

ional ato energy agency **the** abdus salam

international centre for theoretical physics

SMR1327/13

Summer School on Mathematical Control Theory

(3 - 28 September 2001)

Value Function in Optimal Control Lecture 4

Helene Frankowska

CNRS, CREA Ecole Polytechnique 1, rue Descartes 75005 Paris France

These are preliminary lecture notes, intended only for distribution to participants

VALUE FUNCTION OF BOLZA PROBLEM AND RICCATI EQUATIONS

Outline

4.1 Value Function of Bolza Problem. Characteristic system

4.2 Matrix Riccati Equations and Shocks

4.3 Value Function and Solutions to Riccati equations

4.4 Smoothness of Value Functions. Problems with Concave-Convex Hamiltonians

VALUE FUNCTION OF BOLZA PROBLEM

Consider the minimization problem

 (P) minimize $^{T}_{t_0} L(t, x(t), u(t))dt + g(x(T))$ over solution-control pairs (x, u) of the control system

(1)
$$
\begin{cases} x'(t) = f(t, x(t), u(t)), & u(t) \in U \\ x(t_0) = x_0 \end{cases}
$$

where $t_0 \in [0, T]$, $x_0 \in \mathbb{R}^n$, *U* is a complete separable metric space,

$g: \mathbf{R}^n \mapsto \mathbf{R}, ~~ L : [0,T]$

$f: [0, T] \times \mathbf{R}^n \times U \mapsto \mathbf{R}^n$

We denote by U the set of all measurable controls $u : [0, T] \mapsto U$ and by $x(\cdot; t_0, x_0, u)$ the solution of (1) starting at time t_0 from the initial condition x_0 and corresponding to the control $u(\cdot) \in \mathcal{U}$. Of course not to every $u \in \mathcal{U}$ corresponds a solution $x(\cdot; t_0, x_0, u)$ of (1).

For all $(t_0, x_0, u) \in [0, T] \times \mathbb{R}^n \times \mathcal{U}$ set $\Phi(t_0,x_0,u) =$

 \overline{T} $\frac{d}{d\theta} \ L(t, x(t;t_0,x_0,u), u(t))dt + g(x(T;t_0,x_0,u), u(t))dt + g(x(T;t_0,u), u(t))dt$ $\text{if this expression is well defined and } \Phi(t_0, x_0, u) = 0$ $+\infty$ otherwise.

The value function associated to the Bolza problem (P) is defined by

 $V(t_0, x_0) = \inf_{u \in \mathcal{U}} \Phi(t_0, x_0, u)$

when (t_0, x_0) range over $[0, T] \times \mathbb{R}^n$.

In this lecture we address only locally Lipschitz value functions.

 $\text{The Hamiltonian}\ H:[0,T]\!\times\! \mathbf{R}^n\!\times\! \mathbf{R}^n\mapsto\mathbf{R}$ is defined by

$$
H(t, x, p) = \sup_{u \in U} (\langle p, f(t, x, u) \rangle - L(t, x, u))
$$

Proposition 4.1 *Assume that H(t,* •, •) *is differentiable. Then*

$$
\frac{\partial H}{\partial p}(t,x,p) =
$$

 $\{f(t, x, u) \mid \langle p, f(t, x, u) \rangle - L(t, x, u) = H(t, x, p)\}\$ *and*

$$
\frac{\partial H}{\partial x}(t, x, p) = \left\{ \frac{\partial f}{\partial x}(t, x, u)^{\star} p - \frac{\partial L}{\partial x}(t, x, u) \right\}
$$

 $\langle p, f(t, x, u) \rangle - L(t, x, u) = H(t, x, p)$

Consider the Hamiltonian system

$$
\begin{cases}\nx'(t) = \frac{\partial H}{\partial p}(t, x(t), p(t)), \ x(T) = x_T \\
-p'(t) = \frac{\partial H}{\partial x}(t, x(t), p(t)), \ p(T) = -\nabla g(x_T) \\
\end{cases}
$$

Definition 4.2 Hamiltonian system *(2) is called* complete *if for every x^, the solution of (2) is defined on* [0, T] *and depends continuously on the "initial" state in the following sense:*

Let (x_i, p_i) be solutions of (2) satisfying $x_i(t_i) \ \rightarrow \ x_0, \ \ p_i(t_i) \ \rightarrow \ p_0 \ \ for \ \ some \ \ t_i \ \rightarrow$ t_0 , $x_0 \in \mathbb{R}^n$, $p_0 \in \mathbb{R}^n$. Then (x_i, p_i) con*verge uniformly to the solution (x,p) of (2) such that* $x(t_0) = x_0$ *and* $p(t_0) = p_0$.

We impose the following hypothesis:

 H_1) f , L are continuous and $\forall r > 0, \exists k_r \in L^1(0, T)$ such that $\forall u \in U$, $(f(t, \cdot, u), L(t, \cdot, u))$ is $k_r(t)$ -Lipschitz on $B_r(0)$

 \mathbf{H}_2 $f(t,\cdot,u)$, $L(t,\cdot,u)$ are differentiable and $q \in \mathcal{C}^1$

 \mathbf{H}_{3}) H and $\frac{\partial H}{\partial n}$ are continuous on $[0, T] \times \mathbf{R}^{n} \times$ \mathbf{R}^r

 H_4) The Hamiltonian system (2) is complete \mathbf{H}_5) For all $(t, x) \in [0, T] \times \mathbf{R}^n$, the set

 $\{(f(t, x, u), L(t, x, u) + r) | u \in U, r \geq 0\}$

is closed and convex }

NECESSARY CONDITIONS

Theorem 4.3 Assume H_1), H_2) and let $(\overline{x}, \overline{u})$ *be an optimal solution-control pair of* (P) *for* $some (t_0, x_0) \in [0, T] \times \mathbf{R}^n$. If $H(t, \cdot, \cdot)$ is dif*ferentiable, then there exists* $p : [t_0, T] \mapsto \mathbb{R}^n$ such that (\bar{x}, p) solves the Hamiltonian system

$$
x'(t) = \frac{\partial H}{\partial p}(t, x(t), p(t)), \quad x(t_0) = x_0
$$

$$
-p'(t) = \frac{\partial H}{\partial x}(t, x(t), p(t)), \quad p(T) = -\nabla g(\overline{x}(T))
$$

$$
p(t_0) \in -\partial_+ V_x(t_0, x_0)
$$

where $\partial_+ V_x(t_0, x_0)$ denotes the superdifferential of $V(t_0, \cdot)$ at x_0 .

Consequently for almost all $t \in [t_0, T]$,

 $H(t, \overline{x}(t), p(t)) = \langle p(t), \overline{x}'(t) \rangle - L(t, \overline{x}(t), \overline{u}(t))$

DIFFERENTIABILITY OF VALUE FUNCTION AND UNIQUENESS OF OPTIMAL SOLUTIONS

Theorem 4.4 Assume H_1) – H_5)*, that V is locally Lipschitz and for every* $(t_0, x_0) \in [0, T] \times$ \mathbf{R}^n the problem (P) has an optimal solution. *Then for every* $\overline{p} \in$

 $\partial_x^{\star}V(t_0, x_0) := \text{Limsup}_{x_i \to x_0, t_i \to t_0} \left\{ \frac{\partial V}{\partial x_i} \right\}$ *there exists a solution* (x, p) *of* (2) *satisfying*

 $x(t_0) = x_0 \& p(t_0) = \overline{p}$

and x is optimal for problem (P).

In particular if(P) has a unique optimal trajectory, then the set $\partial_x^{\star} V(t_0, x_0)$ *is a singleton. Consequently,* $V(t_0, \cdot)$ *is differentiable at* x_0 *.*

CHARACTERISTIC SYSTEM OF HAMILTON-JACOBI EQUATION

Consider the Hamilton-Jacobi equation (HJB) ∂t $+$ *H* $\vert t,x \vert$ ∂V \setminus ∂x $= 0, \quad V(T, \cdot) = g(\cdot)$

Lemma 4.5 *Assume* H_1) – H_5), that V is lo- $\textit{cally Lipschitz and for every $(t_0, x_0) \in [0, T] \times \mathbb{R}^d$}$ \mathbf{R}^n the problem (P) has an optimal solution. $Consider (t_0, x_0) \in]0, T[\times {\bf R}^n \text{ such that } V \text{ is }$ $differential be at (t_0, x_0) . Then$

$$
-\frac{\partial V}{\partial t}(t_0, x_0) + H\left(t_0, x_0, -\frac{\partial V}{\partial x}(t_0, x_0)\right) = 0
$$

i.e., V satisfies the Hamilton-Jacobi-Bellman $\emph{equation almost everywhere in }[0,T]\!\times\! \mathbf{R}^n. \ \ Comm{Corr}$ *sequently for all* $(p_t, p_x) \in \partial^{\star} V(t, x)$

 $-p_t + H(t,x,-p_x) = 0$

Corollary 4.6 *Under all the assumptions of Lemma 4.5, V is a viscosity solution to* **(HJB).** *Furthermore, for all* $0 < t < T$ *and x*

 $\forall (p_t, p_x) \in \partial$ _{*-V*} $(t, x), -p_t$ +*H* $(t, x, -p_x)$ = 0

The characteristic system of **(HJB)** is the **Hamiltonian system**

$$
x'(t)\,=\,\frac{\partial H}{\partial p}(t,x(t),p(t)),\quad x(T)=x_T
$$

 $p(T) = -\nabla g(x_T)$ (3)

By the maximum principle, if $x : [t_0, T] \mapsto \mathbb{R}^n$ is optimal, then there exists $p : [t_0, T] \mapsto \mathbb{R}^n$ such that (x, p) solves (3) with $x_T = x(T)$.

This is not a sufficient condition for optimality: it may happen that to a given $x_0 \in \mathbb{R}^n$ correspond two distinct solutions (x_i, p_i) , $i = 1, 2$ of (3) satisfying

(4) $x_i(t_0) = x_0$

and with one of x_i being not optimal.

If the Hamiltonian system enjoys uniqueness of solutions, then

(5) $p_1(t_0) \neq p_2(t_0)$

Whenever (4) and (5) hold true for some solutions $(x_i, p_i), i = 1, 2$ of (3), we say that the system (3) has a **shock** at time t_0 .

Shocks are the very reason why the value function is not smooth and why, in general, one should not expect smooth solutions to the Hamilton-Jacobi-Bellman equation **(HJB).**

If we could guarantee that on some time interval $[t_0, T]$ there are no shocks, then the value function would be a continuously differentiable on $[t_0, T] \times \mathbb{R}^n$ solution of **(HJB)**. In the same time we would have the uniqueness of optimal trajectories and would derive the optimal feedback low $G: [t_0, T] \times \mathbf{R}^n \to U$ by setting

$$
G(t, x) = \{u \mid H(t, x, -\frac{\partial V}{\partial x}(t, x)) =
$$

$$
\langle -\frac{\partial V}{\partial x}(t, x), f(t, x, u) \rangle - L(t, x, u) \}
$$

Then the closed loop control system

$$
x' = f(t, x, u(t, x)), \quad u(t, x) \in G(t, x), \quad x(t_0) = x_0
$$

would have exactly one solution which is optimal for the Bolza problem.

MATRIX RICCATI EQUATIONS AND SHOCKS

We relate the absence of shocks of the Hamilton Jacobi-Bellman equation **(HJB)** with the exis tence of solutions to matrix Riccati equations

$$
\left\{\n\begin{aligned}\nP' + \frac{\partial^2 H}{\partial p \partial x}(t, x(t), p(t))P + P \frac{\partial^2 H}{\partial x \partial p}(t, x(t), p(t)) + \\
+ P \frac{\partial^2 H}{\partial p^2}(t, x(t), p(t))P + \frac{\partial^2 H}{\partial x^2}(t, x(t), p(t)) = 0 \\
P(T) = -g''(x(T))\n\end{aligned}\n\right.
$$

Consider $H : [0, T] \times \mathbb{R}^n \times \mathbb{R}^n \mapsto \mathbb{R}$ and a locally Lipschitz $\psi : \mathbf{R}^n \mapsto \mathbf{R}^n$. We assume that $H(t,\cdot,\cdot)$ is twice continuously differentiable and that for every $r > 0$, there exists $k_r \in L^1(0,T)$ satisfying

$$
\frac{\partial H}{\partial (x,p)}(t,\cdot,\cdot) \text{ is } k_r(t) - \text{Lipschitz on } B_r(0)
$$

We associate to these data the Hamiltonian system

$$
x'(t) = \frac{\partial H}{\partial p}(t, x(t), p(t)), x(T) = x_T
$$

(6)

$$
-p'(t) = \frac{\partial H}{\partial x}(t, x(t), p(t)), p(T) = \psi(x_T)
$$

and assume that it is complete.

Define for every $t \in [0, T]$ the set $=\{(x(t),p(t)) | (x,p) \text{ solves } (6), x_T \in \mathbb{R}^n\}$ **Theorem 4.7** *The following statements are equivalent:*

i) \forall *t*, M_t *is the graph of a locally Lipschitz function from an open set* $\mathcal{D}(t)$ *into* \mathbb{R}^n

ii) \forall (*x,p*) solving (6) on [0, *T*] and $P_T \in$ $\partial^{\star}\psi(x(T))$, the matrix Riccati equation

$$
\begin{cases}\nP' + \frac{\partial^2 H}{\partial p \partial x}(t, x(t), p(t))P + P \frac{\partial^2 H}{\partial x \partial p}(t, x(t), p(t)) + P \frac{\partial^2 H}{\partial p^2}(t, x(t), p(t))P + \frac{\partial^2 H}{\partial x^2}(t, x(t), p(t)) = 0 \\
P(T) = P_T\n\end{cases}
$$
\n(7)

has a solution on [0, T],

Furthermore, if i) {or equivalently ii)) holds true, we have : if ψ *is differentiable, then*

Mt is the graph of a differentiable function $and \,\,if\,\psi\in C^1,\,\,then$

 M_t is the graph of a C^1 – function

Corollary 4.8 *Under all assumptions of Theorem 4-7, suppose that for every (x,p) solving* (6) on [0, T] and $P_T \in \partial^* \psi(x(T))$, the *matrix Riccati equation (7) has a solution on* [0, T]. *Then the Hamiltonian system (6) has no shocks on* [0, T].

Lemma 4.9 Let $K \subset \mathbb{R}^n$ be a compact set. $Consider\ a\ locally\ Lipschitz\ function\ \psi:\mathbf{R}^n\mapsto% \mathbb{R}^{n}\rightarrow% \mathbb{R}^{n}$ \mathbf{R}^n and the subsets $M_t(K)$, $t \in [0,T]$ defined *by*

 $M_t(K) = \{(x(t), p(t))|(x, p)$ solves (6), $x_T \in K\}$

Then there exists $\delta > 0$ *such that for all t* \in $[T - \delta, T]$, $M_t(K)$ is the graph of a Lipschitz *function.*

 $\sim 10^7$

 $\Delta \phi$

MATRIX RICCATI EQUATIONS

 $P' + A(t)^{\star}P + PA(t) + PE(t)P + D(t) = 0, P(T) = P_T$ Theorem 4.10 Let $A, E_i, D_i : [0, T] \mapsto L(\mathbb{R}^n, \mathbb{R}^n)$, $i = 1, 2$ *be integrable.* Assume that $E_i(t)$,

Di(t) are self-adjoint for almost every t and

 $D_1(t) \leq D_2(t), E_1(t) \leq E_2(t)$ a.e. in [0, T] $Consider \; self-adjoint \; operations \; P_{iT} \in L(\mathbf{R}^n, \mathbf{R}^n)$ *such that*

$$
P_{1T} \le P_{2T}
$$

 $and \; solutions \; P_i(\cdot) \; : \; [t_0, T] \; \mapsto \; L(\mathbf{R}^n, \mathbf{R}^n) \; \; to$ *the matrix equations* $P_i(T) = P_i(T)$

 $P' + A(t)^{\star}P + PA(t) + PE_i(t)P + D_i(t) = 0$ *for* $i = 1, 2$ *. Then* $P_1 \leq P_2$ *on* $[t_0, T]$ *.*

Theorem 4.11 *Under all assumptions of Theorem 4.10 assume that for almost every t* \in $[0,T], E_1(t) \geq 0$ Consider solutions $P_i(\cdot)$: $\mapsto L(\mathbf{R}^n,\mathbf{R}^n)$ to the matrix equations $P_i(T) = P_i_T,$

 $P' + A(t)^{\star}P + PA(t) + PE_i(t)P + D_i(t) = 0$ where $i = 1, 2$. Then the solution P_1 is defined *at least on* $[t_2, T]$ *and* $P_1 \leq P_2$.

EXISTENCE OF SOLUTIONS

Theorem $\textbf{4.12} \ Let \ A, E, D : [0, T] \mapsto L(\mathbf{R}^n, \mathbf{R}^n)$ *be integrable. We assume that E(t), D(t) are* $self-adjoint$ and $E(t) \geq 0$ for almost every $t \in [0, T]$. *Consider a self-adjoint operator* $P_T \ \in \ L({\mathbf R}^n,{\mathbf R}^n)$ and assume that there ex*ists an absolutely continuous P* : $[t_0, T] \mapsto$ $L(\mathbf{R}^n, \mathbf{R}^n)$ such that for every $t \in [t_0, T]$, *is self-adjoint and*

 $P' + A^{\star}P + PA + PEP + D \leq 0$

a.e. in $[t_0, T]$ and $P_T \leq P(T)$. Then the solu*tion* \overline{P} *to the equation* $P(T) = P_T$ $(8)P' + A(t)^{\star}P + PA(t) + PE(t)P + D(t) = 0$ *is defined at least on* $[t_0, T]$ and $\overline{P} \leq P$ on

 $[t_0, T].$

Corollary 4.13 *Under all the assumptions of Theorem 4-12, consider a self-adjoint nonpositive* $P_T \in L(\mathbf{R}^n, \mathbf{R}^n)$. If for almost all $t \in$ $[0,T]$, $D(t) \leq 0$, then the solution \overline{P} to the *matrix Riccati equation (8) is well defined on* $[0, T]$ and $\overline{P} \leq 0$.

SMOOTHNESS OF THE VALUE FUNCTION

Differentiabililty of the value function is related to solutions of the Riccati Equation (7) in the following way.

Theorem 4.14 *Assume* H_1) – H_5), *that V is locally Lipschitz and for every* $(t_0, x_0) \in [0, T] \times$ \mathbf{R}^n the problem (P) has an optimal solution.

The following four statements are equivalent:

i) The value function V is continuously differentiable

ii) For every $t_0 \in [0, T]$, $V(t_0, \cdot) \in C^1$

 $\left(iii\right) \ \forall \ (t_0, x_0) \in [0,T] \times \mathbf{R}^n$ the optimal tra*jectory of (P) is unique*

iv) For the Hamiltonian system (2) the set $M_t := \{(x(t), p(t)) | (x, p) \text{ solves } (2) \text{ on } [t, T]\}$

is the graph of a continuous function π_t : $\mathbf{R}^n \mapsto \mathbf{R}^n$.

Furthermore, iv) yields that $\pi_t(\cdot) = -\frac{\partial V}{\partial x}(t, \cdot)$ and every solution (x, p) of (2) restricted to $[t_0, T]$ satisfies: x is optimal for (P) with $x_0 =$ $x(t_0)$ and $p(t) = -\frac{\partial V}{\partial x}(t, x(t))$ for all $t \in [0, T]$.

Corollary 4.15 *Under all assumptions of Theorem 4-14> suppose that U is a finite dimen-* $\emph{sional space, that for some $\overline{f}:[0,T]\times \mathbf{R}^n \mapsto 0$}$ $\mathbf{R}^n, b : [0, T] \times \mathbf{R}^n \mapsto L(U, \mathbf{R}^n)$ we have

$$
\forall (t,x),\ f(t,x,u)=\overline{f}(t,x)+b(t,x)u
$$

and $\frac{\partial L}{\partial u}(t, x, \cdot)$ is bijective. Then the (equiva*lent) statements i) — iv) of Theorem 4-14 are equivalent to*

 $v)$ For every $(t_0, x_0) \in [0, T] \times \mathbf{R}^n$ there exists a unique optimal control $\overline{u}(\cdot)$ solving the *problem (P). Furthermore, if z denotes the corresponding optimal trajectory, then for all* $t\in[t_0,T],$

$$
\overline{u}(t) = \left(\frac{\partial L}{\partial u}(t,z(t),\cdot)\right)^{-1} \left(-b(t,z(t))^\star \frac{\partial V}{\partial x}(t,z(t))\right)
$$

Corollary 4.16 *Under all assumptions of The orem 4.14, suppose that* $\nabla g(\cdot)$ *is locally Lipschitz,* $H(t, \cdot, \cdot)$ *is twice continuously differen* $tiable \ and \ \forall \ r > 0, \ \exists \ k_r \in L^1(0,T) \ \ such \ that$

 $\frac{\partial H}{\partial (x, p)}(t, \cdot, \cdot)$ is $k_r(t)$ – Lipschitz on $B_r(0)$

The following two statements are equivalent:

i) $\forall t \in [0, T], \frac{\partial V}{\partial r}(t, \cdot)$ *is locally Lipschitz ii*) \forall (x, p) *solving* (2) on [0, T] and every $P_T\in \partial^\star(\nabla g)(x(T)),$ the matrix Riccati equa*tion*

$$
P' + \frac{\partial^2 H}{\partial p \partial x}(t, x(t), p(t))P + P \frac{\partial^2 H}{\partial x \partial p}(t, x(t), p(t)) + P \frac{\partial^2 H}{\partial p^2}(t, x(t), p(t))P + \frac{\partial^2 H}{\partial x^2}(t, x(t), p(t)) = 0
$$

$$
P(T) = P_T
$$
 has a solution on [0, T].

Furthermore, if i) (or equivalently ii)) holds true, then

 ∇g is differentiable $\Longrightarrow \frac{\partial V}{\partial r}(t,\cdot)$ is differentiable *and for every* (x,p) *solving (2),*

$$
P(t) = -\frac{\partial^2 V}{\partial x^2}(t, x(t))
$$

If moreover $g \in C^2$ *, then* $V(t, \cdot) \in C^2$.

Proof — Let M_t be defined as in Theorem 4.14. If $i)$ holds true, then, by Theorem 4.14, M_t is the graph of a locally Lipschitz function π_t . By Theorem 4.3, $\pi_t(\cdot) = -\frac{\partial V}{\partial x}(t, \cdot)$. Applying Theorem 4.7, we deduce *ii).* Conversely, assume that $ii)$ is verified. Thus, by Theorem 4.7, M_t is the graph of a locally Lipschitz function from an open set $\mathcal{D}(t) \subset \mathbb{R}^n$ into \mathbb{R}^n . By Theorem 4.3, $M_t = \text{Graph}(-\frac{\partial V}{\partial x}(t, \cdot))$. Hence *i*).

The last statement follows from Theorem 4.7, because $P(t)$ describes the evolution of tangent space to M_t at $(x(t), p(t))$.

PROBLEMS WITH CONCAVE-CONVEX HAMILTONIANS

Observe that in general one has

$$
\frac{\partial^2 H}{\partial p^2}\left(t, x(t), p(t)\right) \ \geq \ 0
$$

for every solution (x, p) of the Hamiltonian system

$$
\begin{cases}\nx'(t) = \frac{\partial H}{\partial p}(t, x(t), p(t)), & x(T) = x_T \\
-p'(t) = \frac{\partial H}{\partial x}(t, x(t), p(t)), & p(T) = -\nabla g(x_T) \\
(9)\n\end{cases}
$$

and that whenever in addition $H(t, \cdot, p(t))$ is concave for all $t \in [0, T]$, then

$$
\frac{\partial^2 H}{\partial x^2}\left(t,x(t),p(t)\right)\;\leq\;0
$$

If *g* is convex, then every matrix from the generalized Jacobian $\partial^{\star}g(x(T))$ is nonnegative.

By Corollary 4.13 for every $P_T \in \partial^{\star}(\nabla g)(x(T)),$ the solution $P(\cdot)$ of the matrix Riccati equation

$$
\begin{cases}\nP' + \frac{\partial^2 H}{\partial p \partial x}(t, x(t), p(t))P + P \frac{\partial^2 H}{\partial x \partial p}(t, x(t), p(t)) \\
+ P \frac{\partial^2 H}{\partial p^2}(t, x(t), p(t))P + \frac{\partial^2 H}{\partial x^2}(t, x(t), p(t)) = 0 \\
P(T) = -P_T \\
(10) \\
\text{exists on } [0, T].\n\end{cases}
$$

By Theorem 4.7, no shocks of (9) may occur backward in time. From Theorem 4.14 and Corollary 4.16 we get

Theorem 4.17 Assume H_1) – H_5), that V is *locally Lipschitz and for every* $(t_0, x_0) \in [0, T] \times$ \mathbf{R}^n the problem (P) has an optimal solution.

Further assume that $\nabla g(\cdot)$ *is locally Lipschitz,* $H(t, \cdot, \cdot)$ *is twice continuously differen* $tiable \ and \ for \ all \ r >0 \ there \ exists \ k_r \in L^1(0,T)$ *such that*

 ∂H $\frac{\partial H}{\partial (x, p)}(t, \cdot, \cdot)$ is $k_r(t)$ – Lipschitz on $B_r(0)$

If for every solution (x, p) *of (9),* $H(t, \cdot, p(t))$ $is \ concave \ and \ g \ is \ convex, \ then \ V \in C^1 \ and$ $\frac{\partial V}{\partial x}(t,\cdot)$ is locally Lipschitz.

Moreover, every solution (x,p) of (9) is an optimal trajectory-co-state pair. If in addition $g \in C^2$, then $V(t, \cdot) \in C^2$ and, in this case,

$$
P(t) = -\frac{\partial^2 V}{\partial x^2}(t, x(t))
$$

solves the matrix Riecati equation (10) with $P_T = -g''(x(T)).$