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1 Introduction: the software sensor goals

One of the main limitations to the improvement of monitoring and optimi-

sation of bioreactors is probably due to the difficulty to measure chemical

and biological variables. Indeed there are very few sensors which are at the

same time cheap and reliable and that can be on-line used. The measurement

of some biological variables (biomass, cellular quota, etc) is sometimes very

difficult and can necessitate complicated and sophisticated operations.

The question is to estimate the internal state of a bioreactor when only

a few measurements are available. In this lecture we propose methods to

build observers which will use the available measurements to estimate non

measured state variables (or at least some of them). The principle of this so



called "software sensor" is to use the process model to reconstruct asymp-

totically the state on the basis of the outputs. As it will be detailed in this

chapter, the system must be observable, or at least detectable, in order to

estimate the internal state.

There a numerous methods to design an observer. They rely on ideas

that can be very different. Thus the best observer must be chosen with

respect to the type of problem. The choice will then be strongly connected

to the quality and the uncertainties of the model and of the data. If the

biological kinetics are not precisely known, the mass balance will be the core

of the asymptotic observers. If there are bounded uncertainties on the inputs

and/or on the parameters, then we will estimate intervals in which the state

of the system should lie. If the model as been correctly validated, then we

can fully exploit it and -if the output are not corrupted with a high level of

noise- we can develop a high gain observer.

The type of observer to be developed must not be based only on the

model quality: it must also take into account the objectives to be achieved.

Indeed, an observer can have other purpose than monitoring a bioreactor: it

can be developed to apply a control action which need an estimate of the

internal state. It can also be used to determine if a failure did not happen

in the process.

2 Notions on system observability

We will only recall the main useful notions, we will give references for the

more technical parts (see(Kailath, 1980; Luenberger, 1979)).

The observability notion is fundamental in automatic control. Intuitively,

one tries to estimate the state variables from the available measurements. If

this is possible from a theoretical point of view, the system is said to be

observable. Then another question is how to derive an observer which is



another dynamical system providing a state estimate. Let us mention that

the question of observability and of observer design are very different: the

observability property does not give any clue on how to build an observer.

The theory is extensively developed in the linear case (see next section)

and, in the nonlinear case, has been strongly developed during the last years

but for particular classes of models.

2.1 System observability: definitions

We will consider the general continuous time system:

f (*) = /(*(*)>«(*)) ; *(*<>) = x0
(A)

y(t) = h(x(t))
where x € IRn is the state vector, u G Mm is the input vector, y G IRP is the

output vector, Xo is the initial condition for initial time to, / : IRn x IRm —>

JRn and h : IRn —> IRp.The functions are assumed to be sufficiently smooth

in order to avoid problems of existence and uniqueness of the solutions.

Example: For the bioreactors described by a mass balance model, we

have:

f{x(t), u(t)) - Kr{x(t)) + D(xin{t) - x(t)) - Q(x{t))

Here D and Xin stands for the input vector.

We assume therefore that, for system (5),

• the input is known u(t)

• the output is known y(t)

• functions / and /i, are known, i.e. the model is known ( r(.) is known

in the mass balance based modelling).

We aim at estimate x(t); the observability is a theoretical notion that states

if it is possible.



Definition 1 Two states XQ and x'Q are said indiscernible if for any input

time function u(t) and for any t>0, the outputs h{x(t,x$j) and h(x(t,xf
0))

that result are equal.

Definition 2 The system is said to be observable if it do not have any dis-

tinct couple of initial state Xo,xf
o that are indiscernible.

This means that for any input the initial condition can be uniquely esti-

mated from the output. It can be noticed that generally for nonlinear system

the observability depends on the input; a system can be observable for some

inputs and not observable for others.

Definition 3 An input is said to be universal if it can distinguish any couple

of initial conditions.

Definition 4 A non universal input is said to be singular.

Even in the case where all the inputs are universal (the system is said to

be uniformly observable and can be rewritten under a specific shape, see

section 4), this can be insufficient in practice. We impose then that the uni-

versal property persists with time, and we obtain (at least for some systems,

see(Fossard, A.J.(ed.) and Normand-Cyrot, D.(ed.) and Mouyon, Ph.(ed.),

1993) ) the notion of regularly persisting input (see Hypothesis ??, paragraph

5.3).

For the linear systems things are much simpler (see next section).

2.2 General definition of an observer

Once the system has been proven to be observable, the next step is the

observer building in order to estimate the state variable x from the inputs,

the outputs and the model.

The observer principle is presented on Figure 1. It is a second dynamical

system that will be coupled to the first one thanks to the measured output.
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Figure 1: Observer principle

Definition 5 An observer is an auxiliary system coupled with the original

system:

(O)
= h(z{t),u(t):y(t))

(2)

with z e JRq, f Uq x IRm x W —> W and h lRq x H m x TRP —> IRn such

that

lim || x(t) -x(t) | |=0 (3)

It is the classical definition which may be insufficient in some cases. It is

stated that the estimation error tends asymptotically toward zero. Indeed one

tries to tune the error decreasing rate (convergence rate). Let us explain this

with a simple linear example: let us consider the linear system ^ = Ax + Bu

where x G R n and let us assume that matrix A is stable. A trivial observer

can be obtained with a copy of the system: ~ = Ax + Bu. Indeed, the error

e = x — x follows the same dynamics f̂ = Ae and therefore converges toward

zero. Let us remark that this observer does not necessitate any output. This

example shows that the stable internal dynamics is sufficient to estimate

the final state. This example highlights a property which will be called

detectability for linear systems and which will be the basis of asymptotic

observer (section 4) in a different framework. As a consequence, an additional



requested property is to be able to tune the convergence rate of the observer

in order to be able to reconstruct the state variables more rapidly than the

dynamics of the system. Let us remark that the observer variable (z in O)

can be of greater dimension than the state variable to be estimated x.

Another property that we wish is that if the observer is properly initiated,

i.e. with the true value x(0), then its estimation remains equal to x(t) for

all t. This suggest a peculiar structure for the observer

Definition 6 Often, the following observer is taken:

(O)
§ (t) = f(x(t)Mt)) + k[z(t),h(x(t)) - y(t)]

ft(t) = f(z(t),u(t),y(i)) with k{z(t),O) = 0

This is a copy of the system with a correcting term depending on the dis-

crepancy between the true measured outputs and the value of the output

computed from the observer. The correction amplitude is tuned thanks to

the function k that can be seen as a gain (it is an internal tuning of the

observer).

In the ideal case, the gain k can be tuned in order to have a converging

rate as large as requested.

Definition 7 System (O) is said to be an exponential observer if, for any

positive X, the gain k can be tuned such that

2.3 How to manage the uncertainties in the model or

in the output

In real life- and especially in the biological field- one often considers that there

are noises either in the output (measurement noise) or in the state equation



(model noise). In general the model noise is assumed to be additive (see

section 3.5), which is a strong hypothesis (it could be e.g. multiplicative).

Another important case which often appears in the bioprocesses is when

the model integrates some unknown parts. For example the biological kinetics

in the mass balance models for bioreactors are generally not precisely known

(Bastin and Dochain, 1990).

How to manage these two problems which have some related aspects ?

• Linear filtering, and more specifically Kalman filtering. It is the most

popular method. It assumes that the noises are additive and white; it

minimises the error variance (see next section).

• The approach L2, H2 or H°°. It consists in assuming that the noises

or perturbations w(t) belong to a given class of functions (L2) and to

try to minimise their impact on the output using the transfer function.

In the H2 approach, one tries to minimise the norm of this transfer

function, in the approach if00, one tries to minimise the input effect

in the worst case (see (Basar and Bernhard, 1991)). For example, for

a 7 > 0 and R a positive definite matrix, one wants the observer x to

verify:
roo

sup/ \x(t) -x(t)\2
R--/2\w{t)\2dt < 0.

w(.) Jo

• Disturbance rejection. One tries to build observers independent from

the unknown perturbation. The disturbance is cancelled for exam-

ple thanks to linear combinations of variables (Darouach et al., 1994a;

Kudva et al., 1980).

The asymptotic observers are among this class of systems (see section

5).

• Bounds on the perturbations and on the uncertainties. One assumes

that uncertainties are bounded, and one tries to design interval ob-
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servers which provide the best possible bounds for the variables to be

estimated. For some cases, one tries to minimise this bounding (section

6).

• One can also use these bounds to design sliding mode observers which

have a correcting term of the type sign(x — x). Note that the way

these observers take the uncertainties into account generates a discon-

tinuous dynamics on the sliding manifolds (Edwards, Christopher and

Spurgeon, Sarah K., 1994).

Remark: it is possible to construct examples where a system is observable

when the model is known and becomes unobservable when a part of the model

is unknown. For such cases the requirement for a classical observer may be

relaxed. In particular, we will not assume anymore that

lim || x(t) -x(t) | | = 0 (4)

but that the discrepancy tends toward a reasonable value for practical appli-

cations..

3 Observers for linear systems

For single output linear stationary systems we have:

j ^{t) = Ax(t) + Bu(t)

{ y(t) = Cx(t)

with A G Mnxn(U) (n > 2), C G MlxnQR).

The well known observability criterion is formulated as follows:

' c ^
CA

(5)

(Si) observable <S> rang

CA n - l

= re.



which relies on the fact that the observability space is generated by the

vectors (C, CA,..., CAn~l).

The canonical observability forms, that can be obtained after a linear

change of coordinates, highlight the observation structure. They will reap-

pear in the nonlinear case for the high gain observer (section 6).

Theorem 1 / / the pair (A, C) is observable, then there exists an invertible

matrix P such that:

Ao = P~lAP Co = CP

with

- a 2

1 0 . . . 0

0 1 . . . 0

0 0 . . . 1

0 0 . . . 0

What happens if the system is not observable ? One can rewrite it in two

parts, as it is shown in the following theorem. Here A\ and As are two square

matrices with dimensions corresponding to X\ and x2. The canonical form

shows clearly that X\ can not be estimated from x2.

Theorem 2 General canonical form:

dt
dx-2
dt

A2x2

B2u

y = c2x2

Matrix A\ imposes the dynamics of the unobservable part; if it is stable, then

the dynamics of the total error will be stable, but the unobservable part will

tend toward zero with its own dynamics (given by A\)\ the system is said to

be detectable.



3.1 Luenberger observer

If system (5) is observable, a Luenberger observer can be derived:

^ = Ax(t) + Bu(t) + K(Cx(t) - y(t))
at

where K is a dimension n gain vector, which allows to tune the convergence

rate of the observer.

Indeed, the dynamics of the observation error e = x — x is:

Let us note that this dynamics do not depend on the input. The pole place-

ment theorem sates that the error dynamics can be arbitrarily chosen.

Theorem 3 / / (A, C) is observable, the vector K can be chosen to have an

arbitrary linear dxjnamics of the observation error.

In particular, the gain vector K can be chosen in order that the error con-

verges rapidly toward zero. But then the observer will be very sensitive to

perturbations (measurement noise for example). A good compromise must

be chosen between stability and precision. The Kalman filter is a way to

manage this compromise.

3.2 The linear case up to an output injection

There is a very simple case for which a linear observer can designed for a

nonlinear system, it is the case where the nonlinearity depends only on the

output y.

I f (t) = Ax(t) + ct>(t,y(t)) + Bu(t)
\ y(t) = Cx(t)

0 is a nonlinear (known) function which takes its values in ]Rn. The following

" Luenberger like" observer generates a linear observation error equation:

= Ax(t) + 0(t, y(t)) + Bu{t) + K{Cx{t) - y(t))
at

10



The dynamics can be arbitrarily chosen if the pair (A, C) is observable.

3.3 Local observation of a nonlinear system around an

equilibrium point

Let us consider the general system (1), and let us assume that it admits a

single equilibrium point (working point ) at (xe,ue). The system can then

be linearised around this point:

Theorem 4 The linearised system of (1) around (xe,ue) is

(S)\ -df(t)=AX + BU (7)
| Y(t) = CX

with
A 9f{x,u) df{x,u) dh(x)

dx du dx

Matrices A,B,C are estimated at xe,ue. Variables X,U,Y are deviations

toward equilibrium:

X = x - xe, U = u - ec, Y — y — Cxe

If the pair (A, C) is observable, the nonlinear system is locally observable

around the equilibrium.

3.4 PI observer

The Luenberger observer is based on a correction of the estimations with a

term related to the difference between the measured outputs and the pre-

dicted outputs.

The idea behind the proportional integral observer is to use the integral

of this error term. We consider the auxiliary variable w:

w = f\cx(r)-y(r))dr.
Jo
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The PI observer for system (8) will then be rewritten:

f § (t) = Ax(t) + Bu(t) + KI(Cx{t)-y) + KPw
{ f(t)(t) = Cx-y

The error equation (ex = x - x and ew = w) is then:

( dit(t)) = ( F + KlC KP\(ex(t)\

{ d~lt(t) ) { C 0 ){ ew(t) j

The gains Kj and Kp can be chosen such as to ensure stable error dynamics

(Beale and Shafai, 1989). The integrator addition provides more robustness

to the observer to deal with measurement noise or modelling uncertainties.

3.5 Kalman filter

The Kalman filter (see (Anderson, Brian D.O. and Moore, John B., 1990)) is

very famous in the framework of linear systems; it can be seen as Luenberger

observer with a time varying gain; this allows to minimise the error estimate

variance.

A stochastic representation can be given by the observable system:

f (t) = A x(t) + Bu(t) + w(t) ; x(t0) = x0

= Cx(t)+v(t)

where w(t) and v(t) are independent centred white noises (Gaussian pertur-

bations), with respective covariances Q(t) and R(t). Let us also assume that

the initial distribution is Gaussian, such that:

E[xo]=xo ; E[(x0 - xo)(xo - xo)
T] = Po (11)

where E represents the expected value and PQ is the initial covariance matrix

of the error. The filter is written in several steps:

12



1. Initialisation:

E[xo]=xo ; E[(x0 - xo)(xo - xo)
T] = Po (12)

2. Estimation of the state vector:

dr
-ft{t) = A x(t) + tf(t) [y(t) - C x(t)] ; x(t0) = xo (13)

3. Error covariance propagation (Riccati equation):

^(t) = A P{t) + P(t) AT - P{t)CTR(t)-lCP{t) + Q(t) (14)

4. Gain computation:

= P(t)CTR(t)-1 (15)

Some points can be emphasised:

• This filter can still be applied when matrices A and C depend on time

(the observability must nevertheless be proven).

• The estimation of the positives definite matrices R, Q, Po is often very

delicate, especially when the noise properties are not known.

• A deterministic interpretation of this observer can be given: it consists

in minimising the integral from 0 to t of the square of the error.

• This observer can be extended by adding a term —9P(t) in the Riccati

equation. This exponential forgetting factor allows to consider the cases

where Q = 0.

13



3.6 The extended Kalman filter

The idea consists in linearising a nonlinear system around its estimated tra-

jectory. Then the problem is equivalent to build a Kalman filter for non

stationary system. Let us consider the system

w(t) ; x(to)=xo
(16)

y(t) = h(x(t)) + v(t)

and the observer is designed as above, with a change in the second step:

2. Estimation of the state vector:

- ( t ) = /(*(*)) + K(t) [y(t) - h(x(t))] ; x(t0) = x0 (17)

and using the matrices of the tangent linearised:

A(t) =df(x(t))
dx(t)

C(t) =
dh{x(t))

x{t)=x{t) dx{t)
(18)

x{t)=x{t)

This extended filter is often used, even if only few theoretical results guar-

antee its convergence (see Section 4.4).

4 High gain observers

4.1 Definitions, hypotheses

In this chapter, we will assume that a simulation model of the process is avail-

able, (i.e. with modelling of the biological kinetics ). We also assume that

the model has been deeply validated: the high gain observers are dedicated

to the nonlinear systems and require a high quality modelling.

We will consider now the systems afHne with respect to the input, that

are described as follows:

f = /(0 + ug(O (19)
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We consider here the case where u G R. For bioreactors, the input cor-

responds generally to the dilution rate u = D. In this case case /(£) =

Moreover, we assume that the output is a function of the state: y =

G IR.

Hypothesis 1 We will state the two following hypotheses:

• [i] the system (19) is observable for any input.

• [ii] there exists a positively invariant compact K,, such that for any time

We will denote Lfh(£) = § | / (£) , which is the Lie derivative of h along the

vector field / . By convention, we will write LPfh(£) = LfL3f~1h(£).

4.2 Change of variable

Let us consider the following change of coordinates, defined on the compact

set K\

4> : £ —> C = [ h(0, Lfh(O, .-., Lf^hiO ]T (20)

This change of variable consists in considering (in the autonomous case) the

output y and its n — 1 first derivatives as new coordinates.

Hypothesis 2 The mapping cf) is a global diffeomorphism.

One can verify (Gauthier and Bornard, 1981) that under Hypothesis 2 cj>

transforms (19) into:

y = cc, (22)

15



with:
0
0

0
0

1
0

0
0

0
1

0
0

0
0

1
0

^ 2 ( C l , C 2 , - . - , C n )

with

^ (23)

In this canonical form, all the system nonlinearities have been concentrated

in the terms V>(C) and V>(C)- We will present the various observers using this

canonical form (let us note that this canonical form is very close to the one

in section 3 for the observer pole assignment).

Let us remark that an observer in the new basis will provide an estimate £

which will estimate £, s.e. the successive output derivatives. The idea consists

in writing the observer in this canonical basis i.e. a numerical differentiator

of the output. Then, going back to the initial coordinates (applying 0~1(C)),

the observer will be expressed in the original basis.

To design a high gain observer, we need an additional technical hypoth-

esis:

Hypothesis 3 The mappings ip and $ defined in (21) are global Lipschitz

on K.

Intuitively, this hypothesis will allow us to dominate the non-linear part,

imposing that the dynamics of the observer can be faster than the system

ones (this explains the idea of the "high gain").

4.3 Fixed gain observer

Property 1 (Gauthier et al, 1992) For a sufficiently high gain 9, and under

Hypotheses 1, 2 and 3 the following differential system is an exponential

16



observer of (19):

i - i
*r I Ct — l/itfL/2.\ _A (OA^

where S$, is the solution of the equation OSe + A* So + So A — ClC

So can be computed as follows:

For the convergence proof and other details we refer to (Gauthier et al.,

1992).

4.4 Variable gain observers (Kalman like observer)

The extended Kalman filter is often used in a framework where its conver-

gence is not guaranteed (see section 3.5). We show here how to build a high

gain observer very close to the Kalman filter (after change of variable), whose

convergence is guaranteed.

Property 2 (Deza et al, 1992b) For a gain 9 sufficiently high, and un-

der hypotheses 1, 2 and 3 the following differential system is an exponential

observer of (19):

[ ^C{h{x)y)
\ft= -SQeS - A*l(x, u)S - SA*(x, u) + \ClC

with r > 0, Qe is computed from the two positive definite symmetric matrices

A<? and Q:

A0 = diag{6,62,...,9n) (27)

Q$ = AeQAe (28)

Matrix A* can be computed from the diffeomorphism 4>:

17



We refer to (Deza et al., 1992b) for the proof of the convergence of this

observer and for more details, especially for the choice of r and of matrix Q.

It is worth noting that, even if the filtering and noise attenuation per-

formances of this extend Kalman filer are a priori better, this observer is

above all a high gain observer; it will therefore present the same generic high

sensitivity with respect to the measurement noises and modelling errors.

The advantages of the Kalman like high gain observer have a price: this

observer is heavier to implement. n^n
2
+3^ differential equations must be inte-

grated instead of n equations for the simple high gain observer.

4.5 Example: growth of micro-algae

We will consider the growth of micro algae in a continuous photobioreactor.

The algal development is limited by a nitrogen source (NO3) denoted S,

and uses principally the inorganic dissolved carbon (C), mainly under the

form of CO2. The algal biomass (X) will then correspond to an amount of

particulate nitrogen (N).

In order to simultaneously describe the cellular carbon and nitrogen up-

take, we will consider the following reaction scheme

Setting £ = (X, N, S, C)\ the mass balance based model (33) can be written

with:

K =

1 0

1

- 1

1

0

0

0 -kx

( ° 1
0

Q

V (^in j

\ ° 1
0

0

The units for carbon and nitrogen are the same for biomass and substrate,

and moreover the nitrogen uptake yield is assume to be unitary. The nutrient

18



uptake rate is assumed to follow a Michaelis-Menten law (Dugdale, 1967):

X

The algal growth from carbon is r2(£) = M0-^> where the growth rate

is described by the Droop law (Droop, 1968):

MO = M<?) = Mi - j) (30)

Variable q represents the internal nitrogen quota defined by the amount of

nitrogen per biomass unit: q = ^ .

We assume that biomass is measured (it is estimated by its total biovol-

ume), and will be used to design a high gain observer to determine S and

Q-

In this case, the nitrate concentration in the renewal medium (Sin) can

be controlled. More precisely, Sin can vary as follows:

Sin = Sin(l +U)

where u is the control, and s?;n the nominal concentration, corresponding to

u = Q.

In the sequel, we will consider only the 3 first equations of this system,

and we will consider the following change of variables:

that leads to the following system:

dt -J[x)+ug{x) ( 3 i )

y = Kxi)

19



2 3 4 5

Time (days)

Figure 2: Comparison between direct measurements (•) and observer predic-

tions (—) for model (31): (A) Biomass estimated from total algal biovolume.

(B) internal quota. (C) Nitrate concentration.
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with:

x = X2

\x3

o2(l )x\ -

a3

D(l - x3) -

a2{x2

, h{x1) =

The high gain observer for model (31) is then given by:

G(x) =

o2 ^ 2

with:

9 / D2

2a2 + xl 2a2 - 3D

-i2[2-^-fl-^+4a2-4D
%i + Xz \ 0L2J

- 3a2) + 4a2 + 2-

(32)

An experiment where u fluctuates sinusodaly was used to validate the ob-

server. Figure 2 proves the observer efficiency when the model is well known.

The observer predictions are in agreement with the experimental measure-

ments. For more details on this example, see (Bernard et al., 1998; Bernard

et al., 1999b).
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5 Observers for mass balance based systems

5.1 Introduction

In the previous sections we have considered the case where the uncertainties

was due to noise on the outputs and, in some cases were due to modelling

noise. We have seen Chapter 2 that the bioprocess models are often badly

known. In particular when the model is written on the basis of a mass balance

analysis, a term representing the reaction rates appears. This term which

represents the biological kinetics with respect to the model state variable is

often speculative. Often the modelling of the reaction rate is not reliable

enough to base an observer on it. In this section we will use the results

for the observers with unknown inputs (Kudva et al., 1980; Hou and Mller,

1991; Darouach et al., 1994a), whose principle relies on a cancellation of the

unknown part after a change of variable in order to build the observer.

We will show how to build an observer for a system represented by a

mass balance and for which the kinetics would not have been expressed. We

will see that the main condition to design such an observer is that enough

variables are measured. In particular we will not assume any observability

property. This is not so surprising since the observability property relies on

its full description (including the kinetics) which is not used to build the

mass balance observer. In fact it is not really an observer stricto sensu, but

more precisely a detector, relying on hypothesis that the non observable part

is stable.

5.2 Definitions, hypotheses

In this chapter we will consider the biotechnological processes that are mod-

elled with a mass balance model:

^ D(t)6n(t) - Q(O (33)
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with

f 6 HT r e f f (34)

We assume that the set of available measurements y can be decomposed into

three vectors:

V = [Vi V2 Vsf (35)

where:

• y\ is a set of q measured state variables. To simplify the notations, we

will order the components of the state so that, y\ corresponds to the q

first components of £.

• y2 represents the measured gaseous flow rates: y2 = Q(£)

• ys represents the other available measurements (pH, conductivity,...)

that are related to the state through the following relationship: y3 =

HO

Let us rewrite system (33) after splitting the measured part (£i = j/i) from

the other part of the state (£2).

^ i + J5&ni-0i(0 (36)

^ B£2 + DZln2-Q2(O (37)

Matrices K\ and K2, vectors ^ n i , ^n 2 , Q\ and Q2 are such that

* • ( £ ) • * • • ( £ : ) • « • ( £ )
5.3 The asymptotic observer

In order to build the asymptotic observers we need the two following technical

hypotheses:
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Hypothesis 4 (i) There are more measured quantities than reactions: q >

p. (ii) Matrix K\ is of full rank.

Hypothesis 4ii means that a non zero r cannot cancel Kir (a reaction can

not compensate the other ones with respect to the measured variables).

Consequences: under Hypothesis 4, the q x p matrix Ki admits a left

inverse; there exists a p x g matrix G such that:

GKX = Ipxp (38)

Let us set: A = — K2G, and let us consider the following linear change of

coordinates:

Ci = £1 (39)

C2 = ^ 1 + 6 (40)

this change of variable transforms (36) and (37) into:

rir,
(41)

with

T = ( Ip °P}n~P ) , M = ( A In_.

and

(44)

The equation of £2 can be rewritten using the output y^-

^ = -D(C2-Cm2)-My2 (45)
at

Remark: System (45) is a linear system up to an output injection (cf.

Section 3.2).
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We can now design an observer for this system, simply after copying equa-

tions (45). But we must first state an hypothesis to guarantee the observer

convergence:

Hypothesis 5 The positive scalar variable D is a regularly persisting input

i.e. there exists positive constants c\ and c2 such that, for all time instant t:

rt+c2

/

t+c2

D(r)di

In practice, c2 must be low with respect to the time constant of the system.

Moreover ^ must be high because it determines the minimal converging rate

of the observer.

Lemma 1 ( see (Bastin and Dochain, 1990)) Under Hypothesis 5, solution

£2 of the following asymptotic observer:

6 = G - Ay1

converges asymptotically toward solution £2 of the reduced system (37).

Proof: it can be easily verified that the estimation error e2 = £2 — £2 = C2 — C2

satisfies:

f - -^ <47>
and converges asymptotically toward £2 if Hypothesis 5 is fullfiled. (Bastin

and Dochain, 1990).

5.4 Example

We will consider as example the growth of the filamentous fungi Pycnoporus

cinnabarinus (X) (Bernard et al., 1999a). The fungi uses two substrates to

grow: glucose as carbon source (C) and ammonium as nitrogen source (TV).

The reaction scheme is assumed to be composed by one reaction:
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N + C —>X

The model is then of the type (33), with:

f = [N C X]T, K = [-h - k2 1]T, &n = [Nin, Cm , 0]T

The following measurements are available: j/i = [TV C]T .
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Figure 3: Comparison between direct biomass measurements of Pycnoporus

cmnabarinus (o) and observer predictions based on the nitrogen measurement

(A) or on the carbon measurement (B).

The state partition will then be the following:

6 = [N C]T, Z2=X

associated with:

Kl = [-fci - A;2]
T, K2 = 1

Matrix K1 has an infinite number of left inverses. We will consider two of

them: G\ — [— ̂ -, 0] and G2 — [0, — ^ ] . These two matrices will naturally

lead to two observers. The first one based on the nitrogen measurements:

(48)
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and the other one based on carbon:

dt ~ VS2 k2
 J (49)

j>2 ?2 _ C_

The results of these observers obtained with experimental data dare presented

Figure 5.4. In this case, the observer based on the nitrogen measurements is

more reliable.

5.5 Improvements

The asymptotic observers work in open loop. Indeed, their estimate relies on

the mass balances and are not corrected by a discrepancy between measured

and estimated quantities. It assumes that the mass balance model is ideal.

Nevertheless, the yield parameters are difficult to estimate properly, and

in some cases (wastewater treatment) the mass inputs in the system are not

precisely known. In this case it can be dangerous to base the observer only on

the mass balance model without taking into account some measurements on

the system that reflect its actual state. It can be possible to on-line estimate

these unknown parameters, but we will see here another method aiming at

improving the observer robustness with respect to some uncertainties.

In this paragraph, we will see how to exploit the available measurements

2/3 to improve the asymptotic observer performances.

We assume here that j/3 E IR. We define the mapping h:

h : (&,&) G (Mp x Mn~p) ^ y z = /i(£i,6) G IR

We suppose that h satisfies the following hypothesis:

Hypothesis 6 the mapping h is monotonous with respect to £2, i-e.:j^r is

of fixed sign on the considered domain $7.
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Example: in the example detailed hereafter, h(d^2) — a£ + /3P, and thus:

TjF = [° 0 (50)

which is of fixed sign. Of course, h can be linear.

Proposition 1 Let A G JRP be a unitary constant vector (\\X\\ = 1), whose

signs are chosen such that sign(A) = sign(-^-); 6 is a positive scalar (which

can dependant on time) and Zin = M^in. The following system:

dz
— = -D(z - ^ - M j / 2 - 0\(h{yuz- AVl) - y3) (51)

is an asymptotic observer of the reduced system (45).

For the proof of this property, and for more details, we invite the reader to

refer to (Bernard et al., 2000).

Example : we will consider a bacterial biomass (X) growing in bioreac-

tors. The micro-organisms uptake the substrate S and metabolise a product

P:

S —+X + P

The associated model is then:

f = r(O - DX
f = -cir(O + D(Stn-S) (52)
f = c2r(O - DP

where Sin is the influent substrate, C\ and c2 are the yield coefficients.

We assume that the bacterial biomass and the conductivity of the solution

can be measured. The conductivity is related to a positive linear combination

of the ions in the liquid i.e. S and P. We have therefore:

yi = X (53)

V2 = (0,0,0)* (54)

ys = aS + pP (55)
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We suppose that the substrate concentration in the influent Sin is not pre-

cisely known, and we will use an estimate denoted Sin.

Thanks to Proposition 1 we can design the following observer (for sake

of clarity we choose A = [1 0] which satisfies the right hypotheses).

f- = D(zml - zx) - 9(aS + 0P- y3)

? 2 ~ ~DZ2 (56)
5 ^

With Zini = Sin.

let us show now the robustness properties when the estimate Sin is false.

If S* and P* represent equilibrium values of S and P , we denote S* and P*

the equilibrium values for the closed loop observer. If the observer is in open

loop (9 = 0), using S;n, a direct computation provides:

5* = S* + Slin - Sun (57)

The prediction error is thus exactly the error on Sun. With the closed loop

observer, the steady state is:

S* = S*+gj^(Sun~Sun) (58)

If the gain 9 is high, it is easy to see that S* ~ S*: the bias is reduced by

the closed loop observer.

6 interval observers

The usual observers implicitly assume that the model is a good approxima-

tion of the real system. Nevertheless, we have seen that a model of a bio-

process is often poorly known. In this case, the observation principle must

be revisited: generally it will no more be possible to build an exact observer
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(which would guarantee ||e(i)|| = \\x(i) — #(i)|| —>• 0 when t -> oo) whose

convergence rate could be tuned (as for example an exponential observer ).

Therefore, in this case the result must be weaken.

We present here a possible way (among others) consisting in bounding

the uncertainty on the model. The bound on the variable to be estimated is

deduced. To simplify, we will first present the linear (or close to linear) case

(see (Gouze et al., 2000; Rapaport and Gouz, 1999)).

6.1 Principle

The idea is to use the known dynamical bounds of the uncertainties:

The dynamical bounds on the model uncertainties allow to derive (in the

good cases) the dynamical bounds on the state variable to be estimated.
+Figure 4 summarises the philosophy of the interval estimation. A

Figure 4: Principle of interval estimation for bounded uncertainties: a priori

bounds on the uncertainties U provide bounds on the non measured state X

Let us consider general system:

(So)
x(t0) =

(59)
= h(x(t),v(t))

where x E IR™ is the state vector y € W is the output vector, u E IRm the

input vector, x0 the initial condition at t0, / : IR™ x IRm x lRr —> IR™ and

h : IR" x IRS —y W.
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The unknown quantities w £ IRr and v £ 1RS are characterised by their

upper and lower bounds:

w~(t) < w(t) <w+(t) V t > t0 (60)

v~(t) < v(t) < v+(t) V t > t0 (61)

Remark: the operator < applies to vectors, it corresponds to inequalities

between each component.

Based on the fixed model structure (<S0) and on the set of known variables,

a dynamical auxiliary system can be designed as follows:

nf — r) [y y 7/ 7/ 111 II) 11 11 1

(62)

with z~:z
+ £ IR ,̂ the other functions being defined in the appropriate do-

mains.

Definition 8 (interval estimator) System (Oo) is an interval estimator

of system (So) if for any pair of initial conditions XQ < XQ, there exists

bounds z~(to), z+(to) such that the coupled system (So->Oo) verifies:

x~(t) <x(t) <x+(t) ; V t > t0 (63)

The interval estimator comes from the coupling between two estimators pro-

viding each an under-estimate x~(t) and an over-estimate x+(t) of x(t), The

estimator provides a dynamical interval [x~(t) , x+(t)] containing the un-

known value x(t) (F IG. 4).

Of course, this interval can be very large and therefore useless. The next

step consists in trying to reduce as far as possible this interval and increase
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the convergence rate toward this interval, for example with an exponential

convergence rate. Then, we move back to classical observation problems,

with the important difference that we don't require the observation error

(the interval amplitude) to tend asymptotically exactly toward zero

6.2 The linear case up to an output injection

First, let us take a very simple case. We consider again the following system:

(s). { £(*) = MV + W
\ y(t) = Cx(t)

with A e Mnxn{JR) (n > 2), C G Mlxn(TR). If the mapping 0 : 1R+ x K ->

]Rn is known, a Luenberger observer can be designed (Section 3.1).

What happens now if function cj> is badly known ? We assume that

it can be bounded and that the bounds are known. Thus, the functions

0~, 0 + : IR+ x IR —>• IRn, are known, sufficiently smooth, such that:

<£"(*, y) < 0(*,y) < 0+(*,y), v(t,y) e 1R+ x IR (65)

Then we will use these bounds to design an upper and a lower estimator:

— it) = Ax+(t) + <f>+(t, y(t)) + K(Cx+(t) - y(t)) (66)

^ (67)

Let us consider now the "upper" error e+{t) = x+(t) — x(t), we have:

with

6+(t) = 0+(

It follows that b+ is positive, and the following Lemma can be easily proven:

32



Lemma 2 / / the elements of matrix (A + KC) are positive outside the di-

agonal (the matrix is said cooperative), then e+(0) > 0 implies e+{t) > 0 for

any positive t.

Of course, we have the same Lemma for the lower error: e~(t) — x{t) —x~(t)

and the total error e(t) = e~(t) + e+(£)- The following theorems can be

deduced:

Theorem 5 / / the gains of vector K can be chosen such that matrix {A +

KC) is cooperative, and if we have an initial estimate such that

x~{0) <x{0) <x+(0)

then equations (66), (67) provide an interval estimator for system (64).

Theorem 6 / / hypotheses of Theorem 5 are verified, if matrix [A + KC) is

stable, and if moreover the error on <fi can be bounded, i.e. if we have:

where B is a positive constant, then the error e(t) converges asymptotically

toward an interval smaller (for each component) than the positive vector:

In particular, if the components of emax are zero, then the corresponding

components for e(t) converge toward zero.

The proofs are straightforward; the proof of the first theorem follows directly

from Lemma 2. The proof of the second theorem is due to the differential

inequality

(A + KC)e + b(t) < (A + KC)e + B

which implies (with equal initial conditions)

e{t) < e^t), Vt > 0
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where em(t) is the solution of ^ = (A + KC)em + -B.

Remarks:

• We use in the observer design the fundamental hypothesis that it is

possible to derive inequalities between the variables from inequalities

on the left hand side of the differential equations. This hypothesis is

connected with the comparison of the solutions of differential equations

(see appendix). There exists other techniques to estimate the intervals,

they are more precise but less explicite (Kieffer, 1999).

• We need also the assumption that the initial estimate is valid

x~(0) <x(0) <x+(0);

a large estimate can be chosen in practice.

• The problem of the tuning of the convergence rate has not been con-

sidered here; is it possible to choose a gain K that will ensure coopera-

tivity, stability, and arbitrary convergence rate ? This is a complicated

problem, we invite the reader to consult (Rapaport and Gouz, 1999)

for more details.

We illustrate this approach with an example of such an estimator for a bio-

chemical process (see (Hadj-Sadok and Gouze, 1998; Alcaraz-Gonzalez et al.,

1999)).

7 Interval estimator for an activated sludge

process

We consider a very simplified model of an activated sludge process, used for

the biological wastewater treatment. The objective is to process a wastewa-

ter, with an influent flow rate Qin and a pollutant (substrate) concentration
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Sin- We want that the concentration of the effluent is lower than sout- The

process is composed by an aerator (bioreactor) followed by a settler sep-

arating the liquid and solid (biomass) phases. Then we recycle a part of

the biomass toward the aerator. Let us denote x, s, and xr the three state

variables of this simple model, representing respectively the biomass and sub-

strate concentrations in the aerator, and the recycled biomass in the settler.

Qim Qout, Qr and Qw are the flow rates, Va and Vs the volumes (see Figure

5). We suppose that the biological reactions only take place in the aerator.

Y is a yield coefficient, and //(.) the bacterial growth rate. If we take into

account the biomass recycling, we get:

Qin , S in

Qout . so

Figure 5: Diagram of an activated sludge process.

- (1 + r)D{t)x + rD(t)xr

with

( dx

~di = P

ds fj,(-)c

~dt= V
dx
—I = v(l + r)D(t)x - v(w + r)D(t)xrdt

Qin . Qr . _ Qv

~V ' o~ ' ~o

(68)

va

We state the following hypotheses:
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- We measure only s and we want to estimate x and xr.

- We assume that //(.) is not known, and we want to design an asymptotic

observer (see section 5.3)

- We know a bounding (even very loose) of the initial conditions for x

and xr.

- The substrate input for Sin fluctuates but is not known. However we

know dynamical bounds for Sin(t):

S7n(t) < Sin(t) < S£(t) V i > 0 .

These hypotheses correspond to what happens in a urban wastewater treat-

ment plant. The influent varies but is not measured. But it can be bounded

by two functions corresponding to human activities. These bounds will prob-

ably evolve with respect to seasons.

We will design an asymptotic interval estimator, which will provide bounds

for the variables to be estimated. First we perform a change of variable to

eliminate //(.) (cf. section 5.3):

Y
s;

0 J [z2

and we get the 2-dimensional system:

dZ

~dt

-(1 + r) r

'(1 + r) — v(w + r)

X = x

Xr

x0 + Ys0

xr0

Ysin(t)

-Yv(l + r)s

(69)
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We can now build two estimators (upper and lower) which use unknown

bounds on the influent concentration Sjn:

" Y

0

Y

0

(70)

X+ = Z+ -

x-= z--

with B+(s,t) =

Y

Y

r)s
Y ; B-(s,t) =

r)s
Y

In this simple case, the convergence rate is fixed by the system. On

Figure 6, we have represented the influent concentration and its bounds, the

measurement s and the two estimates with the bounds. This very simple

observer illustrate how to take into account the knowledge on the dynamical

bounds.

Under certain hypotheses, it can be shown that this observer can be tuned

(Hadj-Sadok and Gouze, 1998).

8 Conclusion

We have seen a set of methods to design an observer for a bioreactor. Other

techniques exist and we do not pretend to be exhaustive. Let us mention

for example the methods based on neural networks, where the system and
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Figure 6: Interval observer, (a) Influent bounds, (b) Measurements of 5 , (c)

interval estimations of X, (d) interval estimations of Xr.

its observer are estimated at the same time. The convergence rate of the

obtained neural network can not be tuned.

The presented observers assumed some model parameters to be known.

In some cases these parameters can evolve. Algorithms to estimate the pa-

rameters must then be used, they lead to adaptive observers. Of course in

that case, the convergence of the full system observer-parameter estimator

must be demonstrated.

The choice of the type of observer to be found must be made above all by

considering the reliability of the model and of the available measurements.

A triple tradeoff must then be managed between robustness with respect to

modelling uncertainties, robustness with respect to disturbances and conver-

gence rate.
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Finally, to implement an observer in a computer, a discretising phase is

required. This step will be based on Euler type algorithms. This step is

not difficult, but it requires care. In particular, if the sampling rate is too

high for the discretisation rate, continuous/discrete observers must be used

(Pengov, 1998).

To conclude, we insist that the observers must first be validated before

they can be used. For this, there predictions must extensively be compared

to direct measurements that were not used during the calibration process.
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8.1 Appendix: a comparison theorem

We propose here a general theorem in the non linear case. It can be useful

to apply the interval estimation techniques. The reader is invited to consult

(Smith, 1995) for the details and for a general presentation.

Definition 9 A non linear system in dimension n is said to be cooperative

if its Jacobian matrix is positive outside its diagonal on a convex domain.
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We propose now the comparison theorem between x(t) and y(t) defined by

the two systems

dr
— = f(x,t) ; x(0)=xo

^ = g(v,t) ; 1/(0) =2/0

where /, g : U x IR+ —>• IRn are sufficiently regular on a convex domain

C/ClRn.

Property 3 //
•VzeU, Vt>0, f(z,t)<g(z,t)

• g is cooperative

- x0 <yo
then x(t) < y(t) for t > 0

The inequalities must be considered for each element. It means that, for

a cooperative system the order between two solutions is conserved for any

time. This property is fundamental for the set up of interval estimators.
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