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HAMILTON-JACOBI-BELLMAN
EQUATION

FOR PROBLEMS UNDER
STATE-CONSTRAINTS

Outline

6.1 Mayer's Problem under state constraints

6.2 Feasible neighboring trajectories theorem

6.3 Constrained Hamilton-Jacobi equation



MAYER'S PROBLEM UNDER
STATE CONSTRAINTS

Consider the optimal control problem
Minimize g(x(l))
over x e W1*1^ l];Rn) satisfying

(P) | x'(t) G F(t, x(t)) a.e. t G [0,1],
x(t)eK v t e [ o , i ] ,
x(0) = xo,

the data for which comprise: a function g : R n

R U {+00}, a set-valued map F : [0, l ] x R n

Rn , a closed set K C R n and XQ G Rn .
Solutions of the above differential inclusion sat-

isfying the constraints of (P), are called feasible
arcs (for (P)).

Note that, since g is extended valued, (P) in-
corporates the endpoint constraint:

x(l) G C

where C := domg.

The Hamiltonian H is defined by

H(t,x,p) = sup <p,v>
veF{t,x)



Denote by V : [0,1] x if -> R U {+00} the
value function for (P):

for each (£, x) G [0,1] x if, V(t, x) is defined
to be the infimum cost for the problem

Minimize g(y(l))
over y G Wljl([£, 1]; Rn) satisfying
y\s) G F(s,y(s)) a.e. s
y{s)eK V s G [ t , l ] ,
Zl(t) ==: X

Thus

(If (Pt,x) has no feasible arcs, 1/(t, x) = +00.)
The Hamilton-Jacobi-Bellman Equation (HJB)

in the constrained case is :
dV
dt + #(*, = 0, (t,x) G]0,l[xIntif

for x G

To get uniqueness of solutions to the above PDE
in the constrained case we are led to impose some
kind of constraint qualification on the dynamic
constraint at boundary points of the state con-
straint set.



We restrict attention to a special class of state
constraints sets, namely a finite intersection of
smooth manifolds. It is assumed that the state
constraint set K is expressible as

K = nr
j=1{x : hj(x) < 0}

for a finite family of C1 '1 functions

\hj • R —y R/7=1

(C l j l denotes the class of C functions with lo-
cally Lipschitz continuous gradients.)

The "active set" of index values /(x), at a point
x G bdy K, is

Recall the notations a V b = max{a, 6} and a A
b = min{a, 6} for all real numbers a, b. We write

h (x) := max
1 2

vo.
tf=l,2,...,r

W l j l([a, 6];Rn) denotes the space of absolutely
continuous n-vector valued functions on [a, 6], with
norm

,i = \\x(a)\\+fi\\x'(t)\\dt.



NEIGHBOURING FEASIBLE
TRAJECTORIES THEOREM

Theorem 6.1 Fix TQ > 0. Assume that for
some c > 0; a > 0 and fc(-) G L :

(i) F has nonempty closed images and F(-,x)
is measurable for all x

C c(l + \\x\\)B V(£,z) G [0,1] x R n

(Hi) F(t, •) is k(t)—Lips chit z for a.e. t G [0,1]

Assume furthermore 3 a > 0 s?/c/i £/m£

-v < -a ,

\/xe 5(0, ec(r0 + c)) n bdy K, t G [0,1].

Then there exists a constant # (which depends
on rg; c, ĉ  and fc G L ^ «;iift i/ie following
property: given any to G [0,1] and any £ G
Su i\ such that x(to) G 5(0, rg) Pi K7 an x G
<Sr̂  -n (£(£o)) can 6e found such that

x{t) eK V t G [t0,1]

and



In the case F is continuous, condition (CQ) ; is
implied by the condition

min max VhJx) • v < 0
veF(t,x)jeI(x) J

\/xe £(0, ec(r0 + c)) n bdy K, t e [0,1].

CONSTRAINED
HAMILTON-JACOBI-BELLMAN

EQUATION

To investigate uniqueness of solutions in the
constrained case we assume :

(HI) F is a continuous set-valued map, with non-
empty, closed, convex images

(H2) There exists c > 0 such that

F(t,x) Cc{l + \\x\\)B V(*,x) G [0,1] x R n

(H3) 3 k € L1 such that F(t, •) is A;(t)-Lipschitz
for almost all t € [0,1]

(H4) g is lower semicontinuous.

(CQ) Vx G If and t G [0,1] there exists t; G F(£, x) :

Vj G/(x), Vfej(x) • t; > 0.



Theorem 6.2 LetV : [0, l]xK -> RU{+oo}.
The assertions (a)-(c) below are equivalent:

(a) V is the value function for (P).

(b) V is lower semicontinuous and

e ([0,l[x/0ndomV
inf DtV(t,x)(l,v) < 0

veF(t,x)

(it) V (t, x) €]0,1] x int K) n dom

sup Dty(t,a;)(-l,-'t;) < 0
veF(t,x)

(iii)VxeK, V{l,x) = g(x)
liminf V(t',xf) = V(l,x)

(c) V is lower semicontinuous and

(i) V (t, x) G (]0, lfxint K) D dom V,

V (pt,Px) e d-V{t, x), -pt+H{t, x, -px) = 0

(ii) V (t,x) € (]0, lfxbdyi^) H domF,

V (pt,px) € a_V(*, x), -pt+H(t, x, -Px) > 0

^1 = V{0,x),

{ , x'eintK}
V(l, x) = g(x) for all x e K.



Example Consider the constrained problem

Minimize g(x(l))
rf(t) G Fit ritW
x(t) e K
x(0) = x0,

in which n = 1, g(x) = x, F{t,x) = {1}, K =
c : x < 0}, XQ

 = 0.
By inspection

, v f+oo ifx>-(l-t)

The hypotheses for application of Theorem 6.2
are satisfied, including the outward-pointing con-
straint qualification (CQ). Theorem 6.2 therefore
tells us that V is the unique solution of (HJB)
(in the sense specified).

Notice that V(t,x) — +oo at some points in
[0,1] x K1 despite the fact that g is everywhere
finite valued (no endpoint constraints).



Lemma 6.3

(i) Take any point x\ G K. Then there exists
5 G]0, 1[ and a solution y : [1 — 5,1] —> R n

S'MC/I t/iat i/(l) = #i fl^rf

y(t) Gintif Vt G [1-(J,1[.

^ Take any to G [0,1[ and any solution x :
, 1] —» if. Ta&e a/«so a sequence of points

Then there exists a sequence of
solutions {xi : [to,r^] —>> R n } 5^c/i t/^at
tXy /i I / n J ^^ /J

x^(t) G int if V t G [to, TJ], i = 1,2,...

and

0 as i —>• 00.

Proof. According to (CQ), there exists v G
and a > 0 such that

Vhj(x{) - v > a V j G

For some 5 G]0, 1 — to], whose magnitude will be
set presently, define

= xi-{l-t)v for t e [ 1 - 5 ,



By Filippov's Theorem, there exists a solution
x :[1 — 6,1] —> R n such that x(l) = x\ and

\\x(t)-z(t)\\ < expl/o1 k{t)dt}

for all t G [1 — 5,1]. We deduce from the continu-
ity of (£, x) ^ F(t, x) and the continuous differ-
entiability of the hj's that there exists a function
TJ:B+ ->R+ such that 7/(0) I 0 as 6 I 0,

||x(l — 5) — (#i — si;) 11 < r](s)s for s € [0,5]

and

/ij(x(l—s)) < hj(xi)+Vhj(xi)(x(l—s)—xi)+ri(s)s

for all s G [0,5]. But then, since hj{x\) = 0
for all j G /(#i), there exists M (M does not
depend on s) such that

fy(z(l - 5)) < -s\/hj(xi) • r; + Mrj(s)s

for all j G /(xi). Hence V 5 G [0,5[, j G

-hj(x(l - s)) < -a + Mrj(s)
s J

It follows that, if we now choose 5 such that
Mr)(5) < a, then hj(x(t)) < 0 for all j G I(x\).
Since hj(x{) < 0 for all j ^ /(#i), we can ar-
range, by a further reduction in the size of
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that

max hj(x(t))<0 V t G [1 - 5, l[.

(ii) Define the sequence of positive numbers

li '- — max A (i X) for i = 1,2,...

Since {^} C int K and (CQ) holds true, it fol-
lows that 7̂  > 0 for all i. Clearly 7̂  \. 0. For
each i define

Apply the time dependent version of Filippov's
Theorem to x1 G F(t, x), taking as reference tra-
jectory x restricted to [to?ri]- This yields a so-
lution yi : [to,Ti] -> R n satisfying y^) =
and

Since (^(r^) — ̂ ) —>• 0 as z —)• 00, we conclude

that

(1)

11



By the comments following the statement of
Theorem 6.1, (CQ) yields (CQ)/. So we deduce
from Theorem 6.1 applied to the set-valued map
—F that there exists $ > 0 and a sequence of so-
lutions {xi : [to, Tj\ —>• R n } such that X
and for , z = 1,2,...

max maxh +

+ 7 i < 0 V t G

This means that

Xi(t) G int if V £ G [to, r^j, z = 1,2,...

Since hj(x(t)) < 0 for all t G [0,1], we deduce
from (1) that

Jb 9 —̂  0 as i —>• o o .
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In the next lemma, reference is made to the
5-tube about x :

Ts(x) := {(t,x) e [to , t i]xRn : | |x-x(t) | | < 5}

Lemma 6.4 Take [to^l] C [0,1], a solution
x : [t(),ti\ —> R n

; 5 > 0 and a /ower semicon-
tinuous function V : [to, ti] x R n -^ RU{+cx)}
5̂ /c/i t/iat V (£, x) G T^(x) mtfe t <t\

V (pt,px) e 0-^( t , ^), -Pt + ^(*, x, -Px) < 0

T/ien, for any to<t'< t" < t\,

V(t',x(t'))<V(t",x(t"))

Proof. We deduce in the same way as for the
unconstrained case, that

V(t',x(t'))<V(t",x(t"))

The fact that tn < t\ (strict inequality) is im-
portant here, since no regularity hypotheses have
been imposed on t —>• V(t, •) si t = t\.

13



Proof of the uniqueness theorem 6.2

(a) ^ (b). The value function V is lower semi-
continuous by the same arguments as before.

Under the hypotheses, (£, x) G dom V implies
that (Pt,x) has a solution. It is a straightforward
matter to show that, if y is a minimizer for (P^ ) ,
then s —> V(s, y(s)) is constant on [£, 1]; b(i) can
be deduced from this property.

It can also be shown that, if y : [£, 1] —>• R n is a
solution satisfying the constraints of (P^#), then
s —t V(s,y(s)) is non-decreasing on [£, 1]; b(ii)
can be deduced from this latter property.

Since V is lower semicontinuous, it remains only
to verify that for all x G K

liminf V(t\x') <V(l,x)
)tf<lfetK} V ; ~ V J

Lemma 6.3 tells us that there exists S e]0,1[ and
a solution y : [1 — 5,1]—> R n such that y(l) = x
and

But V(t,y(i)) < y( l ,x) , a basic monotonicity
property of the value function. Since y is contin-
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uous,

liminf V(t',x')<

as required.

(b) => (c). This implication is a consequence du-
ality relationships between d-V and D+V.

(c) =^ (a). Assume that V satisfies (c). Take any
XQ G K and £Q ^ [0,1].

Step 1: We show that

(2) V{to,xo) > i

This inequality holds true if V(to,xo) = +oo.
So we assume that V(to, XQ) < +oo.

Notice that, since dom V C K, conditions c(i)
and c(ii) imply

V (t,x) G]0, l[xK, V (^,px) G a_F(t,x)

-pt + H(t,x,-px)<0

and

liminf 1/(t;, x1) = V(0, x) V x G Rn
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(We here regard V as a function on [0,1] x R n

which takes value +00 at points (£, x) (fc [0,1] x
K.) But then we deduce by applying the same
arguments as in the unconstrained case the ex-
istence of a solution x : \t§, 1] -^ R n such that
x(t(y) = #o a n d

V(to,xo)>V(t,x(t)) V * e [ t o , l ] .

This inequality implies that V(t, x(t)) < +00
for all t G [to? !]• Since dom 7 C iif, we conclude
that x(-) satisfies the state constraint. It also
implies that

This is the required inequality.

Step 2: We show that

(3) V{to,xo) <

This will complete the proof, since (3) combines
with (2) to give V(to,xo) = inf(Pi())Xo).
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Inequality (3) is automatically satisfied if
inf (Ptfaxo) = +00. So we assume that it is finite.
In this case, inf(PtQ,xo) is the infimum of g(x(l))
over all feasible arcs of (P^XQ)- ^ therefore suf-
fices to show that

V(to,xo)<g(x(l)),

where x E W1)1([to, 1]; R n ) is an arbitrary feasi-
ble arc of (Pio,xo)-

By hypothesis,

g(x(l))= liminf
{ ( £ ) K l ( l ) ) <

There exists, therefore, a sequence { ( T ^ , ^ ) } in
[to, 1) x int K such that £j —Y x(l) and

(4) V(Ti,tt^g(x(l)).

Lemma 6.3(ii) asserts the existence of a sequence
of solutions Xi : [tg, TJ\ —> R n such that X^T

si?

Xi(t) G int if Vt G [to,Ti]

and

(5) \\xi-x\\Loo^t0jT^n)^0 asi^oo.

17



Filippov's Theorem tells us that x^ can be ex-
tended to all of [to? 1] (we write the extension
also X{) as a solution to our differential inclusion.
Choose GI EJTJ, 1[ and q > 0 such that

Xi(t) + 6iB C int K \/te [to, (Tj\.

Now apply Lemma 6.4 with o^ — t\ and x —
to conclude that

It follows from (4), (5) and the lower semiconti
nuity of V that

V{to,xo) = V{to,x(to)) < lim.inf

as required.
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EXERCISES.

In all exercises we impose all the assumptions
of Theorem 6.1.

1. Assume that g is continuous on K. Show
that the value function of the problem

Minimize g(y(\))
over y e W^l([0,1]; Rn) satisfying
j/{s) e F(s,y{s)) a.e. se [0,1],
y(s)eK V S G [ 0 , 1 ] ,

2/(0) = x
coincides with the value function of the relaxed
problem

Minimize g(y(l))
over y e W^QO,1]; Rn) satisfying
y'(s) e coF(s,y(s)) a.e. s e [0,1],
y(s)eK V 5 G [ 0 , l ] ,
y(0) = x

and that V is continuous on [0,1] x K.

2. Assuming that g is locally Lipschitz on K,
show that in this case V is locally Lipschitz on
[0,1] x K.
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3. Show that if g is continuous on K, then the
value function V satisfies the following properties

(i) V(*,x) G (]0,l[xintiif)ndomF,

pt + H(t, x, -px) < 0.

v(pt,Px)ed-V{t,x)

H{t,x,-px)>0

4. Show that if W is continuous on [0,1] x K,
satisfies the boundary condition VF(1, •) — g and
the above properties (i), (ii), then W is the value
function.

5. State and prove a relaxation theorem under
state constraints.
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