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VALUE FUNCTION OF BOLZA
PROBLEM

Consider the minimization problem

(P) minimize/^ L(t,x(t),u(t))dt + g{x{T))
over solution-control pairs (#, u) of the control
system

x\t) = f(t,x{t),u(t)),
(1)

x(t0) =

where to G [0, T], XQ £ Rn , C/ is a complete
separable metric space,

g : R n h+ R, L : [0,T]

: [0,T] x
We denote by ZY the set of all measurable con-

trols u : [0,T] H> [/ and by x(-;to,xo,tx) the
solution of (1) starting at time £Q from the ini-
tial condition XQ and corresponding to the con-
trol u(-) G ZY. Of course not to every u G U
corresponds a solution #(•; tg, ̂ o? ^) °f



For all (t0, XQ, u) e [0, T]xRn xU set

$(tQ,XQ,u) =
rp

o L(t, x(t] t0, %0, u), u(t))dt + g(x(T; t0, ^0,

if this expression is well defined and $(£o, x0,u) —
+00 otherwise.

The value function associated to the Bolza prob-
lem (P) is defined by

when (£0, XQ) range over [0, T] x Rn .

In this lecture we address only locally Lipschitz
value functions.



The Hamiltonian H : [0, T] x Rn x Rn h+ R
is defined by

H(t,x,p) = sup ((pj(t,x,u)) - L(t,x,u))
ueU

Proposition 4.1 Assume that H(t, •, •) is dif-
ferentiable. Then

dH

and
dH, , fdf / .. dL

(txp){(txu)p

(p, f{t, x, u)) - L(t, x, u) = H(t, x,p)



Consider the Hamiltonian system

At) = -^{t,x(t),p{t)), x(T) = xT

{t{t){t)), P(T) = -Vg{xT)

(2)

Definition 4.2 Hamiltonian system (2) is
called complete if for every x^, the solution
of (2) is defined on [0, T] and depends contin-
uously on the "initial" state in the following
sense:

Let (xi,Pi) be solutions of (2) satisfying
Xi{ti) -> zo, PiiU) -> P0 for some t{ -+

to, XQ G Rn , po ^ R-n- Then (x^pi) con-
verge uniformly to the solution (x,p) of (2)
such that x(to) = XQ and p(to) =



We impose the following hypothesis:

Hi) / , L are continuous and
V r > 0, 3kre L\0, T) such that V u e U,

is kr(t)—Lipschitz on Br(0)

H2) /(*5 ')^)j L(t,-,u) are differentiate and

H3) J^ and ^ are continuous on [0, T] x R n x
R n

H4) The Hamiltonian system (2) is complete
H5) For all (t, x) G [0, T] x Rn , the set

{(/(£, x, u), L(t, x, u) + r) I u G C/, r > 0}

is closed and convex }



NECESSARY CONDITIONS

Theorem 4.3 Assume H\), H2) and let (x,u)
be an optimal solution-control pair of (P) for
some (to,xo) £ [0,T] x Rn . If H(trr) is dif-
ferentiate, then there exists p : [to,T] i-> Rn

such that (x, p) solves the Hamiltonian system

x'(t) = —{t,x(t),p(t)), x(to) =x0

P(T) = -Vg(x(T))

p{tQ) e -

where d+Vx(to,X(y) denotes the super differen
tial ofVitfa •) at XQ.

Consequently for almost all t £

H(t,x(t),P(t)) =



DIFFERENTIABILITY OF VALUE
FUNCTION AND UNIQUENESS OF

OPTIMAL SOLUTIONS

Theorem 4.4 Assume H\) — H§)7 that V is
locally Lipschitz and for every (to, XQ) G [0, T] x
R n the problem (P) has an optimal solution.
Then for every p G

d*V(to,xo) := ' • ldV

there exists a solution (x,p) of (2) satisfying

x(t0) = x0 k p(t0) = p

and x is optimal for problem (P).
In particular if(P) has a unique optimal tra-

jectory) then the set d£V(tQ, XQ) is a singleton.
Consequently, V(to? •) is differentiable at



CHARACTERISTIC SYSTEM OF
HAMILTON-JACOBI EQUATION

Consider the Hamilton-Jacobi equation (HJB)

~dt
+ H t T

dV_
dx,

= 0, V(T, •) = g(-)

Lemma 4.5 Assume H{) — H§), that V is lo-
cally Lipschitz and for every (to?^o) G [0^] x

R n the problem (P) has an optimal solution.
Consider (t^x^) 6]0,T[xRn such that V is
differentiable at (£o,#o). Then

dV_

~dt

dV_

dx
= 0

i.e., V satisfies the Hamilton-Jacobi-Bellman
equation almost everywhere in [0, T] x R n . Con-
sequently for all (ptiPx) £ d*V{t,x)

-pt + H(t, x, -px) = 0

Corollary 4.6 Under all the assumptions of
Lemma 4.5, V is a viscosity solution to (HJB).
Furthermore, for all 0 < t < T and x

V (pt,Px) e d-V(t,x), -pt + H(t,x,-px) = 0



The characteristic system of (HJB) is the
Hamiltonian system

dH
r (t) = It r(t) r)(t)) r(T) — rrr

p(T)= -Vg{xT)

(3)
By the maximum principle, if x : [£Q, T] I-» R n

is optimal, then there exists p : [to,T] \-> R n

such that (x,p) solves (3) with xj- = x(T).
This is not a sufficient condition for optimality:

it may happen that to a given XQ G R n corre-
spond two distinct solutions (#i,Pi), i = 1,2 of
(3) satisfying
(4) Xi(t0) = x0

and with one of X{ being not optimal.
If the Hamiltonian system enjoys uniqueness of

solutions, then

(5) Pl(*0) 7^2(*0)

Whenever (4) and (5) hold true for some solutions
(xiiPi)i i — 1)2 of (3), we say that the system
(3) has a shock at time
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Shocks are the very reason why the value func-
tion is not smooth and why, in general, one should
not expect smooth solutions to the Hamilton-
Jacobi-Bellman equation (HJB).

If we could guarantee that on some time in-
terval [to,T] there are no shocks, then the value
function would be a continuously differentiate on
[to, T] x R n solution of (HJB). In the same time
we would have the uniqueness of optimal trajec-
tories and would derive the optimal feedback low
G : [t0, T] x R n ^> U by setting

dV
G(t, x) = {u | H(t, x, -— ( t , x ) ) =

dV

Then the closed loop control system

x — /( t , x, u(tj #)), u(t, x) G G(t, x), x(to) =

would have exactly one solution which is optimal
for the Bolza problem.



MATRIX RICCATI EQUATIONS
AND SHOCKS

We relate the absence of shocks of the Hamilton
Jacobi-Bellman equation (HJB) with the exis
tence of solutions to matrix Riccati equations

d2H _ _d2H

rP M cP M
(t(t)(t))P

P(T) = -g"
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Consider H : [0, T] x R n x R n i-* R and a
locally Lipschitz ^ : R n i->> Rn . We assume that
H(t, •, •) is twice continuously differentiate and
that for every r > 0, there exists kr G L^OjT)
satisfying

, •, •) is kr(t) — Lipschitz on Br(0)

We associate to these data the Hamiltonian sys-
tem

, x(T) =

-At) =
and assume that it is complete.

Define for every t G [0, T] the set

= {{x{t),p(t)) | (z,p) solves (6), xT G R n }

13



Theorem 4.7 The following statements are
equivalent:

i) V £, Mt is the graph of a locally Lipschitz
function from an open set T>(t) into R n

ii) V (x,p) solving (6) on [0,T] and
d*i[j(x(T)), the matrix Riccati equation

P(T) = PT

(7)
has a solution on [0, T],

Furthermore, if i) {or equivalently ii)) holds
true, we have : if'ip is differentiate, then

Mt is the graph of a differentiable function

and ifip G C1, then

is the graph of a C — function

14



Corollary 4.8 Under all assumptions of The-
orem 4-7, suppose that for every (x,p) solv-
ing (6) on [0,T] and PT G d**/;(x(T)), the
matrix Riccati equation (7) has a solution on
[0, T]. Then the Hamiltonian system (6) has
no shocks on [0, T].

Lemma 4.9 Let K C R n be a compact set.
Consider a locally Lipschitz function i/; : R n i—)•
R n and the subsets Mt(K), t e [0,T] defined
by

Mt(K) - {{x{t),p{t))\{x,p) solves (6), xT G K}

Then there exists S > 0 such that for all t G
[T — 5, T], Mt(K) is the graph of a Lipschitz
function.

15



MATRIX RICCATI EQUATIONS

Pf+A{t)*P+PA{t)+PE(t)P+D{t) = 0, P(T) = PT

Theorem 4.10 Let A, Eh D{ : [0, T] h+ L(Rn, R n) ,
i = 1, 2 be integrable. Assume that Eiit),

Di(t) are self-adjoint for almost every t and

Di(t) < D2(t), Ei(t) < E2{t) a.e. in [0,T]

Consider self-adjoint operators P^ G L(Rn, Rn)
such that

PIT < PIT

and solutions i*(-) : [to,T] ^ L(R n ,R n ) to
the matrix equations Pi{T) = P^T

Pf + A{tfP + PA(t) + PEi(t)P + Di(t) = 0

for i = 1,2. Then Px < P2 on [t0, T\.
Theorem 4.11 Under all assumptions of The-
orem 4-10 assume that for almost every t G
[0,T], E\{t) > 0 Consider solutions P^(-) :

i-> L(R n ,R n ) io the matrix equations

Pf + A{tfP + PA{t) + PEi{t)P + Diit) = 0
where i = 1,2. T/ien £/ie solution P\ is defined
at least on [<t2,T] ancf Pi < P2-

16



EXISTENCE OF SOLUTIONS

Theorem 4.12 LetA,E,D : [0,T] h+ L(Rn,Rn)
be integrable. We assume that E(t), D(t) are
self-adjoint and E(t) > 0 for almost every
t G [0,T]. Consider a self-adjoint operator
PT ^ I/(R/\Rn) and assume that there ex-
ists an absolutely continuous P : [tg,T]
L(Rn, Rn) such that for every t e [t0, T],
is self-adjoint and

Pr + A*P + PA + PEP + D<0

a.e. in [to,T] and P-p < P(T). Then the solu-
tion P to the equation P(T) =

(8)P; + A{tfP + PA{t) + PE{t)P + D(t) = 0

is defined at least on [£o,T] and P < P on

Corollary 4.13 Under all the assumptions of
Theorem 4-12, consider a self-adjoint nonpos-
itive PT £ L(Rn ,Rn) . If for almost all t €
[0,T], D(t) < 0, then the solution ~P to the
matrix Riccati equation (8) is well defined on
[0, T] and T < 0.

17



SMOOTHNESS OF T H E VALUE
F U N C T I O N

Differentiabililty of the value function is related
to solutions of the Riccati Equation (7) in the
following way.

Theorem 4.14 Assume Hi) — H§), that V is
locally Lipschitz and for every (to, #o) ^ IP? T] x
R n the problem (P) has an optimal solution.

The following four statements are equivalent:

i) The value function V is continuously dif-
ferentiable

ii) For every t0 G [0, T], V(t0, •) G C1

Hi) V (to^o) G [0,T] x R n the optimal tra-
jectory of (P) is unique

iv) For the Hamiltonian system (2) the set

Mt := {(x(t),p(t)) | (x,p) solves (2) on [t,T\}

is the graph of a continuous function irt :
Rn ^ Rn .

Furthermore, iv) yields thatTrt(') = —^{t, •)
and every solution (x,p) o/ ( ^ restricted to
[to,T] satisfies: x is optimal for (P) with XQ =
x(t0) and p{t) = -^f{t,x{t)) for all t G [0,T].

18



Corollary 4.15 Under all assumptions of The-
orem 4-14> suppose that U is a finite dimen-
sional space, that for some f : [0, T] x R n i->
Rn , b : [0, T] x R n ^ L(U, Rn) we have

V (£, x), f{t, x, u) = /(*, x) + 6(t, x)u

and ^ ( ^ , #, •) «5 bijective. Then the (equiva-
lent) statements i) — iv) of Theorem 4-14 are

equivalent to

v) For every (io>#o) ^ [0>^] x R n *^ene ex-
z«sfo a unique optimal control iz(-) solving the
problem (P). Furthermore, if z denotes the
corresponding optimal trajectory, then for all
te[to,T\,

idL
u(t) = —(t, z(t),

dV

19



Corollary 4.16 Under all assumptions of The
orem 4-14) suppose that Vg(-) is locally Lips-
chitz, //"(£,-,-) is twice continuously differen-
tiable and\/r > 0, 3kr £ L^O^T) such that

(£, •, •) is kr(t) — Lipschitz on Br(0)

The following two statements are equivalent:

i) V t £ [0,T], ^-(t , •) is locally Lipschitz

ii) V (x,p) solving (2) on [0,T] anrf even/
Py £ 5*(Vp)(a;(T)); ^ e matrix Riccati equa-
tion

rx

P(T) =

has a solution on [0, T].

20



Furthermore, if i) (or equivalently ii)) holds
true, then

Vg is different iable = > -z—(t, •) is different iable

and for every (x,p) solving (2),

d2V

If moreover g G C2, then V(t, •) £ C2.

Proof — Let Mt be defined as in Theorem
4.14. If i) holds true, then, by Theorem 4.14, Mt

is the graph of a locally Lipschitz function nf.
By Theorem 4.3, 7r*(-) = -%(tr). Applying
Theorem 4.7, we deduce ii). Conversely, assume
that ii) is verified. Thus, by Theorem 4.7, Mt is
the graph of a locally Lipschitz function from an
open set V(t) C R n into Rn . By Theorem 4.3,
Mt = Graph(-g^, •)). Hence i).

The last statement follows from Theorem 4.7,
because P(t) describes the evolution of tangent
space to Mt at

21



PROBLEMS WITH
CONCAVE-CONVEX

HAMILTONIANS

Observe that in general one has

d2H
0

for every solution (x,p) of the Hamiltonian sys
tem

x'{t) = —{t,x{t)iP{t)), x{T)=xT

At) = -fa{t,x{t),p{t)), p{T) = -Vg{xT)

(9)
and that whenever in addition H(t, -,p(i)) is con-
cave for all t G [0, T], then

{t{t\{t)) < 0

If g is convex, then every matrix from the gen-
eralized Jacobian d*g(x(T)) is nonnegative.

22



By Corollary 4.13 for every P? G
the solution P(-) of the matrix Riccati equation

d2H

cfi H

P(T) = -PT

(10)
exists on [0, T].
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By Theorem 4.7, no shocks of (9) may occur
backward in time. From Theorem 4.14 and Corol-
lary 4.16 we get

Theorem 4.17 Assume Hi) — H§), that V is
locally Lipschitz and for every (£Q, XQ) G [0, T] x
R n the problem (P) has an optimal solution.

Further assume that Vg(-) is locally Lips-
chitz, H(t, •,•) is twice continuously differen-
tiate and for allr > 0 there exists kr G ̂ (O, T)
such that

BTJ
(£, •, •) is kr(t) — Lipschitz on Br(0)

d{x,p)

If for every solution (x,p) of (9), H(t, -,p(t))
is concave and g is convex, then F G C 1 and
735T(£5 •) is locally Lipschitz.

Moreover, every solution (x,p) of (9) is an
optimal trajectory-co-state pair. If in addition
g G C2

; then V(t, •) G C2 and, in this case,

82V

solves the matrix Riecati equation (10) with
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