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CONTROL OF BIOLOGICAL PROCESSES

G. Bastin

1 Performance criteria

Let us consider a biological process where the objective is to produce the biomass or
some metabolite of interest. In order to quantify the performance of the process, we shall
introduce two criteria which are called productivity and yield.
Assume first that the goal is the production of a metabolite P. The productivity over
a time period T is denned as the amount of P which is produced per unit of time during
the period. It is denoted :

Fmit(r)P(T)dT + V(T)P(T) - V(0)P(0)

The amount, per unit of time, of a given limiting substrate which has been consumed
during the same period for the production of P is given by :

Sm - Fout^Sir^dr + V(0)S(0) - V(T)S(T)

The yield of the process is then denned as the ratio between Jp and J5, that is the amount
of product P which has been made per unit of consumed substrate :

In general, an explicit analytical computation of the performance criteria Jp and Jy from
the equations of the state-space model is not possible. In some simple cases however, such
an analytical computation is possible and may bring interesting informations with a view
to the development of optimization strategies we shall examine some of these simple ex-
amples.

Example 1. Production of a primary metabolite in a continuous reactor S - ^ X + P.

The state space model is written

X = r(S,X)-DX
S = -cor(S,X)
P = c1r(S,X)-DP



We assume that the growth rate r(S,X) is expressed as

r(S,X)=n(S)X

with /i(5) the specific growth rate.
In steady-state operation (D= constant), the equilibrium values X, S, P of the state vari-
ables satisfy :

fi(S) = D

X = -(Sm~S)
co

P = — ( ^ - 5 )
co

Then, the steady state productivity may be expressed as a function of the substrate con-
centration :

ci

It is a non monotonic function of the substrate concentration S as depicted in Fig. 1.
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We observe that there is an optimal value 5* of the substrate concentration which
maximizes the productivity.

On the other hand, the yield is constant, independently of the operating points :

T Cl
JY = —

Example 2. Production of a secondary metabolite in a continuous reactor S —> X.

The state space model is written :

X = fi(S)X - DX

S = -cOfi{S)X - C17T(S)X + D(Sin - S)

P = TT(S)X-DP

with fj,(S) the specific growth rate and n(S) the specific production rate.



In steady state operation (D — constant), the equilibrium values X,S, P of the state
variables satisfy :

CMS)

P —
+

In this case, the productivity and the yield are expressed as follows :

JP = DP =
+ ci7r(S)'

AS)JY =

The shape of Jp and Jy with respect to 5 depends on the particular form of fi(S) and
TT(S). It is however most often caracterised by a conflict between yield and productivity
maximization as illustrated in Fig. 2.
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Fig. 2.

Example 3. Production of a primary metabolite in a fed-batch reactor S —* X + P-

The state space model is written as follows :

jt{XV) -

jt(PV) =

dV - F
It ~ Fm

We assume that the initial condition P(0) = 0 and that the substrate concentration S
is exactly regulated at a constant value 5 along the fed batch operation. Under these
assumptions, the productivity and the yield can be shown to be expressed as :

Jp =

JY =

T
,

— = constant



Here the shape of Jp is similar of the shape of JJL(S) as illustrated in Fig. 3.
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Example 4. Production of a secondary metabolite in a fed-batch reactor S —> X.

The state space model is written as follows :

jt(XV) =

— = -^{Sin - S)

±{PV) = n(S)XV

dV - F
~dF - Fm

We assume that the initial condition P(0) = 0 and that the substrate concentration 5
is exactly regulated at a constant value S along the fed batch operation. Under these
assumptions, the productivity and the yield are expressed as :

JP =

JY =
V(T)P(T)

co[V(T)X{T) - V(0)X(0)} + cxV{T)P{T)
P(T)

coX(T)

c17r(5)(exp(/U(5)T) - 1)

As in example 2, there is most often a yield/productivity conflict.

Conclusions

We have shown above that the productivity Jp and the yield Jy can be explicitly
computed in simple cases. These examples have shown that some process optimization



may be achieved by an appropriate regulation of the substrate concentration at an optimal
set point 5*. In case of yield/productivity the selection of the set point 5* may be a tool
for achieving an optimal trade-off between yield and productivity.

2 Substrate regulation

Let us consider the general state space model of a biological process :

i = Cr(O - (m(£) + Q(0) + D(Cn - 0 £(0) G A

The dynamics of some substrate S is in particular written as :

where <j(£) is the specific consumption rate.

The control objective is to regulate the substrate concentration S at the set point S*
by using the dilution rate D as control input u. There is obviously a physical saturation
constraint on the control input :

0 < u(t) < um'dx

Under these constraints, we have seen that the following boundedness properties are guar-
anteed :

• The state £(£) is bounded and belongs to the simplex A.
• In particular, the substrate concentration S is bounded as :

0 < S(t) < Sm Vt

• The specific consumption rate a(^) is bounded as :

0 < <r(0 < am™
with

In order to solve the above regulation problem, a saturated feedback linearizing control
is considered :

u = s a t

where the "sat" function means 0 < u < umax.
This control law is parametrized by a proportionnal gain kp which can be tuned in

order to assign the closed loop dynamics.

Since this control law is an input-output feedback linearization, the stability of the
zero-dynamics should be investigated. We observe however that the stability of the zero
dynamics is not really an issue for fed-batch processes which do not need to be globally
stabilised since they are operated on a fixed finite time interval. In contrast the stability
of the zero dynamics must be checked for continuous reactors.



Example. Stability of zero dynamics for a simple mibrobial growth in a continous reactor
S-^X.

The state space model is written as :

X = fi(S)X-uX

S = - i

It is assumed that the sepcific growth rate JJL(S) is a non-monotonic function of the sub-
strate concentration S and that the set point 5* is selected such as maximizing /x(5), see
the following figure.

s

The control law is written :

u = Sat
[

There a single closed-loop equilibrium :

Sin _ 5

x =
which is easily shown to be open-loop unstable. At the closed loop equilibrium, the control
is :

u =
SinS*

This implies that the zero dynamics are :

X = fj,(S*)X 1 -
c0X

Sin - S

The Jacobian at the equilibrium is —/i(5*) < 0 which implies that the closed loop equi-
librium is asymptotically stable.

Adaptive implementation to cope with modelling uncertainty.

In practice, there is often an important modelling uncertainty regarding the reaction
rates. In particular, if a reliable model of the specific uptake rate <r(£) is not available, it
becomes impossible to apply the control law just as it has been defined above. A standard



solution to that problem is to use an adaptive implementation where the unknown function
cr(£) is replaced by an on-line estimate a as follows :

as + kP{s* - s)
u = sat, ] Sm - S

sat (/c25(S* - 5))
—]

The stability of this adaptive control scheme may be analysed with a classical Lyapunov
approach.


