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VALUE FUNCTION OF BOLZA
PROBLEM

Consider the minimization problem
(P)  minimize /tz; L(t,xz(t),u(t))dt + g(z(T))

over solution-control pairs (z,u) of the control
system

2(t) = f(t,z(t),u(t), ut)eU
(1)

z(to) = =0
where tg € [0,T], zog € R", U is a complete
separable metric space,

g:R"— R, L:[0,T]xR"xU — R

| f:0,T]xR"xU— R"

We denote by U the set of all measurable con-
trols u : [0,T] — U and by «(-; %y, zg,u) the
solution of (1) starting at time tg from the ini-
tial condition zg and corresponding to the con-
trol u(-) € U. Of course not to every u € U
corresponds a solution x(+; tg, g, u) of (1).



For all (tg, zg,u) € [0,T] x R™ x U set
d(tg, xg,u) =
iy L, 2(t;to, w0, w), u(t) dt + g(x(T; to, 7o, u)
if this expression is well defined and ® (¢, zg, u) =
+00 otherwise.

The value function associated to the Bolza prob-
lem (P) is defined by

V(t()) SCO) — infueuq)(t07 L0, ’LL)
when (¢, zg) range over [0, 7] x R".

In this lecture we address only locally Lipschitz
value functions.



The Hamiltonian H : [0, T]|xR"xR" — R
is defined by

H(t,z,p) = sup (p, f(t,z,u)) — L(t, z,u))

Proposition 4.1 Assume that H (t,-,-) is dif-
ferentiable. Then

oH
a—p( ,x,p) —
{5t z,u) | (p, f(t,z,u))—L(t,z,u) = H(¢,z,p)}

and

OH oL
e = (2w~ (2w

(p, f(t,2,u)) — L(t,z,u) = H(t, z,p)



Consider the Hamiltonian system

2(t) = Zga,x(t),p(t)), o(T) = o7
~p(t) = 52 (t,3(6),p(t)), p(T) = ~Vg(ary)

(2)
Definition 4.2 Hamiltonian system (2) is
called complete if for every x, the solution
of (2) is defined on |0, T]| and depends contin-
uously on the “initial” state in the following
sense:
Let (x;,p;) be solutions of (2) satisfying
zi(t;)) — w0, pi(ti)) — po for some t; —
tg, g € R™, pg € R™. Then (x;,p;) con-
verge uniformly to the solution (x,p) of (2)
such that x(tg) = xg and p(tg) = po.



We impose the following hypothesis:

H;) f, L are continuous and
Vr >0, 3k € L1(0,T) such that Vu € U,

(f(t,-,u), L(t,-,u)) is ky(t)—Lipschitz on By (0)

Hy) f(t,-,u), L(t,-,u) are differentiable and
geCl

Hs) H and %g are continuous on [0, 7] x R™ x
Rn

H,) The Hamiltonian system (2) is complete

Hs) For all (t,z) € [0,T] x R", the set

{(f(t, 2, w), L(t, 2,u) +7) |u € U, r > 0}

is closed and convex }



NECESSARY CONDITIONS

Theorem 4.3 Assume Hy), Hy) and let (T,n)
be an optimal solution-control pair of (P) for
some (tg,zg) € [0,T] x R™. If H(t,-,-) is dif-
ferentiable, then there exists p : [tg, T] — R™
such that (T, p) solves the Hamiltonian system

2(t) = %f;(t,:c@),p(t)), o(ty) = 20

| ~2/(t) = 5 (t,2(t),p(t)), p(T) = ~Vg(a(T))

L p(tO) S _8+V:E<t07550>

where 0+Vz(tog, xg) denotes the superdifferen-
tial of V (tg,-) at xg.
Consequently for almost all t € [ty, T},

H(t,z(t), p(t) = (p(t), z'(t)) — L(t,z(t), u(t))



DIFFERENTIABILITY OF VALUE
FUNCTION AND UNIQUENESS OF
OPTIMAL SOLUTIONS

Theorem 4.4 Assume Hy) — Hs), that V is
locally Lipschitz and for every (tg, xg) € (0, T]| %
R"™ the problem (P) has an optimal solution.
Then for every p €

. oV
Q;V(to, ZUO) = leSUPxi—mQ, t;—1tp {%(tm 33@)

there exists a solution (x,p) of (2) satisfying

z(to) = w9 & p(to) =D

and x is optimal for problem (P).

In particular if (P) has a unique optimal tra-
jectory, then the set O3V (tg, xg) is a singleton.
Consequently, V(to, ) is differentiable at x.



CHARACTERISTIC SYSTEM OF
HAMILTON-JACOBI EQUATION

Consider the Hamilton-Jacobi equation (HJ B)
oV ov
—— + H|t,z,——| =0, V(TI,) = ¢g(
at _I_ ( 7337 ax) ) ( ) ) g( )

Lemma 4.5 Assume Hy) — Hs), that V is lo-
cally Lipschitz and for every (ty, zg) € [0,T] X
R the problem (P) has an optimal solution.
Consider (ty,zg) €]0,T[ xR"™ such that V is
differentiable at (ty, xg). Then

1% oV
—E(to,fvo)JrH to,fﬂo,—a—x(toafﬂ(}) =0

i.e., V satisfies the Hamilton-Jacobi-Bellman
equation almost everywhere in [0, T|xR™. Con-
sequently for all (pt, pz) € IV (t, x)

—pt + H(ta €L, _Px) =0

Corollary 4.6 Under all the assumptions of
Lemma 4.5,V is a viscosity solution to (HJB).
Furthermore, for all0 <t <T and x

\V/ (pt7p33) S a_V(t,Qf), _pt+H(t,CE‘, —pIL') = O



The characteristic system of (HJB) is the
Hamiltonian system

o(t) = %f;(t,w(t),p(t», o(T) = o7

—p'(t) = 5 ~(t,z(t),p(t)), p(T)= —Vg(ar)

By the maximum principle, if = : [ty, T] — R
is optimal, then there exists p : [tg,T] — R"
such that (x,p) solves (3) with zp = z(T).

This is not a sufficient condition for optimality:
it may happen that to a given zp € R" corre-
spond two distinct solutions (x;,p;), i = 1,2 of
(3) satisfying
(4) zi(to) = =0
and with one of z; being not optimal.

If the Hamiltonian system enjoys uniqueness of
solutions, then

(5) p1(to) # pa(to)

Whenever (4) and (5) hold true for some solutions
(x;,p), © = 1,2 of (3), we say that the system
(3) has a shock at time .
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Shocks are the very reason why the value func-
tion is not smooth and why, in general, one should
not expect smooth solutions to the Hamilton-
Jacobi-Bellman equation (HJB).

If we could guarantee that on some time in-
terval [tg, T| there are no shocks, then the value
function would be a continuously differentiable on
[0, T] x R™ solution of (HJB). In the same time
we would have the uniqueness of optimal trajec-
tories and would derive the optimal feedback low

G : [tg, T] x R™ ~» U by setting

G(t,z)={u| H(t, z, —g—‘;(t,x)) =
(27t ), 7t ) — Lit, )}

Then the closed loop control system
v’ = f(t,z,u(t,2), u(t,z)€ Gt 2), =(ty) =20

would have exactly one solution which is optimal
for the Bolza problem.

11



MATRIX RICCATI EQUATIONS
AND SHOCKS

We relate the absence of shocks of the Hamilton-
Jacobi-Bellman equation (HJB) with the exis-
tence of solutions to matrix Riccati equations

0°H O*H

P+

(6 0(t), pE)P + P (t,2(0) po)+
< 2 2
+P (6 alt), pOIP + 5 (8 a(t) plt) =

| P(T) = —g"(z(T))

12



Consider H : [0,T] x R®" x R" — R and a
locally Lipschitz 1 : R™ — R™. We assume that
H(t,-,-) is twice continuously differentiable and

that for every r > 0, there exists k, € L1(0,T)
satisfying
OH
(z, p)
We associate to these data the Hamiltonian sys-
tem

(t,-,-) is kp(t) — Lipschitz on B;(0)

2(t) = %;I@,x(t),p(t)), o(T) = oy

(6)

/(1) = 2t 2(0),0(0), P(T) = blap)
and assume that it is complete.

Define for every t € [0, T the set

My = {(z(t),p(t)) | (z,p) solves (6), z7 € R"}

13



Theorem 4.7 The following statements are
equivalent:

i) YV t, My us the graph of a locally szschztz
function from an open set D(t) into R

i) V (x,p) solving (6) on [0,T| and Pr €
0*Y(x(T)), the matrix Riccati equation

| - 8°H O0*°H

oo (ta(t) POIP+ P (t(0),(0)+
| y y
+P (1), p(0)P+ G a(t) (1) = O
P(T) = Py

(7)
has a solution on |0,T].

Furthermore, if i) (or equivalently ii)) holds
true, we have : if ¢ is differentiable, then

M; 1is the graph of a differentiable function
and if v € CL, then
My is the graph of a C I _ function

14



Corollary 4.8 Under all assumptions of The-
orem 4.7, suppose that for every (x,p) solv-
ing (6) on [0,T] and Pr € 0*Y(x(T)), the
matrix Riccati equation (7) has a solution on
0, T]. Then the Hamiltonian system (6) has
no shocks on |0, T].

Lemma 4.9 Let K C R” be a compact set.
Constider a locally Lipschitz function ¢ : R"™ —

R" and the subsets My(K), t € [0,T] defined
by
Mi(K) = {(x(t), p(t))|(x, p) solves (6), z1 € K'}

Then there exists 0 > 0 such that for all t €
[T — 6, T], M¢(K) is the graph of a Lipschitz
function.

15



MATRIX RICCATI EQUATIONS

P'+A(t)*P+PA(t)+PE(t)P+D(t) =0, P(T) = Py
Theorem 4.10 Let A, E;, D; : [0,T] — L(R™ R"™),

i = 1,2 be integrable. Assume that F;(t),
D;(t) are self-adjoint for almost every t and

D1(t) < Doft), E1(t) < Eo(t) ae. in [0,T]
Consider self-adjoint operators P, € L(R™, R"™)
such that
Pip < Py

and solutions F;(-) : [tg,T] — L(R"™ R") to

the matriz equations P;(T) = P,p

P'+ At)"P + PA(t) + PE;(t)P + D;(t) =0
fori=1,2. Then P; < P on [tg, T].
Theorem 4.11 Under all assumptions of The-
orem 4.10 assume that for almost every t €
0,T], E1(t) > 0 Consider solutions Pj(-) :
t;, T] — L(R™ R"™) to the matrix equations
Pi(T) = B,

P+ At)*P + PA(t) + PE;(t)P + D;(t) =0
where 1 = 1,2. Then the solution Py is defined
at least on [tg, T] and P, < P.

16



EXISTENCE OF SOLUTIONS

Theorem 4.12 Let A, E, D : [0,T] — L(R",R")
be integrable. We assume that E(t), D(t) are
self-adjoint and E(t) > 0 for almost every

t € [0,T]. Consider a self-adjoint operator
Pr € L(R™, R") and assume that there ex-
ists an absolutely continuous P : [tg,T] —
L(R™ R™) such that for everyt € [ty, T, P(t)

15 self-adjoint and

P+ A*P+ PA+ PEP+D<0

a.e. in [ty, T| and Pp < P(T). Then the solu-
tion P to the equation P(T) = Pr

(8)P' + A(t)*P+ PA(t)+ PE(t)P+ D(t) = 0

is defined at least on [ty,T] and P < P on
[t0, T7.

Corollary 4.13 Under all the assumptions of
Theorem 4.12, consider a self-adjoint nonpos-
itive Pp € L(R™ R"™). If for almost all t €
0,T], D(t) < 0, then the solution P to the
matriz Riccati equation (8) is well defined on
0,T] and P < 0.

17



SMOOTHNESS OF THE VALUE
FUNCTION

Differentiabililty of the value function is related
to solutions of the Riccati Equation (7) in the
following way.

Theorem 4.14 Assume Hy) — Hs), that V is

locally Lipschitz and for every (tg, zg) € [0, T] %

R the problem (P) has an optimal solution.
The following four statements are equivalent:

i) The value function V' is continuously dif-
ferentiable

ii) For every ty € [0,T], V(ty,") € C!

i) V (tg, zg) € [0,T] x R™ the optimal tra-
jectory of (P) is unique

w) For the Hamiltonian system (2) the set

My == {((¢),p(t)) | (z, p) solves (2) on [t, T}

is the graph of a continuous function m :
R" — R".

Furthermore, iv) yields that m¢(-) = —%—g(t, )
and every solution (xz,p) of (2) restricted to
[to, T satisfies: x is optimal for (P) with xy =
z(tg) and p(t) = —%‘;—(t,x(t)) for allt € [0,T].

18



Corollary 4.15 Under all assumptions of The-
orem 4.14, suppose that U 1is a finite dimen-
sional space, that for some f : [0,T] x R"
R™ b:[0,7T] x R" = L(U,R"™) we have

V(t,x), f(t,x,u) = f(t,z)+ b(t,z)u

and & (t x,-) is bijective. Then the (equiva-
lent} statements i) — ) of Theorem 4.14 are
equivalent to

v) For every (tg,zg) € [0,T] x R™ there ex-
ists a unique optimal control u(-) solving the
problem (P). Furthermore, if z denotes the
corresponding optimal trajectory, then for all
t € [tg, T],

LoV

-1
) = [5(t,20,0] bt 2015 0,2(0)

19



Corollary 4.16 Under all assumptions of The-
orem 4.14, suppose that Vg(-) is locally Lips-
chitz, H(t,-,-) is twice continuously differen-
tiable and VY1 > 0, 3k, € L1(0,T) such that

OH . .
o(z.p) (¢,-,-) is kr(t) — Lipschitz on By(0)

The following two statements are equivalent:
i) Vtelo,T], %—g( 1) 1s locally Lipschitz

i1) V (x,p) solving (2) on [0,T] and every
Pr € 0%(Vg)(z(T)), the matrixz Riccati equa-
tion

( 2 2

Pt o (8,0, POVP + P (t,2(t) pe) +
| y 2

+P (6 alt), pOIP + 5 (6 alt) plt) =
P(T) = Pr

has a solution on [0,T].

20



Furthermore, if i) (or equivalently ii)) holds
true, then

oV V.

oz

and for every (x,p) solving (2),
0°V

P(t) = =5 (t, 3(t)

If moreover g € C?, then V(t,-) € C2.

Proof — Let M; be defined as in Theorem
4.14. If ) holds true, then, by Theorem 4.14, M;
is the graph of a locally Llpschltz function .
By Theorem 4.3, m(-) = T(t -). Applying
Theorem 4.7, we deduce #1). Conversely, assume
that i7) is verified. Thus, by Theorem 4.7, My is
the graph of a locally Lipschitz function from an
open set D(t) C R™ into R™. By Theorem 4.3,
M; = Graph(—%(t, -)). Hence 7).

The last statement follows from Theorem 4.7,
because P(t) describes the evolution of tangent

space to My at (z(t), p(t)).

Vg is differentiable = ) is differentiable

21



PROBLEMS WITH
CONCAVE-CONVEX
HAMILTONIANS

Observe that in general one has

for every solution (z,p) of the Hamiltonian sys-

tem
2(t) = OH

Gy (Lz(0).p(0), o(1) =27

(1) = b, 2(),p(0), p(T) = ~Vi(ar)

(9)
and that whenever in addition H (¢, -, p(t)) is con-
cave for all t € [0,T], then

2
S (ta(t)plt) < O

If g is convex, then every matrix from the gen-
eralized Jacobian 0*g(x(T)) is nonnegative.

22



By Corollary 4.13 for every Pr € 0*(Vg)(x(T)),
the solution P(-) of the matrix Riccati equation

| 0’ H O*H
P+

Bt pO)P + P (t,2(0), ple)
< y 2

+P (4 a(0),p(0)P+ G (a(t) (1) = O
P(T)=—Pr

(10)
exists on [0, 7.

23



By Theorem 4.7, no shocks of (9) may occur
backward in time. From Theorem 4.14 and Corol-
lary 4.16 we get

Theorem 4.17 Assume Hi) — Hs), that V is
locally Lipschitz and for every (tg, zg) € [0, T]x
R™ the problem (P) has an optimal solution.
Further assume that Vg(-) is locally Lips-
chitz, H(t,-,-) is twice continuously differen-
tiable and for allr > 0 there exists ky € LY(0,T)

such that
oOH

d(z,p)

If for every solution (x,p) of (9), H(t,-, p(t))
is concave and g is convezx, then V € Ct and
%—g—(t, \) is locally Lipschitz.

Moreover, every solution (x,p) of (9) is an
optimal trajectory-co-state pair. If in addition
g € C? then V(t,-) € C? and, in this case,

| 0°V
P(t) = — 55 (t,a(0)
solves the matrix Riccati equation (10) with

Pr = —g"(z(T)).

(t,-,-) is kr(t) — Lipschitz on By(0)
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