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1 Introduction

System modelling in general is difficult and requires time to properly under-

stand the system and identify a model. This exercise is complicated when the

system integrates living organisms. On the contrary to domains like physics

where laws that are known since centuries (Ohm law, ideal gas relationship,

fundamental principle in mechanics, thermodynamic principle, ...) can apply,

most of the biological models rely on empirical laws. These laws result from a

priori ideas on the working of the system (metabolism, trophic relationships,

etc.) or, in some rare cases, have been estimated from some experiments.

Since it is not possible to use laws that are admitted by everybody and that

have been extensively validated and used, it is primordial to characterise the

reliability of the laws used during the model development. This implies that

the reliability of the used relationships must be classed hierarchically dur-

ing the model development. In this chapter, we will see how to organise the
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knowledge in the model in order to distinguish a reliable part issued from the

mass balance and a more speculative part which will represent the bacterial

kinetics.

The model quality and the model structure must above all be determined

with respect to the model objectives. Indeed, a model can be developed for

very different purposes that must be clearly identified. Will the model be

used in order to:

• Reproduce an observed behaviour

• Explain an observed behaviour

• Predict the system evolution

• Understand some of the system mechanisms

• Estimate non measured variables

• Estimate process parameters

• Act on a system to regulate and impose the values for its variables

• Detect anomalies in the process working

Depending on the modelling objectives and resources, a formalism must

be chosen. If the spatial heterogeneity is important and must be taken into

account in the model, a parameter distributed model must be written (using

e.g. partial differential equations). If the modelling aims at the improvement

of a metabolite production during transient phases, the system dynamics

must be represented in the model.

Moreover, besides its objectives, the model must also be in adequation

with the available data. Indeed a complex model involving a large number of



parameters will also require a large amount of data to identify its parameters

and to validate the model.

Finally, if we remember that most of the laws used in biology are specu-

lative, the key step in the modelling of bioprocesses is the model validation.

This step is often neglected, despite its determinant role to guaranty the

model quality. In particular it is crucial to demonstrate that the model

reaches properly the goals for which it was developed.

2 Principle of a bioreactor

2.1 The use of microorganisms

The fermentation principle consists in exploiting metabolic reactions that

take place in the cell of a micro-organism (bacteria, yeast, phytoplankton,

etc.). In order to activate the micro-organisms interesting metabolic path-

ways, some specific environmental conditions must be applied (temperature,

pH, nutrient concentration). The microorganisms generally need nutrients

to growth and precursors or activators in order to produce specific molecules.

The simplest required reaction is the growth process itself in order to recover

the biomass of microorganisms.

In these metabolic reactions, we can distinguish the following biochemical

components:

• the substrates S;, which are necessary for the goal of the fermentation

(growth of the microorganisms and/or precursor for the metabolite

to be produced). The substrate associated with growth must contain

all the elements necessary to sustain growth (i.e. N, C, K, P, Fe,

...). In general, these elements are added in excess so that they are

never limiting during the cultivation. Only the main nutrients (carbon,

nitrogen or phosphorus source) are monitored along the cultivation.



• microbial biomasses (denoted Xz). The microorganisms can be of var-

ious type and species (bacteria, phytoplankton, fungi, yeast, etc ) ;

• the products of the biochemical reactions,(denoted P?;). These prod-

ucts can be in the agro-industrial field (cheese, beer, wine, ... ),

chemistry (enzymes, colourings...), pharmaceutical industry (antibi-

otics, hormones, vitamins...) or for energy production (ethanol, bio-

gas...)...

• catalysts: they can neither be produced nor consumed during the re-

action, but they are necessary.

Depending on the objectives of the fermentation, specific microorganisms

will be grown in order to enhance:

• production of biomass itself. It is for example the case for the produc-

tion of backer yeast.

• production of a metabolite. The goal is to enhance the cellular synthesis

of a particular compounds (ethanol, penicillin, ...).

• substrate uptake. In this case, the substrate degradation itself is the

objective. This is more specially used to remove pollutants from a

liquid medium. Most of the biological depollution processes are among

this category.

• phenomenological studies. In this particular case the fermentation aims

a better knowledge of the microorganism. The application can be to

better understand how the microorganisms grow in the natural field.

2.2 The main types of bioreactors

There are a great deal of different bioreactors. Depending on the type of

microorganisms that are grown, they will need a support to settle or can be



free in the liquid. They can resist to more or less intense shearing constraints

which will implicate a specific steering system. These two main requirements

will determine the type of bioreactor. Two classes can be identified (Bailey

and Ollis, 1986):

• stirred tank reactors (CSTR) in which the medium is homogeneous and

each element of volume will represent the concentrations in the whole

fermenter

• the bioreactors with non homogenous concentration along space. In

particular the bioreactor for microorganisms using a support to growth

(called a "bed") are in this category.

When the medium is homogeneous it can be described by ordinary dif-

ferential equations. When a strong spatial distribution must be taken into

account a model based on partial differential equations are more appropriate.

In this lecture we will present only the CSTR modelled with ODE.

2.3 Working of a bioreactor

2.3.1 Presenta t ion

Figure 1 presents a simplified conceptual scheme explaining the principle of

a bioreactor. It is mainly a culture vessel of volume V where the microor-

ganisms grow. A pipe feeds the vessel with an influent medium (with flow

rate Qin) and another one withdraws the culture medium with a flow rate

Wout-

Depending on the way the fermenter is fed and withdrawn, 3 basic working

modes can be identified (figure 2).
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Figure 1: Principle of a bioreactor
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Figure 2: The various working modes of the bioreactors



2.3.2 Batch mode

The system is in batch during the fermentation, and has a constant volume,

since no feeding or withdrawal are performed during the fermentation. An

inoculum of micro-organisms is introduced at the initial time with all the

nutrients and substrates. The biomass or the final product are recovered at

the end of the fermentation. The advantage of this approach is that it avoids

the contaminations with other bacteria that can come in an open system.

The drawback is the limited means of action to act on the fermentation

(pH, temperature, aeration...). Therefore the batch mode is often the less

optimal from the automatic control point of view to optimise a cost criterion.

Nevertheless, this is the most used mode in the industry.

2.3.3 Fedbatch mode

As for the batch mode the duration of a fedbatch is finite. But here the

fermenter is fed and starts from a volume Vo to reach a volume Vf at the end

of the fermentation. This mode allows a better control of the growth and

biotransformation process along the fermentation. The fedbatch processes

are often in closed loop. This operating mode is particularly used when the

product to be recovered necessitates to empty the bioreactor like e.g. for

intracellular components.

2.3.4 The continuous mode (chemostat)

This is the most popular mode in the field of wastewater treatment. The

volume of the bioreactor is constant since the influent flow rate is equal to

the effluent flow rate. This the mode that provides the richest dynamics, and

therefore which present the more latitude to optimise the process. It is also

often used in laboratories to study the physiology of a microorganism. The

advantage is also that it allows important productions in small size reactors.



2.3.5 The Sequencing Batch Reactors (SBR)

It is a combination of the various working mode. The idea is to recover the

biomass before emptying the bioreactor. For this, the agitation is stopped

to let the biomass settle. The different steps used for wastewater treatment

are presented on Figure 3.

§§§§

HHHi

1-Filling

^||^pp

2 - Reaction 3-Settling

4-Sludge removal 5-Emptying \ 6-Back to step 1 ...

Figure 3: SBR (sequencing batch reactors): representation of the different

steps

In the same way, the SFBR (sequencing fedbatch reactor) is a SBR with

a stage of filling that follows a fedbatch mode.



3 The mass balance modelling

3.1 Introduction

The modelling of biological systems is delicate because it is not based on val-

idated laws, like in other fields (mechanics, electronics, etc). The evolution

of microorganisms is very complex and does not follow any clear law. Never-

theless, this system has to respect some rules, like all the physical systems.

For example, the mass conservation, the electro neutrality of the solutions,

etc. We will see in this section how to take these aspects into account in

the model design. As a result, this mass balance approach will a guaranty a

certain robustness in the model.

3.2 Reaction scheme

The reaction scheme of a biochemical process is a macroscopic description of

the set of biological and chemical reactions which represent the main mass

transfer within the fermenter. A formalism close to this used in chemistry is

adopted (Bastin and Dochain, 1990). A set of substrates Si are transformed

into products Pi following 3 possibilities:

• The reaction is a pure chemical reaction, and no biomass is involved.

The reaction is then a classical chemical reaction:

Si + S2 + ... + Sp —> Pi + ... + Pq

• The reaction is catalyzed by a biomass X. The biomass acts only as

a catalyser and the reaction is not associated with the growth of the

microorganisms:

s1 + s2 + ... + sp - ^ P1 + ... + p
q



• The reaction is associated with growth of the microorganisms. There-

fore the biomass is also a product of the reaction.

Sx + S2 + ... + Sp -^ Pi + ... + Pq + X

The reaction scheme is a concise way to summarise at the macroscopic

level a set of reactions that are assumed to determine the process dynamics.

The reaction scheme is therefore based on the assumptions related to the

available phenomenological knowledge of the process.

In general only the main components of a reaction are represented. In-

deed, it would be very difficult to present a real reaction for the growth of

a micro-organism since a great deal of components are necessary (Fe, Pb, F,

In the sequel, we will detail the reaction scheme by adding the yield

coefficients associated with the consumption (hi) or the production (£;•) of

each coefficient. Moreover, we will also indicate the rate of the reaction cp:

fciSi + k2S2 + ... + kpSp -£+ fciPi + ... + k'qPq + X

The consumption rate of Si is thus kiip, the production rate Pi is thus k'^p.

By convention (p corresponds to the production rate of the biomass.

In the sequel we will assume that the reaction scheme is composed of

a set of k biological or chemical reactions. We will considered n variables

(chemical concentrations, biomass,...).

3.3 Choice of the reactions and of the variables

The choice of the number of reactions to be taken into account and the choice

of the state variables is capital for the modelling purpose. It will be guided by

the available knowledge on the reaction scheme on the basis of the available

data set. Often the complexity of the model is too high with respect to the
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amount of data that are available to test and validate the model. It must be

chosen with parsimony, keeping in mind the objectives of the model.

The choice of the reactions and of the variables will mainly determine the

model structure, it must be considered with care. We will see in section 6

how to validate this reaction scheme.

We briefly present in Appendix A a procedure to determine the number

of reactions that must be taken into account with respect to the available

data.

In the sequel, we will assume that the reaction scheme:

• represents the main mass and flow repartition between the set of reac-

tions that intervene in the process,

• is a set of reactions whose yield coefficients are constant.

3.4 Example 1

We will consider here the example of anaerobic digestion. This process is

used to remove a polluting substrate (Si) from wastewater thanks to anaer-

obic bacteria. In fact, this is a very complex process which involves several

different bacterial populations (Mosey, 1983). If the modelling objective is

to control this intricate ecosystem in order to improve the pollution removal,

then we need a rather simple model. This is why, to limit the model complex-

ity, we consider only two main bacterial populations. We assume therefore

that the dynamics can be described by two main steps:

• An acidogenesis step (with a rate r*i(.)) in which the substrate Si is

degraded by acidogenic bacteria (XL) and is transformed into volatile

fatty acids (VFA) (52) and CO2:

hi Si r-H Xi + k2S2 + hCO2 (1)
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A methanogenesis step (with a rate r2(.)), where the volatile fatty acids

are degraded into CH4 and CO2 by methanogenic bacteria {X2).

ksS2
 rj^X2, + kb CO2 + h CH4 (2)

The constants ki,k2,k^ respectively represent the stoichiometric coef-

ficients associated with substrate Si consumption, production of VFA and

CO2 during acidogenesis. £3, £5 and fcg respectively represent stoechiomet-

ric coefficients associated with VFA consumption and with CO2 and CH4

production during methanogenesis.

It is worth noting that in some sense this reaction scheme has no biological

reality since biomasses X\ and X2 represent a set of different species. In the

same way for substrates Si and S2 which gathers a set of heterogeneous

compounds. A lot of models can be found in the literature for this process

(Hill and Barth, 1977; Mosey, 1983; Moletta et al., 1986). Generally, the

description of the processes within the bioreactor are much more detailed

(Costello et al., 1991; Batstone et al., 1997) but it leads to models difficult

to use for control purpose.

4 The mass balance models

4.1 Introduction

We will consider an continuously stirred tank reactor that guarantees a per-

fect mixing. We will see that independently of the working mode (batch,

fedbatch, continuous), the dynamical behaviour of the biological or chemical

compounds in the reactors can be directly deduced from the reaction scheme.

We will show on a very simple example how the dynamical model can be

established.
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4.2 Example 2

We will consider here the very simple example of the growth of a micro-

organism X on a substrate S with rate r(.):

The yield coefficient associated with substrate consumption is denoted k.

We assume that the influent flow rate is Qin and that the effluent flow

rate is Qout- We denote by x and s the total amount of biomass and substrate

in the volume V of the bioreactor.

Let us consider the evolution of V(t), x(t) and s(t) between two very close

time instants t and t + dt.

The evolution of the total liquid volume V is rather simple:

V(t + dt) = V(t) + Qindt - Qoutdt

For the biomass, we have to take into account the new biomass produced

between t and t + dt. The production term in the whole volume V is r(.)Vdt,

and thus:

x(t + dt) = x(t) + r(.)Vdt - Qoutdt^

Note that, in order to compute the biomass lost in the effluent (in the volume

Qoutdt) we assume that the concentration in the small volume is the same as

in the whole bioreactor (i.e. f?)- At this point the hypothesis of homogeneity

in the reactor is crucial.

In the same way, for the substrate, we must also consider the quantity of

substrate (with concentration Sin) arriving between the two time instant:

s(t + dt) = s(t) + QinSin - kr(.)Vdt - Qoutdt^-
V
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For a very small dt, we can then derive the following equations:

ds s
— = -kr(.)V + QmSin - Qout- (4)
at V

, ^ = Qin ~ Qout (5)
v at

Now, let us rewrite this model in term of concentration i.e. using the

variables X = ^ and S = jf). It is straightforward to see that we get the

following model:

(6)

where D — ̂  corresponds to the dilution rate.

Model (6) simplifies for the various working modes:

• Batch. In this case we have Qin = Qout = 0. The volume is then

constant.

• Fed batch. Here Qout — 0; ^ = Qini V is increasing.

• Continuous mode. The volume V is constant since Qin = Qout-

For sake of simplicity, in the sequel we will not describe the fed batch case

and we will concentrate on the batch or continuous mode. This simplifies

the equation since we do not need the equation which forecasts the volume

evolution.

4.3 Matrix representation

The reaction scheme leads to the following mass balance model which de-

scribes equivalently the mass flows within the bioreactor (Bastin and Dochain,
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1990):

i (7)

Where £ is the state vector containing all the process compounds and biomasses,

£in is the vector of the influent concentrations, r(.) is a vector of reaction rates.

The matrix K contains the stoechiometric coefficients (yields). Q(£), repre-

sents the gaseous terms of exchange between the liquid and the gas phase.

The dilution rate, D, is the ratio between the influent flow rate Qin and the

reactor volume V.

Remark 1 In the case of the fed batch process, the state vector must also

contain the volume V of the reactor. The last equation will describe the

volume evolution (cf. equation (5)).

4.3.1 Example 2 (continued)

Let us consider model (6) working in continuous mode (V is constant, D —

^ model can be rewritten as follows:

It corresponds exactly to the general model, (7) with:

< - ' - ' • * = - * 1 & - u
in

4.3.2 Example 1 (continued)

Now let us come back to the anaerobic digestion example (see section 3.4).

We will assume that the methane solubility is very low and therefore that it

directly goes into the gas phase. The carbon dioxide is stored in the liquid

phase where he enters in the inorganic carbon compartment (C).
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The mass balance model is then the following:

~ = r2(.)-DX2 (9)

^ (10)

k2rl{.)-k3r2{.) (11)

(12)

where Sun, S2in and Cin are respectively the influent concentrations of sub-

strate, VFA and dissolved inorganic carbon. The term qc{0 represents the

inorganic carbon flow rate (of CO2) from the liquid phase to the gaseous

phase.

4.4 The gaseous flows

We have to take into account the compounds which have a gaseous phase

for the mass balance. Indeed, the gaseous species can escape the bioreactor

after going from the liquid to the gaseous phase (they can also enter into the

bioreactor).

We use for this Henry's law which describes the molar flow rate of a

compound C from its liquid phase to its gaseous phase:

qc = KLa(C - C*) (13)

Remark 2 If qc < 0, it means that the gaseous flow will take place from the

gaseous phase to the liquid phase.

The transfer coefficient KLa (1/T) highly depends on the operating con-

ditions and especially from stirring, and the exchange area between the liquid
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and the gaseous phases (size of the bubbles) (Merchuk, 1977; Bailey and 01-

lis, 1986). The modelling of this parameter with respect to the operating

conditions can be very delicate.

The quantity C* is the saturation concentration of dissolved C. This

quantity is related to the partial pressure of gaseous C (Pc) thanks to Henry's

constant:

C* = KHPC (14)

Henry's constant can also vary with respect to the compounds in the culture

medium or the temperature.

Moreover, when several gaseous species are simultaneously in the gaseous

phase, they must follow the ideal gas law. This will give a relationship of

constant ratio between molar flow rates and partial pressures. For m gaseous

species C\ . . . Cm:

Pel Pc2 Pcm /., r\
— — . . . — [ID)

Qcl Qc2 Qcm

4.5 Electro neutrality and affinity constants

The electro neutrality of the solutions is a second rule that the biological

systems must respect: the anions concentrations weighted by the number

of electrical charges must equal the concentration of cations with the same

weighting.

The chemical reactions are often well known and an affinity constant

is generally associated. This constant is generally related to the protons

concentration i7+ , and therefore to pH.
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4.6 Example 1 (continued)

4.6.1 Gaseous flows

The methane flow rate is directly related to methanogenesis:

qM = k6r2(.) (16)

The gaseous CO2 flow rate follows Henry's law:

qc(O = KLa(CO2 - KHPC) (17)

where Pc is the CO2 partial pressure.

4.6.2 Affinity constants

In the anaerobic digestion example, we will use the electro neutrality and the

chemical affinity constants:

In the usual operating range of pH for these processes (6 < pH < 8) we

assume that the VFA are under their ionised form. The dissolved CO2 is in

equilibrium with bicarbonate:

CO2 + H2O <* HCOz + H

The affinity constant of this reaction is then

Kb ~
HCO-3

co,
4.6.3 Electro neutrality of the solution

The cations (Z), are mainly ions which are not affected by biochemical reac-

tions (Na+,...). Therefore, their dynamics will simply follow, without modi-

fication the cation concentration Zin in the influent, so that:

^ = D(Zm - Z) (19)
at
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The anions are mainly represented by the VFA and the bicarbonate. Electro

neutrality ensures then that:

Z=S2 + HCOl (20)

4.6.4 Conclusion

If we add equation (19), the model can finally be rewritten under the matrix

form (7), with :

x,
x2
z
Si

s2
c

1
0

0

-h
k2

KA

0
1

0

0

-kz

k5

(21)

0

0
7
^in

lin

1m

^in

, Q =

0

0

0

0

0

<lc (0

(22)

An elimination of variables HCO3 , CO2, and Pc using equations (17),(15)

(18) and (20), leads to the following expression for Pc(0 (cf (Bernard et al.,

pear)):

- AKHPT{C + S2- Z)
Pc{i) 2K~H

k
setting: (f> = C + S2 - Z + KH PT H —r2(.), we finally get

kLa

= kLa(C + S2 - Z - KHPC(O)

(23)

(24)
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4.7 Conclusion

At this stage, we end up with a model based on the following physical and

chemical principles:

• Mass balance

• Ionic balance

• Affinity constants

• Ideal gas law

• Henry's law

The more important hypothesis (with respect to model reliability) is the

mass balance hypothesis deduced from the reaction scheme. This hypothesis

will therefore require to be validated in the sequel of the modelling approach.

The mass balance model can be used in this form for monitoring or control

purpose. Indeed, using the approaches developed in the framework of systems

with unknown inputs (Kudva et al., 1980; Hou and Mller, 1991; Darouach,

1994) approach, the unknown reaction rates can be removed thanks to ade-

quate state transformations (Bastin and Dochain, 1990).

Nevertheless, if the initial objective consists in simulating the system,

then the reaction rates r^(.) must be written with respect to the state vari-

ables and to the system inputs (environmental variables). This step is much

more delicate and a lot of hypotheses difficult to verify are requested.

5 Modelling of the kinetics

5.1 Introduction

For some specific purposes (optimal control, simulation, predictions, etc) it

is necessary to have an analytical expression relating the reaction rates to
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the state variables of the system. We have nevertheless to keep in mind

that these expressions are most of the time approximate relationships issued

from empirical considerations. Therefore we leave the background of physical

modelling presented previously.

In this section we will see how to hierarchies the assumed hypotheses in

order to obtain a two reliability level description of the kinetics.

5.2 The mathematical constraints

5.2.1 Positivity of the variables

A priori, some physical constraints that the model must respect are known:

The variables must remain positive and they must be bounded if the amount

of matter entering in the bioreactor is bounded. These physical constraints

will impose constraints on the structure of the r^(.). Some quantities (per-

centage, ratios, etc) must remain between known bounds. To guaranty that

the model respects this property, it should verify the following property:

Property 1 (HI) For each state variable £ £ [A;mm, ^im^L the field ^ on

the boundaries must be directed in the admissible space. In other words, the

following conditions must be satisfied:

£ = Li max => £i < 0

Particular case: We must have £?; = 0 =£> £; > 0. in order that variable

£i remains positive

5.2.2 Variables that are necessary for the reaction

The second important constraint which must be satisfied by the biochemical

kinetics is related to the reaction scheme. A reaction can not take place if
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one of the reactant necessary for the reaction is missing. This justifies the

following property:

Property 2 If £j is a reactant of reaction i, then £j can be factorized in r?;:

We verify then easily that ^ = 0 => r?;(£, u) = 0

In the same way, for the reactions associated to a biomass X, we have

the same property. Therefore a growth reaction can be rewritten

The term /^(£, u) is called the growth rate.

5.2.3 Example 1 (continued)

Let us consider the anaerobic digestion model given by equations (8) to (11)

and let us apply the state positivity principle:

X1 = 0=*ri( .) > 0 (25)

X2 = 0=>r2(.) > 0 (26)

S, = 0 => D(SUn - SO - fcinG) > 0 (27)

S2 = 0 => D(S2in - S2) + k2n(.) - fc3r2(.) > 0 (28)

Equations (25) and (26) are not very informative. In order that (27) and

(28) are respected whatever the experimental conditions, it requires:

Moreover, biomasses X\ and X2 are necessary, respectively for reactions

1 and 2, and thus:

Xi and r2(.) =

22



Finally, we must have:

r1(.) = 5iX1i/1(.) (29)

r2(.) =S2Xlv2{.) (30)

5.2.4 Phenomenological knowledge

We will exploit the available phenomenological knowledge (even if it is often

speculative) in order to propose an expression for the reaction kinetics.

First, the laboratory experiments allows one to determine the variables

which act on the reaction rates. We have seen that the reactant and some-

times the biomass must be found among these variables.

Then, we must know whether the reaction is activated or inhibited by

these variables. It often happens that a variable is activating and that she

becomes inhibiting at high concentrations (toxicity effect).

Now, there remains to propose an analytical expression which will take

into account the mathematical constraints so as the phenomenological knowl-

edge on the process. For this, the modelling choices rely on one hand on

experimental observations (when they exist!) and on the other hand on the

available models in the literature. In all the cases, the parsimony principle

will be privileged to guaranty that the models can be identified and validated.

The following paragraph details the list of models that are often found

in the literature to describe some typical reactions. These examples are

indicative and a very large number of different models can be found in the

literature, in particular to describe the growth rate (Bastin and Dochain,

1990; Bailey and Ollis, 1986).
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5.3 The growth rate

5.3.1 The Monod model

The most commonly used model is the Monod (Monod, 1942) model which

uses the kinetics identified by Michaelis-Menten for enzymatic kinetics :

S
M = flmax~fp j ^ (31)

Umax is the maximal growth rate and Ks the half saturation constant.

This simple model summarises the two main phases of the growth of a

microorganism:

• Unlimited growth, for high values of substrate (S > > ifs).The growth

rate is then constant, equal the maximal growth rate

• The limited growth, for small values of substrate. In this case the

growth rate is approximately proportional to the substrate.

Note that the similitude between enzymatic reaction and growth of a

microorganism are often used to justify the analytical expression of a reaction

rate (Segel, 1984; Edelstein, 1988).

5.3.2 Haldane model

The Haldane model, initially proposed for an enzymatic reaction can be used

to represent a substrate inhibiting the growth at high values (Andrews, 1968):

S
ft — ftrnax~ ~ ^2" (32)

where Ki is an inhibition constant. This model predicts that the growth rate

is inversely proportional to the growth rate at high concentrations.
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5.3.3 multiple limitations

When two substrates Si and 52 are simultaneously limiting the growth, a

usual way of modelling the reaction rates is to take the product of two

Michaelis-Menten kinetics:

( 3 3 )

where KSl and KS2 are the half saturation constants associated respectively

to substrates Si and 52-

If one of the substrate (say Si) is at high concentration, the growth rate

is then equivalent to a Monod model with respect to the other substrate (i.e.

5.4 Kinetics representation using neural networks

We expose briefly here an alternative method to represent the kinetics using

a neural network. The global model will then be composed of a mass balance

model based on O.D.E, and of a neural network for the reaction rates. In

this sense it is an hybrid model. No a priori hypotheses are performed on the

kinetics, except that we take into account some constraints to guaranty that

the system trajectory keep an acceptable meaning. The kinetics represented

by the neural network are then directly identified along the training step.

Nevertheless, the variables which influence the kinetics must be determined.

These variables will constitute the input of the neural network.

A schematic view of the network is presented on Figure 4 for a single

hidden layer. The expression of the output of the network with respect to

the inputs is as follows:

(34)
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Figure 4: Scheme of a neural network including a single hidden layer.

where rih represents the number of neurons in the hidden layer. The

u)k and les Vki are respectively the weights of the input and outputs layers.

Function cf) is the activating function of the neuron. It is generally chosen

among a set of functions (sigmodes, hyperbolic tangent , gaussian, etc).

The choice of the type of network and of the number of neurons is a rather

classical choice and we invite the reader to refer to (Hertz et al., 1991) for

more details.

Once the structure of the network has been chosen, the next step is the

training phase consisting in identifying the networks weights. This operation

is a bit specific for hybrid systems and we refer to (Chen et al., 2000; Karama

et al., 2001) more explanations.
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6 Model validation

6.1 Introduction

The last modelling step is certainly the most important, but it is also the

most often neglected one. It is all the more important since we have seen

that it was necessary to assume a great amount of speculative hypotheses.

Before using a model, it is important to validate it properly. This stage

follows generally the identification step which is not described here.

The general objective for the validation is to verify that the model fits

the objectives that have been fixed. More precisely, we will see how to test

separately the various hypotheses that have been assumed during the model

development:

• the reaction scheme

• the qualitative model predictions

• the model as a whole (reaction scheme+kinetics+parameters)

It is important to note that the validation phase must be performed from a

data set which was not used to establish or to identify the model. Moreover

the new experiments that must be used to test the model validity must

significatively differ from the previously used data set (otherwise it is a test of

the experimental reproducibility rather than a test of the model validity). If

these conditions are not respected, the model can not pretend to be validated

6.2 Validation of the reaction scheme

6.2.1 Mathematical principle

The proposed procedure relies on an important property, which is a con-

sequence of the mass conservation within the bioreactor. As a result this
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approach will allow us to check if the obtained mass balance is consistent

with the data.

Property 3 We assume that the nxk matrix K has more rows than columns

( n > k). This means that there are more variables than reactions. In this

conditions, we have at least n — k independent vectors v% G R n such that:

v\K = 0lxk

By convention, we normalise the first component of the vector Vi in order

to have vn — 1

Consequence : let us consider the real variable Wi — u*£, this variable

satisfies the following equation:

I — jj(ii).. — w) — vtQ(£) (35)

avec Wan = v\^in. Let us integrate (35) between two time instants t\ and

i2. We rewrite this equation in order to let the components v^ of vector V{

appear. It leads to:

n

where

0^.(^1,^2) ~ si(^2) —si(^i) "

The terms ^ . ( i i , ^ ) can be estimated from the experimental measurements

of £j along time. An approximation of the integral can be computed e.g. using

a trapeze formulae. Moreover if the sampling frequency is not sufficient, the

data will probably require to be interpolated. We recommend for this task

to use spline functions which will at the same time smooth and interpolate

the data.
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The relationship (36) is a linear relation linking the % to the terms

0fj(*i5*2)- Since the ^(^1,^2) can be computed between various time in-

stants t\ and t2, (36) is a linear regression whose validity can be experimen-

tally tested.

Important remark: In fact, relationship (36) is a linear regression which

will provide us with an estimate of the Vij. These terms are related with the

coefficients of the yield matrix K, and will in general allow to estimate the

value of these coefficients.

6.2.2 Example 4

Let us consider here the simple example of the growth of the filamentous

fungi Pycnoporus cinnabarinus (X) on two substrates, glucose ( carbon (C)

source) and ammonium (nitrogen (N) source). We assume therefore that the

reaction scheme is composed by a single reaction:

TV + C —>X

The stoechiometric matrix K associated to this reaction is the following

K = (1 - fci - k2)\ and &n = (0 Nin Cinf (37)

Let us consider the two following vectors orthogonal to the columns of K:

v1 = (1 — 0)* and v2 = (1 0 —)*

We can then define the following quantities:

rt2

</>x{tut2) = X(t2) - X{tx) + / D(T)X(T)

<f>N(tut2) = N(t2) - iV(ti) - / 2 D(r)(Nin(r) - N(r))dr
Jt!
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= C(t2) - D{r){Ctn{r) ~ C{r))dr

which will allow us to rewrite the following regressions associated with

and v2-

= —(t>c(tut2)fa

(38)

(39)

It is now easy to verify if the relationships (38) and (39) are significative

from a statistical point of view.

Figure (5) presents a validation example on the basis of a series of exper-

iment. The obtained regression is highly significative. This means that rela-

tions (38) and (39) are valid. As a consequence, the rows of matrix K, which

are orthogonal to Vi and v2 are necessarily of the type K — (1 — a\ — a^)*.

Therefore the reaction scheme is valid, and subsequently the mass balance

model as well.

1.5

X measured (g/1) X measured (g/1)

Figure 5: Validation of the linear relationship relating <j)X and (f)N (A); (f)X

and <\>c (B)

Note that these techniques lead also to the estimate of the yield coeffi-

cients k\ and k2.
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6.3 Qualitative model validation

For the third stage, we assume that the reaction scheme, and therefore the

mass balance model has been validated. We will then consider a simulation

model consisting of the mass balance model plus the mathematical expression

of the kinetics.

The first think to do is to test whether the qualitative properties of the

model respect the experimental observations.

The first qualitative behaviour that we expect the model to reproduce

is the asymptotic behaviour obtained for constant inputs. Will the model

predict an equilibrium, or a more complex behaviour (limit cycle, chaos,...)

in agreement with experiments ?

How do these properties evolve when the inputs vary ? For example, the

model will predict that an equilibrium in a bioreactor is globally stable for

values of the dilution rate lower than a bound, and that for higher values

the equilibrium becomes unstable. Does it correspond to the experimental

observations ?

More precise qualitative property on the type of transient allowed by

the model can also be compared with experimental data. For some specific

systems, these transients can be rather precisely determined from a structure

analysis (Jeffries, 1986; Sacks, 1990; Bernard and Gouze, 1995; Gouze, 1998).

Another qualitative criterion that can be discussed is the response of the

system at steady state to a change in an input. Assume for example that an

increase of input Ui (which is then kept constant) leads to a decrease in the

steady state value of £ji is it verified from an experimental point of view ?

6.3.1 Example

For example, Hansen and Hubbell (1980) study the competition between two

bacterial species in a chemostat. The reaction scheme is composed of two
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growth reactions:

x2
The growth rate associated to these reactions is assumed to be of Monod

type, i.e.:

where \imaxi and Ksi are the maximum growth rate and the half saturation

constant associated with substrate 5 for species i.

Hansen and Hubbell showed that the winner of the competition predicted

by the model depends on the dilution rate. More precisely, the winner is the

species with the smaller ratio Ji — —Ksi_D- The comparison of the 2 ratios

J\ and J2 leads to the study of the quantity r = ^ m a i l " ^ a 2 with respect

to the threshold value | ^ — 1. If we assume that we are in the case where

D < jimaxi < Vmax2i then species 2 wins for a dilution rate lower than

Do = {J'™ax2l^sl^™axlKs2, whereas for higher values, it is species 1 (see figure

6). These qualitative properties are verified experimentally (see Figure 7).

6.4 Global model validation

This is the classical way of validating a model: the simulation results are

quantitatively compared to experimental data. The most popular criterion

is the least square criterion which is computed as follows for a data set of N

measurements:
TV

where £(ti) is the simulated value of the state £ at the sampling instant U.

The criterion can be improved by weighting each component of the state

£j by a coefficient which takes into account the mean value of £j and the

measurement accuracy for this variable.
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M ,,,ax I " Mnuixl

Species 2 s Species 1 Bolh species disappear

Figure 6: Competition in a chemostat with respect to the dilution rate (dis-

cussion of the quantity / i m f l ' 1 " ^ 2 with respect to ^ - 1). We consider

here the case where D < fj,max 2 < /imaar I •

This criterion should be minimum. In theory, the residuals (i.e. £ — £)

must be studied from a statistical point of view. In the ideal case, it should

have properties comparable to those of the measurement noise: it should

at least be zero on average, and more precisely one can expect a gaussian

distribution (Walter and Pronzato, 1994).

In this approach, the model is considered as a whole. If the residual

analysis is not good, in the case where the previous validation steps (reaction

scheme and qualitative criteria) have not been performed properly it would

be impossible to know the cause of the problem. This criterion does not give

any clue on the structural validity of the model (underlying reaction scheme,

qualitative properties), on the validity of the type of reaction rate modelling

used or on the correctness of parameter values.
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If the two first validation steps have been successfully fulfilled, the prob-

lem is probably due to a an erratic parameter estimation.

In practice, in the framework of biotechnological systems, as it is difficult

to validate stricto sensu these models, one will be satisfied with a good

visual adequation between simulations and data. This subjective criterion

can be reinforced by an analysis of the correlation between predictions and

measurements.

7 Mass balance models properties

7.1 Boundness and positivity of the variables

We have seen in paragraph 5.2.1 that the models must be designed in order

to meet constraints like the positivity of the state variables.

We will see here that the models based on mass balances are of the type

BIBS (bounded input bounded state). To show this property, we use the

following hypotheses which are verified for the mass balance based systems:

Hypothesis 1 (H2) There exists a vector v^ whose components are strictly

positive, such that:
+ = 0lxk

Consequence: Let us consider the scalar quantity w+ = t;+£. It verifies

the following equation: (35):

(40)
dt v m '

We have to assume an hypothesis for Q(£), which is verified in most of

the cases:
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Hypothesis 2 (H3) There exists a positive real a and a real b, such that

Q(£) can be compared to a linear expression as follows:

v+Q(O > av+i + b

This hypothesis is verified if i>+Q(£) = 0, or if Q(£) is described by Henry's

law (see section 4.4).

Property 4 If hypotheses (HI), (H2) and (H3) are verified, then the system

is BIBS.

Proof: The dynamics of w+ can be bounded as follows:

if we apply property 1, we can deduce: w+ < max(it;+(0), ).

In other words, Y^wt£i ^s bounded. Since wf > 0, the state variables ^

are bounded.

7.2 Equilibrium point and local behaviour

7.2.1 Introduction

In this section we briefly recall the principles of the studies of the model

properties. We invite the reader to consult (Khalil, 1996) for more details.

Generally, the bioreactor models are non linear (e.g. they often have

multiple steady state), and they are of high dimension (large number of state

variables). They often have a large number of parameters, which often inter-

vene in nonlinear functions (nonlinearity with respect to the parameters).

Nevertheless, for dimensions greater than 3, it becomes very difficult to

characterise the behaviour of a dynamical system. We will however show that

the mass balance based model have structural properties than make easier

the system understanding.
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In this paragraph, we consider a general dynamical system:

We keep in mind that f(£,u) = Kr(£) + D(£in - £) - Q(f). We will

consider here the case where u — (Z), £in) is constant.

7.2.2 Equilibrium points and local stability

The equilibrium points are obtained for ^ = 0 when the inputs are main-

tained constant.

The non linear systems generically differ from linear systems since they

can have multiple equilibrium points.

The first step in the model analysis consists in testing if these equilibrium

points are locally stable. We consider the jacobian matrix of the linearised:

The equilibrium £0 is locally stable if and only if all the eigenvalues of

J(£o) have a negative real part. If there exists an eigenvalue with positive real

part, the equilibrium is unstable. We can not conclude on the system stability

if none eigenvalues have a positive real part but one (at least) eigenvalue has

a zero real part.

7.2.3 Global behaviour

The dynamics of a nonlinear system can be very complicated, and com-

plex behaviours like limit cycles, chaos, etc can appear in addition to the

equilibria. It is therefore important to test whether a unique locally stable

equilibrium is globally stable. In other words if for any initial conditions the

trajectories will converge toward this equilibrium.

The standard method to prove that an equilibrium is globally stable relies

on the Lyapunov (Khalil, 1996) approach. However it is often difficult to find
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a Lyapunov function for a biological system. One can refer to (Li, 1998) for

constructive methods to find Lyapunov functions in a large class of growth

models.

7.2.4 Asymptotic behaviour

We have seen in paragraph 6.2.1 that in the general case where n > k, there

exists n — k vectors Vi in the kernel of KT. These vectors allow to compute

the quantities Wj, = u*£ whose dynamics satisfies equation (35).

Moreover, there are often q vectors V® among the Vi which verify:

= 0 (43)

The dynamics of the associated w® is then very simple:

^ = D(w°m - «,?) (44)

In the conditions that we consider (i.e. constant D and £*n), the solutions of

(44) asymptotically converge towards w^in. This means that the solutions of

system (42) will converge towards the hyperplane vf1^ = 0.

The state of the system will then asymptotically converge toward the

vectorial subspace of dimension n — q: which is orthogonal to the q vectors

V®. This allows to simplify the study of the n dimensional system (42) into

a n — q dimensional system.

7.2.5 Example 4 (continued)

Let us consider the model of fungal growth (equation 37). We will moreover

assume that the kinetics has been represented by a Monod law with respect

to the 2 substrates C and N:
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The two vectors v\ and v2 identified in paragraph (6.2.2) verify straithfor-

wardly equation (43).

Therefore when t ->• +00, X + j^ _^ EML an(j X + £ —>> ^ .

The study of the 3 dimensional system is then simplified into the study

of the following system in dimension 1:

dX__ Cin-k2X Ntn-hX
dt -fimaaKc + Cin-k2XKN + Nin-k1X

A X [4b)

One will verify that this system has three real equilibrium points (one of

them being the trivial equilibrium X = 0). These equilibria, in increasing

order, are respectively locally stable, unstable and locally unstable. With

respect to the parameters values, the equilibria will be positive (and therefore

admissible) or not. For the parametric domains where there exists a single

positive equilibrium, this equilibrium is globally stable.

8 Conclusion

We have presented a constructive and systematic method to develop bio-

process models in 4 steps. Let us recall that the modelling of a bioprocess

must be performed in the framework of a clearly identified objective. The

modelling must correspond to the quality and the quantity of the available

information so that the model can be correctly validated and identified.

The first modelling steps consists in gathering the physical and chemical

principles that can apply to the system and to assume a reaction scheme in

order to obtain the mass balance model.

In a second step, one must take benefit of the constraints that the model

must verify and use the empirical relationships to find an analytical expres-

sion for the reaction kinetics.

The third step consists in identify the model parameters by separating

those who are related to the mass balances (yield coefficients), those who
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are related with the used physical principles (affinity constants, transfer con-

stants, etc) and those who intervene in the reaction rates.

Finally, the ultimate modelling step must not be neglected: namely the

model validation. During this last step the model quality must be tested

using the more objective as possible criteria. The validity of the model must

be assessed along its ability to properly represent the mass balance, to repro-

duce correctly the qualitative features of the data, and to fit quantitatively

the data. The important point is that the data which must be used for model

validation must not have been already used in the model construction phase.

During the validation step, not only the quality of the model will be assessed,

but also its validity domains: the working domains (in terms of state variable

and inputs) where the model is satisfactory.

To conclude, we insist on the fact that the modelling step can be very

long and expensive, but the quality of a model is a necessary conditions to

ensure that a controller or an observer based on it model will properly work.

References

Andrews, J. (1968). A mathematical model for the continuous culture of

microorganisms utilizing inhibitory substrate. Biotechnol h Bioeng.,

10:707-723.

Bailey, J. E. and Ollis, D. F. (1986). Biochemical engineering fundamentals.

McGraw-Hill.

Bastin, G. and Dochain, D. (1990). On-line estimation and adaptive control

of bioreactors. Elsevier, Amsterdam.

Batstone, D., Keller, J., Newell, B., and Newland, M. (1997). Model devel-

opment and full scale validation for anaerobic treatment of protein and

fat based wastewater. Water Science and Technology, 36:423-431.

39



Bernard, O. and Gouze, J.-L. (1995). Transient behavior of biological loop

models, with application to the Droop model. Mathematical Biosciences,

127(l):19-43.

Bernard, O., Hadj-Sadok, Z., Dochain, D., Genovesi, A., and Steyer, J.-P. (to

appear). Dynamical model development and parameter identification for

an anaerobic wastewater treatment process. Biotech.Bioeng.

Chen, L., Bernard, O., Bastin, G., and Angelov, P. (2000). Hybrid mod-

elling of biotechnological processes using neural networks. Contr. Eng.

Prcatice, 8:821-827.

Costello, D., Greenfield, P., and Lee, P. (1991). Dynamic modelling of a

single-stage high-rate anaerobic reactor - I. Model derivation. Water

Research, 25:847-858.

Darouach, M. (1994). On the novel approach to the design of the unknown

input observers. IEEE Trans. Autom. Cont, 39(3):698-699.

Edelstein, L. (1988). Mathematical Models in Biology. Random House, New

York.

Gouze, J.-L. (1998). Positive and negative circuits in dynamical systems.

Journal Biol. Syst.: 6(1):11-15.

Hansen, S. R. and Hubbell, S. P. (1980). Single-nutrient microbial competi-

tion. Science, 207(28):1491-1493.

Hertz, J., Krogh, A., and Palmer, R. (1991). Introduction to the Theory of

Neural Computation. Addison-Wesley.

Hill, D. and Barth, C. (1977). A dynamic model for simulation of animal

waste digestion. Journal of the Water Pollution Control Association,

10:2129-2143.

40



Horn, R. and Johson, C. (1992). Matrix analysis. Cambridge Univesity Press.

Hou, M. and Mller, P. (1991). Design of observers for linear systems with

unknown inputs. IEEE Trans. Autom. Contr., AC-37(6):871-875.

Jeffries, C. (1986). Qualitative stability of certain nonlinear systems. Linear

Algebra and its Applications, 75:133-144.

Karama, A., Bernard, 0., Genovesi, A., Dochain, D., Benhammou, A., and

Steyer, J.-P. (2001). Hybrid modelling of anaerobic wastewater treat-

ment processes. Wat. Sci. TechnoL, 43(l):43-50.

Khalil, H. (1996). Nonlinear Systems. Macmillan Publishing Company.

Kudva, P., Viswanadham, N., and Ramakrishna, A. (1980). Observers for

linear systems with unknown inputs. IEEE Trans. Autom. Contr., AC-

Li, B. (1998). Global asymptotic behavior of the chemostat: General response

functions and different removal rates. SIAM Journal, 59.

Merchuk, J. (1977). Further considerations on the enhancement factor for

oxygen absorption into fermentation broth. Biotechnol. & Bioeng.,

19:1885-1889.

Moletta, R., Verrier, D., and Albagnac, G. (1986). Dynamic modelling of

anaerobic digestion. Wat.Res., 20:427-434.

Monod, J. (1942). Recherches sur la croissance des cultures bactriennes.

Hermes, Paris, France.

Mosey, F. (1983). Mathematical modelling of the anaerobic digestion process:

regulatory mechanisms for the formation of short-chain volatile acids

from glucose. Water Science and Technology, 15:209-232.

41



Sacks, E. (1990). A dynamic systems perspective on qualitative simulation.

Artif. Intell, 42:349-362.

Segel, L. A. (1984). Modeling Dynamic Phenomena in Molecular and Cellular

Biology. Cambridge University Press, Cambridge.

Walter, E. and Pronzato, L. (1994). Identification de modeles parametriques.

Masson.

A p p e n d i x A .Theoretical determination of the dimension of K

Let us integrate equation (7) between 2 time instants t and t + T:

/

t+T rt+T

lJ(^in(r) — £ (T)) ) + Q(£(T))(IT = K I r(£(T))dT

(47)

Let us denote:

/
t+T

and
rt+Tw(t) = / K£(r))^r

Jt
Equation (47) can then be rephrased:

v(t) = Kw(t) (48)

The vector v(t) can be estimated along time on the basis of the available

measurements. The integral value can be estimated e.g. with a trapeze

approximation.

To avoid conditioning problem and to give the same weighting to all the

state variables, we normalise the data vectors u{U) as follows:

v(ti) - e{v)
v(U) =

y/Na(v)
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where e(v) is the average value of v(U), and a{v) their standard deviation.

Now the question of the dimension of matrix K can be formulated as

follows: what is the dimension of the image of K, in other words, what is

the dimension of the space where u(t) lives. Note that we are looking for

a full rank matrix K. Otherwise, it would mean that the same dynamical

behaviour could be obtained with a matrix K of lower dimension.

Determining the dimension of the v(t) space is a classical problem in

statistical analysis. It corresponds to the principal component analysis that

determines the dimension of the vectorial space spanned by the vectors hi,

rows of K. To reach this objective, we consider matrix U obtained from a

set of N recording of v(t):

We will also consider the associated matrix of reaction rates, which is

unknown:

We assume that matrix W is of full rank. This means first that there are

more measurements than reactions. It means also that the reaction are in-

dependent (none of the reaction rates can be written as a linear combination

of the other ones).

P r o p e r t y 5 For a matrix K of rank k, if W has full rank, then the N x

N matrix M — VTV — WTKTKW has rank k. Since it it is a positive

symmetric matrix, it can be written, by:

M =
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where P is an orthogonal matrix (PTP = I) and

' ox 0 . . . 0 \

0 a2 0 0

V 0 . . . 0 ,

> Oi > 0 fori<E {2,...,/c}.

Proof: it is direct application of the singular decomposition theorem (Horn

and Johson, 1992). Since rank (M) = rank (E) = jfc, it provides the result.

Now from a theoretical point of view it is possible to determine the num-

ber of reactions in the reaction scheme: it corresponds to the rank of K or,

in other words, to the number of non zero singular values of VTV.

In the reality, the noises due to model approximations, measurement er-

rors or interpolation perturb the analysis. Therefore in practice there are no

zero eigenvalues for the matrix M = VTV.

The question is then to determine the number of eigenvectors that must

be taken into account in order to represent a reasonable approximation of

the data v(t). To solve this problem, let us remark that the eigenvalues O{ of

M correspond to the variance associated with the corresponding eigenvector

(inertia axis).

The method will then consist in selecting the p first principal axis which

represent a total variance larger than a fixed threshold.
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Figure 7: Experimental validation of the qualitative model behaviour. Quan-

titative model predictions are represented as well. The qualitative model

predictions are verified for: a) Two species (Escherichia coli, strain C-8

and Pseudomonas aeruginosa, strain PA0283 which differ from their half-

saturation constants, b) Two strains of Escherichia coli which differ from

their maximal growth rates, d) Coexistence obtained with 2 strains of £s-

cherichia coli which have the same parameter J\. Figure c) represents the

effect of nalidixic acid on the maximal growth rate for the 2 considered strains

C-8. (from (Hansen and Hubbell, 1980)).

45


