 0
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UNIQUENESS OF SOLUTIONS

Theorem 3.11 Let V : [0, T] x Rn H> R U
{+00} be an extended Isc function.

The following statements are equivalent:

i) V is the value function

ii) V is a Isc solution to (HJB)

in) V is a contingent solution to (HJB) :

V(T, •) = g{-) and for all (t, x) e Dom(V),
0 < t < T = • iniveF^ DtV(t,x)(l,v) < 0
0 < t < T ==• supvGjF(x) D^V{t,x){-\, -v)

iv) V{T,-) = g{-) and for all {t,x) e ]0,T[xRn,
V (pt,Px) € d-V{t, x), -pt + H{x, -px) = 0
V x € Rn, V{0, x) = lim inf^0+, x^x V{t, x)
\/xeRn, g{x) = lim mit^T_^ x ^ V(t, x)

Finally, if V is continuous on [0, T] x Rn

then the above statements are equivalent to:

v) V is a viscosity solution to (HJB)



FROM (HJB) EQUATION TO
VIABILITY CONDITIONS

Consider a set-valued map F : Rn ~» Rn with
nonempty compact images.

Theorem 3.12 Assume that F is upper semi-
continuous and has convex images. Consider
an extended lower semicontinuous function V :
[0,T] x Rn^- RU{+oo}.

The following statements are equivalent :
i) For all (t, x) e Dom(V) such that t < T
and for every {pt,px, q) e ^ P ( K ) ( * . X' V(^ X))

-Pt + H{x,-px) > 0

ii) For all (t,x) G Dom(y), t < T, y >
V{t,x)

({l}xF(x)x{O})nT£p{v)(t,x,y) ? 0

Hi) For all (t, x) G Dom(V) such that t <T

inf DtV{t,x){l,v)<0

iv) For all (t, x) G Dom(y) such that t <T

-pt + H{x,-px)>0
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Theorem 3.13 Consider an extended lower semi-
continuous function V : [0, T] x Rn i-> R U
{+00} and assume that F is lower semicon-
tinuous.

The following statements are equivalent :

i) For all (£, x) G Dom(V) such that t > 0
and for every {pt,px, q) G ^ ( y ) ( * , ^, V(t, x))

0

ii) For all (t, x) G Dom(V) 5?/c/i i/iai t > 0
and all y > V(t,

{-1} x (-F(x)) x {0} C T£p{v)(t,x,y)

in) For all (t, x) G Dom(^) such that t > 0

sup D tV(i ,z)(- l , - t ; ) < 0

For all (t, x) 6 Dom(V) swc/i /̂iâ  t > 0

,ar), -pt+H{x,-Px) < 0

13



M O N O T O N E BEHAVIOR OF
C O N T I N G E N T SOLUTIONS

Consider a set-valued map F : Rn ^ Rn with
nonempty compact images and the differential in-
clusion

(4) x\t) G F(x(t)) almost everywhere

We investigate a relationship between mono-
tone behavior of a function V along solutions to
(4) and contingent inequalities.

Theorem 3.14 Let V : [0,7] x Rn K> R U
{+00} be an extended lower semicontinuous
function. Assume that F is upper semicon-
tinuous with convex images and linear growth
3c>0

G cn*n 77 <T pi 1 -4- T IO U J J l l ^ l l _ ^ v ' II I ' /

veF(x)
Then the following statements are equivalent:

i) V-t < T, w£v£F(x)D^V{t,x){l,v) < 0

ii) For every (to? ^0) G [0?^] x ^ n ; there
exists x G 5r^OT](XO) suc^ that V(t,x(i)) <
V{to,xo) for edit e[to,T\.

14



Proof i) =>• ii). Define F by

{1} x F(x) x {0} at<r
L 3 \ / l_ 3

F(t,x, z) = •
\ [0,1] x co(F(x) U {0}) x {0} at > T

and consider the viability problem
(t,x,z)' e F(t,x,z)

(5) (*,ar,*)(*o) = {to,xo,V{to,xo))
(t,x,z) e Sp(V)

For all (t, x, z) e Sp(V)

F{t,x,z)nTSp(y){t,x,z) ^ 0
By the Viability Theorem, (5) has a solution

[to,T] 3 t H- {t,x-{t),z(t)) € Sp(V)
Thus V{t,x{t)) < z(t) = V{to,xo) for all t €
[to, T] and ii) follows. Conversely, assume that
ii) is satisfied. Fix (to, XQ) E Dom(V) with to <
T and let x be as in ii). Let hn —> 0+ be such
that [#(£()+/in) ~ x {^ ) \ /h n converge to some v G
F(XQ). On the other hand D^V(to,xo)(l,v) <

V(tp + hn, x(tp +
n—)-oo ^ <0
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Theorem 3.15 Let V : [0,T] x Rn (-»• R U
{+00} be an extended lower semicontinuous
function. If F is locally Lipschitz, then the
following two statements are equivalent:

i)V(t,x) eDom(V), sup D^V{t,x){-l, -v) < 0
veF(x)

n) V x e S[tQT](x0), t e [to,T},V(to,xo) <
V(t,x(t)).

Proof— Assume i). Since i) does not involve
T, it is enough to prove the inequality in ii) for
t = T. We know that for all 0 < t < T and
x G Rn such that (T -t,x) G Dom(V) and for
al\z>V(T-t,x),

{-1} x (-F(x)) x {0} C Tem(T-t,x,z)

Let B denote the closed unit ball in Rn and CR
the Lipschitz constant of F on BR(0). There
exists a continuous / : Rn x B \-^ Rn and $ > 0

V x e i?n, J(x) = f(x, 5)
w e B , f(',u) is ^CJ? — Lipschitz on BR(0)
x e Rn and for all u,v e B,

, u) - f(x, v)

16



Fix x E Su T](XQ). It is enough to consider the
case V(T, x(T)) < oo. Consider a measurable
map u : [to? T] H* B such that

x\t) = T(x(t),u{i)) a.e.

and continuous maps u^ : [to,T] \-> B converg-
ing to u in L (to, T1; S). Let x^ denote the solu-
tion to

4(*) = 7{xk{t),uk{t)), t G [*0,T], xfc(T) = x(

Then xk converge uniformly to x. The map

t^{T-t,xk(T-t),V(T,x(T)))

is the only solution to

= 0
7(0) = T,y(0) =

17



We know that for all (7, x, z) G £p(V),

( - 1 , - / ( x , ixfe(7)), 0) G T£p{v)(j, x, 2:)

The map (£, x) ~> {—/(x, uj^(T—t))} being con-
tinuous, by the Viability Theorem problem (6)
has at least one solution satisfying

[0,T-t0] 3 t

Consequently, V

(T - *, xk(T - t), V(T, x(T))) e 6p(V)

In particular, V{to,xk{tQ)) < V(T,x{T)). Tak-
ing the limit when k -> 00 and using that V is
lower semicontinuous, we deduce ii) for t = T.

18



VALUE FUNCTION &
CONTINGENT SOLUTIONS

Proposition 3.16 Let V be the value func-
tion. Then for all (to,xo) € Dom(V),

< T = > miv€F{xo)D^V(to,xo)(l,v) < 0
o

Proof — Fix (to, XQ) as above. Then 3 x €
5[i0)T](x0) such that V(*,a;(*)) = p(x(T)). The-
orem 3.14 ends the proof of the first statement.
The second one follows from Theorem 3.15.

Theorem 3.17 The value function is the only
lower semicontinuous function from [0, T] x Rn

into R U {+00} satisfying

V(T, •) = g(-) and for all (t, x) € Dom(F),

0

0 < t < T => s u p ^ ^ ) D^V(t, x)(-l, -v) < 0

19



REGULARITY OF VALUE
FUNCTION AT BOUNDARY

POINTS

Theorem 3.18 If an extended lower semicon-
tinuous function V : [0, T] x Rn \-¥ R U {+00}
satisfies

V (pt,Px) € d-V{t,x), -pt + H{x, -px) = 0

, V{0,x) = li

, V(T,x) = ] \ j

then for all (t,x) G D o m ( V ) ,

0 < t < T =>• sup^g^^) D tF(t, x ) ( - l , -v) < 0
0 < t < T = ^ > i n f u e F ( x ) D ^ V { t , x ) ( l , v ) < 0

20



UNIQUENESS OF VISCOSITY
SOLUTIONS

Theorem 3.19 Let V : [0,T] x Rn ^ R U
{+00} be an extended lower semicontinuous
function. Assume that F is upper semicontin-
uous and has convex compact nonempty im-
ages.

Then the following two statements are equiv-
alent:

i) V is a viscosity supersolution of (HJB)
ii) For all 0 < t < T and x G R n such that

V(t, x) 7̂  +oo ; we have

inf DtV{t,x)(l,v)<0

Notice next that

{)) = Hyp

where Hyp denotes for the hypograph.
Thus p G d+(p(xo) if and only if

(7) (-p. +1) G N^yp (v)(x0, (p(x0))

21



Theorem 3.20 Let K : [ 0 , T ] x R n 4 R be
continuous. Assume that F has compact nonempty
images and is Lipschitz.

Then the following two statements are equiv-
alent
i) V is a viscosity subsolution of (HJB)

ii) \/t e]O,Tlx,s\xpveF(x)D^V(t,x){-l,-v) < 0

Proof — Assume that ii) holds true. Fix 0 <
to < T. We already know that for every to <
ti<T and every x G S[to,ti](xo) :

V i e M l ] , V(to,xo) < V(t,x(t))

Fix v G F(to, XQ). Then there exist to < t\ <T

and x G S\tr\ti](xo) suc^ ^ a ^ x\^) ~ v-
above inequality yields 0 <

Consequently,

V (pt,Px) e d+V{t0, x0), 0 < pt + (px, v)
Since v G F(to,^o) ^s arbitrary, 1/ is a viscosity
subsolution.
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(y){t, x, z), qt+H(x, qx) < 0

Assume i). We claim that for all (t,x) such
that 0 < t < T and all z < V(t, x) we have

V (qt, qx,
(8)
Indeed it is enough to consider the case z =
V(t,x). Fix such (qt^qx^q)- Clearly q > 0. If
q > 0 then

\q
Hence, by (7) and i),

qt

q
+ H qx

q
< 0

and therefore qt + H(x, qx) < 0. If g = 0, ap-
plying Rockafellar's Lemma 3.5 to the extended
lower semicontinuous function (5, y) \-t — V(s, y),
we can find a sequence (^, Xj) —t (t, x) and a se-
quence

qh

such that ql > 0 and (g|, q )̂ converge to
This and continuity of H yield (8).
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We next deduce from (8) and the separation
theorem that for all (t, x) such that 0 < t < T
and all z < V(t, x)

{1} x F(x) x {0} C co(Tnyp{v)(t,x,z

This and lower semicontinuity of F imply that
for all (t, x) satisfying 0 < t < T

{1} x F{x) x {0} C

(t1, x', z') -> (t, x, V(t, x))
(t1, xf, z') e Uyp (V)

<= THyp{v){t,x,V{t,x)) =

Thus for all (t, x) satisfying 0 < t < T,

inf D^(t ,x)( l ,«) > 0

L i m i n f (t1 x' z') > (t x V(t x)) mTKw {vi^ x'iz

Define W(t,x) = -V(T - t,x). Then for all
(£, x) such that 0 < t < T and for all v e F(x),
we have

0

Applying Theorem 3.15 to W and the set-valued
map

F{x) = -F(x)
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we deduce that for every solution y to the inclu-
sion

y\t)eF{y{t)) a.e. in [to,*i]

where 0 < £Q < t\ < T we have

Vt G [*0,*i], W(to,xo)<W(t,y(t))

Fix any v G ^(^o) a nd consider a solution y(-)
to the differential inclusion

V1 € F(y)
y(T-t0) = xQ, y'{T-t0) = -v

Then for all small s > 0,

W(T - t0, zo) ^ ^ ( T - *0 + s, y(T -to + s))

and therefore for a sequence vs —)• v we have

- s , a?o -

This yields that D^V(to,xo){-l,-v) < 0. Since
v € i^(xo) is arbitrary, M) follows.
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