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Abstract

Tt has been proved by Brockett that, contrary bo the case of linear coulrol systems,
many controllable nonlinear control systems cannol be stabilized by means of stationary
continuous Teedback laws. In this paper we give results showing that many controllable
nonlinear control systems can be stabilized by means of time-varying continuous feedback
laws and that many controllable aud observable nonlinear control systems can be stabi-
lired by means of {ime-varying dvnamic continuous feedback laws, We show the interest
of time-varying leedback laws [or robustness with respect to measurement disturbances.
We also present methods to design stabilizing feedback laws and we give applications Lo
satelhites and fluid mechanics.
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1 Introduction

A control system is controllable if, for anv piven states xg and @y, there exists an epen loop
control £ € [0, T] = ¢y, 2, (£) which, when applied to the control system, allows to go from zg
Lo 2. One does ot know any inleresting necessary and snfiicient conditian [or controllabilily,
oven when xg and #, are close together and the control system is analytic. But one knows
powerlul necessary conditions and powerful sofficient conditions. In section 2.2 we recall two
well-known conditions.

Unfortunately, open loop controls are nsually very sensitive Lo disturbances. 3o in many
practical situations one prefers closed loop control, i.e. controlg which do not depend on the
witial zg but on the state 2 which (asymptotically) stabilize the poiat one wants to reach.
Usually such closed loop coutrols (or feedback laws) have the advantage to be more robust
to disturbances,

It iz a classical result, see e.g. [123] Theorem 13, p. 136, that any linear control system
which is controllable can be asymptotlically stabilized by means of continucus feedback laws.
A natural question ig whether this result still holds for nonlinear control systems. In 1979
Sussmann showed that the global version of this result does not hold for nonlinear control
svstems: in [125] he has given an example of a nonlinear analytic control system which is
globally controllable but cannot be globally asymptotically stabilized by means of continuous
feedback laws. In 1983 Trockett hag shown that the local version also docs not hold even for
analylic control systems: in [9] he has given a necessary condition (Theorem 2.16 below) for
local asymplotic stabilizability by means ol continuous feedback laws which is not implied
“by local controllability cven for analytic control systems: for example, as pointed in [9]. the
analytic control system
(1.1) By = Uy, g = Uy, B3 = XUy — Taldy,

where Lhe state Is @ = (21, %2, v3) € R and the control « = {1y, us) € R is locally (and even
globally) controllable hut does not satisfy the Brockett necessary condition {and iherefore
cannol be asymptotic stabilized by meansg of continucus feedback laws). To get around
the problem of impossibility to stabilize many controllable systems by means of continuous
feedback laws two main strategies have been proposed: '

{i} Asymptotic stabilization by means of discontinuous feedback laws,
(i1) Asymplotic stabilization by means of continuous time-varying feedback laws.

In this paper we shall consider mainly continuous time-varying feedback laws. Lel us just
briefly describe some results on discontinuous fecdback laws. The pioneer work on this type
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of control is [125] by H. Sussmann. It is proved in [125] that any controllable analytic system
can be asymptotically stabilized by means of piecewise analytic feedback laws, One of the
key questions for discontinuous leedback laws is what is the relevant definition ol a solution
of the closed loop system. In [125}, this question is solved by specifying an “exit rule” on
the singular set. However, it is not completely clear how to implement this exil rule (but see
Remark 1.1 below for this problem}, which is important in order to analyze the robustness.
If. following llermes [60] (see alzso [38, 89]), one considers that the solutions of the closed
loop systems are the solutions i the sense of Tilippov [48], then it is proved in [38] that
a control system which can be stabilized by means of a discontinuous feedback law can be
stabilized by moeans of continuous periodic time-varving feedback laws and, morcover, if the
svstem is affine in the control, it can be stabilized by means of continuous feedback laws. In
~ particular the coutrol system (1.1} cannot be stabilized by means of discontinous feedhack
laws it one considers Filippov solutions of the closed loop system —see also [111]. Another
interesting poosibility is to consider “Luler” solutions; sec [16] for a definition. This is a quite
hatural notion for control systems since it correspouds to the idea that one uses during small
intervals of time the same control. With this type of solution, Clarke, Ledvaev, Sontag and
Subbotin have oblained o very strong result. They have proved in [16] that controllability (or
even assymplotic controllability) implies the existence ol stabilizing discontinuous fecdback
laws. Their feedback laws are robust to {small) actuator disturbance, But, using a resull
due to Clarke, Ledvacv and Stern [17], Ledyaev and Sontag have proved in [89] thal these
feedback laws are in general (e.g. for the control system (1.1)) not robust to arbitrarily
small measuremaent disturbances, In [88] Ledyaev and Sontag have lntroduced a new class of
“dynamic and hybrid”® discontinuous feedback laws and have shown that controllability (or
even asymptotic controllability} jmplies the existence of stabilizing discontinnouns feedback
laws in this class which are robust to (small} actuators and measurement disturbances.

Remark 1.1 Tt would be interesting to know il one can in some sense “implement” (a good
enough approximation of} Sussmann’s exit rule {see [123]) by means of Sontag-Ledyaev's
*dynamic-hybrid” strategy.

For condinuous time-varying feedback laws, lel us first mention that, due to an inverse of

Lyapunov’s second theorem proved by Kurzweil in [37] (see also [L7]), periodic time-varying
“feedback laws are robust to {small} actuator and measurement disturbances, From now on,

all the feedback laws considered are continuous. The ploneer works concerning lime-varying
[eedback laws are due to Sontag-Sussmann [124] and Samson [112]. In [124], it is proved
that, if the dimension of the state iz 1, controllability implies asymplotic stabilizability by
means of time-varying feedback laws., Tu [112], it is proved that the control system (1.1) can
be asymptotically stabilized by means of Lime-varying feedback laws. In Sections 2.1 and 2.5,
we present results showing that, in many cases, {local) controllability implies stabilizabibty
v means of time-varving stalic leedback laws.

In many practical sitnations only part of the state calied the output— is measured and
therefore statle feedback cannot be implemented; only output feedback is allowed. It is well-
known, see e.g. [123, Theorem 32, p. 324}, that any linear control system which is controllable
and observable can be asymptotically stabilized by means of dynamic leedback laws, Again
it is natural to ask if this recult can be extended to the nonlincar case. In the nonlinear
cage, there are many possible definitions for obscrvability. The weakest requirement for
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observability is that, given two different states, there exists a control ¢t — u(t) which leads
to two outputs which are not identical. With this definition of observability, the nonlinear
control system

(1.2} t=ucR,y=2’cR,

where the state is z, the control w, and the output y, is observable. This system is also
clearly controllable and asymptotically stabilizable by means of (stationary) static feedback
laws {e.g. u(x) = —a). But, see [24], this system cannot be asymptotically stabilized by means
ol stationary dynamic feedback laws. Again, the introduction of time-varying feedback laws
improves the situation; indeed the control system {1.2) can be asymptotically stabilized by
means of time-varying dynamic feedback laws. [n scction 2.6 we present a result contained in
:24] showing thal many locally controllable and observable nonlinear control systems can be
locally asvmptotically stabilized by means of time-varying output feedback laws. In sectien
2.7 wo show the interest of time-varying feed back for robustness with respect to measurement
disturbances.

.ot us also mention thal the usefulness of time-varving coutrols for different poals has
been pointed out by many anthors. For example by

e V. Polotski [103] for observers to avoid peaking;

e S.H. Wang [133] for decentralized linear systems;

e Aeyels and Willems {1] for the pole assignment problem for linear time-invariant sys-
tems;
e Khargonckar et al. [81], Ho-Mock-Qai and Dayvawansa [67, 68] for simultaneous stabi-

lization of a family of control systems.

Sec algo the references in these papers.

In chapter 3 we present some tools (namely, control Lyapunov function, damping, ho-
mogeneity, averaging and backstepping) to design asymptotically stahilizing feedback laws
antd present applications to the control of the attitude of @ rigid space spacecraft with control
torques provided by two thruster jels and to satellite transfer by means of electric propulsion.

Lt chapter 4, we show how the methods of chapters 2 and 3 can be applied to the control
of some nounlinear partial dilferential equations. We present two applications:

1. Stabilization of a rotating body-beam without damping;

2. Controllability and stabilization of incompressible [luids,

2 Time-varying feedback laws
2.1 Notation and definitions

o

Throughout this paper, we denote by (') the nonlincar control system
() b= fle,u).
where 2 € R™ is the state, u € R™ i3 the control. We assume that

(2.1) F(0,0)=0
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and that, unless otherwise specified, f € C*(R" x R™; R").
Let us first recall the definition of asymptotically stable for a time-varying dynamic system
-we should in fact say uniformly asymptotically stable.

Definition 2.1 Let X be in C*(R" x R;R). One says that 0 is locally asymptotically stable
for i = X(z,1) if |
{1} for all £ > 0, there exists # > 0 such that, for all 7 € R and for all ¢ > 7,

{2.2) (# = X(a, ) |a(n)] <y =|xl) <e
(i) there exists & > 0 such that, for all £ » 0, there exists M > 0 such that. for all 5in R,
(2.3) = Xf{a,t) and |z(s)] < &
imply
(2.4) a(r)| <e, V7> s+ M.

[f, moreover, for all § > 0, there exists M > 0 such that (2.3) implies (2.4) for all ¢ in R, one
savs that 0 is globally asymptotically stable for & = X {a ¢},

Thronghout this paper, and in particular in {2.2) and (2.3}, we denote by # == X {2, ¢) any
marimal solution of this differential equation. Let us empliasize that, since the vector field X
is only continuous, the Cauchy problem & = X (2,7), 2(tg) = 25, where ¢y and »y are given,
may have many maximal solutions. Let us recall that Kurzweil in [87] has shown that, even
for vector [ields which are only continuous, asymptotic stability is equivalent to the existence
of a Lyapunov function of class C°; see also [17].

Lei us now define “asymptotically stabilizable by means of a stationary feedback law”
and “asymptotically stabilizable by means of a time-varving teedback law”.

Definition 2.2 The control system (C) is locally (resp. globally) asymptolically stabilizable
by means of a stationary feedbuck law il there exists 1 € CP{R™ R™) satisfying

u(0) = 0,

such thal, [or the system & = f(z, u(x)), 0 is a locally (resp. globally) asymptotically stable
point.

Definition 2.3 Tle control system (C') is {ocally (vesp. globelly) asymploticelly stabilizable
by means of a time-varying feedback law if there exists w € CO(R* x R;R™) satisfying

uwl0,t) =0, ¥te R,

such that, for the system & = f(z, u,(;r;r; )}, 0is a locally (resp. globally) asymptotically stable
point.
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2.2 Small time local controllability

Let us first give the definition we use in these notes for small time locally controllable —we
should in fact say small time [ocally controllable with small controls.

Definition 2.4 The control svstem (C') is small time locally controllable if, for all real num-
bers ¢ > 0, there exists a real number 5 > 0 such that, for all 2 € B, := {2 € R™|#] < #},
there exists a measurable function # @ |0,2] — R™ such that

|n(t)| < 2, ¥t = [0, 7],
(i = fla,w(t)), 2(0) = xq) = (2(g) = 0).

One docs not know any interesting neccssary and sufficient condition for small time local con-
trollability, even for analytic control systems. 13ut one knows powerful necessary cenditions
and powerful sufficient conditions. Let us recall two well-known condilions.

I order 1o give these conditions, let us give some new definitions.

Definition 2.5 ({22]) The strong jet accessibility subspece of () at (F,4) € R*x R™ is
the subspace of R", denoted by a(z, i), spanned by

(2.5) {g(#); g € {8017 /0u (-, 1), @ € A7, |a| > 1) U Bra(/, @)

where Bro(f, ) denotes the set of iterated Lic brackets of length af least 2 of vector fields in

[ /0w (- w0 € N

Remark 2.6 One easily checks that the usual strong accessibilily subspace of (C') at # {i.e.
the space denoted FyD(ZF) in [129, p. 109]) contains «(Z, #) for all @ in R™ and that, if f is
analvtic with respect to » and » or is a polynomial with respect to u, these inclugions are all
equalities.

Qur last definition before giving a necessary condition for small time local controllability
is

Definition 2.7 The control system (C) satisfies the strong Lie algebra rank condition at
ClEa) il
(2.6} alz.u) =R"

Remark 2.8 It follows from Remark 2.6 that, il () salisfies the strong Lie algebra rank
condition at (z. %) (2.6), then it satisfies the usual strong sccessibility rank condition at &
(.e. dim FoD(Z) = n with the notation of [129]) and the converse holds it f is analytic with
respect to @ and v oris a polvnomial with respect Lo u.

With these delinitions one has the following well-known necessary condition for small time
local controllability of analytic control system due to Sussmann-Jurdjevic [129].

Theorem 2.9 Assume that the control system {C) s locally controlloble and that f is ane-
lytic. Then the conitrol system (') salisfies the strong Lie algebra rank condition at (0,0).

This necessary condition is sufficient for important control systems as. for example,
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e Lincar control systems © = Az + Bu, This {ollows from the Kalman condition [123}
Thin. 2 p. 88] and the lact that

a{0,0) = Span {A"Bu; iebn—1),ueR"}L

o Driftless control systems & = >0 w; fi(). This is the classical Chow theorem [14].

But, in general, this necessary condition is not sufficient, as the two following simple control
systems show:
. . . b
(n=1,m=1}, & =u",

(n=2m=1), 3 =2, &y = u

One can find other necessary conditious in [61, 66, 76, 127] and the references tlierein.
Let us now give sullicient conditions for samall time local controllability. Let us assume,

Tor the time being, that
T

S, u) = folz}+ Zu-efa‘(iﬂ)‘

=1
Let Z{fo,..., fm) be the {ree Lie algebra generated by fu, ..., fin and let us denote hy Br{f)
C L{fo, ... fia) the set of formal iterated Lie brackets of { fo, f1, ..., f}; sce [128) for more

details and precise definitions. For example

(2.7) h = [[[fo: frs oll, i) fol € Br(f).

For b€ L{fy, ..., fn), let A(0) € R™ be the “value” of 1 at 0. For h in Br(f) and ¢ € [0, m],
let 8;(1) be the number of times that f; appears in h. For example, with h given by (2.7),
one has 8g(h) = 3, 8(h) = 2 and &{h) == 0, for any ¢ € [2,m]. Let S, be the group of
permutations of {i,...,m}. For ¥ in Sy, let @ be the automorphism of L{fo, ..., fin) which
sends fy to fo and fi to fry for i € [1,m]. For 2 € Br(f), we let

oh) = > F(h) € L{for. .. o).

TE S

For example, if & is given by (2.7} and = 2, one has

e = [[{fﬂ\ [.lrlf.f(}]]r fl]: !}0] + [[[f[) [f?v f(l]]-s f?]: fO]

For@ € [0, +o0], & = folw)+> 0, wifi(z) satisfies the Sussmann [128, Section 7] condition
S(6) il 1L satisfies the strong Lie algebra rank condition (2.6) at (0,0) and, if, for every
o€ Br{f) with 8y(h) odd and &;(h} even for all ¢ in [1,m], o(2}(0) i= in the span of the
(0Y’s, where the ¢'s are in - Br(f) and satisly

ki ki)

(2.8) 0du(g) + > 8:lg) < Bdo(h) + > 5i(h)

i=1 f2=1

with the convention that when 8 = +oc, (2.8} is replaced by dp(g) < dp(h). . Sussmann has
proved in [123]:
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Theort,m 2.10 ([128, Thm. 7.3]) If. for some 8 in [0, ] P == fola) + 270 s fil®) satis-
fies S(8), then the condrol system (O} is small time locally controllable.

Let us notice that onc can casily check:

Proposition 2. 11 Lei 8 be in [0,1]. Then & = folo) + 2imy i file) satisfies S(#) if and
only if @ = fola) + 200,y fil@), § = w, where the state is (z.y) € R™ x R™ and the control
isweR™, saés.sfr_.‘s S(8/(1 = 8)) (with the convention 1/0 = +2¢).

This proposition allows us Lo extend 5(8) to & = f{x, %) in the following way.

Definition 2.12 Let # € [0, 1], The coutrel system & = f{2, n} satisfics S{#) if the control
system & = f(w,y), # = u satisfies S(8/(1 — ).

What is called the Hermes condition is S(0} ({63} and [127]). It follows from [128] that:

Theorem 2.13 [f, for some 8 in {0, 1], the control systern & = [z, u) satisfics 5(8) then il
is sinoll time locally controllable.

Proof Apply [128] to & = f(x.y), y = » with the constraint ]; |n{s)] ds < r (instead of

< 1). ' -
Oue can find other sufficient conditions for small time local controllability in Agrachev
[2], Bianchin-Stefani [7], Kawski [76], Tret’vak [130] and the references thercin.

|

Example 2.14 1f flz,u) = 370w, filz) or il fle,u) = Az + Bu (l.c. for driftless control
systeras and lincar control systems), the control system ('} satislies the Hermes condition
if and only il it salisfies the strong Lie algebra rank condition at (0,0), Hence, Sussmann’s
Theorem 2.10 altows to recover Chow's theorem (i.e. that for driftless coutrol systems, small
time local contrellability is implied by the strong Lie algebra rank condition at {0, 0}} and
that the Ivalman condition

Span {A*Bu; i€ [0,n— 1], v € R™} = R”
implies the controllability of the linear control system & = Aw + Bu).

Example 2.15 1ot us consider the following classical model for a rigid spacecraft with con-

“trol torques provided by thruster jets, Let g = (¢, 8, %} be the Euler angles of a frame attached
to the spacecraft representing rotations about a reference frame, Lel o = (w1, ws,wg) be the
angular velocity of the frame aliached o the spacceraft with respect to the reference frame,
expressed in the frame attached to the spacceraft and let J be the inertia matrix of the
satellite. The evolution of the spacecraft i governed by the equations

T

(2.9 Jio = S(whw+ > wb, 9= A(n)w,

where the w; € B, 1 < 4 < m, are the controls (u;b; € R, 1 <+ < m are the torques applied
to the spa,r_.et,ld.ﬁ.) S(w) is the matrix representation of the wedge-product, i.c.

(2.10} Sw)=| —ws; 0w
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andd
cos f 0 sin @

(2.11) Aly) = sinftang 1 —cos@tan¢

—sinf/cose 0 cosf/cosod
Without loss ol generality, we assume that the vectors by,..., b, are lincarly independent.
Then one has the [ollowing resulls

o Ifm =3, control system (2.9) is emall time locally controllable and globally controllable
in large time (1hat is given two states, there exists a time 7' > 0 and an open loop control
w e L(0,T) which allows to go [rom tle first slate to the second once). This resull is
due to Bonnard [8) (see also [40]).

e If m = 2, control system {2.9) satisfies the strong Lie algebra rank condition at (0,0) €
R x R?if and only il (see [R, 40])
(2.12) Span {by, by, S{w)J tws w € Span {by, by} = R
Moreover, if (2.12) holds,

— T'he control system (2.9) satisfles Sussmann’s condition S{1), and so is small time
locally controllable; see Keral [79];
— The control system (2.9) is globally controllable in large time; this result is due to

Bonnard [8]. sce also [40].

o If v = 1, the coutrol system (2.9) salisfies lhe sirong Lie algebra rank condition at
(0,0) € R® x R if and ouly if (see [8, 40])
(2.13) Span {by, S(b1)J o1 S () e w € Span {by, S(b1)J 10} = R,
Morcover

~ The control svstem (2.9} does not satisty a necessary condition for small time local
controllability due to Hermes [61] and Sussmann [127] and so is not small time
locally controllable; sec [79].

— If (2.13) holds, the control system (2.9} is globally controllable in large time; this
result is due 1o Bonnard [X], see also [40].

2.3 Obstructions to stationary feedback stabilization

In this section all the feedback laws considered are stationary. Let us recall that they arc
also aggumed to be continuouws. Let ua start by recalling the following necessary condition for
stabilizability due to Brockett [9].

Theorem 2.16 If the control sysiem () con be locally asymptotically stabilized by means of
feedback laws, then the image of any neighborhood of {(0,0) € R™ x R™ is a neighborhood of
0DeR™

Example 2.17 Let us go back to the control system of the attitude of a rigid spacecralt,
already considered in Example 2.15. One easily sees thal

o If sn = 3, the control aystem (2.9) satisfies Brockett’s condition. In [act in that case, the
conirol system (2.9) is indeed asymptotically stabilizable by means of feedback laws;
see [40} and [12].
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o If i € {1,2}, the control system {2.9) does not satisty Brockett’s condition (and so is not
asymptoticaily stabilizable by means of feedback laws). Indeed if b € R*\(Span {1, bs})
there exits no {{w, 7), u) such that

) {2.14) Slwlw + ui by + uzhs = b,
(2.15) A = 0.

(Note that(2.15] gives w = 0, which, with (2.14), implies that & = uyby > uybs.) See
also [12].

In [136] Zabezyk has observed that, from a theorem due to Krasnosel'skil [83, 841, one
can deduce the following stronger necessary condition, that we shall call the index condition.

Theorem 2.18 [f the control system (C') can be locully asyrptotically stabilized by means of
feedback laws, then there exists w € COR™ R™) vanishing at 0 sueh thal f(a,u(2)) £ 0 for =
sinall cnowgh bul nol O and the inder of @ — f(z, u(2)) at 0 is equal 1o {(--1)",

Lor a delinition of the index, see, for example, [84, p. 9].
In turns out that the index condition ig, in a sense, too strong, In order to explain why,
fet us introduce a definition

Definition 2.19 The control system (C) is locally asympioticelly stabilizable by means of
dyamic feedback faws if, for some integer p € N, the control system

(2.16) i=f(z,0), 5=veR

where the control is (%, v) € R™xRP and the stateis (z, y) € R*"xXR¥, is locally asymptotically
stabilizable by means of feedback laws. 13y convention, when p = 0, the control system {2.16)
is just the control system ().

Clearly, if the control system ('} is locally asymptotically stabilizable by means of [eedback
laws, it is locally asymptotically stabilizable by means of dynamic feedback faws. But it is
proved in [31] that the converse does not hold. Morcover, the example given in [31] shows
that the index condition is not necessary for local asymptotic stabilizability by means of
dynamic feadback laws. Clearly the Brockett necessary condition is gtill necessary for local
~asymptotic stabilizability by means of dynamic feedback laws. But this condition turns out
to be not sufficient for Jocal asymptotic stabilizability by means of dynamic feedback laws
aven if one assumes that § is small time locally controllable and that the system is analytic.
Tn [19] we have proposed a slightly stronger necessary condition; we have:

Theorem 2.20 Adssume that the control system (C') can be locally asymptotically stabilized
by means of dynamic feedback laws. Then, for any positive and small enough e,

QA7) (a2 L4 [u < flo,u) # 03) = 0ass(R™\ {0}) (= 2),

where 7,_1(A) denoles the stable hormotopy group of vrder (n — 1) (for a definition of stable
homotopy groups, see e.g. {134]}.

Let us point out that the index condition implies (2.17). Morcover (2.17) implies that
a “dvnamic extension” of ('} satisfics the index condition if the system is analytic. More
precisely, one has
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Theorem 2.21 ([25, Section 2]) Assume that f is a.n.rr.fy-tir_: (or conlinuous and subanaly-
tic), Asswme thot (2,17} is satisfied, Then, if p > 2n 4+ 1, the conirol system (2.16) salisfics
e index condilion, '

Let us end this section by an open problem:

Open Problem 2.22 Let us assume that fis analytic, satisfies (2.17) and that 0 is small
time locally controliable {or even continuously locally reachable in small time —see Definttion
2.28 below- ). [s the control system (') locally asymplotically stahilizable by means of
“dynamic” stationary feadback laws?

A natural guess is that, unfortunately, a positive answer is unlikely to he true. A possible
candidale [or a negalive answer is the control system, with n = 3 and m = 1,

This system satisfies the Hermes condition S{0) and so, by Sussmann’s Theorem 2.10 is small

time locally controllable. Moreover, it satisfies the index condition {lake u = x5 — {27 +x3}).

2.4 Stabilization of driftless systems

In this section we assume thal

i

Jle, 0y =) wifi(e).

=1

Let us first remark that fu this case, as pointed out by Pomet in [104], the control system (C')
does not satisfy Brockett’s necessary condition (Theorem 2.16) for asymptolic stabilizability
by means of stationary leedback laws if the vectors f1{0),..., f(0) are linearly independent,
wlich is a generic situation. But we are going to see that ruost of the driftless control systoems
can be globally asyvimptotically by means of time-varving feedback laws.

Let us denote by Tie{fi,. .., fu} C C(R™ R™) the Lie sub-algebra generated by the

vector fields fi,..., f,. Then one lLas:
| Theorem 2.23 dssume thal, for all x € R™"\ {0},
(2.18) {g(x)ig e Lielfi,..., fm}} =R™
Then, for all T = 0, there exists n in C™(R™ x R;R™) such that
(2.19) w0, 8) =0, Vi € R,
(2.20} w{e b+ Ty =ule,t), Ve e R", Yt € R,

and 0 ix globally asymptoticelly stable for

T

(2:21) &= f(;;;}.ﬂ_(;g} t)) = Z ui(2,1) fil®)- |

=1
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Remark 2.24 By Chow's theorem [14], property (2.18) implies (and by Theorem 2.9 is
equivalent if the fi. | £ i £ wi, are analvtic) to the global controllability of the driftless
control system (C7) in R™\{0], Le., for any vy € R\ {0}, any 21 € R”\ {0}, and any
T > 0, there exists w € Lo((0,7): R™) such that, if & = Y7 w(8) fi(x) and 2(0) = 2q, then
{1y = 0.

This theorem is proved in [20]. Let us just briefly deseribe the idea of the prool: assume

that, for any positive real number ', there exists # in C'*{R"™ x R;R™) satisfying (2.19) and
(2.20) such that, if & = f(a, @(x, 1)), then
(2.22) w(T) = ={0).
(2.28) IT 2(0) # 0, the linearized control system arvound {z, @} is controllable on [0, 7.
Using (2.22) and (2.23), one easily sees thal one can construct a “small” feedback © in
CoHR™ x Ry R™) satislyving (2.19) and (2.20) such that, il
{2.24) = fle, (R4 v)(2,1))
and #{{}) # 0, theu
(2.25) |2(T)] < J={0)].
which implies that () is globally asymptotically stable for (2.21) with « = u + v.
So it remains ouly Lo construel #. In order to get (2.22) just lmpose on # the condition

that
(2.26)

(2,d) = —a(z. T — 1), ¥(a,1) € R" x R,

which implies that 2(t) = (7" — ), ¥t € [0, 1] and therelore gives (2.22}, Finally, one proves
that (2.23) holds for “many”™ «. '

Remark 2.25 T'he above method, which we have called “return method”, can be used also
to get controllability resulls. The idea is the following: assume that, lor some positive real
unmber T, there cxists a measurable bounded function « @ [0,77 — R™ such that, if we
denote by x the {maximal) solution of # = f(Z, u(f)}, (0) = 0, then z({) = 0 and the
lincarized control system around (Z, u} is controllable on [0. T]. Then it follows easily [rom
the inverse mapping theorem  sce e.g. [123], Theorem 7 p. 126 - that & = f(2, ) is locally
controllable around 0 and at time T, ( Lo, for any (2o, 1) € B" x B? with {ao| + |2] small
enough, there exists u € L™([0,T]; R™) such that & = f{z, u(f)) and #(0) = xo imply that
x(T) = x1). So one can in some cases reduce the problem of the controllability of a nonlinear
system to the problem of the controllability of a linear (time-varying) control system. This
iz gpecially uselul for studying the controllability of partial differential equations. Indeed
one las powerful methods to study e controllability of finear partial differential equations,
for example the HUM method [93] due to J. L. Lions, but one has very few ftools to study
the controllability of nenlinear partial differential equations. In parlicular, the use of Lic
brackets, which is very powerful for nonlinear control systems of finite dimension {see section
2.2 above), does not seem to give any interesting results for the controllability of nonlinear
partial cifferential equations. In section 4.2,1, we shall see that the return method allows
us to prove boundary controllability of the Euler equationz of incompressible inviscid fluids.
LUsing the return method, Sontag has also {found in [118] sumerical techniques for the steering
of svstems without drift,
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Remark 2.26 T'he tact {2.23} holds for “many™ u is related to the prior works [115] and [58].
In [115] Sontag Las shown that if a system is completely controllable then any two points
can be joined by means of a control law such that the linearized control system around the
assoclaled trajectory Is controllable. Tu [58, Thm p. 156] M. Gromov has shown that generic
under-determined linear (partial) dillerential equations are algebraically solvable, which iz
related to controllability for time-varying linear control system (and in fact equivalent if the
system s analytic; see [B8, 2.3.8.(B}] and [123, Cor.3.5.18]). In our situation the linear
dilferential equations are not generic; only the controls are generic, but this is be sufficient
to get the result. Moreover, as pointed out by Sontag in [122], for analytic systems, one can
gel (2.23) by using a result due to Sussmann on observability [126]. Note that the proof we
give Tor (2.23) in [20] sce also [21] can be used to got a O vergion of [126]; see [22].

Remark 2.27 Using a method due to Pomet [104], we have given in [36] a method Lo deduce
a auitable » from i; see sub-section 3.2.2 below.

2.5 Stabilization of general systems

Let us first point cut that in [121] Sontag and Sussmann have proved that any one dimensional
state nonlinear control system which is locally (resp. globally} controllable can be locally
(resp. globally} asymptotically stabilized by means of time-varying feedback laws. Let us
also point out that it [ollows (rom Sussmann [125] that a result similar to Theorem 2.23 docs
not hold for systems with a drift term: more precisely, there are analytic control systems (')
the controls of which are globally controllable, for which there is no u in C*(R™ x R;R™)
for which 0 is globally asymptotically stable for & = f(2z, n(a.%)). Tn fact the proof of [125]
requires uniqueness of the trajectories of # = f{i, w(x,t)). Bul this can always been assumed;
indeed it follows easily [rom Kurzweil’s result [87] that, if there exists » in CP(R™ x R;R™)
such that 0 is globally asymptotically stable for # = f(z, u(x,t}}, then there exists & in
CHR” x Ry R™) nC> ((R™ 4 {0}) x R;R™) such that 0 is globally asymptotically stable for
# = f{a. nfz,t}); for such a % one has uniqueness of the trajectories of & = f{w, a{x,t}). But
we are going to see in this subscetion that a local version of Theorem 2.23 holds [or many
control systerms which are small time locally controllable.
Let us again introduce some definitions.

‘Definition 2.28 The origin (ol R™) is locally continuously reachable (for the control system
(Chyane srneldl tine 3, Tor all positive real number 7', there exist a positive real number £ and

win CY{R™ L' (0, T);R™)) such that

Supq|u{a){¢);t € (0.T)} = 0 as « — 0,

(i = fa,u{z(0)){1)),

Let us notice that, following a method dne to M. Kawski [76] (sce also [62]), we have
proved in (21, Lemma 3.1 and Section 5] that “many” sufficient conditions for small time
local controllability imply that the origin is locally continuously reachable in small time.
This i3 in particular the case for the Sussmann condition (Theorems 2.10 and 2.13}); this is in
fact also the case for the Bianchini and Stelani condition [7, Corollary p. 970], which extends
Theorem 2.10.

Our next definition is

#(0)] < ) = (1) = 0.
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Definition 2.29 The control system {C'} is locelly stabilizable in small time by means of
alimost smooth periodic time-varying feedback laws it, for any positive real number T, there
exist ¢ in (0, +o0) and = in CY{R" x R;R™) of class ¢ on (R™Y {0}} x R such that

(2.273 w(0,{) =0,¥t € R;

(2.28) wlz. t+T)=wulz,t). ¥t € R:

(2.29) (= flo,u(z, ) and z(s) = 0) = (2(t) = 0Vt > 8)), ¥s € R;
{2.30) ({2 = flzyulz B and |e(s} <) = (2() =0, Vit > s+ T)) Vs e R,

Note that (2.28), (2.29), and {2.30) imply that 0 is locally asymptotically stable for

= f{w, ul2. 1)); see [23, Lemuna 2.13] for o proof. Note that, if () i locally stabilizable

in small time by means of almost smooth periodic time-varying feedback laws, then 0 £ R

is locally continuously reachable for {('). The matn result of this section ig that the converse

holds il » ¢ {2,3} and il {(") satisfies the strong Lie algebra rank condition at {0,0). That
is, we have:

Theorem 2.30 Assume thal U is locally conlinuously reachadle in small time, that (C) sat-
isfies the strong Lie algebra rank condition at (0,0}, and thar

(2.31) n ¢ {2,3}.

Then (C) is locally stabilizable in small time by means of almost smooth periodic itme-varying
feedhack laws.

This theorem is proved in [23] when 2 > 1 and n [26] when n = 1. lLet us just give a
sketch of the main steps of the proof of [23).

et f be an interval of B. DBy a trajectory of the control system (€} on [ we mean
(v, u) & C® (IR x R™) satisfving +(t) = f{v(#). w(t)) for all # in {. The lincarized control
svatem around {y,u) is & €= Alt )g + Bithe “horo the state is £ € B”, the control is w € R™,
and Aty = af/Ox (v (1), ult)) € L{R™R™), B{¢) = df/du(v{t), w(t)) € L(R™ R"), [or all ¢
in I. We first introduce the following definition.

Definition 2.31 T'he trajectory (v, u} is supple on 5 C [ il, for all ¢in S,
(2.32) Span{({d/dt} — A{)) B(t)|,_,w ; w e R™,i >0} =R"

In (2.32} we use the classical convention (d/dt — .Al(t))"rj B(t) = B(f). Let us recall that
Sitverman and Meadows have shown in [114] that (2.1) implies that the linearized control
system around (-, ) is controllable with impulsive controls at time s (in the sense of [74] p.
614}, Let T be a positive real numbcer. Forwin CP(R™ x [0, 1]; R™) and a in B?, let (a, - ;u)
be the maximal solution of da/d = f(x, w(a,£)), #(a,0;u) = a. Let, also, €7 be the set of
w € CY(R? x [0, T]; R™) of elass C>* on {R™\ {0}) x [0, 1] and vanishing on {0} x [0, TT. TFor
simplicity, in this gketeh of proof, we omit some details which are important to take care of
the uniqueness property (2.29) {note that without (2.29) one does not have stability).

Step {. Using (1.8}, (1.9}, and [21] or [22], one proves that there exist £ in (0,40oc) and
uy in O™, vanishing on R™ x {T}, such that

le| < ¢y = ala,Tiur) =0,
0 < ol < e = (e, -;u1),u1(a. ) is supple on [0, 7],
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Step 2. Lot I be a closed sub-manifold of B® Y {0} of dimension 1 such that
L C{xeR™0< |2 <}

Perturbing ) in a suitable way, one obtains a map uy in C*, vanishing on R™ x {I'}, such
that
lal <61 = xfa, {5 uz) =0,
0 < |a] < ¢ = 2{a, - ug), uz{a,-)) is supple on [0,T],

a €U — 2(f, ¢ ug) 1s an embedding of I" into R™\ {0}, ¥t £ [0,7).

Here one uses the assumption n > 4 and one proceeds as in the classical proof ol the Whitney
embedding theorem {see e.g. [57| Chapter II, Section 5). Let us emphasize that it is only in
this step thal this assumption is used.

Step 3. From Step 2, one deduces the existence of w3 in C™*, vanishing on R” x {T'}. and
ol an open neighborhood A™ of T in R* Y {0} such that

{2.33) ac N* = a2, Tu3) =0,

a € A" — z{a,t;u}) is an embedding of A™ into R™\ {0}, ¥¢ € [0, 7).

This embedding property allows Lo transform the open-loop control uf into a feedback law us
on {(z (a,t1us) ) e € ML € [0, T)}. So—sec in particular (2.33) and note that wj vanishes
on R” x {7} - there exist wy in €™ and an open neighborhood A of [ in R™ Y {0} such that

(2(0) ¢ N and & = f 2, us(2,. 1)) = (2(T) = 0).
One can algo impose that, for all 7 in [i}, T],
(& = [{w,ug{x, 1)) and 2(r) = 0) = {x(t) =0, Vte|r.T].

Step 4. In this last step one shows the existence ol a closed sub-manifold of B™Y {0} of
dimension 1 included in the set {# € R™ 0 < |z| < ¢} such that, for any ncighborhood A of
["in B™Y {0}, there exists uq In € such that, for some ¢, i (0, +00),

(2= f(z,ua(e, ) and te(0)] < oq) = (2{T) € N U {0}),
(& = f (e, vwalw, ) and 2{r) =0) = (x{{) =0 Y cir, THvVr€[0.1].

Finally let v : R™ x B — R™ be equal to us on R™ x {0, 7"}, 21" periodic with respect to time,
and such that u(x, 1) = us{e, t — L) for all (z,¢) in R x (T, 27T"). Then » vanishes on {0} xR,
is contiunous on R™ x (R ZT), of class C on (R™Y {0}) x (R ZT), and satisfies

(& = fiw,u(z, 7)) and |2(0}]| < eq) = (2(2T) = 0),
(7 = fz,u(e,0) and 2{r) =0} = (2({} =0, Vir>r71),¥r R,
which implics, see [233, thai (2.30) holds, with 47 instead of 1" and € > 0 small enough, and
that 0 is uniformly locally asymptotically stable for the system & = f (2, u{z,£)}. Since I Is
arbitrary, Theorem 2.30 is proved {modulo a problem of regularity of v at (2,¢) in R® x ZT
that is fixed in [23]).



322 J.-0M. Coron

Remark 2.32 We conjecture that assumption (2.31) can he remaved in Theorem 2.30.

Example 2.33 Let us go back again to control system (2.9) of the attitude of a rigid space-
crafl, alrcady considered in Examples 2.15 and 2.17. Let us recall that it is proved in [79]
that, if m = 2 and {2.12) Lolds (which is generically satisfied}, then the control system (2.9)
satisfies Sussmann’s condition S{1) which, by [21, Lemma 3.1 and Section 5] implies that
(0,0) € R? x B¥ iz locally continuously reachable; hence, by Theorem 2.30, for any T > 0
there exist a 7-periodic time-varying feedback laws which locally asymptotically stabilizes
the control system {2.9) (if {2.12) holds). The construction of such feedback laws has been
performed by Morin et al. [L01] in the special case where the torque actions are exerled
about the principal axis of the inertia matrix of the spacecraft. The general case has been
treated in [39]; simpler feedback laws have been proposed Morin-Samson in [100]. In sections
3.3, 3.4 and 3.5, we explain how the the feedback laws of [100} arc constructed.

2.6 Output feedback stabilization

In this section only part of the state {called the output) is measured; lot us denote by (€1
the control system

(2.31) (€)= {vu), y=hz),

where @ ¢ R" is the state, v € R™ is the control, and y € R” is the output. Again f €
CHRY x R™ R and satisfies (2.1); we also assume that & € C'°°(R™ R?) and satisfies

(2.35) f£(0) = 0.
In order Lo state the main result of this section we first introduce some definitions.

Definition 2.34 The control system {C’} is said Lo be locally stabilizable in small tone by
means of static periodic time-varying output feedback laws i(, for any positive real number T,
there exist ¢ in (0,200) and u in CYR™ x R:R™) such that (2.27), (2.28), (2.29), (2.30) hold
ahd such that

{2.36) e, 1) = u(h{z), O)

for some i in C“(R” x R R™).
‘Our next definition concerns dynamic stahilizability.

Definition 2.35 The control system {() is locally stabilizable in small time by means of
dynamic periodic Bime-varying state (resp. output) feedback laws if, for some integer & > 0,
the control svstem

{2.37) 2= flz,u), 2=, Rz, 2) = (B{x), 2),

where the state is (z,2) € R™ % R*, the control {u,v) € R™ x R*, and the output E[.r z) €
R x R", is locally stabilizable in small time by meaus of static periodic lime-varying state
(resp. output) feedback laws,

I the above delinition, the control syslem (2.37) with & = 0 is, by convention, the system
(C). Let us also point out that it is proved in [21, Section 3], that if, for system (), 0 is
continuously reachable in small time, then (C) is locally stabilizable in small time by means
of dynamic periodic time-varying state feedback laws.
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Tor one last definition, one needs Lo introdoce some notations. Tor ¢ in N™ and @ in BR™,

let. {7 in C(R™ R™) be defined by

o 8|c):1||{‘
2.38 () = (2, 4), Yo e R™
(2.38) filz) e {z,u), Yz e R

Let. ({C') be the subspace of C7(R™ x R™;R”) spanued by the maps w such that, for some
integer r > 0 (dependiug on w) and lor some sequeilce ay, ..., &, of v multi-indices in N™,we
have, for all € R and for all « € R™,

{2.39) wlz,u) = Lo Lgor hix),

=
L

where £ o, clenotes Lie derivatives with respect Lo aned where, by convention, if » = 0 the

right hand side of {2.39) 1= Li{x). With this notation our last delinition is

Definition 2.36 The control system (C) is locally Lie null-observable if there exists a posi-
tive real number £ such that

{1y for all ¢ in R™\ {0} such that |a| < &, there exists ¢ in N such that
(2.40) L% h(a) #0
with fot{x) = f(2,0) and the usual convention L?,n h=h

(ii) for all {¢1,ay) € I[R”‘\{U}m)2 with ay # ag, Ja1] < £, and |ay| < &, and for all % in R™ with

‘u| < £, there exists w n O(C') such that
{2.11) wian, u) £ wlag, u).
Note that (i) implies the following property:

(IV* for any @ # 0in Bz := {z € R™, |z] < &} there exisls a positive real number 7 such that
{2.42) 2(7) exists and A{a(r)) £ 0.

where x(4) is defined by & = f(x,0),2(0) = «.

Moreover, [ f and ¢ arc analytic, (i)* implics (1). The reason of “null” in “null-observable™
“comes from condition (i) or ()* : roughly speaking we want to be able to distinguish from 0
any « in B. % {0} by using the control law which vanizhes identically.

When f is affine with respect to w, Le. f(z,u) = fol2) + >0, wi fi(z) with fi, ..., fin In
Ce (R R, then a slightly slmpler version of (il) can be given. Let (’.h){'(f‘] he thie observation
space —see e.g. [39] or Remark 6.4.2 in [123]- i.e. the set of maps « in C9°(R™ RP) such that
for some integer » > 0 (depending on &) and for some sequence #j, ..., 4, of integers in [0, m]

(2.43) &(x) = Ly, oy, h(z), Vo € R™,

with the convention that, if » = 0, the right hand side of {2.43} is (). Then (ii} is equivalent
to
(2.14) ((a1.a2) € B2, &(ar) = &laz) V& € O(O) = (a1 = az).

Finally let us remark that if £ is a polynomial with respect to « or if f and g are analytic
then (ii) is cquivalent to
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(iN* for all {¢y,az) € R™\ {0} with a1 # a3, a1] < £ and {a,2| < £ there exists u in R™ and w

in @(C) such that (2.41) holds.
Indeed, in these cascs, the subspace of R spanned by w(x, )y w e O{Cj‘} does not depend

on u: it is the obszervation space of (') evaluated at z — as defined for example in [59].
With these definitions we have

- Theorem 2.37 Assume that the origin (of R™) is locally continuously reachable (for (C)) in
- small time (see Definition 2.28). Assume that (C) is locally Lie null-observable. Then (C') is
localty stabilizable ire snall time by means of dynamic periodic time-varying output feedback
laws.

This theorem is proved in [24]. Let us just sketch the proof given in [24]. We assume that
the assumptions of Theorem 2.37 are satlisfied. Tet ©° be a positive real numnber. The proof
of Theorem 2.37 is divided into three steps.

Step 1. Using the assumpiion that the system () is locally Lie null-obscrvable one proves,
using [22], that there exist w” in C°°(R? x [0,7];R™) and a positive real number £* such that

(2.43) w{y, T)=n"{y,0) =0, Yy e R”, v (0.£) =0, ¥t [0.1],

and, for all {g;, w2} in B, for all s in (0,7,

(2.16) (hii(s) = B (s), Wi € N) = (a1 = ).

where fi,{s) = h(x*(a, s)) with 2" defined by dx*/8t = f(x~, w™(R{2"),£}}, 2% (¢, 0) = «. Tet
us note that in [98] a similar #* was considered, but it was taken depending only on time and
so (2.15), which is important to get stability, was not satisfied in general. In this step we do
not use any reachability property for (C).

Step 2. Lot ¢ = 2n + L. In this step, using (2.16), one proves the cxistence of (g4 1) real
numbers 0 < tg < #y... < Ly < T such that the map K : B.» —+ (R7)? defined by

4 Ly
(2.47) K(a)= (/ (s — o)ty — 5)hy(s)ds, / {s —tp)ity — s)ha (a‘)ds)
fo t

r

_is one-to-one and so, there exists a map # : (R¥)? — R™ such that
(2.48} #cK{u)=u"(nT), Ya € Bouyy.

Step 3. In this step one proves the existence of « in CYUR™ x {0, T]: R™} and £ in (0, 4-¢)
such that
(2.49) =008 (R"x {0,T})U ({0} x [0,27).
{2.50) (& = flz,5(x(0),1)) and [2(0}] < &) = (L) = 0).
Property (2.50) means that w is a “dead-beat” open-loop control. In this last step, we use
the reachability assumption on {(C7)}, but do not use the Lic null-observability assumption.

Using these three steps let us finish the prool of Theorem 2.37. The dynamic exlension
of system (C') that we consider is

(2.51) i=flz.u), 2=v= (0, envpvg1) € RY XL x R X R~ RPTT,

A3
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\}-‘i't.h z1 = (21, v 2 Zg1) € RP X X RP X R? ~ R24+", For this svstem the output is
hix,z) = (h(z),z) € R? x RP*", Tor s € R let s = max(s.0) and let Sign (s) = 1 if 5 > 0,
0if s =0, —1 if 5 < 0. Finally, for v in NY {0} and 6 = (b1, ....5,) In R", let

(2.32) B = (|6,Y3Sign (b1}, ..., |b,)/2Sign (b)),

We now define ¢ : R? x R?¥? x R —+ R™ and v : R? X RP4T" x R — R¥T" by requiring, for
(. z) in RY x R?~" and for all ¢ in [1, ¢],

(2.53) wly, 2. L) = ¥y, 1), ¥t e [0, 1),

(2.34) vily, 2,0 = —tlto = )"l 4 (1 = to) H(ty — OFy, V€ [0,T),
. s (T 0 (= 1y)*

(2.55} Vgg1 (s 2. 1) = =1ty — E.)+zqi1 + 6( T 1) TN
(2.56) wl(y, z,0) = @lzyq, bt~ T, ¥ e [T.277),

{2.57) wiy,z, 1y =0, ¥Vt e [T,2T},

{2.58) ul(y, z,t) = uly, 2, £+ 27), ¥t € R,

(2.59; wly, 2, ty = wvly, 2,6+ 2T), Vt € R.

Roughly speaking the strategy is the following.

(i} During the time interval [0, 7], one “excites” system () by means ol «*(y,{) in order
to be able to deduce from the observation during this interval of time what is the state
at time T at time 7 we have z,49 = 2.

(1) During the time interval [T, 277, z,41 does nol move and onc uses the dead-beal open-
loop « but transforms it into an output feedback by using in its argument z, instead of
the value of = at time 7" (this step has been used previously in the proof of Theorem
1.7 of [211).

Remark 2.38 This method has been previously used by Sontagin [117], Lozano [94], Mazene
and Praly [98]. A related idea is alzo used in Section 3 of [21], where we first recover initial
“data [rom the state. Moreover, as in [117) and [98], our proof rclies on the exislence of
an output feedback which distinguishes cvery pair ol distinct states (see [126] [or analytic
systems and [22] for C°° gystems).

One casily sees that w and v arc continwous and vanishes on {{0,0)} x R. Let (2,2} be
any maximal solution of the closed loop system

{2.60') b= fle,ulbiz, 2),8)) . 2=v(h(z, z),t)
tlen one casily checks that, if [2(0)] 4+ |2(0)] is small cnough,
(2.61) 2 (te) =0, Vi€ {lq],

(2.62) (24(0), oy 2 (1)) = K (2(0)), V2 € [t,. T,
(2.63) Zgrilly) =0,
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(261) Iyt _T) =fo I‘L U)) = '1( ),
(2.65) x{t) =0, vt € 27,371,
(2.66) (2T + 1) = 0.

Equalities {2.61} (resp. (2.63}} are proved by computing explicitly, for ¢ € [1, ¢]. z on {0,
(resp.  z4py on [0,4,]) and by seeing that thiz explicit solution reaches 0 before time &
{resp. t,) and by pointing out that if, for some s in |0, o] (vesp. [0.%,]), z(s) = 0 (resp.
Zygr{s) = 0} then z; = 0 on [s,tp] {resp. z,41 = 0 on [s,4,]) note that z2 < 0 on [0,1g]
(rosp. Zgp1ie41 < 0 0n [0,2,]).

Morcover one hag alzo, for all sin R and all £ > &,

(2.67) (e(s), 2(s)) = (0.0)) = ((x(D). () = (0.0)).

Indeed, first note that without loss of generality we may assume s € [0,27] and ¢ € [0, 277].
If s € [0, 7], then, gince v is of class C™ we gel, using (2.43), that z(#) = 0, ¥t € [s,T] and
then, using (2.33) and (2.54), we get that, for all 7 € {1,4q], z:% < 0 on [$,T] and so z also
vanishes on [s, T} this, with {2.53) and 8{0) = 0 (see(2.4 ;) and (2.48)), implies that z,4 =0
also on {s, 1. Hence we may assume that s € [T, 27]. But, in this case, using (2.57), we get
that 2 =0 on [s, 27 and, from (2.49) and {2.56), we get that o = § alzo on [s, 27].

JFrom (2.65), (2.66), and {2.67) we get  sce Lemma 2.15 in [23] — the existence ol ¢ in
(0. +oc) such that, for any s in R and any maximal solution (z,z) of £ = f(x, wih(z, ), 1)),

2= wv(h{r, 2}, 1), we have
(|2} + [y(s)] < 2) = (2 (t), 2()) = (0,0}, VI = s 4 5T).

Since T is arbitrary, Theorem 2.37 is proved.

Remark 2.39 Tu [498] it is established that distinguishability willl a universal time-varying
control, global stabilizability by state feedback, aud observability of blow-up are suflicient
conditions for the existence of a time-varying dynamic outpui [eedback {of infinite dimen-
sion and in a sense more general than the one considered in Delinition 2.35) guaranteeing
boundedness and convergence of all the solutions defined at time ¢+ = 0. The methods de-
veloped in [98] can be applied directly to our situation. In this case Theorem 2.37 gives two
Amprovements: we get that 0 s asymptotically slable for the closed loop system, instead of
onlv attractor for time 0. and our dynamic extension is of finite dimension, ingtead of infinite
dimensionw.

Remark 2.40 If () is locally stabilizable in small time by means of dynamic periodic time-
varying output feedback laws, then the origin (of R") s locally continuously reachable {for
{_()_',l in small time (usc Lemma 3.5 in [24]) and, if moreover [ and kb are analytic, then (L )
i3 locally Lie null-observable —see [24, Proposition 4.3].

Let us remark that it follows from our proof of Theorem 2.37 that it suffices to consider
dynamic extensions of dimenston n 4 (217 4 1)p, i.e. under the assumption of Theorem 2.37,
the control {2.37) with & = n+ (2n + 1)p is locally stabilizable in small time by means of
static periodic time-varying output feedback laws. We conjecture that, as in the finear case,
thig result still holds for & = » — 1. Note that this conjecture is truc if n = 1, i.c. wo have
the following proposition which is proved in [26].
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Proposition 2.41 Assume that n = | and that the o:"-igz:n (of R) is locally continuously
reachable (for (C)) in small time. Assume that (C) is locally Lie null-observadle. Then (C)
is locally stabilizable in small time by means of periodic time-varying output feedback lews,

Remark 2.42 There are linear control gystems which are controllable and observable but
which cannot be locally asymptotically stabilized by means of a time-varying static feedback
law. This is for example the case for the controllable and observable lincar system, with
n=2,m=1 and p=1,

fi:l = ¥, if:g =1, Y =T

Assume that thiy system can be locally asymplotically stabilized by means of a time-varving
static outpul [eedback law w1 R x R — R. Then there exist r > 0 and 7 > 0 such that, if
Byo= g, #o = wlxg L),

(2.68) 21(0) + 25(0)? < 2% = ay(7)2 + 22(7) < #2/5.

Let (#":n € N) be a sequence of functions from R into B of clags ("* which converges
uniformly to » on each compact subset of R x R. Then, for n large enough, #; = @9, 35 =
w™ (2, £) Implies

(2.69) 210012+ 29(0) < 9% = 29 (7)? 4 2o(7)? < 92/

But, since e time-varying vector field X on R? defined by

Xi(w1, 29, 8) = a1, Xal(xy. 29,8) = v (21.1)

has a divergence equal to 0, the flow associated with X preserves area, which is a contradiction
1o (2.69),

2.7 Time-varying feedback and ISS

Let us recall that onc profers to uge feedback taws ingtead of open loop control since they are
usually more robust to disturbances. In order to define ithe robustness of a [esdback Lhere
iz the well-established operator approach. This approach gives very useful results. but is
‘not invariant under changes of vartables. In [116], Sontag has defined a new concept, called
“Input-to-State Stability” (ISS) to define a robustuess which is invariant under changes of
variables,

Lot us first deal with aclualor disturbances. We need to recall the definitions of functions
of clags K, ol class K., and ol class K L.

Definition 2.43 A [unction v : RT = R is said to be of cless K if it is continnous, strictly
increasing and if 4(0) = 0. The [unction ¥ is said to be of class K, if moreover it is not
Louunded.

A function #: RT x RY — R7 is said to be of class KL if for cach fixed ¢ the mapping
8. t) s of class K and for each fixed s the mapping (s, .) is decreasing to zero on # as
t— 4o

Ford € L7(1), where [ is a subset of R, we note {id||5, it’s L™-norm. We thesc definitions,
one can how give Sontag’s definition [116] of 1SS for actuator disturbances.
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Definition 2.44 A feedback law « € CO(R;R™), such that u(0) = 0, makes the control
system () ISS for actuntor disturbances if there exist a function v of class £ and a function
A of class XL such that any solution, defined at time 0, of the closed loop system

&= flz,ulz) + d{t))

where d is a continuous bounded disturbance, exists for all £ = 0 and satisfies

(2.70) ()] < B

E

H (O” t) + 1{”(‘”;\))) Vi = [01 +OC)

One casily checks thal any {eedback law which makes the control system (C) ISS [or
actuator disturbances globally asymptotically stabilizes the control system (7). As pointed
oul by Sontag in [116), the converse does not hold, even for control systems which arc affine
in the controls.

Remark 2.45 But note that a local version version holds, that is, for any feedback law =
which locally asymptotically stabilizes (C), there exist a fuuction v of class K and a function
3 of class K £ such that {2.70) holds for |2(0)] and ||d||~ small enough. This follows from

87].

Even if the converse does not hold, one hag the following theorem proved by Sontag in
[116].

Theorem 2.46 Asumme thal the conlrol system (C) is affine in the conlrols and globally
asymptotically stabilizable by meuns of stationary feedback laws. Then there czist feedback
laws which make the control system (C') ISS for wctuator disturbances.

In [119], Sontag has shown that one cannol remove the assumption “(C7) is afline in the
conlrols™,

A natural ¢uestion is “does onc have a similar result 1o Theorem 2.46 for IS5 for mea-
surernent disturbances?”. Of course the definition of ISS for measurement disturbances is:

Definition 2.47 A feedback u € CO(R;R™), such that #(0) == 0, makes system (C) IS5 for
measurernend disturbances if there exists a function v of class K and a function 3 of class KL
sucl that any =olution, defined at time 0, of the closed loop system

&= fle,ule +d0E)
where d is a continuous boundead disturbance, exisis lor all # = 0 and satisfies
2(t)] < B(12(0)], 8 + v (Jdll), V¢ € [0, +50).

“Again, one casily checks that any feedback law which makes system (C) 188 for mea-
surement disturbances globally asymptotically stabilizes the contrel system (C). A counter-
example, given by Freeman in [45], shows that Theorem 2.46 does not hold with IS5 for
measurement disturbances. Nevertheless, it does hold [or those systems that can be put into
strict {eedback form (see [47]).

Again one may wonder il the use of time-varying feedback law can help to gel Theorem
2.46 with ISS for measurement disturbances. Let us first adapt Definition 2.47 to time-varying
feedback laws.
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Definition 2.48 A feedback w € C%R™ x R;R), such that, for any € R, u(0,£) =0,
makes the system {2.71) input-to-state stable for measurement disturbances if and only if
there exists a function v of cass K and a funetion @ of class KL such that, for any time #p
and any solution, defined at time 4y, of the closed loop system

&= flo) 4 wlz+ 4, tgz),
where d € L™ (#5, +oc) is a continuous bounded disturbance, exists for all £ 2 fg, and satisfies
le(t)] < #{|wol, t — to) + ~{||d]]ee). ¥ € [to. +oc).
One has the following theorem, due to Chung [13].
Theorem 2.49 Consider the control systemn

(2.71) &= fla) + ug(z),

where @ € B s the stode, w € R the feedbock, f 'R = R and g : B = R are conlinuous.
Suppose thal this system is globally asymptotically stabilizable by means of stationary feed-
bock lows. Then, for any period T > 0, there exisls o T-periodic lime-varying feedback law
making the closed loop system input-lo-stote stable with respect to measurement disturbances.
Meoreover, if the zeros of ¢ are bounded, the feedback law can be taken tirne-invariant.

Periodic time-varving (eedbacks have also been used for affine systems by R, T'reeman 1n
[46]. The problem le studies is ISS for measurement disturbances with systems that are only

partially observable. More precisely Lie assumes that g in equation {2.71) does not vanish on
R {0} but that the sign of g is unknown.

3 Feedback design tools

in this chapter we give some tools to design stabilizing feedback laws and present some
applications of these tools. The tools we want to deseribe are

e Control Lyapunov functions,

Damping,

Homogeneity,

¢ Averaging,

Backstepping.

Tlere are in fact plenty ol other powerful methods; e.g. zero-dynamics, center manifolds,
forwarding, adaptive control, etc. See, for example, [4, 37, 71, 85, 86, 99, 101, 102, 113] and
Lhe refercinces therein.
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3.1 Control Lyapunov function

A basic tool for studying the asymptotic stability of an cquilibrium point is the Lyapunov
function. In the case of a control system, the control is al our disposal, so there are more
“chances™ that a given function, could be a Lyapunov finction for a suitable choice of feed-
back laws. For simplicity, we restrict our aitextion Lo global asymptotic stabilization; the
definitions and theorems of this section can be easily adapted (o treat local asymptotic sta-
bilization.

In the [ramework of control systems, the Lyapunov function approach leacs to the follow-
ine definition, due to Artstein [3].

Definition 3.1 A function V' € CY(R™R) is a control Lyapunov function for the control
system (C) il
Viz) = 4oc, as |z — +o0,
Vie) > 0, Yo € R™\ {0},
Ve e R"\ {0}, Fe e R™ st flzu)- VV(2) < 0.

Moreover, V satisfies the sraall condrol property if, for any strictly positive real number =,
there exits a strictly positive real number 3 such that, for any @ € B™ with 0 < |2 < 5, there
exists u € R™ such that |u| < < and fle,u) - VV{z) < 0.

Witl this definition, one has the following theorem due to Artstein [3].
Theorem 3.2 [f the control system (') is globally asymptotically siabilizable by means of
a stalionary feedback law, then il admits « control Lyapunov function suiisfying the small
control property. If the control system (C') admils o control Lyapunov function salisfying the
small conlrol property, then it can be globally asymptotically stabilizable by means of

o slationory fecdback laws if the control system (C) Is uffine in the controls;

o rcluzed controls for gencral [ (see [3] for a definition).

[nsteadt of relaxed controls, one can use periodic time-varying feedback laws. Indeed one
lias the following theorem proved in [33)].
Theovem 3.3 The control system (C) can be globally asymptotically stabilized by means of
periodic time-varying feedback laws if it admits a control Lyapunov funclion salisfying the
srnell control property.

Lot us polnt out that, even in the case of control systems which are affine in the controls,
Artstein’s proof of Theorem 3.2 relies on partitions of unily and o does not give explicit
stabilizing feedback laws, Explicit feedback laws are given by Sontag in {121]. He proves:

Theorem 3.4 ([121]) Assume that V is a control Lyepunov function satisfying the sall
control property for the control system (C). Assume thel (C) s affine in the conirols, thal

is.

Ju) = fole) + Z’ti--ffﬁ(-’??% ¥{z.u) € R* x R™

=1
Jor some fo,. .., fm in CFRNRY). Then u = (uy, ... 1y) 0 R = R™ defined by

1T

(3.1} () = —¢ (fu(as} : VY(L)Z (filz)- VV{_;E_}-)Q) filz)-VV(x),

i=1
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with

e ) N T 20
3.2 o, b) = b ] :
(3.2) e, b) { 0 ifh=0,

is continuous and globally asypmptotically stabilizes the contrel system (C).

Open Problem 3.5 For systems which are not affine in the controls, [ind some explicit
formulas [or globally asymptotically stabilizing periodic time-varying fecdback laws when
one knows a control Lyapunov function satislying the small control property. (By Theorem
3.3, such feedback laws exist.)

3.2 Damping feedback laws

The control f.yapunov function is a very powerful tool to design stabilizing leedback laws.
But one needs to guess candidales [or such functions in order to apply Soutag’s [ormula (3.1).
For mechanical systems at least, a natural candidate for a control Lyvapunov function is given
by the total energy, i.e. the sum of potential and kinetic energy. Bul, in general, it does not,
work.

Example 3.6 Consider the classical spring-mass syslem. The control system is
I = ag, dy = —kay 4 u,

wlere 1 1z the mass ol the point attached to the spring, z, is the displacement of the mass

(on a line), a4 is the speed of the mass, k is the spring constant, and u is the force applied

to the mass. The total energy E of the system is
F o= k.2 mo,2
= su] + 53
One has, with the notations of Theorem 3.4,

folz) - VE() =0,
filz) VE(z) = 2.

Henee, if oy = 0, there exists no w such that {fy(x) + ufi(z)) - VE(x) < 0. Therefore the
total energy is not a control Lyapunov function. But one has

(fola) +ufi(2)) VE(@) =ufi{z) VE{z) = uzy.
[lence, it is tempting to consider the feedback law
(3.3 w(z) = —vVE() filz)(=—via).

With this feedback law, the closed loop control system is

:'E:J. = Edy
g ] k v
(3.4} Ty = ——%] — ~—¥7.
’ : k213 it

which is the dynamic of a spring-mass-dashpol system. In other words, the feedback law
adds some damping to the the spring-mass system. With this feedback law

VE(z)- (folz) + u(z) fi(z)) <0,
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g0 that (0, 0) € E?is stable for the closed loop system. In fact {0,0] is globally asymptotically
stable for this system. Indeed, il a trajectory x(f),# € R, of the closed loop system is such
that F(2(f)) does not depend on time, then

{3.5) zoft) = 0, ¥Vt € R.
Differentialing (3.5) with regpect to time and using (3.4), one gets

w1 () =0,V e R,

which, with (3.5) and LaSalle’s invariance principle, proves that (0,0} is globally asymptoti-
cally stable for the closed loop aystem.

The previous example can be generalized in the [ollowing way., We assume that the control
system (C') is affine in the controls, thatl is

flayu) = fole) + 2070 wifilz), Ve, ) € R* X R™,

for some fy,..., fm i0 C(R™R?). Let V € C(R™ R) be such that

Vie) = Fo0, as 2] = +og,
Viz) >0, ¥z e R™\ {0},
Jo - ¥V £ 0in R™
Then
FoVV Y w(fi-VV),
llence it is tempting to consider the feedback law u = (.. ... ¢y, ) defined by
(3.6) u; = —f; - YV, ¥i € [1, m].

With this feedback law

ki

Ffla,u(2)) - ¥V {(e) = - folx) - VV () - ZI\]’«L(J) VVE)? <o
i=1

Therefore, € is stable for the closed loop system 2 = f(z, u(z)). By LaSalle’s invariance
principle it iz globally asymptotically stable if the following property holds:

(P} For any € C1(R;R") such that

#f) = fole(0). ¥t € R
V{z(t) =0,V e R, Vi [0.m],

one has

2(t) =0, Vi c R.

This method has been introduced by Jacobson in {72] and by Jurdjevie-Quinn [73]. There
arc many sufiicient conditions available for properiy (P}. Let us give, [or example the fol-
lowing condition, due to Jurdjevic-Quinn [73] (see also [91] for a morc general condition}.
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Theorem 3.7 With the above notations, assume thal, for ét.!(::r'y z e R™N\ {0},
Span{ fu(x). adj‘ﬁo file),i=1,....m, ke N} = R"™

Then properly (P) s satisfied. In particular the feedback low defined by (3.6) ylobally asymp-
totically stabilizes the control system (),

l.ct us recall that a.diﬁu fi € C(R™ R™) is delined by induction on & by

ad$ fi = fi.
ad’, fi = [fo,ad" 1 £i].

l.et us point out that this method is also very useful when there are somne constraints on
the controls. Indeed if, for example, one wants that, for some £ > 0,

|} € e,%i € [1,m],
then it suffices to replace (3.6) by
wilw) = —a(filz) - VV(2)),

where ¢ € C*(R;[—¢,¢]) is such that so{s) > 0 for any s € R {0}. We give an application
of this possibility in the next subsection.

3.2.1 Orbit transfer with low-thrust systems

[Hlectric propulsion systems for satellites are serjously considered for performing large am-
plitnde transfers. Let us recall that electric propulsion is characterized by a low-thrust ac-
celeration level but a high specific impulse. In this subsection, where we follow [32], we are
interested in a large amplitude transfer of a satellite i o central gravitational {ield by means
of an electric propulsion system.

The state of the control system is the position of the satellite (Lere identified with a point:
we are not considering the attitude of the salellite) and the speed ol the satellite. Instead of
nsing Cartesian coordinates, we prefer to use the “orbital” coordinates. The advantage of this
set of coordinates i3 that the first five coordinates remain unchanged if the thrust vanishes:

-these coordinates characterize the Keplerian elliptic orbit; when thrusts are applied they
characterize the Keplerian elliptic osculating orbit of the satellite. The last component is an
angle which gives Lle position of the salellite on the Keplerian elliptic osculating orbit of the
satellite. A customary sel of orbital coordinates is

p=a{l—€?),
€, = CCORW, With © =w+ Q,
£, = e8inw,
hy = tau % cos £,
hy, = lan % sin €,

L=&+4u,

where a, ¢, w, 2, { characterize the Keplerian osculating orbit:
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¢ is the semi-major axis,

e 1s Lhe eccentricity,

7 is the inclination with respect to the cquator,

e 215 the right ascension of the ascending node,

e wis Lhe angle between the ascending node and the perigee,

and where v is the true anomaly; see, e.g., [18, 109, 137}
In thiz set of coordinates the equations of motion are

=25 S

5-‘55{,1;. — i.% [Z(sin LY + AS — ey(bpsin L — hycos LHY]
37 z‘“ = \,f’?é [’ Z(cos L)Q + 13S — exlhgpsin L — by cos L)W],

e = %vf’g%(cos.a)ﬂ

=1/ E e W,

T \/ B (hgsin L~ hycos L) W,

J.-
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where 1 2> 01 a gravitational coeflicient depending on the central gravitational lield, 3, S, W,
are the radial, orthoradial, and normal components of the thrust delivered by the eleclric

propulsion systems and where

(3.8) Z=14+¢,conl 4+ eysinl,
(3.9) A=e,+(1+ Z)cos L,
{3.10) B=e,+(14+ Z)sin L,
(3.11) X=1+hi+h.

We study the case, uselul in applicalions, where
(3.12) Q =0,

and, for some £ = 0,
15] < £ and |W] £ <.

Note that = is small, since the thrust acceleration level is low.

In this subsection we give

feedback laws, based on the damping approach, which (globally) asymptotically stabilized

a given IKeplerian elliplic orbit characterized by the coordinates p;i?mey,fi_.,,,hy.

(We are

not interested in the positlon at time ¢ of the satellite on the given Keplerian elliplic orbit;
if this position is important, see [13, 32], which uses forwarding techuiques developed by
Mazenc-Praly [99] and Sepulchre et al. [113].) T ader to simplify the notations {this is not
czsential for the method} we restrict our attention to the case where the desired final orbit is

geostalionary, that is,

£y = By = hy = hy = 0.
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Let

A={0,40c) x By x R*x R,
where
(3.13) By = {e = (ep,0,) € REED —i—ei < 1}.

With this notation, one requires that the state (p. €y, ey, be, by, L) belongs to A4 . We are
looking for two maps '

S . ./-1 - [_Ea 8-_{
(P oty e By, BY = S{pe o €y gy By, L)
and
W A — [~z2, 2]

(p$ Ciry Oy fis h-ya L) e {P~ Ery Oy, fer, h‘ya L;

such that {»,0.0,0,0) € R’ is globally asymptotically stable for the closed loop system (see
(3.7 and (3.12)}

dp. _ pv| g
ot 2\/ N Z

der \/Z L [Ab e, (hysin L — hy cos )W),

(3.14) df.?: = \/E% [BS — e, (hgsin L — hycos L) W],
'f G =45 (cos L)W,
i?f =1 \/; (sin L)W,

\/T’Z —l—\/— (A, sin L — hycos L)W,

witle (p, €5, €y, rs iy, L) € A. Note that A4 # R" and that we are interested only in the first
five variables. So we nced to specily what we mean by “(p,0,0,0,0) is globally uniformly
asymptotically stable for the clozed loop systein™. Varlous natural definitions are possible.
We take Lhe one which sounds the strongest, namely we require:

o Dniform stability, that is, lor any 2y > 0, there exists €3 > 0 such that any solution of
(3.14) defined at time 0 and satisfying

|p(0) — 2 + |ex (0)] + {ey (0)] 4 |0 (0)] + Ry (0)] < 21,
is defined for any time £ 2 0 and satislies
() — pl + les ()] + ey ()] + [Aa (B} 4 1Ry (0)] < €0
forany £ 2 0.

o Uniform global aitractivily, that is, for any M > 0 and for any n > 0, there exists T > 0
such that any solution of (3.14), defined at time 0, such thal

—1-— +p(0) + -
p0) P T TS (07 609

is defined for any time ¢ = 0 and satisfies

[p(t) — Bl + e (D)) + ey (£} + [R(E)| + [y (E)] <

+ e {0)] + [y (0)] < M,

[or any time £ > T
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We start by a change of “time”, already used in Cieoffroy [54], describing the evolution of
(prer. ¢y b, By) as a function of L instead of . Then system (3.14) reads

)[fl o« L 3
& =2KpS,

der = K|AS ~ ¢ (hysin L ~ Ji, cos LYV,

%9 — KBS — ep{hesin L — hycos L)W,

(3.15) )

e = EX{cos L)W,

P = B X (sin L)W,

A g S

4L — p £
with .
(3.16) K= L: Z° 4 (hpsin L — hy cos L)W

Let ¥ be a Tunction of class € [rom (0, >} x 8, x R? into [0, 00) such that
{(3.17) Vipies, ey g, by =0 & (piéa, ey b By) = (5,0,0,0,0),

{3.18) V(. €y €ys by Ay ) = 06 1L (py €, €4 Bz By) — ({0, +o¢) x By x RY),

In (3.18), the boundary 8((0, +oc) x By x R?) is taken in the set [0, +o00] X B x [—o0, +oc]?.
Therefore condition (3.18) is equivalent to the following condition: for any A > 0, thore
exists a compact sel K included in (0, +o0) x By x R? such that

{2y €y €41 B, By) € ((0,400) X By x RN K = (V(p e €y b By) > M),

(Oue can take, for example,

o 1o , 1/ {(p—p)* e? .
' (3.19) VAP, € €y iy, hy) = 5 (T + = + 42,

with e?

= ¢+ el and h? = A2+ h2) The time derivative of V7 along a trajectory of (3.15)
s given by

V = K{aS+ 8W),

with av av I
\ . 9V
3.20 = dpo -t A de.
(33.20) a=72p ap + e, ey
av av 1 av v
{3.2] G="(h,cos L - hysinf)le,— +e,— | + =X L inL)—
(3.21) J={h,cosL - hysin f) (t‘ydex € dey) 5 ({L.US ')(W-x + (sin )()h )

Following the damping niethod, one defines

(3.22) S = —oi(a),
(3.23) W = —o3()oalp, e, k),
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where o) : R - R, 05 : R — R and o3 : {0, +oc) x By x R? — (0, 1] are continuous functions
guch that

(3.24) o1(s) s> 0, ¥seR\ {0},

(3.25) oﬂﬂ-»>0 7s € R\ {0},

(3.26) ()< €.

{3.27) || Ty ||pr_g}< £,

(3.28)  aalp e h) < — 2 (= el ¥(p.e, h) € (0,+oc) x By x (R2\ {0}).
1+zp? R

The reason for using o3 is Lo ensure the existence of i defined by (3.16). Indeed from (3.8),
{3.15), (3.23), (3.27) and (3.28), one abtains for any L € R that

] ZS )
HE 4 (hesin L — by cos LYW > 0
P’

on (0, o0c) X B) x R* and therefore K is well-defined for any (p,e, b, L} € (0,400} x By xRZxR
(sce (3.16)). One has

(3.29)

L0 ((0F00) X By x#2x )< €,
(3.30) | W [ o ((0po0) 23y x 225 EB) < S5
¥ <0, and (('» =0 e {a=F=10)).

Since the closed loop system {3.13) is L-varying but periodic with respect to I one may apply
lL.aSalle’s invariance principle: in order to prove that {$,0,0,0,0) is globally asymptotically
stable on (0, +o0) x By x R? for the closed loop system (3.15), it suffices to check that any
trajectory of (3.15) such that ¢ = 9 = 0 is identically equal to (5,0,0,0,0). For such a
trajectory one has — see in particular (3.15}, (3.20), (3.21}, (3.22), (3.23), (3.24}, (3.25) and
(3.28) -

) . s de., de. dh., dk.
{3.31 L =0, =0, L= o, X =
3.31) a =Y Tl , Yo TV u
(3.32) 0V 4V g0V

dp ey ey

a el ) av 1 1 av v
(3.33) (hycos L — hysin L) (ryd + e {'dt.y) +5- X (fu)s L)— e + {sin L} D u) =1
llence p, er, ¢y, fe el by are constant. The left hand side of (3.32) is a linear combination of
the functions cos L, sin L, cos? L, sin Lcos L and the constant functions. These funclions arc
linearly independent, so Lthat

oV v av o v

Z — o = De, — = . ) \ -
s dp +és Jeg +ey dey 0. e, 0 de,,

P

=0,

and therefore i
oV oV IV

5}? T Jey  Jey -
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which, with (3.11) and (3.33), gives

oV v
Ohy,  Ohy

Hence it snffices to impose on V that
(3.34) (VVi(p,er. 0 b by) = 0) = ({p, e, oy B, By) = (5,0,0,0,0)).

Note that, if V' is given by (3.19), then V satisfies (3.34).

3.2.2 Damping feedback and driftless systems
Throughout this subsection we again assume Lhat () is a driltless svstem, l.e.

i

flz,w) = Z wi fi{z).

i=1

We assume also that the Lie algebra rank condition {2.18) holds. Then Theorem 2.23 tells us
that, for every T > 0, the control system () is globally asymptotically stabilizable by means
of T-periodic time-varying feedback laws. Let us recall that the main ingredient of the proof
ix the existence of % in " (R" x R;R™) vanishing on {0} x R, T-periodic with respect to
time and such that, il & = f{2, @(x, ), then

{3.33) 2T} = x(0).

(3.36) Tf 2(0) #£ 0., the lincarized control system around (z, #) 1s controllable on [0, 7).

In this subsection we want to explain how the dampiung method allows to counstrict from
this 7 a T-periodic time-varying feedback law u which globally asymptotically stabilizes the
control system (C}. With slight modifications we follow [31], which is directly inspired by

Pornet. [104]. Let W € C*°(R™ R} be any function such that

W(z) = +oc as jz| = +oo,
W(z) > W(0), Y= € BR™\ {0},
(3.37) VW (z) # 0, ¥z € R*\ {0},
One can take, for example, W(z) = |z|*. Lel X(x.f) = 2.0, @iz ) filz) and let @ :
R?"x Rx R «+ R"™ (2,t,5) — ®(2,4, 5}, be the flow associated with the time-varying vector
fleld X ., 1.0
(3.38) 22— X (0,1),
(3.39) P{x, s, 5) =2,V e R", Vs € R.
Notc that by (3.33)
(3.410) $(2,0,T)= ¢(x,0.0) = 2, ¥z € R",
Let us now define Ve O (R™ x RiR) by

(3.41) Vie,t) = W(P{z,0,}).
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By (3.40), V is T-periodic with respect to time and one easily checks that

Vi, t) > V(0.8) = W{0),¥(x, t) € (R* {0}) x R,
B g poo Mind V{2, 1) 2 € R} = +0¢.

Moreover, from (3.38] and (3.41},

av
3'42 o X V¥V = D_
- o T -
so that, along the trajectories of & = 37" (@; + vy} fi (), the lime derivative vV oof ¥V is
4 ()1’( m — o . —_
et (;wf + i) i) - IV
=1

Mence, as above, one takes vz, t) = — f;(2) - VV (2, t), which with (3.13), gives

K

V= =3 (i) TV, 1))

=1

By laballe’s invariance principle, in order to prove that # = i + @ globally asymptotically
stahilizes the control system (C7, it suffices to check thal any trajectory z : R — R" of X
such that

(3.14) filz()) - NV{EH),6) =0, 7t e R, ¥i € [1, m],
salisfies
(3.15) 2(0) = 0.

Let us denote by L(R?, RY?} ihe set of linear maps [rom R¥ into RY. Let A € C(R; L{R",R"))
and I3 € C°(R; L(R™, R"™)) be defined by

(3.46) AQt) = %‘15“% &), vt € R,
(3.47) B{l) = %(5(1), a(L), vi € R.

Let B R xR — L{R*R™), {{, ) — B{4, &), be the [nadamental solution of the time-varyving
linear differential equation y = A{t)y, i.c.,

a—R = ABlRon B xR,
at :
Rls.s)s = w,%(s,2) € R x R™.

We Identify vectors with elements of Z{(R,R"®) and denote by E* £ L(RP,RY) the adjoint of
e L(RY, RY). By (3.41) one has

(VV(£{t), 1) = VW(z(0))" g% (Z(£),0,¢)
= VW(Z(0)VR(0, ), Y2 € R,
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which, with (3.44) and (3.47), gives
(YW (2(0)))" R0, ) B(t) = 0, ¥t € R.

[n particular
(VW A(z0)))" (/:“R((], z‘-)B(L}B(fﬁ)*R((l,'ﬂ)*c1{-> (VIV(Z(0}}) = 0,
which, by (3.37), shows that, if (0) # 0, the non-negative symmetric matrix
C = /Oj R(0, 1) B(1)B{t)* R(0, 1)"dt

is not invertible. But it is well-known (see, for example, [123, Theorem 5, p. 109}) that the
time-varying linear control system

g=Alt)ly+ B{H)w, £ € [0,77].

where y € R” is the state and w € R™ is the control, is controllable on [0, T {if and) ouly if
Chi= RIT,0CR(T,0)" is invertible, Hence, using (3.36), one obtains (3.453).

3.3 Homogeneity
Let us start by recalling the following classical result:

Theorem 3.8 Let X ¢ CHR™RY). If 0 is usymplotically stable for the linear system § =
X'(0)y, then Q s locally asymptotically stable for & = X ().

A classical application of this theorem to feedback stabilization i the following well-known
property. Consider the fincarized control system of ((7) around {0, 0), L.e. the linear control
syslem

y= %(010_}3;4r %{{1, 0w,
where y € B™ig the state and v € BR™ is the control. Assume that thig linear control system is
asymptotically stabilizable by means of a feedback law. Then it is asymptotically stabilizable
by means of o linear [eedback law v(x) = Ko with A € L{R™R™). By Theorem 3.8, this
feedback law locally asymptotically stabilizes the control system ().

The idea of “homogeneity” is a generalization of the above procedure: one wants to deduce
the asvmptotic stabilizability of the contro! system (€} [rom the asymptotic stabilizability
of a “simpler” system than ().

Let us now give the definition of a homogeneous vector field, Since we are going to give
an application to periodic time-varying leedback laws, the vector ficlds we consider depend
ou time and are T-periodic with respect to time. The vector fields are also assumed 1o be
continuous. Let r = (ry,...,r:) € (0,40c)*. One has the following definition {sec [108,

C'hapitre 3] for various generalizations):

Definition 3.9 The vector field X = (X1, ..., X,) is r-homogeneous of degree 0, if, for every
£ >0, every & € R™ cvery 4 € [1, n] and every ¢ £ R,

XMy, oo e t) = e Xy, s, 0).
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Since the degree ol homogeneity will be always 0 in this paper, we slall omit “of degree 07.

Example 3.10 1. A Ume-varving linear system ¢ = A{f)}y is (1, ..., 1)-homogeneocus. 2. lake
n=72and X(#1,232) = (v1 — 23, 22). Then X is {3,1)-homogeneous.

For applications to feedback stabilization, the key theorem is
Theorem 3.11 L&t us assume thai
{3.4%) X =Y+ A,

wheve Y and B are T -periodic Hme-varying vector fields such that Y is r-homogeneous and,
for some n > 0 and M > 0, one has, for cvery i € [1,n], every = € (0,1}, and cvery
= {1, .. ) € BT with 2] €1,

{3.49) |[Ri(e iy, . 870 my )| < Me™tn,
Then, if 0 is locally { =globally) asymptotically stable for & = Y (2, 1), it is also locally asymp-
totically stable for @ = X (2,1).

This theorem has been proved by Hermes in [64] when one has uniqueness of the trajec-
tories of & = Y (z), and in the general case by Rosicr in [107]. In [act [107], as well as [64],
deal with the case of stationary vector fields. But the proof of [107] can be eagily extended
to the case of periodic time-varying vector fields. Let ns briefly sketch the arguments. One
first observes thal Theorem 3.11 iz a corollary ol the following theorern, which las its own
interest and goes back to Massera [97] when the vector fields is of class €.

Theorem 3.12 ([107, 105]) fet Y be a T-periodic time-varying vector field which s r-
homogeneous. We assume that U is locally (=globally) asymptotically stable Jor & =Y (2,1).
Let p be a positive wnleger and let b € {pmaxigigs ri, +oct. Then there exists o function
Ve C™(R"Y {0}) x R;R)NCP(R™ X Ry R) such that

Viw.t) > V(0.1) = 0, V(x,1) € (R"\ {0}) x R,

-(3.50) Viet+7T)= V(e t), ¥(x, 1) e R* x R,
lim  Min {V{x,#);t € R} = 4o,

= 4o

ov . .
(3.51) -jd?+1“’-‘\71/’< 0in (R"Y {0}) x R,
(3.32)  Viztay,....e"an.t) = PV (a1, . 1), Yz 2, 0) € (0, o) x R™ x R.

let us deduce. as in [107], Theorem 3.11 from Theorem 3.12, For 2 = (1, ...,2,) € R”

and £ > 0, let
(3.53) B(5) = (€721, s 20

Let ¥ be ag in Theorem 3.12 with p = 1. From (3.51), therc exists v > § such that

IV
(3.54) (((")—f +Y- ‘FV) (2,0) < —»,
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for any £ € [0, T) and any 2 € R" such that |z 4+ .. + |;-1?n|1"(r'?‘~ = 1. Trom (3.54) and the
assumplion that ¥ is r-homaogenccus, we get that

(3.55) (%}; +Y vv) (57 (z), 1) =

L ().{— . . . . .
o (i?_r 1Y - vv) (2, ), ¥(c, 2,1) € (0, +oc) x R™ x R.

iErom (3.52) and (3.56), we obtain

15 . . ) &
{(3.56) (%}—- +Y- \71"") {w,t) € —v (|:¢?1§1f’{“ +...+ |.’£n|1f’”> Sy e Rx [0,T7.

Using (3.49) and (3.52), similar computations show the existence of ¢ > 0 such that
foy e oy - = ,1},-”,(._ 1/‘)“- 4k
'[3..)1’) (HV{’)(J",IL} g C(|:I?1; ! +...—f—|.‘17n|' "')

for any ¢ € [0,7] and any # € R™ with |2 < 1. From {3.48), (3.36) and {3.57), we gel the
existence of p > 0 such Lhat

av _ N , . _
(W + X 'VV) (r.t) < 0,¥Ve e [0,T],¥e € R" with 0 < |2] < p,
which ends the proot of Theorem 3.11.

Finally we sketch the prool of Theorem 3.12, given in [107] for stationary vector lields
and extended by Pomel and Samson in [105] to the case of time-varying vector lields. By
Kurzweil's theorem [87], there exists W € C(R™ X R;R}) such that

We.t) > W(0,0) = 0, ¥(e,1) € (R™\ {0}) x R,
Wiz t+T)=W(x 1), ¥z t) e R" xR,
lim  Min {W(a, ):{ € R} = o0,

[ e

oW

B +Y - VW < 0in (R™\ {0}} x R.
et a e € (R;R) be such that &’ 2 0, e = 01in (—o0, 1] and @ = 1 in [2,40c). Then one can
prove that V', defined by

Vi, t) :/' QT%}_T(L[V(S”,‘..,.s?"-'*_._t})ris,V(:z:,t} £R"x R,
1] -

satisfies all the required conditions,

Example 3.13 Tollowing [39], let us give an application to the coustruction of explicit time-
varviug feedback laws stabilizing asymptotically the attitude of a rigid body spaceccraft with
two controls, a problem already considered in Examples 2.13, 2.17 and 2.33. Without loss of
ccneralily we may assume that {v1hy + veby: {¥1,v2) € R?} = {0} x R?. So, after a change of
the control variables, (2.9) can be replaced by

(3.58) W = Q) FwrLi(w), Wh =V, Wy =Va, = Alnle,
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with Lyw = Dywy + Ffws + Fiws, Qw) = Aw? + Buwaws —I—Cu;'_.ﬁ. For system (3.38) the countrols

are Vi and V5. It is proved iun [79] that @ changes sign if and only if the control system (2.9)

satisfles the strong Lie algebra rank condition at (0,0) which, by Theorem 2.9, is a necesgary

condition [or small time local controllability. From now on we assume that ¢ changes sign
this is 4 generic situation. lence, after a suitable clange of coordinates of the [orm:

1 0 0
{3'59) w=Fo= 0 g b.r} @,
0 o rfp
systern (3.58) can be written
{3.60) D) = a1 Lo(@), Gy = wy, O3 = uy, = A{n)PE

with Loo = Dby + Eoisy = Fodss. Let ¢ = det Py we can always choose P so that ¢ > 0, Let

. - 1 .
T =Wy, By =Wy, Ty =Wy, Tn = _((Epg - IFJIO'Q'L‘J'I.I
bpdyp Uty

1, : 3
g = (= +apih), w9 = ¢ — 7wy — —-=u3 — byeprany.
¢ 2 2
In these coordinates, our system can be wrillen
(3.61) By = w52 + Bi{2), @ = w1 + 