
united nations
educational, scientific

and cultural
organization

the
i
international centre for theoretical physics

international atomic
energy agency

SMR1327/27

Summer School on Mathematical Control Theory
(3 -28 September 2001)

Optimizing bioreactors by extremum seeking

Georges Bastin
CESAME

Center for Systems Engineering and Applied Mechanics
Batiment Euler

4, Avenue G. Lemaitre
B-1348 Louvain

Belgium

These are preliminary lecture notes, intended only for distribution to participants

strada costiera, I I - 340! 4 trieste italy - te!.+39 0402240 i I I fax +39 040224163 - scijnfo@ictp.trieste.it - www.ictp.trieste.it





INTERNATIONAL JOURNAL OF ADAPTIVE CONTROL AND SIGNAL PROCESSING
Int. J. Adapt Control Signal Process. 13, 651-669 (1999)

OPTIMIZING BIOREACTORS BY EXTREMUM SEEKING

HSIN-HSIUNG WANG11, MIROSLAV KRSTIC2'* AND GEORGES BASTIN3

1Department of Electrical Engineering, Oriental Institute of Technology, 58, sec. 2, Szu-Chuan Road, Panchiao,
Taipei County 220, Taiwan

2 Department of AMES, UC San Diego, La Jolla, CA 92093-0411, U.S.A.
3CESAME-Centerfor Systems Engineering and Applied Mechanics, Universite Catholique de Louvain,

Louvain-la-Neuve, Belgium

SUMMARY

The optimization of the operation of biological reactors is an interesting non-linear problem whose solution
offers potential economic benefit. We apply a peak seeking method to approach the maximum biomass
production rate in a continuous stirred tank bioreactor. Two models, Monod and Haldane, are investigated
and it is shown by simulation that the peak seeking scheme achieves optimization for both cases.
A stabilizing feedback controller with a washout filter is designed to extend the operating range for the
Haldane model. Copyright © 1999 John Wiley & Sons, Ltd.

1. INTRODUCTION

The application of modern model-based techniques for optimization and control of bioreactors is
hampered by a major bottleneck: the difficulty of identifying reliable first principle models for
these highly non-linear and widely uncertain systems.

It is, however, recognized that even small performance improvements may result in substantial
economic benefits. It is the purpose of this paper to present an 'extremum seeking' approach for
the optimization of bioreactors which allows for an automated seeking of the best operating point
while being robust against a complete uncertainty regarding the process kinetics.

An extensive introduction into the modelling and control issues for bioreactors can be found in
the tutorial paper.1 For the feedback control of these processes, in order to cope with the
modelling uncertainties, adaptive techniques have been mainly investigated in the literature (see
e.g. Reference 2-4) including more recently adaptive neural network model.5'7
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652 H.-H. WANG, M. KRSTIC AND G. BASTIN

In the present paper, in order to maximize the productivity of a continuous stirred tank
bioreactor, we apply extremum seeking which is an old adaptive non-linear control method from
the 50-60s whose stability proof we provided just recently in Reference 8 (and tested it experi-
mentally on an axial-flow compressor9). Compared to classical adaptive and neural net methods,
the main advantages of our approach are twofold: first the optimization objective (productivity
maximization) is an explicit ingredient of the formulation of the adaptive control law, i.e. the
optimization objective is guaranteed to be achieved when the control is convergent; second, this
approach does not require any parameterization nor structural formalization of the modelling
uncertainty (even under the form of a black box model like neural nets).

As a benchmark for our demonstration, we use a simple model of a continuous stirred tank
biological reactor with numerical parameter values from References 10 and 11. The optimization
objective is to maximize the biomass production, more precisely the mass outflow rate of
produced microorganisms. The steady states of the process can be characterized by a non-
monotonic map relating the biomass production to the dilution rate which is our control input.
The purpose of the extremum seeking method is to iteratively adjust the dilution rate in order to
steer the process to the maximum of the map which corresponds to a maximum productivity.

The paper is organized as follows. In Section 2 we describe the dynamical model of the
bioreactor under consideration, with Monod and Haldane kinetics and in Section 3 we state the
control objective. In Section 4, we study the open-loop stability of these models. We apply
extremum seeking to the system in Section 5 and show simulation results. In Section 6 we design
a stabilizing controller with a washout filter to extend the operating range for the Haldane model.

2. THE DYNAMIC MODEL OF A CONTINUOUS STIRRED TANK REACTOR

In this section, we present the dynamic model of a continuous stirred tank bioreactor where
a single population of micro-organisms is cultivated on a single limiting substrate. The bioreactor
is shown in Figure 1.

substrate
inlet

microorganisms/
substrate outlet

Figure 1. Bioreactor with continuous culture

Copyright © 1999 John Wiley & Sons, Ltd. Int. J. Adapt. Control Signal Process. 13, 651-669 (1999)



OPTIMIZING BIOREACTORS 653

The limiting substrate is fed into the culture vessel with a constant concentration sR at
a volumetric flow ra te / The culture medium is withdrawn at the same volumetric rate/so that
the culture volume v in the vessel is kept constant. The dilution rate D is defined as D =f/v and is
the inverse of the residence time.

It is assumed that the other required substrates (including oxygen if needed) are provided in
excess, that the culture medium is perfectly mixed and that the environmental conditions
(temperature and pH) are regulated at appropriate constant values.

The dynamic behaviour of this bioreactor is then described by the following standard mass
balance model (see e.g. Reference 2):

x = ii(s)x - Dx (1)

s ) - ^ (2)

where x is the biomass concentration, 5 is the substrate concentration, fi(s) is the specific growth
rate function and Y is the yield coefficient.

Many analytical expressions for the function fi(s) have been proposed empirically or experi-
mentally and we consider the two most commonly used, but many others could be considered as
well. The most classical function is the Monod model:

where /nm is the maximum growth rate constant and Ks is a saturation constant. If substrate
inhibition is considered, the function /bt(s) may be given by the Haldane model:

where K{ is an inhibition constant.
Hence, for Monod kinetics the bioreactor model is:

and for Haldane kinetics the model is

Copyright © 1999 John Wiley & Sons, Ltd. Int. J. Adapt. Control Signal Process. 13, 651-669 (1999)



654 H.-H. WANG, M. KRSTIC AND G. BASTIN

To normalize the model, we use YsR, sR, /im, l/jum as the units of x, 5, D and t, respectively. So the
non-dimensional models become

- 5) - p (10)

for Monod model and

for Haldane model, where i ^ = Ks/sR and K2 = K{/sR.

3. THE OPTIMIZATION OBJECTIVE

Let us assume that the industrial goal of the process is the production of micro-organisms. As an
optimization objective, it is then natural to consider the maximization of the amount of biomass
harvested per unit of time which can be measured by the biomass outflow rate:

y = xD (13)

We shall see in the next section that the steady states of the process are characterized by
a non-monotonic map relating the biomass outflow rate (the controlled output) y to the dilution
rate D which is our control input. The purpose of the extremum seeking method is then to
iteratively adjust the dilution rate in order to steer the process to the maximum of this map.

It is important to understand that we do not assume that the function fi(s) is a priori known: the
Monod and Haldane models presented above must be viewed as a theoretical benchmark to
illustrate and analyse the efficiency of the extremum seeking approach. Our aim will be to show
that the best operating point can be discovered by a peak seeking algorithm which is completely
'ignorant' of the form of the kinetics.

4. BIFURCATION ANALYSIS OF THE OPEN-LOOP SYSTEM

4.1. Monod model

To investigate the stability of the open-loop system with a Monod model, we first calculate
equilibria corresponding to a constant dilution rate D = Do. Let the right-hand side of (9) and (10)
be zero, after some calculations we obtain two equilibria; one is (x0 = 0, s0 = 1) and the other can

Copyright © 1999 John Wiley & Sons, Ltd. Int. J. Adapt. Control Signal Process. 13, 651-669 (1999)



OPTIMIZING BIOREACTORS 655

be expressed as a function of Do as follows:

So =
KtD0

xo =

I-Do

l-(l+Kt)D0

I-DQ

(14)

(15)

The equilibrium (x0 = 0, s0 — 1) is called the wash-out steady state since the concentration of the
micro-organism is reduced to zero.

The Jacobian of the system at (x0, s0) is

J = +s0

-Do s0)
2

+s0 s0)

(16)

It is easy to show that

1. The wash-out equilibrium (x0 — 0, s0 = 1) is stable when Do > 1/(1 +
when Do < 1/(1 + K i ) .

2. At the other equilibrium, the Jacobian can be written as

J =
0 B-Dol

-Do - B J

t) and unstable

(17)

where

This equilibrium is defined only for Do < 1/(1 +
which it is defined.

The steady-state output can be expressed as

+ D2
0 (18)

li) and is stable for all the values of Do for

To obtain the extremum value y% of y0 we differentiate (19) with respect to Do and get

D* = 1 -

x* - 1 + Kt -

(19)

(20)

(21)

^22)

For bifurcation analysis we select the parameters provided by Herbert et al.10 as: fim = 1 h \
Y = 0-5, Ks = 0-2 g/1, sR = 10g/1, sR = 10g/1. So Kx = KJsR - 002. By substituting Kt into
(20)-(22), we get

y* = 0-754 for D* = 0-860, s* = 0-123, x* = 0-877. (23)

Copyright © 1999 John Wiley & Sons, Ltd. Int. J. Adapt. Control Signal Process. 13, 651-669 (1999)
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Since the second derivative of y0 with respect to Do is negative, this point is a maximum. The
bifurcation diagram parameterized by the dilution rate for the steady-state output is shown in
Figure 2 in which the solid line represents stable equilibria and the dashed line represents
unstable equilibria.

4.2. Haldane model

To study the stability of the open-loop system with Haldane model, we also calculate equilibria
corresponding to a constant dilution rate D = Do. Let the right-hand side of (11) and (12) be zero.
Calculations show that the system has a unique equilibrium or multiple equilibria, depending on
the value of Do. The wash-out state always exists, i.e. (x0 = 0, s0 = 1). For
Do < 1/(1 + 2y/K1/K2) there are two additional equilibria:

xO i = 1 — Soi

(24)

502 —
2D0

(25)
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Figure 2. The bifurcation diagram of output of micro-organism w.r.t. dilution rate for a Monod model
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The Jacobian at (x0? s0) is

1 xo(l/X2 -
KJs0 + so/K2 KJs0 + so/K2)

2

xo(l/K2 - K

1 + + 50/K2 (1 + + so/X2)2J

(26)

It is easy to show that

1. The wash-out equilibrium (x0 = 0, s0 = 1), is stable for Do > (1 + 2/K2)/(l + Kt + l/K2)
2

and unstable for Do < (1 + 2/K2)/(l + Kt + l/K2)
2.

2. At the other branch of equilibria, the Jacobian is

H

where

(27)

(28)

We choose the parameters proposed by D'Ans and Kokotovic,11 K1 =0*1 and K2 = 0*5.
Substituting these values into the Jacobian at the maximum point, it becomes

jj ° ° - 5 0 " 1 (29)
|_ - 0-5099 - 1 01977 J v ;

It is easy to check that the Jacobian is Hurwitz. A complete stability analysis along
equilibria is shown in Figure 3.

The steady-state output can be expressed as

To obtain the extremum value of y0 we differentiate (30) with respect to Do and get

o —

1

U -
( * *

to
 to

) 2 - f K2s*

1 +K

KXK\

4

2

+

-A

: 2 -

—K,K2
X \+K2

Substituting the values of Kx and K2 into (31)—(33), the maximum output is

y* =0-4322 for D* = 0-5099, s* = 0-1523, x* = 0-8477. (34)

Since the second derivative is negative this point is a maximum. The bifurcation diagram for the
output equilibrium parameterized by the dilution rate is shown in Figure 3.

Copyright © 1999 John Wiley & Sons, Ltd. Int. J. Adapt. Control Signal Process. 13, 651-669 (1999)
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Figure 3. The bifurcation diagram of output of micro-organism w.r.t. dilution rate for a Haldane model

5. PEAK SEEKING VIA THE DILUTION RATE

Owing to the uncertainty and time-varying properties of biological processes the maximum
operating point is hard to predict precisely. It is therefore of interest to implement peak seeking
control which is model-free and able to automatically tune the dilution rate in the right direction.
A block diagram for peak seeking implemented on a bioreactor is shown in Figure 4. The output
performance index is the biomass outflow rate. The parameters are chosen as follows:

speed of non-linear dynamics = O(l)»co»coh, a, k (35)

The scheme from Figure 4 guarantees the following stability result outlined in the following
theorem. For a detailed statement of the result and a proof the reader is urged to consult Reference 8.

Theorem 5.1.

Consider the feedback system in Figure 4 and assume that the bioreactor dynamic model has
the following properties:

(1) for D in an interval [Du D2] there is an isolated one-dimensional manifold* of equilibria
E(D) which depends smoothly on D;

(2) each of the equilibria in E([DU D2]) are exponentially stable* with an 0(1) rate of decay;

f Possibly more than one.
% Possibly only locally.

Copyright © 1999 John Wiley & Sons, Ltd. Int. J. Adapt. Control Signal Process. 13, 651-669 (1999)
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D
Bioeactor

a sin ut Peak seeking feedback

Figure 4. Peak seeking scheme for the bioreactor.

(3) the equilibrium value of the output y on E({DUD2J) is a smooth function of D with
a maximum at D = D*.

Then there exists a ball of initial conditions§ around the equilibrium corresponding to D = D*
and a positive constant d)«l such that, for all coe(0,co) and all a, k, coh«a>, the solution
converges to an O(co) neighbourhood of that equilibrium.

The conditions of this theorem are all verified by the analysis and bifurcation plots in the last
section. It should be noted however that, in the case of the Haldane model (Figure 3), the stable
interval near the peak is narrow so an additional inner feedback loop is needed to broaden it.

We now demonstrate by simulations the ability of peak seeking to adapt the dilution rate to
optimize the biomass flow rate. We apply the (same) scheme to both the Monod and the Haldane
model.

5.1. Monod model

For the Monod model, from Figure 2 we know that the peak occurs at D* = 0-86, s* = 0*123,
x* = 0*877. Our purpose is to tune D to D*. We implement the peak seeking scheme with the
following choice of parameters:

coh = 0-04, co = 0-08, a = 0-03, k = 5

First, we start from an initial dilution rate lower than the optimum rate. Figure 5 shows how
the peak seeking approaches the peak along the equilibrium curve. The time response of the
output is shown in Figure 6 and the time response of the tuning parameter is shown in Figure 7.
The second simulation starts from a dilution rate larger than the optimum value. The results are
shown in Figures 8-10.

From Figure 6, the settling time is 272 h and the improvement in performance to the maximum
output is 26-7%, which means the performance is improved with a rate of about 0*1% h"1 . This
rate of improvement is satisfactory but it is certainly not impressive. Since the time constants of

§In the state space of the overall feedback system in Figure 4.

Copyright © 1999 John Wiley & Sons, Ltd. Int. J. Adapt. Control Signal Process. 13, 651-669 (1999)
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Figure 5. The maximum seeking process for the Monod model with initial dilution rate Do = 0-6
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Figure 6. The time response of the output with peak seeking for the Monod model with initial dilution rate Do = 0-6
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Figure 7. The time response of the tuning parameter with peak seeking for the Monod model with initial dilution
rate Do = 06

.84 0.85 0.86 0.87 0.88 0.89 0.9 0.91 0.92

Figure 8. The maximum seeking process for the Monod model with initial dilution rate Do = 0-9
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Figure 9. The time response of the output with peak seeking for the Monod model with initial dilution rate Do = 0-9
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Figure 10. The time response of the tuning parameter with peak seeking for the Monod model with initial dilution
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the system at the peak are on the order of 10, this means that the convergence to the peak takes
about 27 time constants. The convergence to the peak can be made faster by tuning the
parameters of the scheme and by introducing an appropriate phase shift in the perturbation
sinusoid. However, we do not do this here for two reasons. First, our primary objective is to
qualitatively demonstrate the possibility of finding the peak, and not to optimize the transients.
Second, and more important, if we chose parameters which make the convergence from the left
side of the peak faster, they are too agressive for the right side of the peak and may lead to
instability. As evident by comparing Figures 6 and 9, the same parameters which result in
relatively slow convergence from the left, result in fast convergence from the right. Since we do not
assume to know the location of the peak, the adaptation must proceed cautiously.

The oscillations of the output y in Figure 6 are about 3% of the peak equilibrium value of y.

5.2. Haldane model

For the Haldane model, from Figure 3 we know that the peak occurs at D* = 0-5099,
s* = 0-1523, x* = 0-8477, j / * = 0-4322. Again our purpose is to tune D to D*. We implement the
peak seeking scheme with the same parameters as in the case of the Monod model.

First, we start from an initial dilution rate lower than the optimum value. Figure 11 shows how
the peak seeking approaches the peak along the equilibrium curve. The time response of the
output is shown in Figure 12 and the time response of the tuning parameter is shown in Figure 13.
If we increase the initial Do to the right of the optimum value, the time response of the output in
Figure 14 shows that the system falls to the wash-out steady state. This is because the Haldane
model has unstable equilibria underneath the maximum point. This motivates us to apply

0.45

0.44 -

y

0.43 -

0.42

0.41 -

0.4 - •

0.39 -

0.38 - •

0.37

1

j
if K

f

\M

i i

it—-4

| 4
: : 1

i i

0.4 0.42 0.44 0.46

D
0.48 0.5 0.52

Figure 11. The maximum seeking process for the Haldane model with initial dilution rate Do = 0-4
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Figure 12. The time response of the output with peak seeking for the Haldane model with initial dilution rate Do = 0-4
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Figure 13. The time response of the tuning parameter with peak seeking for the Haldane model with initial dilution
rate Do = 0-4
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Figure 14. The time response of the output with peak seeking for the Haldane model with initial dilution rate Do = 0-52.
The system starts at an unstable equilibrium and falls into the wash-out steady state

feedback control to stabilize the equilibrium branch under the maximum point, which is the
subject of Section 6.

6. FEEDBACK WITH WASHOUT FILTERS FOR THE HALDANE MODEL

In general, a washout filter

s
W(s) =

cos

(36)

is a high pass filter that preserves the equilibrium structure and affects only the transient response
and stability type. In this application, one would use it in stabilization of unstable equilibria (such
as those in Figure 3) without changing their location. Clearly, a washout filter alone is not
sufficient for stabilization — it is used in combination with a state feedback controller, where the
states include both mean values and regulation errors, for the purpose of 'washing out' the mean
values from the feedback signal. It is very important not to confuse the terms wash-out equilibria
with wash-out filter. It is an unfortunate coincidence that both terms are independently broadly
adopted and they both appear in this problem. Note also that, incidentally, the peak seeking
scheme itself incorporates a wash-out filter 5/(5 + coh) which is used to eliminate the DC
component of the output in peak seeking. This washout filter should not be confused with
washout filters used in this section.

Copyright © 1999 John Wiley & Sons, Ltd. Int. J. Adapt. Control Signal Process. 13, 651-669 (1999)
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We therefore assume the full state is measurable, design a full state feedback (D = kxx + kss\
and then apply it through washout filters as follows:

D = De + kx(x - xs) + ks(s - ss)

Xs = (DSXS + COSX

where De represents the equilibrium value of the control variable.

6.1. Control design

The Jacobian for the closed-loop system (x, 5, xs, ss) at the equilibrium (x0, s0, x0, s0) is

(37)

(38)

(39)

J =

-kxx0

kxx0 — De

0

xo(l/K2

(1 + Ki/so + so/X2)2

xo(l/X2 -

ksx0

- De + ksx0
so/K2)

2

0

co.

kxx0

-kxx0

— CO.

ksx0

-ksx0

0

0 — co.

(40)

The eigenvalues of this fourth-order matrix are hard to calculate. However, we know that the
eigenvalues are continuous. Therefore, for small cos, two of the eigenvalues will be approximately
a>s, and the other two will be approximately equal to the eigenvalues of the closed-loop system
without washout filters. The characteristic polynomial at the peak is readily shown to be (using
the values in Reference 11)

p(X) = X2 - ks) + 1-0198)2 + 0-4322(fcx - ks) + 0-26

By Routh-Hurwitz method, the stability condition is

kx - ks + 1-20 > 0 and kx + ks < 0-60

(41)

(42)

By choosing kx = 0 and ks= — 0*2, stability condition (42) is satisfied. The bifurcation diagram
with De as the parameter is shown in Figure 15. Note that a small amount of gain is sufficient to
stabilize the whole branch of equilibria under the maximum point. We will use this feedback gain
for the peak seeking simulation.

6.2. Simulation results

As the starting point selected from Section 5.2, the initial dilution rate is 0*52. The parameters
are selected as follows:

kx = 0, ks= - 0-2, coh = 0-04, co = 0-08, a = 0-03, k = 2, cos = 0-01

The seeking process is shown in Figure 16 and the time responses for the output y and the tuning
parameter D are shown in Figures 17 and 18, respectively. The peak seeking, combined with

Copyright © 1999 John Wiley & Sons, Ltd. Int. J. Adapt. Control Signal Process. 13, 651-669 (1999)
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Figure 15. The bifurcation diagram of output of micro-organism w.r.t. dilution rate for a Haldane model with
washout filters
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Figure 16. The maximum seeking process in for the Haldane model with state feedback and the initial dilution Do = 0-52
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Figure 17. The peak seeking time response of the output with state feedback for the Haldane model with initial
dilution rate Do = 0-52
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Figure 18. The peak seeking time response of the tuning parameter with state feedback for the Haldane model with initial
dilution rate Do = 0-52
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a small amount of stabilizing feedback, drives the system to the optimal equilibrium from a broad
region of initial conditions. Thus, the stabilizing feedback improves the operating range of the
system.

7. CONCLUSIONS

By applying peak seeking to both Monod and Haldane models, we have shown that it can
optimize the steady-state operation of a continuous stirred tank reactor in the face of uncertainty
in the kinetics. In the Haldane model, a subcritical bifurcation prevents operation with a satisfac-
tory stability region near the maximum of the biomass outflow rate. For this reason, we apply
a local stabilizing feedback to soften the bifurcation. The feedback is passed through a washout
filter to keep the same structure of equilibria but only affect their stability type. As a result, the
operating range of the system, and the region of applicability of peak seeking, is extended.

As expected from the peak seeking theory, the plots show that D(t) converges to within O(co)
(on the order of 1%) from D*.

In all the simulations with peaks seeking, due to the periodic excitation signal, the output
undergoes oscillations of less than 5% around the mean value. These oscillations are small
relative to the increase in the mean due to peak seeking. Since the oscillations are also relatively
small and do not induce excessive wear and tear on the actuator, these oscillations should be of
minor concern (unless, of course, the biomass outflow rate is required to be steady, in which case
we would turn off the adaptation after the maximum is achieved).

ACKNOWLEDGEMENTS

The work was supported in part by the National Science Foundation under Grant ECS-9624386
and in part by the Air Force Office of Scientific Research under Grant F08671-9800319.

REFERENCES

1. Bastin, G. and J. F. Van Impe, 'Nonlinear and adaptive control in biotechnology: a tutorial', European J. Control,
37-53 (1995).

2. Bastin, G. and D. Dochain, On-line Estimation and Adaptive Control of Bioreactors, Elsevier Science Publications,
Amsterdam, 1990.

3. Chen, L., G. Bastin and V. V. Breusegem, 'A case study of adaptive nonlinear regulation of fed-batch biological
reactors', Automatica, 55-65 (1995).

4. Van Impe, J. F. and G. Bastin, 'Optimal adaptive control of fed-batch fermentation processes with multiple
substrates', Control Eng. Practice, 939-954 (1995).

5. Boskovic, J. D. and K. S. Nanendra, 'Comparison of linear, nonlinear and neural-network-based adaptive controllers
for a class of fed-batch fermentation processes', Automatica, 817-840 (1995).

6. Thibault, J., V. V. Breusegem and A. Cheruy, 'On-line prediction of fermentation variables using neural networks',
Biotechnoi Bioeng., 1041-1048 (1990).

7. Yang, Y. Y. and D. A. Linkens, 'Adaptive neural-network-based approach for the control of continuously stirred tank
reactor', IEE Proc. Control Theory AppL, 141, 341-349 (1994).

8. Krstic, M. and H. H. Wang, 'Design and stability analysis of extremum seeking feedback for general nonlinear
systems', Proc. 1997 Conf. on Decision and Control, San Diego, CA, TA02-3, also Automatica, to appear.

9. Wang, H. H., S. Yeung and M. Krstic, 'Experimental application of extremum seeking on an axial-flow compressor',
Proc. 1998 ACC, Philadelphia, PA, TM09-1.

10. Herbert, D., R. Els worth and R. C. Telling, 'The continuous culture of bacteria; a theoretical and experimental study',
J. Gen. MicrobioL, 601-622 (1956).

11. D'Ans, G. and P. Kokotovic, 'Optimal control of bacterial growth', Automatica, 729-736 (1972).

Copyright © 1999 John Wiley & Sons, Ltd. Int. J. Adapt. Control Signal Process. 13, 651-669 (1999)


