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1 Introduction
The aim of this chapter is to give a self content presentation of the modelling
of engineering systems that are governed by a law of mass conservation and to
briefly discuss some control problems regarding these systems.

A general state-space model of mass balance systems is presented. The
equations of the model are shown to satisfy physical constraints of positivity
and mass conservation. These conditions have strong structural implications
that lead to particular Hamiltonian, Compartmental and Stoichiometric repre-
sentations. The modelling of mass balance systems is illustrated with two simple
industrial examples : a biochemical process and a grinding process.

In general, mass balance systems have multiple equilibria, one of them being
the operating point of interest which is locally asymptotically stable. However
if big enough disturbances occur, the process may be lead by accident to a
behaviour which may be undesirable or even catastrophic. The control challenge
is then to design a feedback controller which is able to prevent the process from
such undesirable behaviours. Two solutions of this problem are briefly described
for inflow controlled systems : (i) robust state feedback stabilisation of the total
mass, (ii) output regulation for a class of minimum phase systems.

Some interesting stability properties of open loop mass balance systems are
reviewed in Appendix.

2 Mass balance systems
In mass balance systems, each state variable £; (i — l , . . . , n ) represents an
amount of some material (or some matter) inside the system, while each state



equation describes a balance of flows as illustrated in Fig. 1 :

%i = n - q% +pi (1)

where p% represents the inflow rate, qi the outflow rate and r̂  an internal trans-
formation rate. The flows Pi,q% and T{ can be function of the state variables
x'i,. .. xn and possibly of control inputs u\,..., um. The state space model which
is the natural behavioural representation of the system is therefore written in
vector form :

x = r(x, u) — q(xy u) + p(x, u) (2)

As a matter of illustration, some concrete examples of the phenomena that can
be represented by the (p, q, r) flow rates in engineering applications are given in
Table 1.

Transformations
Physical : grinding, evaporation, condensation
Chemical : reaction, catalysis, inhibition
Biological : infection, predation, parasitism

Outflows
Withdrawals, extraction
Excretion, decanting, adsorption
Emigration, mortality

Inflows
Supply of raw material
Feeding of nutrients
Birth, immigration

etc...etc...

Table 1.

In this paper, we shall assume that the functions p(x,u),q(x,u),r(x,u) are
differentiable with respect to their arguments. The physical meaning of the
model (2) implies that these functions must satisfy two kinds of conditions
: positivity conditions and mass conservation conditions which are exphcited
hereafter.

3 Positivity

Since there cannot be negative masses, the model (2) makes sense only if the
state variables xt(t) remain non-negative for all t :
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Figure 1: Balance of flows

where R+ denotes the set of real non-negative numbers. It follows that :

Xi = 0 => ±i>0 (3)

whatever the values of Xj G i?+, j ^ i and it/-. This requirement is satisfied if
the functions p(x, w), q(x, u)) r(x, u) have the following properties :

1. The inflow and outflow functions are defined to be non-negative :

p(x
q(x ,n) J +

2. There cannot be an outflow if there is no material inside the system :

Xi =0=>qi(x,u)=0 (4)

3. The transformation rate ri(xyu) : R^_ x Rm —> R may be positive or
negative but it must be defined to be positive when Xi is zero :

0 (5)

4 Conservation of mass
Provided the quantities xi are expressed in appropriate normalized units, the
total mass contained in the system may be expressed as1 :

l rro simplify the notations, it will be assumed throughout the paper that the summation
y ^ is taken over all possible values of i (here i = 1, . . . , n) and Ei=^j o v e r a-H possible values
of i except j .



When the system is closed (neither inflows nor outflows), the dynamics of M
are written :

M = y]rj(x,u)
i

It is obvious that the total mass inside a closed system must be conserved
(M = 0), which implies that the transformation functions ri(x,u) satisfy the
condition :

Yjrt(x,^=Q (6)
i

The positivity conditions (4)- (5) and the mass conservation condition (6) have
strong structural implications that are now presented.

5 Hamiltonian representation

A necessary consequence of the mass conservation condition (6) is that n(n — 1)
functions r^j(x,u) (i = 1,...,n ; j = 1,... ,n ; i ^ j) may be selected such
that :

T{ (x, U) = VJ Vji (x, U) — \_\ rij (xi u) (^)

(note the indices !). Indeed, the summation over i of the right hand sides of
(7) equals zero. It follows that any mass balance system (2) can be written
under the form of a so-called port-controlled Hamiltonian representation (see
[10], [11]) :

+ p(x,u) (8)

where the storage function is the total mass M(x) = ]T^ X{. The matrix F(x, u)
is skew-symmetric :

F(x,u) = -FT(x,u)

with off-diagonal entries fij(x,u) = r3l(x,u) — rij(x,u). The matrix D(x,u)
represents the natural damping or dissipation provided by the outflows. It is
diagonal and positive :

D(x,u) = diag (qi(x,u)) > 0

The last term p(x, u) in (8) obviously represents a supply of mass to the system
from the outside.

6 Compartmental representation

There is obviously an infinity of ways of defining the r̂ - functions in (7). We
assume that they are selected to be non-negative :

r.VJ(x,u) :R% x Rm -> R+



and differentiate since ri(x,u) is required to be differentiable.
Then condition (5) is satisfied if :

(9)

Now, it is a well known fact (see e.g. [7], page 67) that if rij(xyu) is different iable
and if condition (9) holds, then rij(x,u) may be written as :

rij = xlftj{xyu)

for some appropriate function fij(x:u) which is defined on R+ x j?m, non-
negative and at least continuous. Obviously, the same is true for qi(x,u) due to
condition (4) :

qi(x,u) = Xiqi(x,u)

The functions ftj and qi are called fractional rates. It follows that the mass bal-
ance system (2) is then written under the following alternative representation :

x = G(x, u)x + p(x, u) (10)

where G(x, u) is a so-called compartmental matrix with the following properties :

1. G(xyu) is a Metzler matrix with non-negative off-diagonal entries :

gij(x, u) = fji(x, u) > 0 i ^ j

(note the inversion of indices !)

2. The diagonal entries of G(x,u) are non-positive :

gu(x,u) = -qi(x,u) - ^fij(x,u) < 0

3. The matrix G(x,u) is diagonally dominant :

The term compartmental is motivated by the fact that a mass balance system
may be represented by a network of conceptual reservoirs called compartments.
Each quantity (state variable) X{ is supposed to be contained in a compart-
ment which is represented by a box in the network (see Fig. 2). The internal
transformation rates are represented by directed arcs : there is an arc from
compartment i to compartment j when there is a non-zero entry gji — fij in
the compartmental matrix G. These arcs are labeled with the fractional rates
fij. Additional arcs, labeled respectively with fractional outflow rates qi and
inflow rates pt are used to represent inflows and outflows. Concrete examples
of compartmental networks will be given in Fig.4 and Fig.6.
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Figure 2: Network of compartments

A compartment is said to be outflow connected if there is a path from that
compartment to a compartment from which there is an outflow arc. The system
is said to be fully outflow connected if all compartments are outflow connected.
As stated in the following property, the non singularity of a compartmental ma-
trix can be checked directly on the network.

Property 1. For a given value of (x,u) 6 R+ x J?m, the compartmental matrix
G(xy u) of a mass balance system (10) is non singular if and only if the system
is fully outflow connected. •

A proof of this property can be found e.g. in [7].

7 Stoichiometric representation

In many cases the transformation rates Ti(x,u),i = l , n can be expressed as
linear combinations of a smaller set of non-negative and different!able basis
functions pi(xyu), p2(xyu), ...,pk(x,u) (k < n) :

Ti{x,u) = J2

This situation typically arises in chemical systems where the non-zero coeffi-
cients Cij are the stoichiometric coefficients of the underlying reaction network
and the functions p3{x,u) are the reaction rates. The matrix C — [cij] is there-
fore called stoichiometric and by defining the vector p(x, u) — (pi(x, u), pi{x, u),..., pk(x, u))T

we have :
r(x, u) — Cp(x, u)

As we will see in the examples, this stoichiometric representation is also rele-
vant in many other physical and biological systems, As stated in the following

6
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Figure 3: Stirred tank reactor

property, the mass conservation condition (6) can easily be checked from the
stoichiometric matrix C independently of the rate functions pj{x,u).

Property 2. The mass conservation condition Y^i ri(x, u) — 0 is satisfied if the
sum of the entries of each column of C is zero :

or equivalently if the vector e = (1,1, . . . ,1)T belongs to the kernel of the
transpose of the stoichiometric matrix : sTC — 0. •

8 Examples of mass-balance systems

8.1 A biochemical process

A continuous stirred tank reactor is represented in Fig.3. The following bio-
chemical reactions take place in the reactor :

A --> Bx
B -? X

where X represents a microbial population and A, B organic matters. The
first reaction represents the hydrolysis of species A into species f?, catalysed by
cellular enzymes. The second reaction represents the growth of microorganisms
on substrate B. It is obviously an auto-catalytic reaction. Assuming mass
action kinetics, the dynamics of the reactor may be described by the model :

±i — -\-k\X\X2 — UX\

±2 = —kiX\X2 - UX2

X™



with the following notations and definitions :

x\ — concentration of species X in the reactor
x2 — concentration of species B in the reactor
X3 = concentration of species A in the reactor
x™ — concentration of species A in the influent
u = dilution rate (control input)
k\,k2 = rate constants.

This could be for instance the model of a biological depollution process where
nx™ is the pollutant inflow while u(x2 + £3) is the residual pollution outflow.
It is readily seen to be a mass-balance model with the following definitions :

ux\ \ / 0
r(xyu) — I — k\X\x2 + k2xiXs 1 q(x,u) = I ux2 I p(x,u) = \ 0

uxs ux3

The Hamiltonian representation is :

0 k\X\X2 0
F(x1u) = I — h\X\x2 0 k2X\X%

0 —h2x\X'\ 0

The compartmental matrix is :

G(x,u) =

ux\ 0
D(x,u) — [ UX2

0 0

0

— u — k2x\

The compartmental network of the process is shown in Fig.4 where it can be seen
that the system is fully outflow connected. The stoichiometric representation

ux\

Figure 4: Compartmental network of the biochemical process model

is :

p{x) =



mill

x2

separator

72^2

Figure 5: Grinding circuit

8.2 A grinding process

An industrial grinding circuit, as represented in Fig.5 is made up of the inter-
connection of a mill and a separator. The mill is fed with raw material. After
grinding, the material is introduced in a separator where it is separated in two
classes : fine particles which are given off and oversize particles which are recy-
cled to the mill. A simple dynamical model has been proposed for this system
in [6]:

x2 = -

with the following notations and definitions :

x\ = hold-up of fine particles in the separator
X2 = hold-up of oversize particles in the separator
xs = hold-up of material in the mill
u = inflow rate

= outflow rate of fine particles
— flowrate of recycled particles

(j){xz) — outflowrate from the mill = grinding function
a — separation constant (0 < a < 1)
7i,72, &i,&2 = characteristic positive constant parameters

This model is readily seen to be a mass-balance system with the following



definitions :

r(x,u)=\ -12X2 + a<l>(

72^2 -

q(x,u) = I 0
V

0
= | 0

The Hamiltonian representation is :

0 0
F(x,u)= ( 0 0

- ( 1 - a)(f)(x3) 72X2 - o
-72^2

71X1 0 0
D(xyu) = \ 0 0 0

0 0 0

The compartmental matrix is :

/ -7 i ' 0 (l-a)feie-fc2a:3

G{x,u) — 0 —72 ak\e~k2Xz

\ 0 +72 -fcie"*2*3

The compartmental network of the process is shown in Fig.6 where it can be
seen that the system is fully outflow connected.

7 i

Figure 6: Compartmental network of the grinding process model
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The stoichiometric representation is :

/ 1 - a 0 \
C=\ a - 1 p(x) =

9 A fundamental control problem

Let us consider a mass-balance system with constant inputs denoted u :

x = r(x, u) — q(x, u) + p(x, u) (11)

An equilibrium of this system is a state vector x which satisfies the equilibrium
equation :

r(x, u) — q(x, u) + p(x, u) — 0

In general, mass balance systems (11) have multiple equilibria. One of these
equilibria is the operating point of interest. It is generally locally asymptot-
ically stable. This means that an open loop operation may be acceptable in
practice. But if big enough disturbances occur, it may arise that the system
is driven too far from the operating point towards a region of the state space
which is outside of its basin of attraction. From time to time, the process may
therefore be lead by accident to a behaviour which may be undesirable or even
catastrophic. We illustrate the point with our two examples.

Example 1 : The biochemical process
For a constant inflow rate u < k\x™, the biochemical process has three

equilibria (see Fig.7). Two of these equilibria (£1,^2) are solutions of the
following equations :

X'2 = — X\ + Xs = X™ - — Xs(u + k2Xi) =

The third equilibrium (E3) is

Xi = 0 X2 = 0 X3 = £3in

As we shall see later on, this system is globally stable in the sense that all
trajectories are bounded independently of u. Furthermore, by computing the
Jacobian matrix, it can be easily checked that El and E3 are asymptotically
stable while E2 is unstable.

El is the normal operating point corresponding to a high conversion of sub-
strate .T3 into product x\. It is stable and the process can be normally operated
at this point. But there is another stable equilibrium E3 called "wash-out steady
state" which is highly undesirable because it corresponds to a complete loss of
productivity : X\ = 0. The pollutant just goes through the tank without any
degradation.

11



Figure 7: Equilibria of the biochemical process

The problem is that an intermittent disturbance (like for instance a pulse of
toxic matter) may irreversibly drive the process to this wash-out steady-state,
making the process totally unproductive.

Example 2 : The grinding process
The equilibria of the grinding process

constant input flowrate u as follows :

a r e parametrized by a

7 l

—
u

au

In view of the shape of
equilibria if :

7 2 ( l - a ) ^~*> ( 1 _ f t )

X's) as illustrated in Fig.8, there are two distinct

u < (1 - a)(j)inax

The equilibrium El on the left of the maximum is stable and the other one E2
is unstable. Furthermore, for any value of u, the trajectories become unstable
as soon as the state enters the set D defined by :

(1 -a)(f)(x3) < 71Z1 < u
D { a<f>(x3) < 72^2

0

Indeed, it can be shown that this set D is forward invariant and if x(0) G D
then x\ —> 0 £2 —>• 0 ^3 -> 00. In some sense, the system is Bounded
Input - Unbounded State (BIUS). This means that there can be an irreversible

12
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Figure 8: Equilibria of the grinding process

accumulation of material in the mill with a decrease of the production to zero.
In the industrial jargon, this is called mill plugging. In practice, the state may
be lead to the set D by intermittent disturbances like variations of hardness of
the raw material. •

In both examples we thus have a stable open loop operating point with a
potential process destabilisation which can take two forms :

• drift of the state x towards another (unproductive) equilibrium

• unbounded increase of the total mass M(x)

The control challenge is then to design a feedback controller which
is able to prevent the process from such undesirable behaviours.

Ideally a good control law should meet the following specifications :

51. The feedback control action is bounded;

52. The closed loop system has a single equilibrium in the positive orthant
which is globally asymptotically stable;

53. The single closed-loop equilibrium may be assigned by an appropriate set
point.

Moreover, it could be desirable that the feedback stabilisation be robust against
modelling uncertainties regarding r(x) which is the most uncertain term of the
model in many applications.

13



This is indeed a vast problem which is far to be completely explored. Here-
after, we limit ourselves to the presentation of two specific solutions of this
problem namely (i) the state feedback stabilisation of the total mass in inflow
controlled systems; (ii) the output regulation with state boundedness in stirred
tank systems.

10 Inflow controlled systems

In this section, we will focus on the special case of inflow-controlled mass-balance
systems where the inflow rates pi(x,u) do not depend on the state x and are
linear with respect to the control inputs Uk '•

Pi(x,u) = ̂ TbikUk bik > 0 uk > 0
k

while the transformation rates ri(x,u) and the outflow rates qi{x,u) are inde-
pendent of u. The model (2) is thus written as :

x = r(x) - q(x) + Bu (12)

with B the n x m matrix with entries bik.
The Hamiltonian representation specializes as :

+Bu (13)

and the compartmental representation as :

x = G(x)x + Bu (14)

with appropriate definitions of the matrices F(x),D(x) and G(x).
The grinding process model presented in the previous section is an example

of an inflow-controlled mass balance system.

10.1 Bounded input - (un)bounded state

Obviously, the state x of any mass-balance system is bounded if and only if the
total mass M(x) = ]T^ x-h is itself bounded. In an inflow-controlled system, the
dynamics of the total mass are written as :

M =-Y,<li(x)+ YlbikUk (15)
i i,k

From this expression, a natural condition for state boundedness is clearly that
the total outflow YliQi(x) should exceed the total inflow ]>^ k^

ikUk w n e n the
total mass M(x) is big enough (in order to make the right hand side of (15)
negative). This intuitive condition is made technically precise as follows.

Property 3. Assume that :

14



(Al) the input u(t) is bounded :

0 < uk(t) < <n a x Vt Vfc = 1, . . . , m

(A2) There exists a constant MQ such that

I i,k

when M(x) > Mo

Then, the state of the system (12) is bounded and the simplex

A - {x e Rl : Af (re) < MQ}

is forward invariant.
The system is BIBS if condition (A2) holds for any wmax, for example if each

q}{x) -» oc as Xi -» oo. •

As a matter of illustration, it is readily checked that inflow-controlled sys-
tems with linear outflows in all compartments i.e. qt(x) = alx.l^ai > 0,Vz are
necessarily BIBS. Indeed in this case we have

^2qi(x) = ̂ T^diXi > m\n%{a,)M{x)

and therefore Mo = ̂ ^ g f

In contrast, as we have seen in the previous section, the grinding process of
Example 2 is not BIBS. Even worse, the state variable xs may be unbounded
for any value of nmax > 0. This means that the process is globally unstable for
any bounded input.

10.2 Systems without inflows

Consider the case of systems without inflows u = 0 which are written in com-
partmental form

x = G(x)x (16)

Obviously, the origin x = 0 is an equilibrium of the system.

Property 4. If the compartmental matrix G(x) is full rank for all x G R7^
(equivalently if the system is fully outflow connected), then the origin x = 0
is a globally asymptotically stable (GAS) equilibrium of the unforced system
x = G(x)x in the non negative orthant, with the total mass M(x) — J2i xi a s

Lyapunov function. •

15



Indeed, for such systems, the total mass can only decrease along the system
trajectories since there are outflows but no inflows :

M = -

Property 4 says that the total mass M(x) and the state x will decrease until
the system is empty if there are no inflows and the compart mental matrix is
nonsingular for all x. A proof of this property and other related results can be
found in [2].

10.3 Robust state feedback stabilisation of the total mass

We now consider a single-input inflow-controlled mass-balance system of the
form :

Xi = ri(x) — q%{x) + biu i = 1,. . . ,n (17)

with bi > 0 Vi,J2ibi > °
This system may be globally unstable (bounded input/unbounded state).

The symptom of this instability is an unbounded accumulation of mass inside
the system like for instance in the case of the grinding process of Example 2.

One way of approaching the problem is to consider that the control objective
is to globally stabilise the total mass M(x) at a given set point M* > 0 in order
to prevent the unbounded mass accumulation.

In order to achieve this control objective, the following positive control law
is proposed in [1] :

u{x) = max(Q,u(x)) (18)

u(x) = A(M* - M{x)) (19)

where A > 0 is an arbitrary design parameter. The stabilising properties of this
control law are as follows.

Property 5. If the system (17) is fully outflow connected, then the closed
loop system (17)-(18)-(19) has the following properties for any initial condition
x(0) G iQ :

1. the set Q = {x G i?+ : M(x) = M*} is forward invariant

2. the state x(t) is bounded for all t > 0 and rimt_>oo M(x) = M*.

The proof of this property can be found in [1]. It is worth noting that the
control law (18)-(19) is independent from the internal transformation term r(x).
This means that the feedback stabilisation is robust against a full modelling

16



uncertainty regarding r(x) provided it satisfies the conditions of positivity and
mass conservativity.

The application of this control law to the example of the grinding process
is studied in [1] where it shown that the closed loop system has indeed a sin-
gle globally stable equilibrium (although the open loop may have 0, 1, or 2
equlibria).

10.4 Output regulation for a class of BIBS systems

In order to avoid undesirable equilibria, a possible solution is to regulate some
output variable at a set point y* which uniquely assigns the equilibrium of
interest. Here is an example of such a solution. We consider the class of single-
input BIBS mass-balance systems of the form :

±i = Ti(x) — cii'Xi i — l , . . . , n — 1

xn = rn(x)-anxn+u

with di > 0 Vz. We assume that the measured output y = xn is the state of an
initial compartment. The species xn can only be consumed inside the system
but not produced. In other terms, in the compart mental graph of the system,
there are several arcs going from compartment n to other compartments but
absolutely no arcs coming from other compartments. Then, with the notations :

f = (xi,...,xn-i)
T y = xn

and appropriate definitions of (f and ij), the system is rewritten as :

) (20)

y = -(il>(£,y) + an)y + u (21)

and the function ip(Cy) is non-negative.
The goal is to regulate the measured output y at a given set point y* > 0.

In order to achieve this objective, the following control law is considered :

u = ty(Z,y) + an)[{l - \)y + \y*] (22)

where A is a design parameter such that :

0 < A < 1

With this control law, the closed loop system is written as :

i = <f(Z,y) (23)
y = -MZ,y) + an)Kv*-v) (24)

The stabilisation properties of this control law are analysed under the following
assumptions :

17



Al. The state is initialised in the non negative orthant with 0 < y(0) < ymax

for some arbitrary ymax > y*.

A2. The function ip(£,y) is bounded :

A3. The zero dynamics £ = </?(£? 2/*) n a v e a single equilibrium £ £ i?™""1 which
is GAS in the non negative orthant.

Assumption A3 is a standard global minimum phase assumption.

Property 6 Under Assumptions Al, A2 and A3, the closed loop system (23)-
(24) has the following properties :

1. The control input is positive and bounded :

0 < u(t) < Wnax + an)[(l - X)ymax + \y*}

2. The state is bounded

3. The regulation error converges to zero : (y* — y) —> 0 as t —» oo.

4. The closed loop system has a single equilibrium (£,y*) which is GAS in
the non negative orthant.

Again the important point is that the closed loop system is guaranteed to
have a single GAS equilibrium although the open loop system may have several
equilibria as we have seen above.

11 Mass balance systems in stirred tanks

In many engineering applications, the system under consideration takes place
in liquid phase in a stirred tank with a constant volume as represented in Fig.3.
The state variables X{ represent the concentrations of various species in the
tank. We consider the very common case of stirred tank mass balance systems
with the volumetric flow rate as single control input. In such systems, both the
mass inflow rates Pi(x, u) and the mass outflow rates qt{x, u) linearly depend on
the input u :

Pi(x,u) = ux™ qi(x,u) — uxi (25)

while the transformation rates ri(x,u) are independent of u. x]71 > 0 denotes
the constant concentration of the i-th species in the influent stream. Obviously,
xf1 — 0 for those species which are not fed to the tank but are only produced
inside the system. The consistency of the model also requires that the control

18



input be non negative : u(t) > 0 Vt. The general mass-balance (2) is thus
written as :

x = r(x) + u(xin - x)

with xin the n x 1 vector with entries xf1. The stoichiometric representation
specializes as :

x = Cp(x) + u(xin - x) (26)

The biochemical process model presented above is an example of a stirred tank
mass balance system.

State boudedness
For a stirred tank system, the dynamics of the total mass M{x) = Y2i xi a r e

written as :

M ^ui^Txf1 - M) (27)

which implies that M(x) and therefore x are bounded independently of the
control input u. Furthermore, the simplex

A - {xr > 0 :

is forward invariant. A weaker but more explicit consequence is that if x is
initialised in A, then each state variable is bounded as :

Stoichiometric invariants
From equation (27) we see also that the set Q = {x E i?™ : Yli(xi ~x?1) = 0}

is forward invariant. This is a typical special case of stoichiometric invariants
which are classically considered in the Chemical Engineering literature (see e.g.
[3]). For any non-zero vector AT = (Ai,.. . , An) such that XTC = 0 (the vector A
is in the kernel of the transpose of the stoichiometric matrix C), a stoichiometric
invariant is defined as the set

il = {xeRl :XT(x-xin) = 0}

It is indeed easy to check that this set is forward invariant along the trajectories
of the stirred tank system (26).

The nonlinear control of mass balance systems in stirred tank reactors is
discussed e.g. in [8] (see also [9] for related results).
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12 Summary

In this chapter a general state-space model of mass balance systems has been
presented and illustrated with two simple industrial examples : a biochemical
process and a grinding process. In general, mass balance systems have multiple
equilibria, one of them being the operating point of interest which is locally
asymptotically stable. However if big enough disturbances occur, the process
may be lead by accident to a behaviour which may be undesirable or even catas-
trophic. The control challenge is then to design a feedback controller which is
able to prevent the process from such undesirable behaviours. We have pre-
sented two very specific solutions for single input systems. But it is obvious
that the fundamental control problem formulated in this chapter is far from
being solved and deserves deeper investigations. In particular a special interest
should be devoted to control design methodologies which explicitely account
for the structural specificities (Hamiltonian, Compartmental, Stoichiometric) of
mass balance systems and rely on the construction of physically based control
laws.
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Appendix : stability conditions

In this appendix some interesting stability results for mass balance systems with
constant inputs are collected. These results can be useful for Lyapunov control
design or for the stability analysis of zero-dynamics.

Compartmental Jacobian matrix
We consider the general case of inflow controlled mass balance systems with

constant inflows :

x = r(x) - q(x) +p(u)

The Jacobian matrix of the system is defined as :

When this matrix has a compartmental structure, we have the following stabil-
ity result.

Property A l
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a) If J{x) is a compartmental matrix Va; G i?™, then all bounded orbits tend
to an equilibrium in K+.

b) If there is a bounded closed convex set D C i?,™ which is forward invariant
and if J(x) is a non singular compartmental matrix Vx € D, then there is
a unique equilibrium x G D which is GAS in D with Lyapunov function

A proof of part a) can be found in [7] Appendix 4 while part b) is a concise
reformulation of a theorem by Rosenbrock [12].

The assumption that J(x) is compartmental Vx G FC+ is fairly restrictive.
For instance, this assumption is not satisfied neither for the grinding process
nor for the biochemical processes that we have used as examples in this paper.
A simple sufficient condition to have J(x) compartmental for all x is as follows.

Property A2 The Jacobian matrix J(x) = -§^[T{X) — q(x)\ is compartmen-
tal \/x E R1^ if the functions r(x) and q(x) satisfy the following monotonicity
conditions :

i ^ d^ >> n dqi n I a •1} ^° 0 k^%

2) ^ >
ox

In the next two sections, we describe two examples of systems that have
a single GAS equilibrium in the nonnegative orthant although their Jacobian
matrix is not compartmental.

The Gouze }s condition
We consider a class of stirred tank mass-balance systems of the form :

*< = Z j M * j ) - rtj(xi)] + u(x? - Xi) (28)

where the transformation rates rij(xi) depend on xi only.
For example this can be the model of a stirred tank chemical reactor with

monomolecular reactions as explained in [5] (see also [13]).
The set Vi — {x £ R+ : M(x) = YLix\n} 1S bounded, convex, compact and

invariant. By the Brouwer fixed point theorem, it contains at least an equilib-
rium point x = (x"i, X2, • . •, xn) which satisfies the set of algebraic equations :

\ ^ \ r ••(*•) — r- -(f)} 4- v(Tin — f) — 0

The following property then gives a condition for this equilibrium to be unique
and GAS in the non negative orthant.
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Property A3 If (rjj(xi) — rij(xi))(xi — Xi) > \/x-i > 0, then the equilib-
rium (xi , . . . ,xn) of the system (28) is GAS in the non negative orthant with
Lyapunov function.

V(x) — \~] \xi ~ %i\

The proof of this property is given in [5]. The interesting feature is that the
rate functions rvj(x-i) can be non-monotonic (which makes the Jacobian matrix
non-compartmental) in contrast with the assumptions of Property A2.

Conservative Lotka-Volterra systems
We consider now a class of Lotka-Volterra ecologies of the form :

aijxj ~ aio + Ui i — 1, . . . , n (29)
)

with o-io > 0 the natural mortality rates;
ciij = —dij Mi 7̂  j the predation coefficients (i.e. A == [a?7] is skew symmetric);
Ui > 0 the feeding rate of species X{ with ^jj Ui > 0.

This is a mass balance system with a bilinear Hamiltonian representation :

F(x) — [dijXiXj] D(x) = (diag a^Xi)

Assume that the system has an equilibrium in the positive orthant int{i?.™ }
i.e. there is a strictly positive solution (xi,X2,.. . ,xn) to the set of algebraic
equations :

aw = 2_^ aijxj + z- i — 1, • • •, n

Assume that this equilibrium {x\) ^ 2 , . . . ,xn) is the only trajectory in the set :

D — {x G int{i£™} : Ui(xi — Xi) — OVi}

Then we have the following stability property.
Property A4 The equilibrium (xi ,x2 , . . . ,xn) of the Lotka-Volterra system
(29) is unique and GAS in the positive orthant with Lyapunov function

V{x) — 2^(xi ~

The proof is established, as usual, by using the time derivative of V:

V{x) = -l

and the La Salle's invariance principle (see also [4] for related results).
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