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Problem no 1: the mobile robot

Many mobile robots admit on the same axis two wheels independently actuated via
two electrical drives. Denote by (2,y) € R? the Cartesian coordinates of the middle of
this axis, & € [0, 2n[ the orientation of the robot. The rolling without slipping conditions
vield the following dynamics:
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where (z,y, #) is the state and v = (v,w) € R? the control (v corresponds to the average
wheel velocities and w to their difference).

1. What are the cquilibrium points of the systern 7 Write down the tangent linear
system around any equilibrium and study its controllability.

2. In this question, the goal is to follow the x-axis with a constant velocity a > 0. We
have thus the following reference trajectory:

(ty=at, u(t)=0 8&.()=0, u{t)y=a, w(t)=0.

Wesetz =z, + A, y=y+ A, 0=0.+ Dy, v =0+ A, and w = w, + A, where
the errors A,, ¢ = z,y,6, v, w, are assumed to be small.



{(a) Show that, up to second order terms, the lincar equations satisfied by the A,’s
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with (A, A, ) as control.

(b) Prove that (2) is controllable. Compute its Brunovsky output (flat-output}
and give the static feedback that stabilizes the errors dynamics. We will denote
by (p1, pe, ps) the poles of the closed-loop system. Discuss their choices with
respect to characteristic quantities such as ¢ and the distance I > 0 between
the wheels.

3. In this question the goal is Lo follow a smooth curve defined by its arc length
parameterization s — (,(s), 4,.(s)). Denote by 0,.(s) its tangent angle and «,.(s) its
curvature. We recall the Frénet formulac
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The tracking velocity a > 0 is still constant. Instead of the cartesian crrors (A, A,)
used previously, we introduce the tangent A and normal A errors defined by
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(a) Prove that the reference control is

wn(ty=a, w.(t)=ax.(at)

Prove that, up to second order terins, the tracking errors A, (o =||, L,8,v,w)
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with (Ag, A,) as control .



(b) We will assume here that, in (3), the curvature ,.(s) varies slowly: s,(at) = R,
is assumed to be independent of ¢ (in a first approximation). Show that (3)
is controllable. Give its Brunovsky output. Design the static feedback that
stabilizes the tracking errors (we still denote by (p1,ps2,ps) the closed-loop
poles). '

{¢c) How to cxploit the previous iracking controller if the goal is still to follow

the same curve s — (z,(5),y.(s}} but with a time varying reference velocity

at) = dst*" corresponding to a prescribed time paramecterization ¢ = s,.{#} 7

Problem no 2: diving with a stabilizing jacket

surface pressure py
0

water: volumic mass p

volume 1; mass m

depth &
pressure p = py + ph

Y stabilizing jacket: volume V,, mole number ,

We study here the vertical dynamics of a person diving with a stabilization jacket admit-
ting a varying air quantity N, (flush valve for Nq = u < {), and air bottle for Ng =u > 0).
With the figure notation, the depth 2 dynamics is given by the Newton equation along
the vertical. It involves the Archimedean force pg(Vy + V,) where Vj is obtained as a
function of the pressurc p = pg + ph at h via pV, = N RO, the perfect gas law (R and 4
are constants). We have thus
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In the sequel, b > 0, Ny = 0 and m > plG. We denote by @ = (h,dh/di, N,) the state.

Constant control

1. We assume here u = (.

(a) Compuic the equilibrium state # as a function of the depth A = h>0.



(b} Show that

m

Wiz) = _2_}},2 + (pVo — m)gh + gRON, log (1 + Eﬁ)

o
is a first integral .
(¢} Draw in the phase space (h,h) the behavior of the trajectories around (%, 0)

(phase portrait). The cquilibrium state 7 is it stable or unstable 7

2. Show that the matrices A and I of the tangent system around z = Z and v ~ 0
admit the following structure

0 10 0
A= a 0 ), B=10
00 0 1

Compute o and @ with respect to h. Give the eigenvalues of 4. Recover that the
open-loop system is nnstable.

3. Shows thatl arcund & the system cannot be stabilized via a simple output feedback
on k, 1.c, for all k € R the closed-loop system with u = k{(h—h} is not asymptotically
stable (This explains why the control is not so casy in practice....)

Motion planing and tracking

The goal is to start at the equilibrium at depth 4 al ¢ == 0 and to arrive at time ¢t =7 > 0
at the equilibrium with depth b < A.

1. We suppose that A and A are closc cnough such that the tangent model around h
remaing valid for & between ki and A.

(a) Show that the linear tangent dynamics around Z is controllable and give its
Brunovsky output (flat output).
(by Compute an open-loop control [0,7] 2 ¢ +— u,.(¢) and a reference trajectory

[0, 7] 3t z.(t) (we still denote by = the state of the lincar tangent model)
that provides the transition from A to A

(c¢) Construct the tracking feedback.

2. We do not suppose that I and b are close. Solve the question 1b with the nonlinear
system instead of the linear onc. How to chose T in order to respect the physical
comstraint V, > 07



