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Problem no 1: the mobile robot
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Many mobile robots admit on the same axis two wheels independently actuated via.
two electrical drives. Denote by (x,y) € M2 the Cartesian coordinates of the middle of
this axis, 9 6 [0, 2?r[ the orientation of the robot. The rolling without slipping conditions
yield the following dynamics:
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where (x. y. 9) is the state and u — (v,w) € 1R2 the control (v corresponds to the average
wheel velocities and OJ to their difference).

1. What are the equilibrium points of the system ? Write down the tangent linear
system around any equilibrium and study its controllability.

2. In this question, the goal is to follow the x-axis with a. constant, velocity a > 0. We
have thus the following reference trajectory:

xr{t) - at, yr(t) - 0, 9r(t) = 0, vr(t) = a, ur(t) = 0.

We set x — xr + A^, y — yT + A r . 8 ~ 6r + Ao, v = vr + A.u and w = ur + Aw where
the errors ACT, a = x,y,8,v.uj, are assumed to be small.



(a) Show that, up to second order terms, the linear equations satisfied by the
are
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with (A.L1, Aw) as control.

(b) Prove that (2) is controllable. Compute its Brunovsky output (flat-output)
and give the static feedback that stabilizes the errors dynamics. We will denote
by {p\;'[>2,Vi) the poles of the closed-loop system. Discuss their choices with
respect to characteristic quantities such as a and the distance I > 0 between
the wheels.

3. In this question the goal is to follow a smooth curve defined by its arc length
parameterization s i-> (xr(s), yr(s)). Denote by 0r(s) its tangent angle and Kr(s) its
curvature. We recall the Frcnct formulae
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The tracking velocity a > 0 is still constant. Instead of the cartesian errors (A,., A?/)
used previously, we introduce the tangent A|| and normal Aj_ errors defined by
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(a) Prove that the reference control is

vr(t) = a, — a,Kr(at).

l'rovc that, up to second order terms, the tracking errors Aff (a ^I^-L,^,^,
satisfy
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with (Ay, A,,,) as control .



(b) We will assume here that, in (3), the curvature nr(s) varies slowly: Kr(a() fs Kf

is assumed to be independent of t (in a first approximation). Show that (3)
is controllable. Give its Bnmovaky output. Design the static; feedback that
stabilizes the tracking errors (we still denote by (j>i,P2,Ps) the closed-loop
poles).

(c) How to exploit the previous tracking controller if the goal is still to follow
the same curve s i—> (xr(.s);yr(s)) but with a time varying reference velocity

«(*) = -4f corresponding to a prescribed time parameterization 11-> ,sy(£) ?

Problem no 2: diving with a stabilizing jacket
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We study here the vertical dynamics of a person diving with a stabilization jacket admit-
ting a varying air quantity Ng (flush valve for Ng ~ u < 0, and air bottle for Ng = u > 0).
With the figure notation, the depth h dynamics is given by the Newton equation along
the vertical. It involves the Archimedean force pg(Vo + Vg) where Vg is obtained as a
function of the pressure p — p0 + ph at h via pVy ~ NgRd, the perfect gas law (R and 0
are constants). We have thus

mh= { m — p
RON,

Po + ph (4)
Ng = u.

fn the secmel, h > 0, Ng > 0 and m > pV0. We denote by x = (h,dh/dt,Nu) the state.

Constant control

f. We assume here u = 0.

(a) Compute the equilibrium state x as a function of the depth h = h > 0.



(b) Show that

W(x) = jh2 + (pVQ - m)gh + gBBNg\og M + ^ J

is a first integral .

(c) Draw in the phase space (h,h) the behavior of the trajectories around (/i,0)
(phase portrait). The equilibrium state x is it stable or unstable ?

2. Show that the matrices A and B of the tangent system around x ~ x and u ~ 0
admit the following structure

A =

Compute ex and 0 with respect to h. Give the eigenvalues of A. Recover that the
open-loop system is unstable.

3. Shows that around x the system cannot be stabilized via a simple output feedback
on h, i.e.. for all fc£8 the closed-loop system with u = k(h—h) is not asymptotically
stable (This explains why the control is not so easy in practice....)

Motion planing and tracking

The goal is to start at the equilibrium at depth h at t ~ 0 and to arrive at time t = T > 0
at the equilibrium with depth h < h.

1. We suppose that h and h are close enough such that the tangent model around h
remains valid for h between h and It.

(a) Show that the linear tangent dynamics around x is controllable and give its
Brunovsky output (flat output).

(b) Compute an open-loop control [0,T] B t ^ ur(t) and a reference trajectory
[0. T] B L i—> xr(t) (we still denote by x the state of the linear tangent model)
that provides the transition from h to h

(c) Construct the tracking feedback.

2. We do not suppose that h and h are close. Solve the question 1b with the nonlinear
system instead of the linear one. How to chose T in order to respect the physical
constraint Vg > 0?


