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Abstract

Tt, has been proved by Brocket, t. that, contrary to (lie case of linear control systems,
many controllable nonlinear control systems cannot be stabilized by means of stationary
continuous feedback laws. In this paper we give results showing that many controllable
nonlinear control systems can be stabilized by means of time-varying continuous feedback
laws and that many controllable and observable nonlinear control systems can be stabi-
lized by means of time-vary ing dynamic continuous feedback laws. We show the interest
of time-varying feedback laws for robustness with respect to measurement disturbances.
We also present methods to design stabilizing feedback laws and we give applications Lo
satellites and fluid mechanics.
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1 Introduction

A control system is controllable if. for any given states X.Q and ;cl; there exists an open loop
control t € [0, T] —'t uirOi.i:i (ij which, when applied to the control system, allows to go from XQ
to Zi_. One docs not know any interesting necessary and .sufficient condition for controllability,
even when XQ and x-\ are close together and the control system is analytic. But one knows
powerful necessary conditions and powerful sufficient conditions. In section 2.2 we recall two
well-known conditions.

Unfortunately, open loop controls are usually very sensitive to disturbances. So in many
practical situations one prefers closed loop control, i.e. controls which do not depend on the
initial XQ bi.it on the state x which (asymptotically) stabilize the. point one wants to reach.
Usually such closed loop controls (or feedback laws) have the advantage to be more robust
to disturbances.

ft is a classical result, see e.g. [123] Theorem 13, p. 186, that any linear control system
which is controllable can be asymptotically stabilized by means of continuous feedback la.ws.
A natural question is whether this result, still holds for nonlinear control systems, in 1979
Sussmann showed that the global version of this result does not. hold for nonlinear control
systems: in [125] he has given an example of a nonlinear analytic control system which is
globally controllable but cannot be globally asymptotically stabilized by means of continuous
feedback la.ws. In 1983 Brockett ha.s shown that the local version also does not hold even for
analytic control systems: in [9] he has given a necessary condition (Theorem 2.16 below) for
local asymptotic sta.bilizability by means of continuous feedback laws which is not implied

'by local controllability even for analytic control systems; for example, as pointed in [9], the
analytic control system
(1.1) xi = tJ.i. x2 = u-i; %z = a-'i«2 - x2u-\,

where the state is x = (x\,X2, x%) € R3 and the control u ~ [ui. u^) £ R2. is locally (and even
globally) controllable but does not satisfy the llrockett necessary condition (and therefore
cannot be asymptotic stabilized by means of continuous feedback laws). To get around
the problem of impossibility to stabilize many controllable systems by means of continuous
feedback laws two main strategies have, been proposed:

(i) Asymptotic stabilization by means of discontinuous feedback laws,

(ii) Asymptotic stabilization by means of continuous time-varying feedback laws.

In this paper we shall consider mainly continuous time-varying feedback laws. Let us just
briefly describe some results on discontinuous feedback laws. The pioneer work on this type
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of control is [125] by H. Sussmann. It is proved in [125] that any controllable analytic, system
can be asymptotically stabilized by means of piecewise analytic feedback laws. One of the
key questions for discontinuous feedback Jaws is what is the relevant definition of a solution
of the closed loop system. In [.125], this question is solved by specifying an "exit rule'' on
the singular set. However, it is not completely clear how to implement this exit rule (but see
Remark 1.1 below for this problem), which is important in order to analyze the robustness.
If, following Hermes [CO] (see also [38, 89]}, one considers that, the solutions of the closed
loop systems arc the solutions in the sense of Filippov [48], then it is proved in [38] that
a control system which can be stabilized by means of a discontinuous feedback law can be
stabilized by means of continuous periodic time-varying feedback laws and. moreover, if the
system is affine in the control, it can be stabilized by means of continuous feedback laws. In
particular the control system (1.1) cannot be stabilized by means of disc.ontinoi.is feedback
laws if one considers Kilippov solutions of the closed loop system -see also [111]. Another
interesting poosibility is to consider "li-uler" solutions: sec [16] for a definition.. This is a quite
natural notion for control systems since it corresponds to the idea that one uses during small
intervals of time the same control. With this type of solution, Clarke, Ledyaev, Sontag and
Subbotin have obtained a very strong result. They have proved in [16] that controllability (or
even assy rnp to tic controllability) implies the existence of stabilizing discontinuous feedback
laws. '.Fheir feeclba.ck laws are robust to (small) a.ctua.tor disturbance. But, using a result
due to Clarke. Ledyaev and Stern [17], Fjedya.ev and Sontag have proved in [89] that these
feedback laws a.re in general (e.g. for the control system (1.1)) not robust to arbitrarily
small measurement disturbances. In [88] Ledyaev and Sontag have introduced a. new class of
"dynamic and hybrid" discontinuous feedback laws and have shown that controllability (or
even asymptotic controllability) implies the existence of stabilizing discontinuous feedback
Jaws in this class which a.re robust to (small) actuators and measurement disturbances.

Remark 1.1 It would be interesting to know' if one can in some sense "implement" (a good
enough approximation of) Sussmann's exit rule (see [125]) by means of Sonta.g-Ledyaev's
"dynamic-hybrid" strategy.

For continuous time-varying feedback laws, let us first mention that, due to an inverse of
Lyapunov's second theorem proved by Kurzweil in [87] (see also [17]), periodic time-varying

'feedback laws are robust to (small) actuator and measurement disturbances. From now on,
all the feedback laws considered are continuous. The pioneer works concerning time-varying
feedback laws are due to Sontag-Sussmann [124] and Samson [112]. In [124]. it is proved
that, if the dimension of the state is 1, controllability implies asymptotic stabilizability by
means of time-varying feedback laws. In [112], it is proved that the control system (1.L) can
be asymptotically stabilized by means of time-varying fee.dba.ck laws. In Sections 2.4 and 2.5,
we'present results showing that, in many cases, (local) controllability implies stabiliza.bility
by means of time-vary ing static feedback laws.

In many practical sit.11ati.ous only part of the state called the output- is measured and
therefore state feedback cannot be implemented; only output feedback is allowed. It is well-
known, see e.g. [123, Theorem 32, p. 324], that any linear control system which is controllable
and observable can be asymptotically stabilized by means of dynamic feedback laws. Again
it is natural to a.sk if this result can be extended to the nonlinear ca.se. In the nonlinear
case, there are many possible definitions for observability. The weakest requirement for
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observability is that, given two different states, there exists a control t —> u(t) which leads
to two outputs which arc not identical. With this definition of observability, the nonlinear
control system
(1.2) x - u £ R. y = x2 € R.

where the state is x, the control u, and the output y, is observable. This system is also
cJearly controllable and asymptotically stabilizable by means of (stationary) static feedback
laws (e.g. u(x) = ~x). But. see [24], this system cannot be asymptotically stabilized by means
of stationary dynamic feedback laws. Again, llie introduction of time-varying feedback laws
improves the situation; indeed the control system (1.2) can be asymptotically stabilized by
means of time-varying dynamic feedback laws. In section 2.6 we present a result contained in
[24] showing lha.1 many locally controllable and observable nonlinear control systems can be
locally asymptotically stabilized by means of time-varying output feedback laws. In section
2.7 we show the interest of time-varying feedback for robustness with respect to measurement
disturbances.

Let us also mention that the usefulness of time-varying controls for different goals has
been pointed out by many authors. For example by

• V. Polotski [103] for observers to avoid peaking;

• S.H. Wang [133] for decentralized linear systems;

• A.eycls and VV'illems [l] for the pole assignment problem for linear time-invariant sys-
tems;

• Khargonekar et al. [81], Ho-Mock-Qai and Dayawansa [67, 68] for simultaneous stabi-
lization of a family of control systems.

See also the references in these papers.
In chapter 3 we present some tools (namely, control Lyapunov function, damping, ho-

mogeneity, averaging and backstepping) to design asymptotically stabilizing feedback laws
and present applications to the control of the attitude of a rigid space spacecraft with control
torques provided by two thruster jets and to satellite transfer by means of electric propulsion.

In chapter 4, we show how the methods of chapters 2 and 3 can be applied to the control
of some nonlinear partial differential equations. We present two applications:

1. Stabilization of a rotating body-beam without damping;

2. Controllability and stabilization of incompressible fluids,

2 Time-varying feedback laws

2.1 Notation and definitions

Throughout this paper, we denote, by (C) the nonlinear control system

(C) i = /(.r,«),

where x t 1R" is the state, u G Km is the control. We assume that

(2-1) (
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and that, unless otherwise specified, / € 6ltK'(IRn X Km;Rvv).
Let us first recall thedefiniliou of asymptotically stable for a time-varying dynamic system

-we should in fact say uniformly asymptotically stable.

Definition 2.1 Let X be in C°(Rn x R;M). One says that 0 is locally asymptotically viable
for i ' = X{x,t) if

(i) for all s > 0, there exists jy > 0 snch that, for all r € R and for all t > r,

(2.2) ( i = ,Y(.t,();|a-(r)| < r/) => \x(l)\ < s

(ii) there-exists S > fl snch that, for all t~ > 0, there exists M > 0 such that, for all s in K,

(2.3) £ = X(.r,0 and |a:(s)| < S

imply

(2.4) \X(T)\ < e , Vr > s + Af.

If, moreover, for all <S > 0, there exists M > 0 such that. ("2.3) implies (2.4) for a.U .s in 1R, one
s a y s t h a t 0 i s g l o b a l l y a s y m p t o t i c a l l y s t a b l e f o r a; = X ( x , I ) .

'Throughout this paper, and in particular in (2.2) and (2.3), we denote by x ~ X(x, t) any
maximal, solution of this differential equation. Let us emphasize that, since the vector field A"
is only continuous, the Ca.uchy problem x = X(x,t),x(t0) = a?o, where (Q and x0 a.re given,
may have many maximal solutions. Let us recall that Knrzweil in J87] has shown that, even
for vector fields which are only continuous, asymptotic stability is equivalent to the existence
of a Lyapunov function of class C"'x'\ see also [17].

Let- us now define "asymptotically sta.biliza.ble by means of a. stationary feedback law"
and "asymptotically stabilizable by means of a. time-varying feedback law".

Definition 2.2 The control system (C) is locally (resp. globally) asymptotically stabilizable
by means of a stationary feedback law if there exists u 6 C°(Rfi;IE";') satisfying

u(0) = 0,

such thai , for the system x = f(x,u[x)), 0 is a. locally (rcsp. globally) asymptotically stable
point.

Definition 2.3 The control system (C) is locally (resp. globally) asymptotically stabilizable.
by means of a 1-im.t-retrying feedback law if there exists u G C°(IK" x R; R™) satisfying

•«((),•() = 0, \rt 6 IE,

such that, for the system x = /(.as, u(x, t)), 0 is a locally (resp. globally) asymptotically stable
point.
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2.2 Small time local controllability

Let us first give the definition we use in these notes for .small time locally controllable -we
should in fact say small time locally controllable with sma.il controls.

Definition 2.4 The control system (C) is small time locally controllable if, for all real num-
bers £ > 0; there exists a real number 7/ > 0 such thai, for all xa £ Bo := {x e IR"; |;r;| < •/'/},
there exists a. measurable function u : [O.f] —> E'm such that

|ti(*)| <E, W e [0,71,

One does not know any interesting necessary and sufficient condition for small time local con-
trollability, even for analytic control systems. Jiut one knows powerful necessary conditions
and powerful sufficient conditions. Let us recall two well-known conditions.

In order to give these conditions, let us give some new definitions.

D e f i n i t i o n 2 . 5 ( [22 ] ) T h e strong jet accessibility subspace of (C) a t (x,v.) € R " X R m is

the subspace of R". denoted by a(x,ii), spanned by

(2.5) {g(x);g e {dla\f/dua(:,«), a e Arm, M > 1} u Br,(/, u)

where t'ii^i'/;'") denotes the set of iterated Lie brackets of length at least, 2 of vector fields in

Remark 2.6 One easily checks that the usual strong accessibility subspace of (C) at x (i.e.
the space denoted !FQD(X) in [129, p. 109]) contains a(x. u) for all u in Km and that, if / is
analytic with respect to x and u or is a polynomial with respect to u, these inclusions are all
equalities.

Our last definition before giving a necessary condition for small time local controllability
is

Definition 2.7 The control system (C) satisfies the strong Lie algebra rank condition at
• ( £ , « ) if

(2.6) a{x,u) = r .

Remark 2.8 It follows from Remark 2.6 that, if (C) satisfies the strong Lie algebra rank
condition at (:r, ft) (2.6), then it satisfies the usual strong accessibility rank condition at x
(i.e. dim !F0D(x) = n with the notation of [129]) and the converse holds if / is analytic with
respect, to x a.nd u or is a polynomial with respect to u.

With these definitions one has the following well-known necessary condition for small time
local controllability of analytic control system due to Sussmann-Jurdjevic [129],

Theorem 2.9 Assume that the control system (C) in locally controllable and that f -is ana-

lytic. Then the control system (C) satisfies the strong Lie algebra rank condition at (0, 0).

This necessary condition is sufficient for important control systems as. for example.
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• Linear control systems x = Ax + Bu. This follows from the Kalman condition [123,
Thru. 2 p. 88] and the fact that

o(0, 0) = Span {A'Bu: i e [0, n - 1], u € R m } .

• Driftiess control systems x = J2\'L\ utft(x)- ''h'* is the classical Chow theorem [14].

But, in general, this necessary condition is not sufficient, as the two following simple control
systems show:

(n = 1, m = 1), x = u2.

{n = 2, m = 1), x,\ — xl, x2 -= u.

One. can find other necessary conditions in [61, 66, 76, 127] and the references therein.
Let us now give sufficient conditions for small time local controllability. Let us assume,

for the time being, that

f(x,u) = fo(x)-

Let L ( /o , . . . , /„,,) be the free Lie algebra generated by /y , . . . , /„,. and let us denote by Br(/)
C /J(/O, . . . , fin.) the set of formal iterated Lie brackets of {/0, / i , . . . . f m } \ s e c [128] for more
det,a.ils and precise definitions. For example

(2.7) h = [[[/o, [/i, ,fo]]j / i ] t /o] £ ^ r ( / ) -

For ft, G L( /o , . . ., ,/„,.), let /i(0) G R" be the "value" of k at 0. For ft in. Br(/) and / G [0, m],
let (5j(ft.) be the number of times that f% appears in h. For example, with ft, given by (2.7),
one has 5o[h) = 3. Si(li) ~ 2 and 5,:{ft) =-• 0, for any i G [2, mj. Let ,S'm be the group of
permutations of { 1 , . . , , m}. For TT in 5 m . let TT be the automorphism of L(JQ, ..., /,•„) which
sends f0 to / 0 and / ( to fvf^ for t £ [1,"?,]. For ft £ Br(/) , we let

For example, if h is given by (2,7) and m = 2, one has

h = [[[/o, [/.,/«]], / , ] , ,/o] + [[[/o, [/2, Ml / 2 ] , /o].

For (9 e [0, +'3c]. ;r = /OO'O + Z ^ L u>-fi{:>') satisfies the Sussmann [128, Section 7] condition
S(6) if it satisfies the strong Lie algebra, rank condition (2.6) at (0,0) and, if, for every
ft G Br(/) with &a(h) odd and <%(/i) even for all i in [l,m], <j(h)(0) is in the span of the
(/(0):s, where the g's are in Br(/) and satisfy

(2.8) ^ 0 ( s )

with the convention that when 9 = +oc', (2.8) is replaced by <50(f/) < $o(h)- H. Sussmann has
proved in [128]:
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Theorem 2.10 ([128, Thin. 7.3]) //; for some 8 in [0, 1], x - /0(;c) + V™ 1 u.-f^x) satis-
fies 5(0).. then the control system (C) is small time locally controllable.

Let us notice, that one can easily check:

Proposition 2.11 Let B be in [0,1], Then x = fo(x) + £™ l uifi(x) *«'*•'> fa* SiO) if and
only if x = fo{'•>••) + 22;=1 Vifi^-h V = '"•> '"'^ere i/ie ,s/trfe JS (a;, y) G R" x K"!i a-nc/ i/ie control
is u 6 Rv". satisfies S (0/(1 - 6*)) (<uj*(/t ///e convention 1/0 = +20) •

This proposition allows us to extend 5(0) to ,r = fix.u) in the following way.

Definition 2.12 Let 0 € [0,1], The control system x = f{-x,u) satisfies S{8) if the control
system a1 = fix, y)., y = u satisfies S ((9/(1 - 0)).

What is called llie Hermes condition is S(0) ([631 and [1.27]). It follows from [128] that:

Theorem 2.13 If, for some 0 in [0,1], the control system, x = fix, u) satisfies 5((?) then it-
is small time locally controllable.

Proof Apply [128] to x = /(a-.y), y = u with the constraint j n |?f(.s)|d-s ^ r (instead of

One can find other sufficient conditions for small time local controllability in Agrachev
[2], Bianchm-Stefani [7], Kawski [76], Tret'yak [130] and the references therein.

Example 2.14 If f(x,u) = J27'=\ uJi(x) or if /(a.-,u) = Ax + Hu (i.e. for driftless control
systems and linca.r control systems), the control system ((7) satisfies the Hermes condition
if and only if it satisfies the strong Lie algebra rank condition at (0, 0). Hence, Sussmaini's
Theorem 2.10 allows to recover Chow's theorem (i.e. that for driftless control systems, small
time local controllability is implied by the strong Ue algebra rank condition at (0,0)) a.nd
that the Kalniau condition

Span {/1VJ«; i e [0, n - 1], u t E m ) = Rn

implies the controllability of the linear control system x = Ax ~- Bit.).

Example 2.15 Let. us consider the following classical model, for a rigid spacecraft with con-
trol torques provided by thruster jets. Let r\ = (<D. 9, -\p) be the Euler angles of a frame attached
to the spacecraft representing rotations about a reference frame. Let u; = (tJi. w-2> ^3) be the
angular velocity of the frame attached to the spacecraft with respect to the reference frame,
expressed in the frame attached to the spacecraft and let J be the inertia matrix of the
satellite. The evolution of the spa.cecra.ft is governed by the equations

where the u\. € R, 1 ^ i ^ rn, are the controls («,;£»,; G IS3, 1 ^ i ŝ  in are the torques applied
to the spacecraft), S(<-u) is the matrix representation of the wedge-product, i.e.

0 w3 -LO2

(2.10) S(u) = j - w 3 0 wi
LJ2 -Ui 0
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and
/ cos 0 0 sin $

(2.11) -4(?/) = sin &t&i\<p 1. — cos 9 tan o
\ — sin#/cos<i> 0 cos 9/ cos o

Without loss of generality, we assume that the vectors />!,..., brn are linearly independent.
Then one has the following results

• Jf in = 3, control system (2.9) is small time locally controllable and globally controllable
in large time (that is given two states, there exists a time T > 0 and an open loop control
u € L°°(i),T} which allows to go from the first state to the second one). This result is
due to Bonna.rd [8j (see also [40]).

• If m = 2, control system (2.9) satisfies the strong Lie algebra rank condition at (0, 0) €
R(> X K2 if and only if (see [8, 40])

(2.12) Span {&,, b2, S(u>}J~lu,-; u G Span { ^ f>2}} = R3.

Moreover, if (2.12) holds,

— 'The control system. (2.9) satisfies Sussmanirs condition .Vfl), and so is small time
locally controllable; see Kerai [79];

— The control system (2.9) is globally controllable in large time; this result is due to
lionnard [8], see also [40].

• If m = 1, the control system (2.9) satisfies the strong Lie algebra rank condition at

(0. 0) e RG x R if and only if (see [8, 40])

(2.13) Spar {I^Sib^J-^nSi^J^1^; u e Span {bt, .S'(Ai) J " 1 ^ } } = K3.

Moreover

- The control system (2.9) does not. satisfy a necessary condition for small time local
controllability due to Hermes [61] and Sussmann [127] and so is not small time
locally controllable; see [79].

- If (2.13) holds, the control system (2.9) is globally controllable in large time: this
result is due to Bormard [8], see also [40].

2.3 Obstructions to stationary feedback stabilization

In this section all the feedback laws considered, are stationary. Let us recall that they are
also assumed to be continuous. Let us start by recalling the following necessary condition for
stabilizability due to Brocket!- [9].

Theorem 2.16 / / the control system (C) can be locally asymptotically stabilized by means of
feedback law.?, then the image of any neighborhood of (0, 0) 6 ^n x E"1 is a neighborhood of
0 G Rn .

Example 2.17 Let us go back to the control system of the attitude of a rigid spacecraft,
already considered in Example 2.15, One easily sees that

• If -m = 3, the control system (2,9) satisfies Brockett's condition. In fact in that case, the
control system (2.9) is indeed asymptotically stabilizable by means of feedback laws;
see [40] and [12].
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• If m £ {J., 2}, tlie control system (2.9) does not satisfy Brockett's condition (and so is not
asymptotically stabiiizable by means of feedback laws). Indeed if £> £ R3\(Span {bi-.h})
there exits no ((uj,-rj),u) such that

. (2.14) S{LJ)U + V-lb-L + ii2/}2 = '>:

(2.15)

(Kote that (2.15) gives «; = 0, which, with (2.14), implies that b ~ u^ --- u2b2-) See
also [12].

In [136] Zabczyk has observed that, from a theorem due to KrasnosePskii [83, 84], one
can deduce the following stronger necessary condition, that we shall call the index condition.

Theorem 2.18 ff the control, system (C) can be locally asymptotically stabilized, by means of
feedback laws, then there exists u e C°(Rn;Rm) vanishing at 0 such thai f(x,u(x)) / 0 for x
small enough but not 0 and the index of x —> f(x. u(x)) at 0 is equal to { — l ) r \

For a delinilion of the index, see, for example. [84, p. 9].
In turns out that the index condition Is. in a sense., too strong, In order to explain why,

let us introduce a. definition

Definition 2.19 The control system (C) is locally asymptotically stabiiizable by means of
dynamic feedback laws if, for some integer p t N, the control-system

(2.16) x = f{x,u), y = v e K

where the control is (u, v) € M™xKJ) and the state is (x, y) G R ; ixEp , is locally asymptotically
stabilizabie by means of feedback laws. By convention, when p—-0, the control system (2.16)
is just the control system (C).

Clearly, if the control system (C) is locally asymptotically stabiiizable by means of feedback
laws, it is locally asymptotically stabiiizable by means of dynamic feedback laws. But it is
proved in [31] tha.t the converse does not hold. Moreover, the example given in [31] shows
that the index condition is not necessary for local asymptotic stabiiizability by means of
dynamic, feedback laws. Clearly the Brocket! necessary condition is still necessary for local
asymptotic stabiiizability by means of dynamic feedback laws. But this condition turns out
to be not sufficient for local asymptotic stabiiizability by means of dynamic feedback laws
even if one assumes that 0 is small time locally controllable and that the system is analytic.
In [19] we have proposed a slightly stronger necessary condition; we have:

Theorem 2.20 Assume that the control system (C) can be. locally asymptotically stabilized
by means of dynamic feedback laws. Then, for any positive and small enough e,

(2.17) U ( a , , - ! ({(.<e,u); \x I + | n \< c,f(x,u) j-- 0})) = o - ^ j f R " \ {0}) ( = 2 ) ,

where. an-\(A) denotes the stable homotopy group of order (n — 1) (for a definition of stable
homotopy groups, see e.g. [134]}.

Let us point out that the index condition implies (2.17). Moreover (2.17) implies that
a "dynamic extension'' of (C) satisfies the index condition if the system is analytic. More
precisely, one has
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Theorem 2.21 ([25, Section 2]) Assume that f is analytic (or continuous? and subanaly-
Lic). Assume that (2..17) is satisfied. Then, if p > 2re•+ 1, the control system (2,16) satisfies
the index condition.

Let us end this section by an open problem:

Open Problem 2.22 Let us assume that / is analytic, satisfies (2.17) and that 0 is small
time locally controllable (or even continuously locally reachable in small time -see Definition
2.28 below-). Is the control system (C) locally asymptotically stabilizable by means of
"dynamic" stationary feedback laws?

A natural guess is that, unfortunately, a positive answer is unlikely to be true. A possible
candidate for a negative answer is the control system, with n = 3 and m = 1,

X! = xl(xx -x2), *2 = a;i(:i:2 - x3), d::i = u.

This system satisfies the Hermes condition 5(0) and so, by Sussmanii's Theorem 2.10 is small
time locally controllable. Moreover, it satisfies the index condition (take u = ;c3 — (,i;̂  + ^ | ) ) .

2.4 Stabilization of driftless systems

In this section we assume that

Let us first remark that in this case, as pointed out by Pomet in. [104J, the control system (C)
does not satisfy Brockett's necessary condition (Theorem 2.16) for asymptotic stabilizability
by means of stationary feedback laws if the vectors f\ (0 ) , , . . , /m(0) are linearly independent,
which is a generic situation. But we are going to see that most of the driftless control systems
can be globally asymptotically by means of time-varying feedback laws.

Let HS denote by T/ie{/1,. .., /,.„} C C'&O(R"-;1E") the Lie sub-algebra generated by the
vector fields j \ , , . . , fm. Then one has:

Theorem 2.23 Assume that, for all x f_ Rn\{0},

Then, for all T > 0, there exists u in C^(Kn x R;M.m) such that

(2.19) «(0;/:) = 0, V* e l

(2.20) u(x,t+T) = tt(,r,0, V.r G K", Vt G R,

and 0 is globally asymptotically stable for

(2.21) x = f(xiu(xit)) =
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Remark 2.24 By Chow's theorem [14], property (2.18) implies (and by Theorem 2.9 is
equivalent if the /,-. L ;C i ^ m, are analytic) to the global controllability of the drift less
control system {€') hi R"-\{0}, i.e., for any xu € M"\{0}, any a;:l G R " \ { 0 } , and any
T > 0, there exists u e //*((0,7 :): Km) such that, if x = Y^Liv-i(t)fi{x) and a:(0) = ;i'0; then
:r.{T) = 0.

This theorem is proved in [20]. Let us just briefly describe the idea, of the proof: assume
that, for any positive real number T. there exists u in C'^fR'1 x R;Rm) satisfying (2.19) and.
(2.20) such tha.t, if x = f(x. u(x, t)). then

(2.22) xiT) = 1(0).

(2.23) If ,r(0) ^ 0, the linearized control system around (:e, U) is controllable on [0, 7T].

Using (2.22) and (2.23), one easily sees that one can construct a ''small" feedback v in
C^(Rv l x R;Em) satisfying (2.19) and (2.20) such that, if

(2.2-1) x = f{xju + v)(x,t}}

and *(()) T 0, then

(2.25) |

whicli implies that 0 is globally asymptotically stable for (2.21) with u -•= u + v.
So it remains only to construct u. In order to get (2.22) just impose on u the- condition

that
(2.-26) ii[x,l) = -u(xtT-t), V(;i-,t) e Rn X R,

which implies that x(t) -~. x(T — t). Vi t [0. 7'] and therefore gives (2.22). Finally, one proves
that (2.23) holds for "many'' u.

Remark 2.25 The above method, which we have called '"return method", can be used also
to get controllability results. The idea is the following: assume that, for some positive real
number T, there exists a measurable bounded function u : [0,7'] —> R"'1 such that, if we
denote by x the (maximal) solution of x = f(x,u(t)), x(0) ™ 0, then ;i'(X) = 0 and the
linearized control system around (x,u) is controllable on [0. T]. Then it follows easily from
the inverse mapping theorem see e.g. [123], Theorem 7 p. 12G - that x = f(x,u) is locally

'controllable around 0 and at time X, ( i.e., for any (IEO,.?]) G IKV1
 X R" with \x{,\ + \x\\ small

enough, there exists -u G LlXl([0,T]; Rm) such that x = f(x.v.(t)) and x(0) = xo imply that
x{T) = xi). So one can in some eases reduce the problem of the controllability of a nonlinear
system to the problem of the controllability of a, linear (time-varying) control system. This
is specially useful for studying the controllability of partial differential equations. Indeed
one lias powerful methods to study the controllability of linear partial differential equations,
for example the HUM" method [93] due to J. L. Lions, but one has very few tools to study
the controllability of nonlinear partial differential equations. In particular, the use of Lie
brackets, which is very powerful for nonlinear control systems of finite dimension (see section
2.2 above), does not seem to give any interesting results for the controllability of nonlinear
partial differential equations. In section 4.2.1, we slia.ll see that the return method allows
us to prove boundary controllability of the Eulcr equations of incompressible in viscid fluids.
Using the return method, Sonlag has also found in [118] numerical techniques for the steering
of systems without drift.
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R e m a r k 2.26 The fact (2.23) holds for "many" u is related to the prior works [L15] and [58].
In [115] Soutag has shown that if a system is completely controllable then any two points
can be joined by means of a control law such that the linearized control system around the
associated trajectory is controllable. In [58, Thin p. 156] M, Gromov has shown that generic
under-determined linear (partial) differential equations are algebraically solvable, which is
related to controllability for time-varying linear control system (and in fact equivalent if the
system is analytic; see [58. 2.3.8.(B)] and [123, Cor.3.5.18]). In our situation the linear
differential equations are not, generic; only the controls are generic, but this is be sufficient
to get the result. Moreover, as pointed out by Sontag in [122], for analytic systems, one can
get (2.23) by using a result due to Sussmann on observability [126]. Note that the proof we
give for (2.23) in [20] see also [21.] can be used to get a C"10-version of [126]; see [22].

Remark 2.27 Using a method due to Pomet [10-1], we have given in [36] a method to deduce
a. suitable v from u; see sub-section 3.2.2 below.

2.5 Stabilization of general systems

Let us first point out that in [12"1] Sontag a.nd Sussmann have proved that a.ny one dimensional
state nonlinear control system which is locally (resp. globally) controllable can be locally
(resp. globally) asymptotically stabilized by means of time-varying feedback laws. Let us
also point out that it follows from Sussmann [125] that a. result similar to Theorem 2.23 docs
not hold for systems with a drift term: more precisely, there are analytic control systems (C)
the controls of which are globally controllable, for which (.here is no u in CG(R"' X K;RI7i)
for which 0 is globally asymptotically stable for x = f{x, v.(x. t)). In fact the proof of [125]
requires uniqueness of the trajectories of x = f(x, u(x, /•)). But this can a.lways been assumed;
indeed it follows easily from KurzweiFs result [87] that, if there exists u in C°(Rr i X R;Rm)
such that 0 is globally asymptotically stable for x = j'(x,u{x,l)), then there exists u in
C'°(R"' X R; R"1) n C™ ((Mri \ {0}) x R;M.m) such that 0 is globally asymptotically stable for
x = f(x, u(x, t))\ for such a u one has uniqueness of the trajectories of x = f(x, u(x, t)}. liut
we are going to see in this subsection that a local version of Theorem 2.23 holds for many
control systems which are small time locally controllable.

Let us again introduce some definitions.

"Definition 2.28 The origin (of R") is locally continuously reachable (for the control system
\O)}in small time if, for all positive real number T, there exist a positive real number e a.nd
n in C ^ R ' ^ U O . r ^ R " 1 ) ) such that

\u(a)(t)\:L€ (0,T)} -4 0 as a -H- 0,

(x = f(x,u(x(i)))(t.)), \x(0)\ < s) => x(T) = 0.

Let us notice that, following a. method due to M. Kawski [76] (see also [62]), we have
proved in [21, Lemma 3.1 and Section 5] that "many" sufficient conditions for small time
local controllability imply that the origin is locally continuously reachable in small time.
This is in particular the case for the Sussmann condition (Theorems 2.10 and 2.13); this is in
fact also the case for the Bianchini and Stefani condition [7, Corollary p, 970], which extends
Theorem 2.10.

Our next definition is
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Definition 2.29 The control system (C) is locally slabilizablc in small time by means of
almost smooth periodic time-varying feedback lams if, for any positive real number T. there
exist z in (0, +oo) and u in CU(R" x R; Rm) of elass C * on (R'1 \ {0}) X R such that

(2.27) u(dJ) = 0, Vi £ IS;

(2.28) «(:M H T) = w(-i;,/). W € R;

(2.29) ((i = /(;t, <«(,?. i)) and x(s) = 0) => f;r(f) ™ 0W > .*)), V.s 6 R;

(2.30) ((£ •= /(ar,i((.T,^)) and |.T(.?)| < <F) => (s(t) = 0; Vi > s + T)) Vs £ R.

Note that (2.28). (2.29), and (2.30) imply that 0 is locally asymptotically stable for
x = /{:t, u(-x, /.)); see [23, Lemma 2.15] for a proof. Nole that, if (C) is locally stabilizablc
in small time by means of almost smooth periodic time-varying feedback laws, then 0 6 R'"1

is locally continuously reachable for (C). The main result of this section is that the converse
holds if n ^ {2,3} and if (C) satisfies the strong Lie algebra rank condition a.t (0,0). That
is, we h.a,vo:

Theorem 2.30 Assume thai 0 is locally continuously reachable in small time, that (C) sat-
isfies the strong Lie algebra rank condition at (0,0), and that

(2.31) n<£ {2, 3).

'Then (C) is locally stabilimble in small time by means of almost smooth periodic time-vary ing
feedback laws.

'This theorem is proved in [23] when n > -1 and in [26] when n = I. Let us just give a
sketch of the main steps of the proof of [23].

Let I be an interval of R. By a trajectory of the control system [C) on / we mean
(7,u) 6 C^ (/";R" x R") satisfying 7ft) = f (7(t): u(t)) for all t in /. The linearized control
system around (7, u) is ̂  = -4(0^ + M(t)w where the. state is ̂  £ R", the control is w G Rni,
and .4(0 = df/dx[f(l),u(l)) 6 £(Kll,Rn), Bit) = df/du(y(t),n(t)) G_ £(Rm,Rn).. for all t
in / , We first introduce the following definition.

Definition 2.31 The trajectory (7, u) is supple on 5 C / if, for all s in 5,

(2.32) Span{((rf/(ft) - A(t)Y B(t)\t=aw ; u> £ Rm, i > 0} = R".

In (2.32) we use the classical convention [d/dt - A(t)f B(t) = B(t). Let us recall that
Silverman and Meadows havo shown, in [114] that, (2.1) implies that the linearized control
system around (7, u) is controllable with impulsive controls at time .9 (in the sense of [74] p.
fil4). Let T be a positive real number. For u in C° (RJi x [0, 7']; K'n) and a in R", let; x(a, •; u)
be the maximal solution of dxjdt = f(x,u(a,l}), x[a,0;u) = a. Let, also, C* be the set of
u f C° [Rn X [(),r];Rm) of class C^ on (R r t \ {0}) X [0,T] and vanishing on {()} x [0,11, For
simplicity, in this sketch of proof, we omit some details which are important, to take care of
the uniqueness property (2.29) (note that without (2.29) one does not ha.ve stability).

.Step 1. Using (1.8), (1.9), and [21] or [22], one proves that there exist e: in (0,+oc) and
uy in C*. vanishing on W" X {T}, such that

| | u ( ; ' ; ^ i ) = 0,
0 < ja| < fj => {x(u, • \ui},Ui(a,, •)) is supple on [Q/T].
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Step 2. [jet F be a closed sub-manifold of R" \ {()} of dimension 1 such that

F C {x f_ EJi;0 < \x\ < fi}.

Perturbing u\ in a suitable way, one obtains a map u2 in C*, vanishing on Rn x {T}, such
that

0 < |n.| < fi => x(a. •; u2),u2(a.. -)) is supple on [0, T],
a e r -^ ,r(£.ft;u2) is an embedding off1 into E v ' \ { 0 } , W € [0/7).

Here one uses the assumption -?i > -1 and one proceeds as in the classical proof of the Whitney
embedding theorem (see e.g. [57] Chapter II, Section 5). Let us emphasize that it is only in
this step that this assumption is used.

Step 3. Prom Step 2. one deduces the existence of uX in C*, vanishing on RTl x {T}, and
of an open neighborhood A'* of T in R™ \ {()} such that

(2.33) a<=Ar*^X[a,7';vZ) = 0,

a e A'* -s- a-{«,-£; wg) is an embedding of A'* into Rn \ {0}, Vt e [0/71).

This embedding property allows to transform the open-loop control u*s into a feedback law u.3
on {(x (a,t\ u-:i) , £) ;« € A'', £ £ [0, T)}. So -see in particular (2.33) and note that tig vanishes
on R11 x {7'}- there exist u^ in C* and an open neighborhood A' off in Rn\ {0} such that.

0 ( 0 ) £ A ' a n d x = f (x, u3[x; t))) ^ (x(T) = 0) .

One can also impose that, for all r in [0,T],

(x = f{z,v.3{x,t)) and x(r) = 0) =$• (;t(£) = 0, V£ € |.r.T]).

5tep -•/. In this last step one shows the existence of a closed sub-manifold of R" \ {()} of
dimension 1 included in the set {:J; € Rn\ 0 < |;r| < (\} such that, for any neighborhood A' of
P in R" \ {{)}, there exists '[(4 in C* such that., for some t.\ in (0, -foo),

and ja;(O)| < c4) =^ {x(T) € Ar U {0}) ,
(r) = 0) '^ {x{(} = 0 Vt € ; r ,T j ) )Vr e

Finally let w : R" x R 4 R m be equal to ti,j on Kn X [0, 7'], 27'-periodic with respect to time,
and such tha t u(x,i) = v,3(x.t-T) for all (x.t) in E n X (T ,2T) . Then w vanishes on {0} x R,
is continuous on R" x (R \ 2 T ) , of class C m on (R" \ {0}) x (R \ Z7~), and satisfies

( i = f{x,u[x,t)) and |ar(O}| < e-i) => (^(2T) = 0) ,
( i = /(ar,u(a;,()) and i ( r ) = 0) =^ (s(i) = 0, V^ > r) ,Vr 6 I ,

which, implies, see [23], that (2.30) holds, with AT instead of T and e > 0 small enough, and
that 0 is uniformly locally asymptotically stable for the system x = f (x, -ti(a:, t)). Since T is
arbitrary, Theorem 2.30 is proved (modulo a problem of regularity of u at OvO i11 ^n x

tha i is fixed in [23]}.
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Remark 2.32 We conjecture that assumption (2.31) ca.n be removed in Theorem 2.30.

Example 2.33 Let us go back again to control system (2.9) of the attitude of a, rigid space-
craft, already considered in Examples 2.15 and 2.1.7. Let us recall that it is proved in [79]
that, if m = 2 and (2.12) holds (which is generically satisfied), then the control system (2.9)
satisfies Sussmann's condition S(l) which, by [21, Lemma 3.1 and Section 5] implies that
(0.0) € K3 x ~ELA is locally continuously reachable; hence, by Theorem 2.30, for any T > 0
there exist a '/'"-periodic time-varying feedback laws which locally asymptotically stabilizes
the control system (2.9) (if (2.12) holds). The construction of such feedback laws has been
performed, by Morin et al. [101] in the special case where the torque actions are exerted
about the principal axis of the inertia matrix of the spacecraft. The general case has been
treated in [39]; simpler feedback laws have been proposed Mori.u-Sa.mson in [100]. In sections
3.3. 3.4 and 3.5, we explain how the the feedback laws of [100] are. constructed.

2.6 Output feedback stabilization

In this section only part of the stale (called the output) if> measured; let us denote by (C)
the control system
(2.34) " (C) : i = / ( * , « ) , y = h(x),

where x € M" is the state, u € Rm is the control, and y G Rp is the output. Again / e
C'Xl(Rvlx Rm;R") and satisfies (2.1); we also assume that h e C°°(RJl;Ef)) and satisfies

(2.35) /i(0) = 0.

In order to state the main result of this section we first introduce some definitions.

Definition 2.34 The control sj-'stem (C) is said to be locally stabilizable in small time by
means of static periodic time-varying output feedback laws if, for any positive real number T,
there exist e in (0,-oo) and u in C°{Kn X E:3Em) such that (2,27), (2.28), (2.29), (2.30) hold
and such that
(2.3(i) u{xj) = u(h(x),t)

for some ii in C°(R" X R;Rn).

Our next definition concerns dynamic stabilizability.

Definition 2.35 The control system (C) is locally stahilizable in small time by means of
dynamic periodic time-varying state (reap, output) feedback lawn ii, lor some integer k > 0,
the control system
(2.37) x = f{x, u),i= u , h(x, z) = ( h ( x ) , z ) ,

where the state is (x,z) € Rn x Rk, the control (u,v) e Mm x }&k, and the output h(x,z) e
R]J x Rf\ is locally stabilizable in small time by means of static periodic time-varying state
(resp. output) feedback laws.

In the above definition, the control system (2.37) with k = 0 is, by convention, the system
{€•). Let us also point out that it is proved in [21, Section 3], that if, for system(C*)i 0 is
continuously reachable in small time, then (C) is locally stabilizable in small time by means
of dynamic periodic time-varying state feedback laws.
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For our last definition, one needs to introduce some notations. For a in Nm and u in 1R™1.
let /;;• in C°°(R' l;R") be defined by

(2.38) f»(x) = C^Jr(x..u).. VzeR*.

Let O(C) be the subspace of C™[E" X Rm;Rp) spanned by the maps u; such that, for some
integer r > 0 (depending on w) and for some sequence ai , . . . . a> of r multi-indices in Nm,we
have, for all x e R" and for all •?/. e Rm

;

(2.39) w(i,u) = Ltfi...LfSrh(x),

whore L ,a, denotes Lie derivatives with respect to /"* and where, by convention, if r ~ 0 the

right hand .side of (2.!i9) is h(x). With this nolalion our last definition is

Definition 2.36 The control system (C) is locally Lie null-observable if there exists a. posi-
tive rea.l number i such that

(i) for all a in R" \ {0} such that \a\ < £\ there exists q in N such that

(2.40) L%h(a)^0

with fo{x) ~ /(;».', 0) and the usual convention La,h = h\

(ii) for all {ai.a2) € (R"\{0})2 with a-i / a2, |«-i| < ?; and |«.2| < e, and for all u in Rm with
\u\ < S, there exists ij in O(C) such that

(2,11) w ( a h « ) ^ w ( u a i u ) .

Note that (i) implies the following property:

(j)* for any a =̂  0 in B f := {,r £ M™, |;T| < f} there exists a positive real number r such that

(2.42) x(r) exists and /?.(^(r)) ^ 0;

where z(l) is defined by x = /(.r, 0), x{0) = a.
Moreover, if / and g arc analytic, (i)* implies (i). The reason of "null" in "null-observable'*

conies from condition (i) or (i)* : roughly speaking we want to be able to distinguish from 0
any a in Bs \ {()} by using the control law which vanishes identically.

When / is affine with respect to u, i.e. f(x, u) = fo(x) + X^£i u>-fi(x) with / i , ..., /„,. in
Ci:3C'(RJi;ltT')« then a slightly simpler version of (ii) can be given. Let O(C) be the observation
space -see e.g. [59] or Remark 6.4.2 in [123]-i.e. the set of maps £j in CK:(R";RP) such that
for some integer r > 0 (depending on Q) and for some sequence ( j , . . . , ir of integers in [0, m]

(2.43) ti(x) = Lfii...LIirk(x). Vx £ R",

with the convention that, if r — 0, the right hand side of (2/13) is h(x). Then (ii) is equivalent
to
(2.44) {(aua3) e B;-, Q(a,) = Q(a2) V^ € 6(C)) =» (flj = a2).

Finally let us remark that if / is a polynomial with respect to u or if / and g are analytic
then (ii) is equivalent to



324 J.-M. Coron

(}})* for all (u-i, a-i) € Kn \ {0} with a-\ ̂  a2, [cii| < £ and ja2| < £ there exists u in Km and w
in O(C) such that (2.41) holds.

Indeed, in these cases, the subspace of IE2' spanned by ^(x, v); LJ 6 O[C) docs not depend
on u: it is the observation space of (C) evaluated at x - as defined for example in [59].

With these definitions we have

Theorem 2.37 Assume that the origin (yofE.n) is locally continuously reachable (for (C)) in
small time (see Definition 2.28). Assume that (C) is locally Lie null-observable. Then (C) is
locally stabilizable in small time by means of dynamic periodic time-varying output feedback
laws.

This theorem is proved in [24]. Let us just sketch the proof given in [24], We assume that
the assumptions of Theorem 2.37 are satisfied. Let T be a positive real number. The proof
of Theorem 2.37 is divided into three steps.

Step 1. Using the assumption thai the system (C) is locally Lie null-observable one proves,
using [22], that there exist u" in C"^{RVX [0,7'];Rm) and a positive real number if* such that

(2.15) W(y,T) = u"(y,0) = 0, Vy € Rp, «*(0, t) = 0, W e [ 0 / / : ] ,

and, for all (ai,«-j) in B^», for a.ll s in (0..T),

(2.16) (h$(s) = Ag(s), V i e N ) ^ K = a2)..

where hn(s) = h(x*[a,s}) with x" defined by c)x*/dt = f{x',u"(h(x*),t)), x*(aA)) = a. Let
us note that in [98] a similar u* was considered, but it wa.s taken depending only on time and
so (2,15), which is important to get stability, was not satisfied in general. In this step we do
not use any reachability property for (C).

Step 2. Let q = 2n + 1. In this step, using (2.--16). one proves the existence of (q+ I) real
numbers 0 < ô < î ••• < I* < T such that the map K : B£* -» {Wy defined by

(2.47) K(a) = ( [ ' (s - to)(*i - s)ha(s)ds,.... j '\s - to)(tq - s)/io(*)ds

.is one-to-one and so, there exists a map 8 : (Kp)q -¥ R" such thai

(2.48) 0 c it (a) = x*{a/i:). Va e B£*/2.

Step 3. In this step one proves the existence of u in C'"(R"' X [0, T\: Um) and e in (0, +oo)

such that
(2.49) u = 0on {Un x {0 ,T})U({0}x [0,T]) :

(2.50) (x - /(s,w(a,-(0),it)) and |s(0)| < i) => (x(T) = ()).

Property (2.50) means that u is a "dead-beat" open-loop control. In this last step, we use
the reachability assumption on (C), but cio not use the Lie null-observability assumption.

Using these three steps let us finish the proof of Theorem 2.37. The dynamic extension

of system (C) that we consider is

(2.51) x = f(x, u), z = v = (yu ..., vg, vq+1) e Kp x ... x Rp X R* -
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with z\ = (zi,.....zq.z,}+1) e M.p x ... x Rp x R" ^ R^1 '1 . For this system the output is
h(x, z) = (h{x), z) e Rp X RP?+\ For s G R let s+ = max(,». 0) and let Sign (s) = 1 if s > 0,
() if .s = 0, - 1 if s < 0. Finally, for r in N \ {0} and b = (&i,..., 6r) in &r, let

(2.32) ^1/3 = (IM^Sign (ftO^-.JM^Sign (&r)).

We now define u : W] X R ^ " x R -s- R m and v : U? X WK1+n X IE -> IRJJ£J+" by requiring, for
(y , r ) in RJJ x R^J(^" and for all i in [1,(/].

(2.-5:1) u[y,zA) = u*(y,t), W €

(2.55) -i;(/+i (y, z, t.) = — l(tq — t) + z ^ + 6

(2.57) v{y,z,t) = 0, Vt G [

(2.58) w(y,^,i) = u(y,.M + 2T), Vt e R,

(2.59) v{y,z,t) = v(y,z,t+'2T), Vt £ R.

Roughly bpeaking the strategy is the following.

(i) During the time interval [0, X1], one "excites" system (C) by means of u*{y.l) in order
to be able to deduce from the observation during this interval of time what is the state
at time T: at time 'V we have zq+-\ = x.

(ii) During the time interval [T\2T], r!f+1 does not move and one uses the dead-beal open-
loop it but transforms it into an output feedback by using in its argument zq instead of
the value of x at time 7" (this step has been used previously in the proof of Theorem
1.7 of [21]).

R e m a r k 2.38 This method has been previously used by Sontag in [.] 17], Lozano [94], Mazcnc
and Praly [98]. A related idea is also used in Section 3 of [21], where we first recover initial

"data from the state. Moreover, as in [1.17] and [98], our proof relies on the existence of
an output feedback which distinguishes every pair of distinct states (see [126] for analytic
systems and [22] for C°° systems).

One easily sees that u and v are continuous and vanishes on {(0,0)} X R. Let (x, z) be
any maxima] solution of the closed loop system

(2.60) x = f ( x , u { h { x , z ) , t ) ) , z = v ( h ( x , z ) , t ) :

then one easily checks that , if \x(0)\ + |ir(())| is small enough,

(2.61) 3i(l0) = 0 ; V i e [1,</],

(2.62) (zy{L)y...}zq(t)) = K(x(0Y), Vt € [tq,T\,

(2.63) zq+dh) = Q,
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(2.64) 3 7 + [ (T) = B o K(x(i))) = x(T),

(2.65) x(l) = 0, Vt€ [2r,3T],

(2.66) <2T + (,) = 0 .

Equalities (2.61) (resp. (2.615)) are proved by computing explicitly, for i € [!,</]. z,. on [(),(«]
(resp. 374i on [0,/ff]) and by seeing that, this explicit solution, reaches 0 before, time /;u
(resp. f,;) and by pointing out that if, for some *• in [O,/-o] (resp. [0,*,,]), z,;(s) ~ 0 (resp.
i,;+i(ijj = 0) then Sj- = 0 on [«, i0] (resp. 2C+1 = 0 on [.s,t,y]) note that ?j-i, < 0 on [0,/0]
(resp. =cj+iitJ+i < 0 on. [0,^]).

Moreover one has also, for a]] $ in IE and all t > -s,

(2.67) ((a:(«) )-j(3))=(0 !0)}^((i-(t) !2(*))=(0 ;0)).

Indeed, first note that without loss of generality we may assume .s € [0.2T] and ( G [0,2T].
If -s € [0, 7;], then, since u" is of class C°° we get, using (2.45), that a;(it) = 0, W e [*, T] and
then, using (2.35) and (2.54), we get that, for all i e [1,?], 2,:^ < 0 on [s,T] and so z; also
vanishes on [s, T]: this, with (2.55) and ^(0) = 0 (sec(2.^7) and (2.48)), implies that zq+! = 0
also on [.s, !T]. Hence we may assume that s € [T,2T]. But, in this case, using (2.57), we get
that z = 0 on [.s. 2T] and, from (2.49) and (2.56), we get that ce = 0 also on [.?, 2r j .

^.Froin (2.65). (2.66), and (2.67) we get sec Lorn ma 2.1.5 in [23] - the existence of £ in
(0, +oc) such that, for any s in R and any maximal solution (x. z) of x = f(x, u(h(x, z),t)),
i: = v(h(x, z),t), we have

(\x(s}\ + \y(s}\ < E) => {(x(t),z{t)) = ( 0 , 0 ) , V* > .9 + 5 T ) .

Since T is arbitrary. 'Theorom 2.37 is proved.

Remark 2.39 In [98] it is established that dislinguishability with a universal time-varying
control, global stabilizability by state feedback., and observability of blow-up are sufficient
conditions for the existence of a time-varying dynamic output feedback (of infinite dimen-
sion and in a sense more general than the one considered in Definition 2.35) guaranteeing
bounded ness and convergence of all the solutions defined at time t — 0. The methods de-
veloped in [98] can be applied directly to our situation. Iti this ca.se Theorem 2.37 gives two

•improvements: we get that 0 is asymptotically stable for the closed loop system, instead of
only attractor for time 0, and our dynamic extension is of finite dimension, instead of infinite
dimension.

Remark 2.40 If ((7) is locally stabilizable in small time by means of dynamic, periodic time-
varying output feedba.de la.ws, then the origin (of EVi) is locally continuously reachable (for
{€')) in small time (use Lemma 3.5 in [2'1]) and, if moreover / and h are analytic, then (C)
is locally Lie null-observable -see [24, Proposition 4.3],

Let us rema.rk that, it follows from our proof of Theorem 2.37 that it suffices to consider
dynamic extensions of dimension n + (2n + L)p, i.e. under the assumption of Theorem 2.37,
the control (2.37) with k = n + ('2n + 1.)̂  is locally stabilizable in small time by means of
static periodic time-vary ing output feedback Jaws. We conjecture that, as in the Jinear case,
this result, still holds for k = n - 1. Note thai- this conjecture is true if n = 1. i.e. we have
the following proposition which is proved in [26],
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Proposition 2.41 Assume that n = L and that the origin (of R) is locally continuously
reachable [for (C)) -in small time. Assume that (C) is locally Lie null-observable. Then (C)
is locally stabilizable in small, time by means of periodic time-varying output feedback laws.

Remark 2.42 There are linear control systems which are controllable and observable but
which cannot be locally asymptotically stabilized by means of a time-varying static feedback
law. This is for example the case for the controllable and observable linear system, with
n = 2, m = I. and p = 1,

Xi = ,1,'2, i ' 2 = W; V = ^ l -

Assume that this system can be locally asymptotically stabilized by means of a time-varying
static output feedback law u ; S x R - ) R , Then there exist r > 0 and r > 0 such that, if
X\ =: X-2, X'2 = u(X] , ( ) ,

(2.68) :^(0)2 + ^ ( 0 ) 2 < r2 => xjj)2 + x2(r)2 < r 2 / 5 .

Let, (it"; n € N) be a sequence of functions from R into R of class C"x- which converges
uniformly to u on each compact subset of R x R. Then, for n large enough, xy = xo, x2 =
un(x-y, /•) implies
(2.69) ' ;i-!(0)2 + x2(0)2 < r2 => xx{r)2 + s . ( r ) 3 < r'2/4.

Hut, since the time-varying vector held A" on R2 defined by

A " i ( a ; i , a ; 2 : 0 = * i , X2{x1,x2,t) = un(x1.t)

has a divergence equal to 0, the flow associated with X preserves area, which is a contradiction
to (2.69).

2.7 Time-vary ing feedback and ISS

Let us recall that one prefers to use feedback laws instead of open loop control since they are
usually more robust to disturbances. In order to define the robustness of a feedback there
is the well-established operator approach. This approach gives very useful results, but is
"not invariant under changes of variables. In [1.16], Son tag has defined a new concept, called
"Llnput-to-State Stability"' (ISS) to define a robustness which is invariant under changes of
variables.

Let us first deal with actuator disturbances. We need to recall the definitions of functions
of class /C, of class fC.yD a.nd of class ICC.

Definition 2.43 A function 7 : R + -» E is said to be of class K if it is continuous, strictly
increasing and if 7(0) — 0. The function 7 is said to be of class fCoo if moreover it, is not
bounded.

A function i.i : R"1" X R"*" —> R + is said to be of class KC if for each fixed (• the mapping
0{..t) is of class K. and for ca,ch fixed ,<? the mapping 8(s,.) is decreasing to zero on t as
t -> +00.

For d € lfa{l), where / is a subset of R, we note |i(/||M it's i,<Xi-norm. We these definitions,
one can now give Sontag'a definition [116] of ISS for actuator disturbances.
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Definition 2.44 A feedback law u E C'°(E;Rm), such that, y(0) = 0. makes the control
system (C) ISS for actuator disturbances if there exist a function 7 of class K, and a function
8 of class fC£. such that, any solution, defined at time 0, of the closed loop system

where d is a continuous bounded disturbance, exists for all t ^ 0 and satisfies

(2.70) W*)l</HN0)|,0 + 7(l|d|U)), W f- [0,+oc).

One easily checks thaL any feedback law which makes the control system (C) ISS for
actuator disturbances globally asymptotically stabilizes the control system (C). As pointed
out by Son tag in [1.16], the converse does not hold, even for control systems which are affine
in the controls.

R e m a r k 2.45 But note that a local version version holds, that is, for any feedback law u
which locally asymptotically stabilizes (C), there exist a function 7 of class /C and a function
B of class K.X. such that (2.70) holds for |-r(0)| and \\d\\rx small enough. This follows from
[87].

Even if the converse does not hold, one lias the following theorem proved by Sontag in
[116].

Theorem 2.46 Asumme thai the control system (C) is affine in the controls and globally
asymptotically stabilizable by means of stationary feedback laws. Then there exist feedback
laws which make the control system (C) ISS for actuator disturbances.

In [119], Sontag ha.s shown that one cannot remove the assumption "(C) is afline in the
controls'7.

A natural question is ''does one ha.ve a similar result to Theorem 2.46 for ISS for mea-
surement disturbances?". Of course the definition of ISS for measurement disturbances is:

Definition 2.47 A feedback u £_ C°(E;Em) , such that u(0) - 0, makes system (C) ISS for
measurement disturbances if there exists a function 7 of class K, and a function Q of class K.-C
such that any solution, defined at time 0, of the closed loop system

x ~ f{x.u{x

where d is a continuous bounded disturbance, exists lor a!3 t ^ 0 and satisfies

\x{i)\ <0(|z(O)|,O + 7 M o o ) , W e [0,+oo).

Again, one easily checks that any feedback law which makes system (C) ISS for mea-
surement disturbances globally asymptotically stabilizes the control system (C). A counter-
example, given by Freeman in [45], shows that Theorem 2.46 does not hold with ISS for
measurement disturbances. Nevertheless, it does hold for those, systems that can be put into
strict feedback form (see [47]).

Again one. may wonder if the use of time-varying feedback law can help to get Theorem
2.16 with ISS for measurement disturbances. Let us first adapt Definition 2.47 to time-varying
feedback laws.
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Defini t ion 2.48 A feedback u € C°(Rn X R ; R ) , such that , for any I € R, u((),/•) = 0,
makes the system (2.71) -input-to-state stable for measurement disturbances if and only if
there exists a function 7 of class K- and a function B of class K'£ such fha.t, for any time t0

and any solution, defined at time to, of Lhe closed bop system

where d. € L^'it-Q, +oc) is a continuous bounded disturbance, exists for all t ^ t0,
 a i ld satisfies

k ( 0 | < j.H\xo\,t - t.o) + 7(l|d|U) r Vf G [t0; +oc).

One ha.s the following theorem, due to Chung [15].

Theorem 2.49 Consider the control system

(2.71) x = f(x)

where x £ E « f/te .sfff/e. 'u € K ifte feed-back, / : R —)• R flnrf (/ : R —» K «re continuous.
Suppose thai this system is globally asymptotically stubilizable by means of stationary feed-
back laws. Then, for any period T > 0. there exists a T-periodic time-varying feedback law-
making the closed loop system input-lo-slate stable -with respect to measurement disturbances.
Moreover, if the zeros of g are bounded, lhe feedback law can be taken time-invariant.

.Periodic time-vary ing feedbacks have also been used Tor a/ffino systems by R, Freeman in
[46]. The problem lie studies is ISS for measurement disturbances with systems that are only
partially observable. More precisely he assumes that, g in equation (2.71) docs not vanish on
R \ {0} but. that the sign of g is unknown.

3 Feedback design tools

In this chapter we give some tools to design stabilizing feedback laws and present some
applications of these tools. The tools we want to describe are

• Control Lyapunov functions,

• Damping,

• Homogeneity,

• Averaging;,

• liackstepping.

There are in fact plenty of other powerful methods; e.g. zero-dynamics, center manifolds,
forwarding, a.da.ptive control, etc. See, for example, [4, 37, 71, 85, 86, 99, 101, 102, 113] and
the references therein.
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3.1 Control Lyapunov function

A basic tool for studying the asymptotic stability of an equilibrium point is the Lyapunov
function. In the case, of a control system, the control is at our disposal, so there are more
'"chances" that a given function, could be a Lyapunov function for a suitable choice of feed-
back la.ws. For simplicity, we restrict our attention to global asymptotic stabilization; the
definitions and theorems of this section can be easily adapted to treat local asymptotic sta-
bilization.

I ii the framework of control systems, the Lyapunov function approach lea,ds to the follow-
ing definition, due to Artstein [3j.

Definition 3.1 A function V € O1 (K'fi'; R) is a control Lyapunov function for the control
system (C) if

V(x) —> +oc. as |s | —> +oo,
V(x) > 0, Var € R " \ {0},

\fx € Rn \ {{)}', 3v. G Rm s.t. fix, u) • VV(x) < 0.

Moreover, V satisfies the small control property if. for any strictly positive real number e,
there exits a. strictly positive real number n such that. Tor any x 6 Kril with 0 < \x\ < r/, there
exists u G IR"1- such that \u\ < £ and f(x, u) • W(x) < 0.

With this definition, one has the following theorem due to Artstein [3].

Theorem 3.2 .// the control system (C) is globally asymptotically slabi-lizable by means of
a sta.iioa.ary feedback law, then it admits a control Lyapunov function satisfying the small
control, property. If the control system {€') admits a control. Lyapunov function satisfying the
small control property, then it can be globally asymptotically stabilizablc by means of

• stationary feedback laws if the control system (C) in ufjine in the controls:

• relaxed controls for general f (see [3] for a definition),

instead of relaxed controls, one can use periodic time-vary ing feedback laws. Indeed one
has the following theorem proved in [33].

Theorem 3.3 The control system (C) can be globally asymptotically stabilized by means of
periodic time-varying feedback laws if it admits a control Lyapunov function satisfying the
small control, property.

Let us point out tha.t. even in the case of control systems which are. a.ffitie in the controls,
Artstein's proof of 'Theorem 3.2 relies on partitions of unity and so does not give explicit
stabilizing feedback laws. Explicit feedback laws are given by Sontag in [12.1]. He proves;

Theorem 3.4 ([121]) Assume that V u a control Lyapunov function satisfying the small
control properly for the control system (('!). Assume that (C) is affine in the controls, that

f(x, u) = fo(x) + £ui / i ( . r ) , V(ar, u) G R" X R"\
t=i.

for some fo,...,fm in C^{E.n:'Rn). Then u = ( « ] , . . . , u m ) : KVi - > E m defined by

(3.1) u,(x) := -y ifoix) • VV{x),f^(ft(x) • VF(i}-)2 j fi(x) • VV{x),
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•unth

is continuous and globally asymptotically stabilizes the control system (C).

Open Problem 3.5 For systems which are not affine in the controls, iind some explicit
formulas for globally asymptotically stabilizing periodic time-varying feedback laws when
one knows a. control Lyapunov function satisfying the small control property, (liy Theorem
3.3, such feedback laws exist.) •

3.2 Damping feedback laws

The control Lyapunov function is a very powerful tool to design stabilizing feedback laws.
But one needs to guess candidates for such functions in order to apply Soiling's formula (3.1).
For mechanical systems at least, a natural candidate for a control Lyapunov function is given
by the total energy, i.e. the sum of potential and kinetic energy. But, in general, it does not
work,

Example 3.6 Consider the classical spring-mass system. The control system is

X] = X-2, X-2 = - & . T 1 + It,

where, m is the mass of the point a,tta,ched to the spring, xi is the displacement of the mass
(OR a. line), x-2 is the speed of the mass, k is the spring constant, and u is the force applied
to the mass. The total energy E of the system is

fc . n 2 i m. 2X + ~JX

One has, with the notations of Theorem 3.4,

Hence, if ;c2 = 0, there exists no u such that {Ju{x) + -?t/i(;r)) • VE{x) < 0. Therefore the
total energy is not a, control Lyapunov function. But one has

T uMx)) • VE(x) = uj\ (x) • Vf'J(x) = ux2.

I lence, it is tempting to consider the feedback law

(3.3) u(x) = -vVE{x) • /i(>-)(= -ux2).

With this feedback law, the closed loop control system is

it v
( 3 . 4 ) X-2 - - - — S-'i X-2:

in m
which is the dynamic of a spring-ma.ss-dashpot system, la other words, the feedback law
adds some damping to the the spring-mass system. With this feedback law
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so that. (0, 0) G R2 is stable for the closed loop system. In fact (0. 0) is globally asymptotically
stable for this system. Indeed, if a trajectory x(t),t € R, of the closed loop system is such
that E[x(t)) does not depend on time, then

(3.5) x2(t) = 0, V( GR.

Differentiating (3.5) with respect, to time and using (3.4), one gets

Xl(t) = 0, Vt e R ,

which, with (3.5) and LaSalle's invariance principle, proves that (0.0) is globally asymptoti-
cally stable for the closed loop system.

The previous example can be generalized in the following way. We assume that, the control
system (C) is a.ffine in the controls, that is

f[x, u) = fo[x) + YZLi uifi(.x)-- Vix> u) € Rn X R''r'\

for some / u , . . . , / m in C'^fR'^R")- Let V G ^ " ( K ^ R ) be such that

V[x) —¥ +oo, as |;i'| —> +oc.
V'(.t') > 0, V.r € R n \ { ( )} ,

/o • VV < 0 in Ev'-.

Tlien

1 lence it is tempting to consider the feedback law a = (u-i,..., um) defined by

(3.6) m = - / , - V V , Vie [l,m].

With this feedback law

m.

/(ar, «(.r)) • VV(x) = -foix) • VV(-r) - J](. /H^) " Vl/(.;))2 < 0.
! = 1

'"L'herefore, f) is stable for the closed loop system a: = f(x,u(x)). By LaSalie's in variance
principle it is globally asymptotically stable if the following property holds:

(V) For any x G C(1(IR;E"-) such that

i(t) = /„(»(/.)), v t e R •

fi{x[t)) • W(x(t)) = 0, V( e R. Vi € [0, m],

one has
.!'(/:) = 0, V/. G K.

This method has been introduced by Jacobson in [72] and by Jurdjevic-Quinn [73]. There
arc many sufficient conditions available for property (V). Let us give, for example the fol-
lowing condition, due to Jurdjevic-Quinn [73] (sec also [91] for a more general condition).
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Theorem 3.7 With the above notations, assume thai, for every x £ 'Kn\ {0},

&\>*Si{fo{x).M)ji{x), i = l , . . . , m , k e N} = Rn.

27)c« properly (V) is satisfied, in particular the feedback law defined by (3.6) globally asymp-
totically stabilizes the control system {€'•).

Net us recall that a.d^/,: e C™ (R"; R") is defined by induction on fc by

(.•et us point out that this method is also very useful when there are some constraints on
the controls. Indeed if, for example, one wants that, for some t" > 0:

then it suffices to replace (3.6) by

where cr 6 C°(R: [-£, e]) is such that serfs) > 0 for any s <= R \ {0}, We give an application
of this possibility in the next subsection.

3.2.1 Orbit transfer with low-thrust systems

Klectric propulsion systems for satellites are seriously considered for performing large am-
plitude transfers, bet us recall that electric propulsion is characterized by a. low-thrust ac-
celeration level but a high specific impulse. In this subsection, where we follow [32], we are
interested in a largo amplitude transfer of a satellite in a. central gravitational field by means
of an. electric propulsion system.

The state of the control system is the position of the satellite (here identified with a point:
we are not considering the attitude of the satellite) and the speed of the satellite. Instead of
using Cartesian coordinates, we. prefer to use the "orbital" coordinates. The advantage of this
set of coordinates is that the first five coordinates remain unchanged if the thrust vanishes:

• these coordinates characterize the Keplerian elliptic orbit; when thrusts are applied, they
characterize the Keplerian elliptic osculating orbit of the satellite. The last component is an
angle which gives the position of the satellite on the Keplerian elliptic osculating orbit of the
satellite. A customary set of orbital coordinates is

p = a(l-e2),

(-:x = ecos J>, with Co = LO -j- O,

hx = tan ^ cos 11

hv — tan ^siniJ,

! • = & + •(.;,

where a, c, w, Q. i characterize the Keplerian osculating orbit:
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• a is the semi-major axis.

• t is the eccentricity,

• ?' is the inclination with respect to the equator.

• fi is the right ascension of the ascending node,

• u; is the a.ngle between the ascending node and the perigee,

and where v is the true anomaly; see, e.g., [18, 109, 1371,
In this set of coordinates the equations of motion are

is. ^ 2,/ziiS'
d-t L V v 2 •

AS - e^sin L -

lit = Jl? ["^(cos L)Q - h cos L)W]

f = Zl + \fl\ (K sin L - cos W,

where /;, > 0 is a gravitational coefficient depending on the central gravitational held, Q, S\ W,
are the radial, orthotadial, and normal components of the thrust delivered by the electric
propulsion systems and where

Z — I + e.,; cos L + ey sin L,

A = e:iJ + (l + Z)cosL,

(3.8)

(3.9)

(3.10) B - ey + (l + Z)sinZ,

(3.11) A" = l + hl + h*.

We study the case, useful in applications, where

"(3.12) Q = 0,

and. for some >: > 0,
| 5 | < £ and |I'F| < s.

.Vote that .=• is small, since the thrust acceleration level is low. In this subsection we give
feedback laws, based 011 the damping approach, which (globally) asymptotically stabilized
a given Kepierian elliptic orbit characterized by the coordinates p,'ex,eyjix,hy. (We are
not interested in the position at time t of the satellite on the given Kepierian elliptic orbit:
if this position is important, see [13, 32]. which uses forwarding techniques developed by
Tv'la.zcnc-Praly [99] and Sepulchre et al. [113].) Tn oder to simplify the notations (this is not
essential for the method) we restrict our attention to the case where the desired final orbit is
geostationary, that is.
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Let
A = (0,+co) x # i x R 2 x R ;

where
(3-1.3) B} ={e = (ex>ey) £ R2; 4 + e\ < 1).

With this notation, one requires that the state ^p.£.T,ev,hs:,hy.L) belongs to A . We arc
looking for two maps

5 : A -+ [-£,£]
(P. £•-,;, £•:,,, /t.r. / i j , ; L ) H> 5 ( p , C^, Cy, / i j ; , /(,,, L)

and
.4

(p. e;E, c,J; /ii;, /ty, I ) i-̂  H-'fp, e r i (•>/•, h.T. hv, L)

such that {•}}, 0 :0.0 :0) € R"3 is globally asymptotically stable for tlio closed loop system (see
(3.7) and (3.12)}

•if

Iff \/~jr [AS — e,j f/).T sin L — hy cosijT'F],

^ = / F ± [if5 - ex{hx sin L - h,, cos L) VV].
(3.14)

§ - y / ^ Z 2 + ^ i (/J... sin I - hy cos L) I-y,

with Q>, fj,-, ey, A-3-, /(•„, I-) £ >l- Note that A ^ Mfi and that we are interested only in the first
five variables. So we need to specify what we mean by "(p. 0.0.0,0) is globally uniformly
asymptotically stable for the closed loop system". Various natural definitions are possible.
We take the one which sounds the strongest, namely we require:

• Uniform stability, that is, for any s0 > 0, there exists £i > 0 such that any solution of
(3.14) defined at time 0 and satisfying

is defined for any time t ^ 0 and satisfies

W) - P\ + IM0I + le«(0l + l̂ -WI + IM0I < £o
for a.ny t ^ 0.

• Uniform global attractivily, that is, for any M > 0 and for any i] > 0, there exists T > 0
• such that any solution of (3.1/1), defined at time 0, such that

K 0 ) 5 p{
i

is defined for anv time t > 0 and satisfies

) - P\

for anv time £ > T.
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We start by a change of "time", already used in Geoffroy [54], describing the evolution of
.e^.CyJi^.hy) as a. function of L instead oft. Then system (3.J4) reads

^ = K[AS - cJhxsmL - hy cosL)W]

^ = K[BS - ex{hxs\nL - hycosL)W]
(3.15)

A _ ft- /Z 7

with

(3.16)
- i

Let V" be a function of class Cv from (0, oc) x B\ x E2 into [0, oo) such that

(3.17) V[p,e~,e.y,hx,hy) = 0 & {p,ex,ev,hx,hy) = (p ,0 ,0 ,0 ,0 ) ,

(3.18) V(p. ex, ty, hx, hy) -» +oc if (p, ex: c.SJ, hx, hw) -> #(((), +.DC) X S i x R 2 ) .

In (3.18), tli.e boundary ci(((). -foe) x B i X R2) is taken in the set [0, +oo] X 8\ X [-oo, +'3c]2.
Therefore condition (3.18) is equivalent to the following condition: for any M > 0. there
exists a compact set K, included in (0. +oo) x B\ x IE2 such that

(One can take, for example.

(3.19) V(p,ex,ey,

V{p,e^cv,hir,hy) > M).

1 - t2

with, e2 = e~. + e2 and h2 = h\ + h2
y.) The time derivative of I--' along a trajectory of (3.15)

.is given by

with

(3.20)
dv dv . dv
dp dtts de.y

i3.21) o = {h-v(ionL — /)•!• sin 7J

Following the damping method, one defines

(3.22) 5 = -o

(3.23) W = -cr2{ff)t73{p,e,h).
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where u-\ : R —> R, u2 : R —>- R and <r3 : (0, +oc) x £>;[ x R 2 —̂  (0, l] are continuous functions
such, tha t

(3.2-1) CT,(S) - s > 0, Vs G R \ { ( ) } ,

(3.25) <ra(s) - s > 0, tfs

(3.27)

(3.28) az{p>e,k) < - J — 4 {1 M , V(p, e, ft) € (0,+oc) x B1 X (R2\{0}).J 4 {1 ~ M ' V(p e ft) € (0+oc) x B X (R2

The reason for using tj3 is to ensure the existence of A" defined by (3.16). .Indeed from (3.8),
(3.15), (o.2;S), (3.27) and (3.28), one obtains for any L € R that

!—^- -h (7ia: sin I - hy cos L)T4'' > 0

on (O.cc) XBL X R 2 and therefore A' is well-defined for any (p,e.,h, L) e (O.+oc) xBt x R 2

(RCC (3. L0)). One has

(3.29) || S | | / J«((O,+

V" < 0. and ((V' = 0) <=> (Q = Q = 0)).

Since the closed loop system (3.15) is L-varying but periodic with respect Lo /J one may apply
[..aSalle's in variance principle: in order to prove that (p, 0 ,0 ,0 ,0) Is globally asymptotically
stable on (0, +oo) x B\ x R 2 for the closed loop system (3,15), it suffices to check that any
trajectory of (3.15) such that a = 3 = 0 is identically equal to (p, 0, 0, 0,0). For such a
trajectory one has - see in particular (3.15), (3.20), (3.2:1), (3.22). (3.23), (3.2-1), (3.25) and
(3.28) - '

(3.31) ^ o , ^ = o , ^ = 0 , ^ = 0 , % = 0,
L d lL dh dL

dp dex QC,J

(3.33) (ft,, cos L - AESit, 11 { e y ~ + ^ + \x ((co, L)^-+ {^ L) ^-) = 0.

I ience p, e.T. cy, hx el. hy a.re constant. The left hand side of (3.32) is a linear combination of
the functions cosL , sin L. cos2 L, sin L cos L and the constant functions. These functions arc
.linearly independent., so that

dv dv , dv _ ov ^ dv _
Op ^ OCX

 V dCy d£j; ' (ifij,

and therefore
gy gy _ dv _
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which, with (3.11) and (3.33), gives

dh,; dhv

Hence it suffices to impose on V tha.t

(3.34) (VV{p, e*, <•„, K, hy) = 0) => ((p, <<*, cv, hs:, hy) = (p, 0, 0, 0,0)).

Note tha t , if V is given by (3.19), then V satisfies (3.3--1).

3.2.2 Damping feedback and driftless systems

'Throughout this subsection we again assume that (C) is a driftless system, i.e.

in

/(:«:,«) = X>/,"(z).

We assume also that the Lie algebra rank condition (2.1.8) holds. Then. '"Theorem 2.23 tells us
that, for every X > 0, the control system (C) is globally asymptotically stabilizable by means
of X-periodic time-varying feedback laws. Let us recall tha.t the main ingredient of the proof
is the existence of u in C"X'(E" x IR:lRm') vanishing on {0} X R, X-periodic with respect to
time and such that, if x = /(a:, u(x, £)), then

(3.35) x(T) = x{0).

(;{.;{(j) If x[0) ^ 0, the linearized control system around (x, u) is controllable on [0,T].

In this subsection we want to explain how the damping method allows to construct from
this u a X-periodic time-varying feedback law u which globally asymptotically stabilizes the
control system (C). With slight modifications we follow [31]. which is directly inspired by
Porn at [104]. Let W e C™(Rn\ R) be any function such that

W[x) —> +oc as \%\ —> T-oo,

W(x.) > 1-7(0), V;r € Kn \ {0},

' (3.37) VW{x) / 0, Va; G R" \ {0}.

One can take, for example, W(x) - \x\2. Let X{x,t) = YJ=1 Ui(x,t)fi(^ and let * :
R'1 x R x R —> E'r", {x,t,x) M- $(x,t,$), be the flow associated with the time-varying vector
field A"., i.e.

(3.38) ^ = A"(*,t),

(3.39) *0'-V>', s) = x,\/x € IE", Ys e R.

Note that by (3.35)
(3.-10) <I>(a;, 0. T) = <\>(x, Q. 0) = a;. V^ £ Kn,

Let us now define V € C~"(Rn x l ; E ) by

(3.41) V"(s,i)=:l
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By (3.40), V is T-periodic with respect to time and one ea.silv checks that

V{x,t) > V{0,t) = W({)),V{x,l) € (R"\ {0}) X R,
l i + ^ M i t i { V ' ( a - ^ ) ; t € K}

Moreover, from (3.38) and (3.--11),

OV
(3.42) •— + X -X7V = 0.

at

so that, along the trajectories of ;i: = Y1T=\ i^-i + Vi)fi(%)< the Lime derivative V of V" is

(3.43)

Hence, a.s above, one takes Vi(x, t) = —fi(x) • W{x. t), which with (3.-'13). gives

By [.•aSa.lle's in variance principle, in order to prove that u = u + i; globally asymptotically
stabilizes the control system (C). it suffices to check that any trajectory x : R —'r E.n of X
such that
(3,1-1) fi(z(t)) • W{x(t),t) = Q./it£ R, V; G [1, m],

salislies
(3,-15) i(0) = 0.

Let us denote by £(RP, Rq) the set of linear maps from W into R''. Let A G C^fK; £(Kf\ Rn))
and W € Co c(R:£(Rm ,K n)) be defined by

(3.46) A(() = ^-(S(/.),u(0), Vt G R,

'(3.47) J5{i) = y^(,^(7.);w(i)), V/, G R.

Let i? :R x R - > £(R",Rf!-), (i,^) H- R{L,*)> be the fundamental solution of the time-varying
linear differential equation y = A\t)y, i.e.,

— = A(t)R on E x E,
dt y •

R{if, s)x = x, ¥(*, .-e) £ R x R)l.

We identify vectors with elements of £(R,IT) and denote by E" e C(W\R-f) the adjoint of

( 0 ) ) ( J ( t )

(0, t),
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which, with (3.44) and (3.47), gives

(VVy(a:fO)))*«(O,i)"(O = 0, Vt 6 R.

In particular

(Vms(0)))* ( I R([), l)B(l)B(t)*R(Q;i)*dlj (VW(x(Q))) - 0,

which, by (3.37), shows that, if ,i:(0) 7= 0, the non-negative symmetric matrix

C= / R{O,t)B{t)B(t)*R(Qj,y<:)t
Jo

is not htvertlble. But it is well-known (see, for example, [123, Theorem 5, p. 109]) that the
time-varying linear control system

where y f_ R" is the state and w E E m is the control, is controllable on [0,T] (if and) only if
C := R(TA))CR(T,0)* is invertible. Hence, using (3.36), one obtains (3.4o).

3.3 Homogeneity

Let us start, by recalling the following classical result:

Theorem 3.8 Lei X f_ C (E"-;R"). 7/0 in asymptotically stable for the linear system y =
.Y'(0)y, then 0 is locally asymptotically stable for x = X(x).

A classicaJ a.ppl.ica.tion of this theorem to feedback stabilization is the following well-known
property. Consider the linearized control system of (C) around (0.0). i.e. the Iinea.r control
system

where y G R1'' is the state and v <S K™ is the control. Assume that this linear control system is
asymptotically stabilizablc by means of a feedback law. Then it is asymptotically stabilizable

• by means of a linear feedback law v{x) = Kx with A' € C(Wa\ Em ) . l.!y 'Theorem 3.8, this
feedback la.w locally asymptoticaJly stabilizes the control system (C).

The idea of "homogeneity1' is a. generalization of the above procedure: one wants to deduce
ihe asymptotic stabilizability of the control system (C) from the asymptotic stabilizability
of a "simpler'' system tha.n {€').

Let us now give the definition of a. homogeneous vector field. Since we are going to give
an .application to periodic time-varying feedback laws, the vector fields we consider depend
on time and are '/"'-periodic with respect to time. The vector fields are also assumed to be
continuous. Let r = ( r j , . . . . rn) € (0, H-oo)". One has the following definition (see ["1.08,
Chapitre 3] for various generalizations):

Definition 3.9 The vector field. X = (.\"i,.... A".n.) is r-homogeneous of degree 0, if. for every
e > 0, every a.1 € Rr\ every t e [1, n] and every t e R ,

X i ( £ r ' x ! , . . . , E r « x n , t ) = e r ' X i ( x h . . . , x n ) L ) .
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Since the degree of homogeneity will be always 0 in this paper, we shall omit "of degree 0".

Example 3.10 1. A Lime-varying linear system y = A(t)y is (1,. . . , lj-homogeneous. 2. 'lake
n = 2 and X{xi,x2) = (;?i - x%,X2). Then A' is (3,l)-homogeneous.

For applications to feedback stabilization, the key theorem is

Theorem 3.11 Let us assume that

(3.48) X = Y + H,

where Y and B arc T-periodic time-varying vector fields such that Y is r-homogeneous and,
for some jy > 0 and M > 0, one has, for every i € [l ,»-] ; every -~ 6 (0, l j , and every
x = (i*!,. ..,xn) € Rn with \x\ < 1,

(3.49) \RWx1,...,e
r»xn)\ < M ? ' ' ^ .

Then, ifO is locally {= globally) asymptotically stable for x = Y(x,t). it is also locally asymp-
totically stable for x -••-- X[xJ..),

This theorem lias been proved by Hermes in [64] when one ha.s uniqueness of the trajec-
tories of x = Y(x), and in the general case by Rosier in [107]. In fact [107], as well, as [64].
deaJ with the case of stationary vector fields. But the proof of [107] can be easily extended
to the case of periodic time-varying vector fields. Let us briefly sketch the arguments. One
first, observes that Theorem 3.11 is a corollary of the following theorem, which has its own
interest and goes back to Massera. [97] when the vector fields is of class C1.

Theorem 3.12 ([107, 105]) Let Y be a T-periodic time-varying vector field which is r-
homogenevus. We assume ilial 0 is locally (=globallu) asymptotically stable for x = Y[x,t).
Let- p be a positive integer and let k €. {pmaxi^;<.n r,-, +oo}. Then there exists a. function
V e eoo((K7l\{0}) xE;R)nC'!:'(IRnx]R;K) suchlhat

V(Q-J) > V(0..t) ~ 0, VOM) e (K"\ {0}) X E,

•(3.50) V{x,t + r) = V(xJ), \/(x,t) e R" x R,

Urn Min {V{xj);t e_ R) = +oo.

(3.51) -7T + Y • W < 0 in (R"\ {0}) x R,
at '

(3.52) V(sr^xj,...,£rnxn,t) =skV(xu...,xn..t),V(s..x,l) G (0,-l-oc) x I ' x R .

J.et us deduce, as in [107], Theorem 3.11 from Theorem 3.12. For x = (x-,,..., xn) e M.n

and s > 0, let

(3.53) 6r
E{x) = (Erixu...,er"Xn).

Let V be as in Theorem 3.12 with p = 1. From (3.51), there exists v > 0 such that

(3.54)
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for any t € [0, T] and any .?; 6 K'1 such that |;i'i|i/l'1 + . . . + |.
assumption tlia.t Y is r-homogenoous. we get that

= 1. From (3.54) and the

(3.55)
dt

Y-VV

(a.-, /;), x,t) € (0,-s-oc) x R " x E.

;,b'rom (3.52) and (3,56), we obtain

(3.56) ( ^ + y - V

Using (3.49) and (3.52); similar computations show the existence of C > 0 such that

- / 1 / 1 / V+ i :

1,0.0 1 J !,.((• V V )\J', '•} ^ L- 1 J.-lS i - - . . , J . f l | !

for any (• G [O.T] and any x € R'1 witji |.i:| < I. From (3.48), (3.56) and (3.57), we get the
existence of p > 0 such that

- + A" • WV) (x.J) < 0, V̂  G [O.TJ.V.r G EVi with 0 < |a;| < p,

which ends the proof of Theorem 3.11.
Finally we sketch the proof of Theorem 3.12, given in [107] for stationary vector fields

and extended by Fornet and Samson in [105] to the case of time-varying vector fields. By
Kurzweil's theorem [87], there exists W £ C"°(Eri x R;K) such that

W(x.t) > W(Q,t) = 0, y[x,t) 6 (R^1 \ {0}) x

W(x.. t + T) = W(x, I.), V{x. t) e_ Rn x R,

Jim Min {W(x.t-):L £ l } = +00,

dw
df + Y -VW < t) in (R n \ {0» x R.

Net n. € C"'X'(R;R) be such that a! ^ 0, a = 0 in (-oo, 1] and a = 1 in [2,+oo). Then one can
prove that V", defined by

/ • - l X l 1
V(x,t)= / ^ ^ a t

Jo -s

satisfies all the required conditions.

(ar, t) e x R,

Example 3.13 Following [39], let us give an application to the construction of explicit time-
varying feedback laws stabilizing asymptotically the attitude of a rigid body spacecraft with
two controls, a problem already considered in Examples 2.15, 2.17 and 2.33. Without loss of
generality we may assume that {vibi + v2b2-. (*'i, V'i.) € R"} = {0} x E2. So, after a change of
the control variables, (2.9) can be replaced by

(3.58) •Lv-1



u = PCJ ^ 0 a,-, b,y
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with LIOJ = D1U1 + /'-1^2-i- /-i^3: Q{'^>) = A^2+BU>2^+CLJI. For system (3.58) the controls
are V'I and V2. It is proved in [79] that Q changes sign if and only if the control system (2.9)
satisfies the strong Lie algebra rank condition at (0, 0) which, by Theorem 2.9, is a necessary
condition for small time local controllability. From now on we assume that Q changes sign

this is a generic situation. Hence, after a suitable change of coordinates of the form:

(3.59)

system (3.58) can be written

(3.60) i,. = 1 ^

with /J2W = D-Z0J\ + E2O'i + F<i&z. Let c = (ic±P\ we can always choose P so that c > 0. Let

1

X4 = •"{-CVV + Up••(/.'), Xo = 0

In these coordira.tes. our system can be written

(•*-61) \ -1 Z ' 5* ," u f \ ) \ ' 1. ., '4! 7? i,.\ : — •". —

where fli, i?-2^ 7?,̂ , and J?.i are analytic functions on a neighborhood of 0 such t h a t , for a
sui table positive cons tant C, one has, for all a; in IR6 with \x\ small enough,

(3.62) \B.i(x)\ + \R,t(x)\ + \Ri(x)\ < C ( > i | + |a.-2| + |.'i'3|2 + N 2 + l*s|2 + k e | 2 ) 3 / 2 ,

(3.63) \R-Ax)\ ^ C ( | : c i | +\x2\ + \x3\
2 + |,r, | j2 + !;<:5|

2 + | ^ | - ) 2 .

Mence our control system can be wri t ten

(3.64) i = J[x,u) = X(x)+R(x) + uY[x)

w h e r e , x — (x [ . . , . , x%) € IR^ is t h e s t a t e , u = (u\, ((2) € IE 2 is t h e c o n t r o l ,

( 3 . 6 5 ) « F = -« i> i + v.2Y2 = fO.fl, 0 , 0 . 'tt[, " 2 ) : -^(••*•') — (^s* f i , a;i + c;i 'aa;e, ;rE , a:6, 0 , 0 ) .

where c is a cons t an t in (0,+rx;.), and R is a pcriurbation te rm in the following sense. Xote
t h a t X is (2 ,2 , 1..1, 1, J)-homogeneous and tha t , for a sui table cons tant C > 0, the vector
field R satisfies, for all .; in (0,1) and all x = (xu...,xe) in R 6 with ja;| < 1.

\Hi(6e{x))\<C0e
1+ri.. V i G [ 1 , 6 ] ;

with
5£(x) = (S73:1.S*X2,£XX,£X4,ZX5,SX6).

Keeping in mind this (2, 2,1.1,1, l)-homogeneity and Theorem 3.11 it is natural to consider
time-varying feedback laws u which have the following property:

(3.66) u{8£x,i) = £u(x,t), Vx € R6, Vi e K.
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Indeed, assume that, u is a periodic time-vary ing feedback law satisfying (3.66) which locally
(=globally) asymptolically stabilizes the control system

(3.67) x = X{x) + uY.

Then, from Theorem 3.11, u locally asymptotically stabilizes the control system (3,64). In
subsections 3.4 and 3.5, we shall give a method, due to Morin-Samson [100], for constructing
a periodic time-varying feedback law u satisfying (3.66) which locally (=globally) asymptot-
ically stabilizes control system (3.67): see also [39] for another method for constructing such
feedback laws.

Remark 3.14 Kor other applications of the homogeneity techniques, see, for example, [64,
65, 77] and the references therein.

3.4 Averaging

Let us start, with the following classical result (see, e.g., [80, Thin. 7.4, p. -'11.7]).

Theorem 3.15 Let X be a T-periodic time-varying feedback law of class C2. Assume, that
the origin -is locally exponentially asymptotically stable for the "averaged/- system

1 fT

(3.68) * = 7F X(z,t)<\t.

Then there exit* ?u > 0 sudi that, for any £ € (0,i"u], the origin is locally asymptotically
stable for x — X (x, t/s).

\\y locally exponentially asymptotically stable one means the existence of (r. C, A) £
(0,+ocj1"5 such that \x(t)\ ^ C|;i'(0)| oxp(—Ai) for any solution x of the averaged system
(3.68) such that |;i:(0)| < r. This is equivalent (see. e.g.. [80, Thm. 4.4; p. 179]) to the
property "the origin is asymptotically for the linear system y = (!/T)(J0 (dX/c)x){Q, t)dt)y".

In the case of homogeneous vector fields, this theorem has been improved by M'Closkey-
Murray in [95]. They prove the following theorem:

Theorem 3.16 Let X be a continuous T-periodic lime-varying feedback law which- is r-
homogeneous (of degree 0). Assume that the origin is locally (^globally) asymptotically stable
for the averaged system (3.68). Then there exits ZQ > 0 such thai, for any £ 6 (0,£"[)]. the
origin is locally asymptotically stable for x = X (x,t/-£).

Morin-Samson has given in [100] a. proof of this theorem which provides xis with a. value
of f0 if A" is has the form X(x, t) = fo{x) + ££LX gi(t)fi(x).

Example 3.17 Following [100]. let us give an application of this theorem to the construc-
tion of explicit time-varying feedback laws stabilizing asymptotically the attitude of a rigid
body spacecraft with two controls. In Example 3.13, we have reduced this problem to the
construction of a periodic time-varying feedback law u satisfying (3.66) which locally ^glob-
ally) asymptotically stabilizes the control system (3.67). Xow the strategy is to construct
•A periodic time-varying feedback law with good homogeneity which globally asymptotically
stabilizes the control system

(3.(59) iC'l = X-$XQ., X'2. — Xy -\- CXiiXQ. X3 = « 5 , X~4 =: XQ,
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where the s la te is (;c i, ,r2, ^3 . -̂ 4) E R'1 and the control (;f5,x6) G ̂ 2 - '-*y good homogeneity
we mean tha t , for a.ll I in R, all {zi,x-2,xx,z.<\) in IK'1, all s in (0 ,+00) , and j in {5 ,6} ;

( 3 . 7 0 ) . r , - (5 2 a , ' i , A- 'a• ,£. '*•;}, £T.r-1, () = C £ ; ( : K I ; X 2 : .1:3, 3:4, ( ) .

Using the backatepping method explained in the following section, we shall see in Example
3.20 how to deduce, from such a feedback law (rtg, ,17,), a feedback law u : IE6 x R —> R2,
(a;i, ;j.'2: -'C3, a*4. -'!*5j ^610 ~~̂  w(a;j. 3:2, 3; 3, .1:4, ^5, ;Kg. £) which is periodic in tirne, has a good ho-
mogeneity, and globally asymptotically stabilizes the control system obtained froto the control
system (3.ti9) by adding an integrator on x5 and on a*6, i.e. the control system (3.(i7).

For x - (xux2ixa..xA) e K4, let p •= p[x) = (xj + z'i + x% +xQV4. Let SH e C°(K 4 :R)
and a;6 E C°(R4;R) be defined by

(3.71)

Then the closed loop system (3.69)-(3.71) is (2.2,l,l)-homogeneous and its corresponding
a.veragecl system is

(3.72) a-[ = - ; t | - x2, x2 = x,y + c;t;3^6, x'3 = -x3. a;4 = -o;4.

The origin is locally asymptotically stable for system (3.72), since it is asymptotically stable
for the linear approximation of this system. Then, by Theorem 3.16, the feedback law (3.71)
locally asymptotically stabilizes the control system (3.69) if o is small enough.

3.5 B a c k s t e p p i n g

In baekstepping, we are interested in a control system (C) having the following structure:

(3.73) i , =/L(a.-i,a.-2),

(3.74) x2 = w,

where the state is x ~ {xux2) G R'V| x Rm = Wn and the control u e K"1. The key theorem
.for backstepping is the following one:

Theorem 3.18 Assume ihui J\ is of class C1 and that the control system

(3.75) xi =. /ifri 'i .t '),

u'Jierv Hie state is xi f_ R"1 and the control v € R"\ can be globally asymptotically stabilized
by means' of a slationary feedback law of class Cx. Thai, control system (3.73)-(3.74) can- be
globally asymptotically stabilized by means of a continuous stationary feedback law.

A similar theorem holds for time-varying feedback iaws and local asymptotic stabiliza-
tion. Theorem 3.18 has been proved independently by Liyrnes-Isidori [11], Koditschck [82]
and Tsinias [i-31]. A local version of Theorem 3.18 has been known for a. long time: see, e.g.,
Vjdyasagar [132]. Let us give the proof of [11, 82, .131] -for a different method, see Sontag
[1201. Let v E C1(Rni;Rm) be a feedback law which globally asymptotically stabilizes control
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system (3.75). Then, by the converse of the second Lyapunov Theorem, there exists a Lya-
punov function for the closed loop system £j = f(x\,v(x\_)), that is, there exists a function
V t C ^ ( R n i ; R ) such that

(3.76) f{x,.. u(:c,)) • W(x,) < 0, V^ € MJii \ {0},

I"(a'i) —> +oc as |,T|| —> +co,

y(x-i) > V"(o), v i ! e K711 \ { o } .

A natural candidate for a control Lyapunov function for control system (3.73)-(3.7'l) is

(3.77) W(xux2) = V(xl} + ^\x2 - vix^f.

Indeed., one has

(3.78) W{x1.z2} -f +oc as | ;n | + \x2

(3.79) T-F(xi,a;2) > W(0), V(a'1:a'2) e (Rn i x Rm) \ {{()..()}}.

Moreover, if one computes tlie t.itne-deriva.tive W of W along the trajectories of (3,73)-(3.74).
ono gets

(3.80) W = / , ( .n,x2) f

Since / : is of class C'1, there exists G € Cu(Rn i x Rm X Rm; £(Knv,R'11)) such that

(3.81) .l\(xl:x2) - A(a;i,y) ••••; GU.,, a-2) y)(»2 - y), ^u^-.y) 6 K'Vl x R;!1 X Mm.

By (3.80) and (3.S1),

Hence, taking as feedback la.w for the control system (3.73)-(3.7-1)

(3.82) u-^ v'ix^f^c^x,) ~ C(x1:x2,v(z1))*VV(xl) -• {x2-v^i)),

•one obtains
W = f { x i , v f a ; , ) ) • V V ( i i ) - \ x 2 - v ( x , ) \ 2

which, with (3.76), gives
W < Oon (R"1 xR™)\{(0 ;())}.

Hence, the. feedback law (3.82) globally asymptotically stabilizes the control system (3.73)-
(3.74). . . . . .

Let us point out that this proof uses the C'1 regularity of f1 and v. In fact one knows
that Theorem 3.18 does not hold in the following cases:

• ,/'i is only continuous (see [33, Remark 3.2j);

• '"stationary"' is replaced by "periodic time-varying", and the feedback law7 which asymp-
totically stabilizes the control system (3.75) is only assumed to be continuous (sec [33,
Proposition 3.1]).
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One does not have any counterexample to Theorem 3.18 when the feedback laws which asymp-
totically stabilize the control system (3.75) are only continuous. Hut it seems reasonable to
conjecture that such counterexamples exist. It will be more interesting to know if there exists
a counterexample such that the control system (3.75) satisfies the Hermes condition S(0) (see
section 2.2). Let us recall (see Proposition 2.11) that, if the control system (3.75) satisfies the
Hermes condition, then the control system (3.73)-(3.7.4) satisfies also the Hermes condition,
and so, by Theorem 2.10, is small time locally con troll a.ble.

3.5.1 Desingularization

In some cases where v is not of class C1, one can use a "desinguly.riza.tion" technique in-
troduced in [106]. Instead of giving the method in its full generality (see [.106] for a. precise
general statement). Jet. us explain it on a simple example. We take n = 2, n\ — rn = 1, and
fiixiix'i) = ;)-'i — 2x'%, so the control system (3.75) is

(3.83) x1 = x,-2v".

Clearly the feedback law v{x{) = x^' globally asymptotically stabilizes the control system
(3.83). Kawski has given in [75] an explicit continuous stationary feedback law which asymp-
totically stabilizes the control system (3.73)-(3.74). which is

(3.84) x\ — X] — 2;i'2, i2 = u.

Note that the control systems (3.83) and (3.84) cannot be stabilized by means of feedback
laws of class C 1 (see also [41] for less regularity). Moreover the construction of a stabilizing
feedback la.w u given in the proof of Theorem 3.18 leads to a feed back law which is not locally
bounded. Let us explain how the desingularization technique of [106] works in this example
(Kawski's construction in [75] is different). Let us first point out that the reason for the term
(1/2)|,1'2 - v(x,i)\2 in the control Lyapunov function (3.77) is to penalize x2 ^ v(X)}. But, in
our case, x2 = v(x{) is equivalent to x^ = x-i- So a. natural idea is to repla.ee the definition of
the control Lyapunov function (3.77) by

W(z1,x2)=V{x])+ j^(s3-x,)d*

= -xl^-xi-xtx2+-\x^3.

W i t h th i s W, one has again (3.78) and (3.79). Moreover one now o b t a i n s

W = — a:| + {x2 — Xj' )[(^-j 4- x^ x2 + \x-\ | J ' ' )(u — 2(a.-i — :i'2 + xy )) 4 Xi).

Hence, if one t akes for u t h e con t inuous function defined by

U\Xi,X2} = {
• \ 0 if{xl,x2) = (0..0),

one gets W = -xj - (x^ - x1/3)2 < 0 for (xi,X'2) ^ (0,0). Hence the feedback law u globally
asymptotically stabilizes the control system (3.83).

In Section -'J.l one can find an application of this clesingularization technique to the sta-
bilization of nonlinear partial differential equations.
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3.5.2 Backstepping and homogeneity

Note thai, in order to construct u as in the proof of Theorem 3.5, one does not only need to
know v: one also needs to know a Lyapunov function V. In many situations this is a difficult
task. Rosier in [108. VI] and Mor.i.n-Sainson in [100] have given interesting situations where
one does not need to know V. Let us briefly describe Morin-Samson's situation. It concerns
homogeneous control systems, with homogeneous feedback laws, a case already considered in
[3h but the method of [31] does not lead to explicit feedback laws. Morin-Samson prove in
[100]:

Theorem 3.19 Let 'V > 0. Assume that there exists a I -periodic time-varying feedback law
J; 6 of class C1 on (IR"' x R) \ f{0) x E) which globally asymptotically stabilizes the control
system (3.75). Assume the existence of r = ( r i , . . ., rm) £ (0. +oo)m and q > 0 such that the
closed vector field j \ {x\,, vixi,t) is r-homogeneous (of deyrce 0) and that, with the notation
of (3.53)..

v{S^(xi,t)) = cH'U'i, 0: V(-5; xu t) e (0, +OG) x Rm.

Then, for K > 0 large enough, the feedback law u = —K(x2 — v(x-\, I)) globally asym.piolica.lly
stabilizes the control system, (3.73)-(3.7-'1).

Example 3.20 Let us go back again to the stabilization problem of the attitude of a rigid
spacecraft, already considered in Examples 2.15, 2.17, 2.33, 3.13 and 3.17. It follows from
these examples and Theorem 3.19 that the feedback law

where x^ and ;!•,; are defined by (3.70) and A' > 0 is large enough, locally asymptotically
stabilizes tlje control system (3.64), i.e. the attitude of the rigid spacecraft.

4 Applications to some nonlinear partial differential equations

The goal of this chapter is to show that some methods presented in the previous chapters
can also be useful for the control and stabilization of nonlinear partial differential control

"equations. We present two applications:

1. Stabilization of a rotating body-beam without damping;

2. Controllability and stabilization of incompressible fluids.

4.1 Stabilization of a rotating body-beam without damping

In this section we study the stabilization of a system, already considered in |o], consisting of
a disk with a beam attached to its center and perpendicular to the disk's plane. The beam is
confined to another plane, which is perpendicular to the disk and rotates with the disk; see
Figure 1 below.

The dynamics of motion is, see [5] and [6],

(4.1) puH{x, t) + Elu^^ix, t) + pBut(x, i) = PLj2(t)u(xJ).
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•ti(O,iJ = uJ

(4.2)

— •u.i;r(Z-,0 = n r a ; , ; ( i , / ) = 0,

u2(x,i)dx) \ = T(

where L is the length of the beam, p is the mass per unit length of the beam. El is the
flexural rigidity per nn.it length of the. beam, L>(£) — 0(1) is the angular velocity of the disk at
time t, I,; is the disk's moment of inertia. u{x,l) is the beam's displacement in the rotating
plane at time t with respect to the spatial variable x. Bv-i is the damping term, and V(t) is
the torque control variable applied to the disk at time t (see Figure I).

Figure 1: The body-beam structure

If there is no damping, 13 = 0 and therefore (4.1) reads

(4.3) puti[x,l) + EIuxxxx(x,t) =

The asymptotic behavior of the solutions of (4.3)-('1.2) when there is no control (i.e.
F = 0), but with a damping term, has been studied by Haillicnl and Levi in [5] and by Bloo.1i
and Titi in [10]. Still when there is a damping term. Xu and Baillieul have shown in [135]
that the feedback torque control J.a.w V = -vu. where v is any positive constant, globally
asymptotically stabilizes the equilibrium point W,^) = (0,0). It is easy to check that such
feedback laws do not asymptotically stabilize the equilibrium point when there is no damping.

In this section, we present a result given in 135] on the stabilization problem when there
exists no damping. We shall see that the design tools presented in section 3.5 will allow us to
construct in this ca.se a feedback torque control law which globally asymptotically stabilizes
the origin.

Of course, by suitable scaling arguments, we may assume that L ~ El = p = 1. Let
H2{Q., 1) be the usual Sobolev space

Let
II = {w = (u, v) e ^ 2 (0 ,1) X ?:.2(0,1) ; u(0) = -MO) = 0}.

The space H with inner product
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is a Hilbert .space. For u- € / / , lot

w H

We consider the unbounded linear operator .4 in H

A(u,v) = (-v,uX:r^)

with domain

Dom(A) = {(«, v) e H4{0,1) X /72(0, 1);

u(0) = MO) = wra(l) = t ^ O ) = u(0) - u:c(0) = 0}.

Il is well-known that A is an unbounded skew-adjoint operator and therefore generates a
unitary group erA of bounded linear operators on H. With this notation, our control system
(4.2)-(4.3) reads

(4.4) - + .4u> = w2f0)«).

with
,-[ ri

(4.6) 7 = ( T - 2 ^ / uvdx)j{Id+ u\lx).
Jo .hi

By (••.!:.6), we may consider 7 as the control, in order to explain how we have constructed
our stabilizing feedback law, let us lirst consider, as in the usual backstepping method (sec
section 3.5 above), equation (4.--1) as a control system where u> is the state and UJ is the
control. Then natural candidates for a control Lyapunov function and a stabilizing feedback
law are respectively £ and SJ = o"^(j0' uvdx), where &k e G°(R.K) saLishes £7* > 0 on (—DC. 0)
and u" = 0 on [0,+oc). One can prove (see [35, Appendix]) that such feedback laws always
give wank asymptotic stabilization, i.e. one gets

(4.7) w(i) -^ 0 weakly in B as t -? +oc

instead of
(4.8) w(l) -> 0 in H as t -? +oc.

But it is not clear that such feedbacks give strong asymptotic stabilization. It is possible
to prove that one gets such stabilization for the particular case where the feedback is

(4.9) OJ = (rnax{[),- / v.vdx}p.
Jo

Let us recall that the control system (4.4)-(4.5) is obtained by axlding an integrator to control
system (•1.-1). Unfortunately, w defined by (4.9) is not, of class C l and so one cannot use the
proof of Theorem 3.18 given in section 3.5 above. The smoothness of this LO is also not
sufficient to a.pply the deshigulariza.tion techniques introduced in [106]; see subsection 3.5.1
a.bove. For these reasons, we use a different control Lyapunov function and a different feedback
law to asymptotically stabilize control system (4.4). For the control Lyapunov function, we
take

J[w) = -{£'(>} - f(£(w)) I v?dx} , Vtu = (••«, v) € / / ,
& ' ' ' Jo
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where F € C3([0, +oc); [0, -co)) satisfies

(4.1.0) ^

where /<i is the first eigenvalue of the unbounded .linear operator (d^/dx'1) in Z 2 (0 ,1) with
domain

so that

Jo ./o

i.h'rom (4.10) and (4.11),

(4.12) ^£(t«) < J(ii>) < ^(tt?) , Vii,' 6 if.

Computijig the time-derivative J of./ along the trajectories of (4.4) one obtains

(4.13) J = (A'u;2 - F {£)) ( I uvdx) ,

where, for simplicity, we write £ for £(w) and where

(4.1-1) K{= K(w)):= i-F'(£)

.L-ef, us impose the condition that

(4.15) 0 < F(s) i i < /n - F( s) • v-s> £ [0,+oc),

(-1.1(3) 3C',i > 0 s. t. lim —^ = C4-
s-J-O,s>U i'

It is then natural to consider the feedback law for (-1.--1) vanishing at 0 and such that, on

. (4.17) w = A'")/2 (p{£) - <J ( I uvdx\Y ,

where & e C2(R;IR) is such that

(4.18) na{s) > 0, Vs £ K \ { 0 } ,

(4.19) 3C'̂  > 0 s. t. lim -^- = C5,

(-1.20) <T(» < F(2y/]J,ls) , ¥s > 0.

Note that, using (4.11), one gets that for every w = (v,, v) € H,

I i ^ *• i i / 2 i , ' I ' I \

/ uvdx < -{y/fi-i / u dx H—-— \ vax)
Ju 2 Jo \flJ'y Jo

(4.21) <
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which, with (4.15), (4.16) and (4.20), implies that,

(4.22) F{£{™)) ~ ° ( / uvdx

• From (4.11), (4.14) and (-1.15), one gets

(4.2:0 *>;) > I - F'{S{W]) t uU* > 1 » ^ ^ ( « 0 > 0 , V«; € //.

;,Fro.m (4.22) and (4.23) we get that u is well-defined by (4.17), and is of class C2 on if \{0} .
This regularity is sufficient to apply the desinguUuiza.tion technique of [106] (see subsection
3.o.1 above): we note that (-'1-1.7) is equivalent to

(4.24) w3 = y>{w) := K-V2 (p(£{w)) - d ( I uvdxjY

and therefore, following [106], one considers the following control T.yapunov function for the
control system (4.4)-(4.5):

J+f - y)dit = J + ju* - I?* + ?-
^ 4

where, for simplicity, we write J for J(w) and '</> for p{w). Then, by (4.12),

V('t t ' , OJ) —> ••(••DO a.s | w \JJ + | u; |—> + o c ,

V{w,ui)>Q, V(^,^) e H x R \{ (0 ,0 )} ,

V(0;0) = 0.

Moreover, if one computes the time-derivative V of V along the trajectories of (4,4)-(4.5);

one gets, using in particular (4.1-3),

a 1 \ / /"' \ i i i

uvdx )a[ uvdx + [u - *>')[7(~ + ^ 3 ^ + i:i) + O],
J \.h) J

where
(4.26) D = - i i + K{^+ 0 i ) / -a-i-cl?:,

with

( ) ( /

Hence it is natural to define a feedback la,w 7 by

(4.28) 7(0.0) = 0
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and. for every (to, a;) £ (H x R) \ {(0, 0)},

(4.20) 7 = - ( W - ^) - ? ~ .

Note that by (4.22). (4.23), and (4.24)

(4.30) &[w) > 0 , Vw> e ff \ { 0 } .

Moreover, by (4.M), ('1.16); (-'1.19), (4.20) and (4.21). there exists 5 > 0 such that

(4.31) ib(w) > S£(w)3/'\ Vw e If s. t. €(w) < 5.

Using (-1-.14), (--1.23), (4.24), (4.26), (4.27), (4.29), (4.30) and (1.3.1), one easily checks tha t 7
is Lipschi.tz on bounded sets of on 11 x R. Therefore the Cauehy problem associated with
(1.4)-(4.5) has . for the feedback law 7, one and only one (maximal) solution defined on an
open interval containing 0. By (4.20), (4.25), (4.26), (4.28) and (--1.29), one has

(••I.32) V = ~ ( l uvdx)a(i uvd

In [35], we prove

Theorem 4.1 The feedback law 7 defined by (4.28)-(4.29) globally strongly asymptotically
stabilizes the equilibrium point (0, 0) for the control system (4.4)-(4.5). i.e.,

(i) for every solution of (4.4)-(4.5) and (4.28)

(4.33) 1i.m I w{t) \n + \ v(t) |= 0,
t—>•+••:\:>

(ii) for every € > 0, there exists i] > 0 such that for every solution of (•••1.4)-(4.5) and (4 .28) .

(\w(0) \H + \LJ(0) j o / ) ^ (\w{t) | f f + \v(t) | < e , W > 0 ) .

4.2 Control and stabilization of incompressible inviscid fluids

4.2.1 Control of incompressible inviscid fluids

hi this section we shall see that the "return"method we have used to stabilize driftless control
• systems can be used to prove the controllability of the Ei.iler equations of incompressible fluids;
for a description of the return method, see Remark 2,25 above.

Let us first describe the problem of the controllability of the Eider equations of incom-
pressible fluids, a problem which has been raised by .l.-L. Lions in [90, 92], Let us introduce
some notation. Let / £ {2, 3} atid let il be a bounded nonempty connected open subset, of R1

of class C:K'. Let [''* be a nonempty open subset of L' := OQ. We denote by n the outward
unit normal vector field on F. The set F* is the part of the. boundary on which the control
acts. The fluid that we consider is incompressible so that the velocity field y satisfies

(4.3-1) div y = 0.

On Uie- pa.rt, of the boundary F \ I'1* where there is no control the fluid docs not cross the
boundary: it satisfies
(4.35) ;(/••« = 0 on F \ F # ,

Let us introduce the following definition
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Definition 4.2 A trajectory of the Euler control system on the interval of time [0,T] is a
map y : Q x [0, 7'] -^ Rl of class C™ such that, for some function jp : Qx[0,T] -> R of class

(•1.36) ^ + ( y - V ) y + V p = 0 in Six [0,T],

(4.37) div i/ = 0 in H x [0,T],

(•1.38) y ( . , ^ ) . n = 0 on r \ T # Vt € [0,T].

'The J . -L . Lions problem of controllability is the following: let T > 0, let y0 and ?/i in
C ^ ' f ^ l E 2 ) be such that

(-1.39) div y0 = 0 in <1

(••1,10) d iv yi = 0 in f>,

( . • 1 ,11 ) i/o ••»• = 0 o n i " 1 \ l " 1 #
:

(4.42) y, •?(. = 0 on r \ r # ,

docs there exist a trajectory y of the Euler control system such thai

(4.43) y(.,0) = jft, in Jl,

(4.44) y(-,T) = y i in fi?

That is to say, starting with the initial data ya for the velocity field, we ask whether there
are trajectories of the given Euler control system which, a.t a given fixed time 7\ a.re equal
to the given velocity field yi. If this problem has always a solution one says that, the control
system considered is exactly controllable.

Note that (4.36), (4.37), (4.38) and (4.43) have many solutions. In order to have unique-
ness one needs to add extra conditions. These extra conditions are the controls. There are
various possible choice ior the controls. One can take for example (see a]so subsection -1.2.2
below) y • n on F* with j v # y • n = 0 and curl y if / = 2, curl y • n if / = 3, at the points
of l'# x [0,T] where y • n < 0: these boundary conditions, (4.38), and the initial condition
(•-1.-13) imply the uniqueness of the solution to the Euler equations (4.36) up to an arbitrary
function of t which may be added to p; sec also [78] for the existence of the solution.

Let us first point out that in order to have controllability one needs that

(4.45) I"'* intersects any connected component of T.

Indeed, let F, be a connected component of V which does not intersect F* and assume that,
for some smooth Jordan curve Co on F,- (if I = "2 take Co = F;),

(4.46) / yo.ds / 0

but that

(4.47) yiix) =0Va' 6 Tt.
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Then there is no solution to our problem, that is, there is no y € Cfoo(S2 x [0,T];R2) and no
p£C'-v(Ux [0,r];R) such that (4.37), (4.36), (4.43), (4.44), and (4.38) hold. Indeed, if such
a solution {y,p} exists, then by Kelvin's law,

/
C(t)

ds= I yo.ds,
JCo .

where C{t) is the Jordan curve obtained, at time t, from the points of the fluids which at time
0 where on Co; in other words C(t) is the image of Co by the flow map associated with the
time-varying vector Held y and the time interval [0,T], But (4.44), (4.46). (4.47) and (-J.48)
are in contradiction.

Conversely, if (4.45) holds, then the Euler control system is controllable:

Theorem 4.3 Ammme that F* internee Is any connected component of Oil. Then the Euler
control system is exactly controllable.

Theorem 4.3 has been proved in

• [27] when f> is simply connected and / = 2,

• [28] when il is multi-connected and I = 2,

• [55] when Q is contractible and / = 3,

• [56] when Q is not contractible and I ~ 3.

The strategy of the proof of Theorem 4.3 relies on the '"return method". For the case of the
Euler control system, it consists in looking for (y,p) such that (4.37), (4.36), (4.-13), (4.44)
hold., with y = y.p = p. yo = i/i = 0: and such that the linearized control system around the
trajectory y is controllable under the assumptions of Theorem 4.3. With such. a. [y,,p) one
may hope that there exists {y,p) • close to {y,p) • satisfying the required conditions, at least
if ?/o and y\ are "small". Finally, by using some scaling argument, one can. deduce from the
existence of (y.p) when i/u and i/i are "small" the existence of (y.p) even if y0 and y\ are not
"small".

Let us emphasize that one cannot take (fj-.p) = (0,0). Indeed, with such a choice of (y,p),
(4.37), (4.36), (4.43), (-1.-1-1) hold, with y = y, p — p, ya = y\ = 0, but the linearized control
system around y = 0 is not at all controllable. Indeed the linearized control system around
y ^ 0 is
(4.49) div z = 0 in ii x [0,T],

(4.50) ^ + V7r = 0in H x [0,7].
in

z(x,t)-n{x) = 0V(s;,t) G [T\T*) X

Taking the curl of (4.50). one gets

which clearly shows that the linearized control system is not controllable. So one needs to
consider other (y.p)- Let us briefly explain how one constructs a "good" (y,p) when 1 = 2
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and Si is simply connected. In such a case one easily checks the existence of a harmonic
function 0 in Cnx{i~i) such that.

V6[x) ^ 0 Vs e i l

? = 0onr\r#.
an

Let o <E C'-X'((),r) be vanishing 0 and T. I,et

(y,p)(x,t) =

Then (--1.37), (--1.36), (4.'13), (4.44) hold, with y = y, p ~ p, y0 = ^ = 0. Moreover using
arguments relying on an extension method analogous to the one introduced by Russell in
[J.1.0] one can see that the linearized control system around y is controllable.

When F* does not intersect all the connected components of F^ one can get, if / =
2. approximate controllability and even exact, controllability outside any arbitrarily small
neighborhood of the union F* of the connected components of [" which do not intersect J"1*.
More precisely, one has

Theorem 4.4 {[28]) Assume that I = 2. There exist* a constant c~a depending only on Q
such thai, for any F# as above, any T > 0, any e > 0. and any y0, yx in CfX'(fi;R2) satisfying
(4.39). (4.40), (4.41) and (4.42), there exists a. trajectory y of the Eider control system on
[0,X] satisfying (4.43j such that

(-1.51) y{x,T) = vi{x), Va; e i i with dist (x, r*) > s,

and

(4.52) \y{./r)\f^ < co(\yD\L2 + |yx |L2 + |curl;yoji,.« + |cnrl y t | i ~ ) -

In (-'1-51), dist,(a1,1'") denotes the distance of -x to I1*, i.e.

(4.5:3) dist(:c, T^) = Min {\x - z*\;x* G F*}.

We use the convention dist (x, 0) = +00 and so Theorem 4.4 implies Theorem 4.3. In (4.52)
j |k» denotes the Z''-norm on Q for r € [1,+co]. Let us point out that , y0, y1 ; and V as in

•Theorem 4.4 being given, it follows from (4.51) and (4.52) that for any r in [ l ,+oo ) ,

(1-5-1) lim | y ( 0 , T ) - y i | L . - = 0;
0+

that, is, Theorem 4.4 implies approximate controllability in the 1/-space for any r in [1,+ocJ.
Let us notice that, if Y* ^ 0, then, again by Kelvin's law, approximate controllability for the
L'^-norm does not hold.

R e m a r k 4.5 One can find recent results on the controllability of the Navier-Stokes equations
of incompressible fluids (i.e.. with — i/A added on the left hand side of (4.36)) in [29, 42, 43,
•1-1,-19, 50: 51, 52, 53, 70].

Remark 4.6 The return method has also been used by T101 sin to study the controllability
of the Burger equation in [69]. He has also introduced a new tool, namely "variations of
domain" to the study the control!ability around an analogous iLy" for the Burger equation.
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4.2.2 Stabilization of incompressible inviscid fluids

Let us first notice that, as in the counterexample (1.1) of [9] to the stabilization by means
of stationary feedback laws, the linearized control system of the En lor equation around the
origin is not controllable.

Therefore it is natural to ask what is the situation for the asymptotic stabilizability of
the origin for the Kulcr equation of an incompressible in viscid fluid in a bounded domain Q
when the controls act on an arbitrary small open subset F * of the boundary which meets any
connected component of this boundary, hi this section we give explicit feedback law's which
globally asymptotically stabilize the origin in dimension 2 (/ = 2) when the domain {} is
simply connected. Since fi is assumed to be simply connected, y is completely characterized
by u; := curl y and y-n on F, where n denotes the unit outward normal to F. For the problem
of controllability, one docs not really need to specify the control and the state: one considers
the "'Euler control system" as an under-determined system by requiring y • n = 0 on T \ 1'*
instead of y • n = 0 on F as for the uncontrolled usual Euler equatiovi. For the stabilization
problem, one needs to specify more precisely the control and the state. In this paper the
state is LV. For the control there a.re at least two natural possibilities:

(a) The control is y • n on F * a.nd the time derivative Oui/dL of the vorticity a,t the points
where y • n < 0. i.e. at the points where the fluid enters into the domain Q\

(b) The control is y • n on F* and the vorticity u at the points where y • n < 0.

Lot us point out thai., by (-1.3-1), y • n has to satisfy jry • n = 0 in both cases, in this paper
wo give stabilizing feedback la.ws for case (a); for case (b), sec [30]. Let g € (7^(Fj be such
that

('4.5-5) Support g c 1 .

(••1.56) F* := \g > 0} and F* := \g < 0} are connected,

(4.57) g + 0,

.(4.58) • r f n r* = 0.

(4.59) f
Jr

For any compact set K of E(? and any / g C°(A ' ;K m ) , we denote

For simplicity, we write j / | 0 instead, of ! / | 0 ^ . Our stabilizing feedback laws arc

y • n = M \u;\u g on I"1*,

| f = -M)UJ\OU> o n f ! if
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whore M > 0 is large enough. With these feedback laws, a, function to : I x Q -> R, where /
is an interval, is a solution of the closed loop system E if

(4.60) Y + div (wy) - 0 in / x a

(4.fil) div y = 0 in I xil,

(•1.62) curl ;y = w in / xQ.

(4.(33) curl y = w in / xQ,

(•1.(3-1) y(() • « = M | w ( t ) | o f f on I1, W € 7,

(••1.(35) ^ = - M MO|ou; on {(; ui(l) f- 0} x P*,

where, for /• £ $>, u;(t) : U —> R is defined by requiring ^(£)(;c) = u(f.a;),V;r 6 fl. More
precisely, the definition of a solution of system U is

Defini t ion 4 .7 Lot f be an interval. A function u : I -> 6rt)(S"2) is a. solution of ay Hem E if

(ii) for y 6 t ' ° ( / x Q ; I 2 ) defined by requiring (4.61) and (4.(33) in the sense of distributions
and. ('1.64), one has (4.(50) in the sense of distributions;

(iii) in the sense of distributions on the open manifold {£; u>(t) ̂  0} X !'„ one has

dio/Ot^ -M'\u>(t)\uu>.

Our first tli.eorem, which is proved in [30] says tha.t, for M large enough, tlie Caucliy
IJioblem for system S has at least one solution defined on [0,-r'3o) for a.ny initial data in
C°(il). More precisely one has:

Theorem 4.8 There exists Mo > 0 such that, for any M £ Mo, Ih-c following two propcriiea
-hold

(i) for any ^\\ € C(I(SJ). there exists a solution of system S defined on [0,+oo) such that
UJ(0 ) = LU0;

(ii) any maximal, solution of system- E defined at lime 0 is defined on [0, +oo) (at least).

R e m a r k 4.9 (a) In this theorem, property (i) is in fact implied by property (ii) and Zorn's
lemma. We state (i) in order to emphasize the existence of a solution to the Cauchv problem
for system E.

(b) One does not know if the solution to the Caucliy problem is unique for positive time.
(For negative time, one does not have uniqueness since there are solutions & of system E
defined on [0, +oo) such that ^(0) 7= 0 and ^(7') = 0 for T c [0, +oc) large enough.) But let
us emphasize that already for control systems in finite dimension, one considers feedback laws
which arc merely continuous; with these feedback laws, the Caucliy problem for the closed
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loop system may ha.ve many solutions. It turns out that this lack of uniqueness is not a real
problem. Indeed, let us recall that by Kurzweil's theorem [87], in finite dimension at least.
if a point is asymptotically stable for a continuous vector field, then as in the case of regular
vector fields, there exists a smooth Lyapunov function. It is tempting to conjecture that a
similar result holds in infinite dimension under reasonable assumptions. The existence of this
Lyapunov function ensures some robustness to perturbations. It is precisely this robustness
which makes the interest of feedback laws compared to open loop controls. One can prove
(see [3OJ) that for the above feedback laws there exists also a. Lyapunov function. Therefore
the above feedback laws provide some kind of robustness.

The next theorem, proved in [30] shows that, at least, for M large enough, our feedback
laws globally and strongly asymptotically stabilize the origin in C°(Q) for system S.

Theorem 4.10 There exists a positive constant Mi ^ AIQ such that, for any s £ (0, 1], uny
M ^ A/i/e and any maximal solution u of system I] defined, at time 0,

(4.66) \oj(t)\Q ^ Min {M(0)|o,y}, W > 0.

Remark 4.11 Duo to the term |^'(£)|0 appearing in (4.64) and in (''1.65), our feedback laws
do not depend only on the value of LO on T*. Let us point out that there is no asymptotically
stabilizing feedback ta.w depending only on the value of u) on T* such that the origin is
asymptotically stable for the closed loop system. In fact, given a nonempty open subset
Qo of Si, there is no feedback law which does not depend on the values of LJ on UQ. This
phenomenon is due to the existence of "phantom vortices7': there are smooth stationary
solutions y : Q -$• E 2 of the 2-D Euler equations such that Support y C QQ and w :=
curl y ^ 0; see, e.g.. [96]. Tli.cn u;[t) = u> is a solution of the closed loop system if the

feedback law does not depend on the values of u; on UQ -and vanishes for u; = 0.
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