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Introduction

We are interested in time-invariant control systems of the form

x = f(x,u) (0.1)

where x G Mn represents the physical state of the system, and u G Mm represents the input from the

exterior world. In general, the input is decomposed as a sum u — uc + ur + uj + . . . (uc =control,

ur ^reference signal, uci =disturbance, ...). The action of the control consists of finding uc in such a. way

that the system evolves according to some prescribed goals. Usually two typical control actions can be

performed

• open loop control: uc = c(t) (it may also depend on the initial state)

• closed loop (automatic, feedback) control: uc = k(x).

Just in order to fix the notation, assume that a notion of solution has been specified. Then, we denote

by SXQiU(.) the set of all solutions of (0.1) corresponding to a given initial state XQ and a given input

u = u(t). When we want to emphasize the dependence of a particular solution <p(t) G Sx-0,u(-) o n ̂ he

initial state and the input, we may also write x = (p(t\xo,u(-)). When the only input is provided by a

feedback u — k(x), solutions of (0.1) are denoted by x — ipk(.)(t;xo).

Clearly, to every feedback u = k(x) and every initial state there corresponds an open loop control

u — k(ipk(.)(t] XQ)), bu t not vice versa.

Preliminary to control synthesis is system analysis; that is, the analysis of the way the solutions

x — <p{t\xo,u(')) are affected by the choice of the input u — u{t). A first step in this direction is the

investigation of the so-called unforced system

x = f(x10) . (0.2)

Since there is no energy supply, we expect that the initial energy is dissipated during the evolution,

so that any solution converges to some equilibrium position. However, this is not necessarily the case

because of possible unmodeled effects. The behavior could be also affected by undesired phenomena

(resonance, multiple equilibrium positions, limit cycles, bifurcations, etc.). The stabilizability problem

consists of finding a feedback u — k(x) such that the closed loop system

x = f(xik(x)) (0.3)

exhibits improved stability performances. As we shall see, stability of the unforced system is related to

a better behavior of (0.1) with respect to external unpredictable inputs.

Prerequisites. We assume that the reader is familiar with the theory of linear systems of ordinary

differential equations, and with basic facts about existence, uniqueness and continuous dependence of

(classical) solutions of nonlinear ordinary differential equations.



Chapter 1

Unforced systems

1-1 Basic stability notions

The mathematical formalization of stability concepts is clue to A.M. Liapunov (1892). For convenience,
we refer to a system of ordinary differential equation

x = f(x) ( x e M n ) . (1.1)

For the moment, we assume that / is continuous on the whole of Mn, so that for each measurable,
locally bounded input and each initial condition a (classical) solution exists, but it is not necessarily
unique. Solutions of (1.1) will be denoted by x = (p(t;xo); we shall also write SXo instead of SXO}o.

Definition 1 We say that (1.1) is (Liapunov) stable at the origin (or that the origin is stable for (1.1))
if for each s > 0 there exists S > 0 such that for each xo with \\XQ\\ < S and all the solutions <p(-) £ SXo

the following holds: <p(-) is right continuable for t £ [0,+co) and

\W)\\<e V t > 0 .

Problem 1 Prove that if the origin is stable, then it is an equilibrium position for (1.1) i.e., /(0) = 0.

Definition 2 We say that (1.1) is Lagrange stable (or that it has the property of uniform boundedness
of solutions) if for each R > 0 there exists S > 0 such that for \\XQ\\ < R and all the solutions <p(-) £ SXo

one has that <p(-) is right continuable fort £ [0,-foo) and

\ W ) \ \ < s , w > o .

A very special (but very important for engineering applications) case arises when the system is linear
i.e.,

x = Ax (1.2)

where A is a square matrix with constant entries.

Problem 2 Prove that in the linear case Liapunov stability and Lagrange stability imply each other; give
an example to prove that in general Liapunov stability and Lagrange stability are distinct properties.

Definition 3 We say that system (1.1) is locally asymptotically stable at the origin (or that the origin is
locally asymptotically stable for (1.1)) if it is stable at the origin and, in addition, the following condition
holds: there exists SQ > 0 such that
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for each xo such that \\xo\\ < So, and all the solutions <p(-) £ SXo.
The origin is said to be globally asymptotically stable if So can be taken as large as desired.

Problem 3 Prove that for linear systems, the Liapunov stability requirement can be dropped in the
previous definition (in the sense that it is implied by the remaining conditions).

Problem 4 Find an example which shows that in general, the Liapunov stability requirement cannot be
dropped in the previous definition (difficult: see [21], [63]).

Problem 5 Find an example of a system which is Liapunov stable but not asymptotically stable (easy:
there are linear examples).

Problem 6 Prove that every linear system which is locally asymptotically stable is actually globally
asymptotically stable.

Remark 1 When dealing with systems without uniqueness, one should distinguish between weak and
strong notions. The previous definitions are strong notions in the sense that the properties are required
to hold for all the solutions, and not only for some of them (see also Remark 5, next chapter).

Remark 2 Definitions 1 and 3 can be referred to any equilibrium position, that is any point XQ such
that f{xo) = 0. The choice xo — 0 implies no loss of generality. •

1.2 Liapunov functions

Liapunov functions are energy-like functions which can be used to test stability. Actually, for each concept
of stability there is a corresponding concept of Liapunov function.

Notation: Br = {x £ Mn : \\x\\ < r) and Br = [x e Mn : ||g|| > r}.

Definition 4 A smooth weak Liapunov function in the small is a real map V(x) which is defined on Br

for some r > 0, and fulfills the following properties:

(i) V(0) = 0

(n) V{x) > Oforx^O

(in) V(x) is of class C1 on Br

(w) VV(x) • f(x) < 0 for each x eBr.

When a real function V(x) satisfies (ii), it is usual to say that it is positive definite. The function

V(x) = VV» • f(x)
def

is called the derivative of V with respect to (1.1). Condition (iv) means that V is semi-definite negative.
A real function V(x) is said to be radially unbounded if it is defined on Br for some r > 0, and

lira V(x) = +co .

Problem 7 Radial unboundedness is equivalent to say that the level sets [x G Mn : V(x) < a] are
bounded for each a G l .



Definition 5 A function V(x) defined on Br for some r > 0, which is radially unbounded and fulfills
(in) and (iv) of Definition \ (with Br replaced by Br), will be called a smooth weak Liapunov function
in the large.

Definition 6 A smooth strict Liapunov function in the small is a weak Liapunov function such that
V(x) is negative definite; in other words, it satisfies, instead of (iv),

(v) VV{x) • f(x) < 0 for each x E Br (x ± 0).

A function V(x) defined for all x G Mn
? which is radially unbounded and fulfills the properties (i),

(ii), (Hi), (v) with Br replaced by M.n, will be called a smooth global strict Liapunov function.

Remark 3 As far as Liapunov functions are assumed to be of class (at least) C1, condition (iv) is clearly
equivalent to the following one:

(iv?) for each solution <p(-) of (1.1) defined on some interval I and lying in Br, the composite map
t i-> V(ip(t)) is non-increasing on I.

Such a monotonicity condition can be considered as a "nonsmooth analogous" of properties (iii), (iv).
Indeed, it can be stated without need of any differentiability (or even continuity) assumption about V.

m
Definition 7 Let r > 0. A function V : Br —>• M is called a generalized weak Liapunov function in the
small if it satisfies (i), (iv}) and, in addition, the following two properties:

(iV) for some r\ < r and for each a G (0,?]) there exists A > 0 such that V(x) > A when a < ||#|| < i]

(in') V(x) is continuous at x = 0.

The existence of a generalized Liapunov function is sufficient in order to achieve Liapunov stability
(analogous generalization about Lagrange stability).

1.3 Sufficient conditions

Theorem 1 // there exists a smooth weak Liapunov function in the small, then (1.1) is stable at the
origin.

Theorem 2 // there exists a smooth strict Liapunov function in the small, then (1.1) is locally asymp-
totically stable at the origin.

If there exists a smooth global strict Liapunov function, then (1.1) is globally asymptotically stable at
the origin.

These theorems are respectively called First and Second Liapunov Theorem. Next theorem is due to
Yoshizawa.

Theorem 3 // there exists a smooth weak Liapunov function in the large, then (1.1) is Lagrange stable.

Problem 8 Prove that if there exists a symmetric, positive definite real matrix P such that

Alp + PA< 0

then V(x') — x Px is a weak Liapunov function for the linear system (1.2), so that the system is stable.

Problem 9 Prove that if P and Q are symmetric, positive definite real matrices such that

AtP-\-PA = -Q (1.3)

then V(x) — x Px is a strict Liapunov function in the large for (1.2).



1.4 Converse theorems

From a mathematical point of view, the question whether Theorems 1, 2 and 3 are invertible is quite
natural. Recently, it has been recognized to be an important question also for applications to control
theory.

1.4.1 Asymptotic stability

Great contributions to studies about the invertibility of second Liapunov Theorem were due to Malkin,
Barbashin and Massera, around 1950. In particular, in [95] Massera. proved the converse under the
assumption that the vector field / is locally Lipschitz. For such vector fields, he proved that asymptotic
stability actually implies the existence of a Liapunov function of class C00. In 1956, Kurzweil ([89])
proved that the regularity assumption about / can be relaxed.

Theorem 4 Let f be continuous. If (1.1) is locally asymptotically stable at the origin then there exists
a C00 strict Liapunov function in the small.

If the system is globally asymptotically stable at the origin, then there exists a C°° global strict Lia-
punov function.

It is worth noticing that Kurzweil Js Theorem provides a Liapunov function of class C°° in spite of /
being only continuous.

1.4.2 Stability

The invertibility of first Liapunov theorem is a more subtle question.

Problem 10 Find an example in order to prove that a system with a stable equilibrium position may
admit no continuous Liapunov functions (difficult: see [8], [85]).

For one-dimensional systems with a stable equilibrium position it is proven in [16] there may be a

variety of situations.

• continuous but not locally Lipschitz Liapunov functions

• locally Lipschitz but not C1 Liapunov functions.

However, if there exists a C1 Liapunov function then there are also C°° Liapunov functions. For
two-dimensional systems the situation is still worse. We may have Liapunov functions of class Cr but
not of class Cr+1 (0 < r < u). All this can be done with f <E C°°.

The following result concerns generalized Liapunov functions.

Theorem 5 System (1.1) is Liapunov stable at the origin if and only if there exists a generalized weak
Liapunov function in the small.

Theorem 6 Assume that the right hand side of (1.1) is locally Lipschitz continuous. Then, if (1.1) is
Liapunov stable at the origin there exists a lower semi-continuous generalized weak Liapunov function in
the small.

1.5 Time-dependent Liapunov functions

Another possible approach to the invertibility of first Liapunov theorem is to seek time-dependent Li-
apunov functions. Recall that a G /Co means that a : [0,+oo) -> M is a continuous, strictly increasing
function such that a(0) = 0. If in addition linv^+co a(r) — +oo, then we write a G /CQ°.



Definition 8 A time-dependent weak Liapunov function in the small for (1.1) is a real map V(t,x)
which is defined on [0, +oo) x Br for some r > 0, and fulfills the following properties:

(i) there exist a,b G /Co such that

a(\\x\\)<V{t,x)<b(\\x\\) fort G [0,+co), x e Br

(it) for each solution ip(-) of (1.1) and each interval I C [0,+oo) one has

t i , < 2 e / ) ti<t2=>v(tli<p(t1))>v(t2,<p(t2))

provided that <p(-) is defined on I and <p(t) E Br fort G / .

From (i) it follows V(t, 0) = 0. The existence of a time-dependent weak Liapunov function is sufficient
to prove stability of the origin for (1.1). The following statement is a particular case of a theorem
independently proved by Krasovski, Kurzweil and Yoshizawa around 1955.

Theorem 7 Consider the system (1.1), and assume that f(x) is locally Lipschitz continuous. If the
origin is stable, then, there exists a weak Liapunov function in the small of class C°°.

Unfortunately, the conclusion fails if / is only continuous.



Chapter 2

Stability and nonsmooth analysis

In control theory, one often needs to resort to discontinuous feedback. For this reason, we are interested

in the extension of stability theory to systems

x = f(x) (2.1)

with discontinuous right-hand-side. More precisely, we assume that / : Mn —>• Mn is locally bounded and

(Lebesgue) measurable. Under these assumptions, the existence of classical (i.e., differentiate everywhere

and satisfying (2.1) everywhere) is not guaranteed.

We say that ip{t) is a Caratheodory solution if tp G AC and it satisfies (2.1) a.e..

We say that (p(t) is a Filippov solution if (p G AC and it satisfies a.e. the differential inclusion

x G F(x)

where

F(x) = Ff(x)=C\ fl co {f(Bi(x)\N)} (2.2)
def ' ' ' '

<5>o ^(JV)=O

where c<5 denotes the convex closure of a set and \i is the usual Lebesgue measure of Mn.

We say that <p(t) is a Krasowski solution if <p G AC and it satisfies a.e. the differential inclusion

x G K(x)

where

K(x) = Kf(x) = f) co {f(Bs(X))} . (2.3)
<5>0

Problem 11 Compute F / and K / in the following cases:

1 x G 0

Every Filippov solution is a Krasowski solution but there may be Caratheodory solutions which are

not Filippov solution (find an example).

It is not yet clear what type of solution is the best for control theory applications. Here, we focus

on Filippov solutions. In particular, we want to give criteria for stability which apply to discontinuous

systems and involves nonsmooth (say, locally Lipschitz continuous) Liapunov functions.



We recall that if f(x) is measurable and locally bounded, then the multivalued map F(x) — K.xf(x)
enjoys the following properties

Hi) F(x) is a nonempty, compact, convex subset of Mn, for each x G Mn

H2) F(x), as a multivalued map of a?, is upper semi-continuous i.e.,

V£ \/s 36 : ||f -x\\<6=> F{£) C F(x) + B£

H3) for each R > 0 there exists M > 0 such that

F(x)c {v: \\v\\<M}

for 0 < | |z | |<i*.
When f(x) is locally bounded, there is also an equivalent (perhaps more intuitive) definition (see

[100]). Indeed, it is possible to prove that there exists a set No C Mn (depending on /) with fJ.(No) — 0
such that, for each N C Mn with fi(N) = 0, and for each x G Mn,

Ff(x) = co{u : 3{xi) with xi -> xsuch that xi £ No U N and v — \im f(xi)} . (2.4)

In [100], the reader will find also some useful rules of calculus for the "operator" F.

Remark 4 A second, important reason to consider differential inclusions is given by the fact that a
system with free inputs can be actually reviewed as a differential inclusion of a particular type.

Consider a system with a continuous right hand side f(x,u). Let U be a given subset of Mm, and
assume that an input function u(-) is admissible only if it fulfills the constraint u(t) G U a.e. t > 0.
Then, it is evident that every solution corresponding to an admissible input is a solution of a differential
inclusion with right hand side defined by f(x,U).

A celebrated theorem by Filippov states that also the converse is true, provided that f(x,u) is con-
tinuous and U is a compact set. We recall that under the same assumptions on f(x,u) and U, f(x, U)
turns out to be HausdorfF continuous1. On the other hand, if f(x,u) is continuous and locally Lipschitz
continuous with respect to x (uniformly with respect to u) then f(x,U) is locally Lipschitz HausdorfF
continuous with respect to x.

We can retain the following conclusion. From the point of view of control theory, it is interesting to
consider differential inclusions

x G ?{x)

where either T satisfies assumptions Hi, ..., H3 or T is locally Lipschitz HausdorfF continuous.

Remark 5 Let us recall that in the literature about difFerential inclusions, there are two possible way
to interpret the classical notions of stability. The notions labelled "weak'' (local, asymptotic, Lagrange
stability) are deduced by asking that the respective conditions are satisfied for at least one solution
corresponding to prescribed initial data. These notions are not irrelevant from a control theory point of
view: indeed, they are related to controllability problems, feedback stabilization, viability theory and so
on.

1 HausdorfF continuity is continuity of set valued maps with respect to HausdorfF distance; the HausdorfF distance between
nonempty, compact subsets of Mn, usually denoted by /i, is given by

h(A,B) — max{supdist (a,J9), supdist(6, A)}

where dist (a,B) = inff,es \\a — b\\.



On the contrary, the notions labelled "strong" (local, asymptotic, Lagrange stability) imply that all
the solutions corresponding to the prescribed initial data satisfy the respective conditions. From our
point of view, this type of stability is the ideal one we can look for, when the inputs are interpreted as
disturbances. Indeed, it is obviously desirable that the effect of a disturbance is quickly absorbed and
that it does not affect too much the evolution of the system. In the spirit of the present work, from now
on we focus therefore on the strong notions, which can be reviewed as some forms of external stability.

2*1 Generalized derivatives

Let N > 1 be any integer number (in the sequel, we will focus in particular the case N — n -\- 1). Let

V(x) : RN -> M be defined on an open subset Q of MN. For x eQ,v e RN and h G M, we are interested

in the difference quotient

V(x + hw)-V(x)
71(11, x, w) = .

Let finally x G Q, w E MN. The usual directional derivative at x with respect to w is defined as

DV(x, w) - lim 1l(h, xt w)
h¥0

provided that the limit exists and it is finite. When the existence of the limit is not guaranteed, certain
notions of generalized derivatives may represent useful substitutes. The most classical type of generalized
derivatives are Dini derivatives. The idea is as follows. To V, x and w we associate four numbers
~D+V(x, w), D±V(x, w), ~D^V{x, w), DZ_V(x, w). The former is defined as

Iimsup7£(/i, x, w)

and the other are defined in similar way, taking the infimum instead of the supremum and the left limit
instead of the right one, according to the notation. In this paper we shall make use of Dini derivatives,
but we need also other types of generalized derivatives.

The upper right contingent derivative D^(x,w) is defined as

lim sup 1Z(h, x,w) .

Analogously, one can define D^V(x,w), DKV(x,w), DKV(x,w).

Problem 12 Show that the following relations hold:

D^_V(x, w) = D^(-V)(x, -w) = -~D^V(x, -w) = -Jy£(-V)(x, w) .

Contingent derivatives are in some way related to the so-called contingent cone, introduced by Bouli-
gand in 1930. Note that if V is locally Lipschitz continuous, then any contingent derivative coincides
with the corresponding Dini derivative and the same is true if Ar — 1 and w ^ 0.

More recently, upper Clarke directional derivative DcV(x,w) appears in the context of nonsmooth
optimization theory ([33]). It is defined as

limsup7£(/7, x) w)



(in this case we do not distinguish between right and left limits, since they always coincide). Similarly,
we can define Dc_V{x, w). Note that DcV(x, w) = —DcV(x, —w).

It is not difficult to verify that the map

w i-» D+V(x, w)

from M.N to M U {±00} is positively homogeneous. The same is true for any other type of generalized
(Dini, contingent or Clarke, upper or lower, left or right) derivative. In addition, w K> DCV(X,W) is
subadditive (and hence a convex function).

In general, ~D+V(x, w) < ~DcV(x, w) and ~D+V(x, w) < D%-V{x, w).

Problem 13 It may happen that for some x and w

(z, w) < U^V(x, w) , D+V{x> w) < Df^V{x) w) ,

(x, w) > D^V{x, w) , l)cV(x, w) < D%V(x, w) .

Give at least one example for each inequality.

Clarke gradient of V at x is given by

dcV(x) = {p G M.N : Vu; G RN one has DcV{x, w) < p • w < ~D^,V(x) w)} .

The set dcV(x) is convex for each x £ Q. Moreover, if V is Lipschitz continuous, then dcV(x) turns
out to be compact. The upper Clarke derivative can be recovered from Clarke gradient. Indeed,

DcV(x, w) = sup p • w
pedcV(x)

(and, in a similar way, DcV(x, w) = infpedcV^ p • w).
If V is locally Lipschitz continuous, by Rademacher's Theorem its gradient VV'(x) exists almost

everywhere. Let S be the subset of M.N where the gradient does not exist. Then, it is possible to
characterize Clarke generalized gradient as:

dcV(x) = co ( lim W(ar,-), x{ -> x, x{ £ S U Si\

where S\ is any subset of MN, with fi(Si) — 0. This suggests an analogy between Clarke gradient and
Filippov's operator F (see [100]).

A map V(x) is said to be regular if the usual one-side derivative

D+V(x,w)= lim 7l(h,x,w)

exists for each x and w, and coincides with DcV(x,w) (equivalently, D~V(x,w) = DcV(x,w)). Note
that if V is regular,

Dc_V[x,w) - -~D^y{x,-w) = -D+V{x,-w) = D~V{x,w) .

By analogy with Clarke's theory, we associate with the contingent derivatives the following two sets:

dV(x) = {pe Mn : ~D^V(x, w) < p • w < D^V(x,w), Vw G Mn} (2.5)

and



dV(x) = {pe M n : D^V(x, w)<p-w< Dj£_V(x, w), Vw G M n ] .

These sets are both convex and closed and may be empty. In addition, they are bounded provided
that the contingent derivatives take finite values for each direction. If one of them contains two distinct
elements, the other is necessarily empty.

Note that since the contingent derivatives are not convex functions, it is not possible in general to
recover their values for arbitrary directions from dV(x) and dV(x).

It turns out (see [59]) that dV(x) and dV(x) coincide respectively with the so-called generalized super
and sub-differentials. They can be defined in an independent way, by means of a suitable extension of
the classical definition of Frechet differential. More precisely, one has

and

= {p e ffi" : \imSuP
V{X + h)-V{x)-p-h < 0}

h-+Q I"-1

d_V{x) = {p 6 K» : l i m i / ^ f t ) ^ ) r ' ' > 0 } .
h¥§ | /? |

Using this representation, it is not difficult to see that if dV(x) and dV(x) are both nonempty, then
they coincide with the singleton {VV(#)} and V is differentiable at x in classical sense.

Clarke gradient and generalized differentials are related by dV(x) UdV(x) C dcV(x).
In the class of locally Lipschitz functions, regularity can be characterized in terms of generalized

differentials.

Proposition 1 Let V be locally Lipschitz continuous. Then, V is regular if and only ifdcV(x) = dV(x)
for all x.

We finally recall the definition of the proximal gradient. In analytic terms, the proximal subgradient
of V at x is the set of all vectors p which enjoy the following property. There exists a > 0 and S > 0 such
that for each z with \z — x\ < 6,

V{z) - V(x) > p - {z - x) - <r\z - x\2 .

The proximal subgradient is denoted dpV(x). It is of course possible to define also the proximal
supergradient dpV(x). For each x, dpV(x) is convex but not necessarily closed. In general, dpV(x) C
dV(x).

Relationship among these types of generalized derivatives, gradients and differentials, and comments
on their possible geometric interpretation can be found in [36], [37].

2*2 Criteria for stability

The following result is well-known and easy to prove.

Theorem 8 Let us consider system (2.1), with f measurable and locally bounded. Let V(x) be positive
definite and locally Lipschitz continuous. Assume that

D±V(x,v) <0

for each v £ F(x) and each x £ Mn. Then, the origin is stable (with respect to Filippov solutions).



Since the upper Clarke's directional derivative majorizes the corresponding upper right Dini's deriva-
tive (and this in turn majorizes the lower one), it is clear that if

~DcV(xiv) < 0

for each x G Mn and v G F(x), then Theorem 8 applies. However, a criterion based on this inequality is
too much conservative, since Clarke's gradient is a very large object and contains in general non-essential
directions. On the other hand, Clarke's gradient possesses a rich amount of properties, so that its use
could be advisable in view of certain applications. We obtain now a very sharp criterion which allows us
to exploit the properties of Clarke's gradient: it avoids at the same time unnecessary verifications. The.
cost to be paid for this advantages is a new (mild) assumption on V.

Assume that V is a locally Lipschitz continuous and, in addition, a regular function. Let us define

V(x) — {a G M : 3v G F(x) such that Vp G dcV(x) one has v • p — a] .

It is easy to check that V is closed, bounded and convex. Note that V may be empty at some point.

Lemma 1 Let V be locally Lipschitz continuous and regular, and let (p : / —>• Mn be a Filippov solution.
Let N C / be the set of zero measure such that N — N$ U N\ U Ar2 where:

NQ IS the set where ip(i) does not exist
Ni is the set where ip(t) £ F(<p(t))
AT

2 is the set where ^-{(p{i)) does not exist.

Then, for t e l \ N, we have %(<p(t)) G V(<p(t))).

This lemma provides a chain rule for nonsmooth functions: it is essentially due to [123] (see also [11]).
As an immediate consequence we obtain new stability criteria.

Theorem 9 Assume that V is locally Lipschitz continuous and regular. Assume further that

¥{x)c (-oo,0]

for each x in some neighborhood of the origin ofW1. Then, system (2.1) is stable at the origin, with
respect to Filippov solutions.

Theorem 10 Assume that V is radially unbounded, locally Lipschitz continuous and regular. Assume
further that there exists a function CJ G /Co such that

F(x)c(-oo,-w(||sc||)]

for each x G Mn. Then, system (2.1) is globally asymptotically stable at the origin, with respect to Filippov
solutions.

In fact, in the previous theorem it is sufficient to assume V(x) C (—oo, 0) for each x G Mn (see [11]).

2-3 Converse theorems

For the purposes of this section, we find convenient to refer to any differential inclusion

x G T{x) , (2.6)

where T takes for each x G Mn nonempty compact values. The first converse of second Liapunov theorem
in this context has been given by Lin, Sontag and Wang in [92].



Theorem 11 Assume that the origin is globally asymptotically stable for (2.6), where T is a locally
Lipschitz continuous multivalued map, which takes nonempty compact values. Then there exists a C°°
global strict Liapunov function V, which satisfies

, v) < -c(||a?||) Vz G Mn, \/v G T(x),

for some function c G /Cg°.

Actually, Theorem 11 is stated in [92] in a somewhat different manner: (i) T takes in [92] the special
form T(x) := {/(#, d), d• G D], where / : Mn x Mm —>• Mn is a smooth function and D is a compact set in
Mm; (ii) Theorem 2.9 in [92] deals with the asymptotic stability with respect to any compact invariant
set, instead of the origin.

Another converse Liapunov theorem has been obtained a few years later by Clarke, Ledyaev and Stern
in [35] for another class of multivalued maps.

Theorem 12 Assume that the origin is globally asymptotically stable for (2.6), where T is an upper
semi-continuous multivalued map, which takes nonempty compact convex values. Then there exists a
C1<yo global strict Liapunov function V, which satisfies (W(x)iv) < —W(x) for each x G Mn and each
v G Jr(x), for some definite positive continuous function W.



Chapter 3

Stabilization

3-1 Jurdjevic-Quinn method

One of the most popular approaches to the nonlinear stabilization problem (and probably the first that
has been deeply studied from the mathematical viewpoint) is known as Jurdjevic-Quinn method in the
western literature, and speed gradient method in the russian literature. In fact, it is not a general method
for stabilization, but rather a method for improving stability performances. It can be described as follows.
Let a nonlinear (affine) system be given. Assume that when the input is disconnected, the system has
a stable (but not asymptotically stable) equilibrium position. If a (weak) Liapunov function V(x) for
the (unforced) system is known and some other technical assumptions are fulfilled, the system can be
asymptotically stabilized at the equilibrium by a feedback law whose construction involves W(x).

The idea can be reviewed as an extension of certain classical stabilization procedures of practical
engineering. For instance, let us consider a mechanical system representing a nonlinear elastic force
x — — f(x) -f u (with f(x)x > 0 for x ^ 0). In order to study its stability, it is natural to take
V(x,x) = ^ — h j f(x)dx as a Liapunov function. Now, asymptotic stabilization can be achieved by
"proportional derivative'' control, which actually amounts to add friction to the system. It is not difficult
to see that this is actually a particular case of feedback depending on the gradient of V(x,x). For this
reason, the method is sometimes also called damping control

From now on, we restrict our attention to affine systems

m

x = f(x) + Y,ui9i[x) = f(x) + G(x)u (3.1)
£ = 1

where x £ Mn, u = ( u i , . . . , u m ) £ ^-m- The vector fields / , # i , . . . , # m a r e required to be at least

continuous, and /(0) = 0. Affine systems represent a natural generalization of the well-known linear

systems

x = Ax + Bu . (3.2)

The basic assumption of the Jurdjevic-Quinn method is that the unforced system is stable at the
origin, and that a smooth, weak Liapunov function V(x) is known. Motivated by the previous discussion,
we try the feedback

u = k(x) = -^(VV(x)G(x))t (3.3)

where 7 > 0 (the coefficient 1/2 is due to technical reasons).

Problem 14 Prove that the closed loop system is still Liapunov stable at the origin.

15



The second typical assumption of the Jurdjevic-Quinn method is that the vector fields appearing in
(4.5) are C°°. Recall that the Lie bracket operator associates to an (ordered) pair /o, f\ of vector fields
the vector field

[/o, /i] = Dh • h ~ Df0 • / i

(here, Df) denotes the jacobian matrix of/;, z = 0,1). The "ad" operator is iteratively defined by

Theorem 13 fJURDJEVic-QuiNNJ Assume that a weak Liapunov function of class C°° for the unforced
system associated to (4-5) is known. Assume further that for x ̂  0 in a neighborhood of the origin

dim span {/(#), ad^g^x), i = 1,. . .m, k = 1, 2 , . . . } = n .

Then, for any 7 > 0, the system is stabilized by the feedback (3.3).

The proof of this theorem relies on LaSalle's invariance principle.

3,2 Optimality

We consider again affine systems, but now we assume that the vector fields / ,gi , . . . ,g m
 a r e locally

Lipschitz continuous, so that uniqueness of solutions is guaranteed for any admissible input (but not
under continuous feedback).

We need also to limit the class of admissible inputs. From now on, by an admissible input we mean
any piecewise continuous, locally bounded function u(t) : [0,-foo) —> Mm. Without loss of generality, we
always assume that any admissible input is right-continuous.

Assume that (3.1) can be asymptotically stabilized by a feedback law of the form (3.3). Then, an
optimization problem can be associated to the stabilization problem. The solution of the optimization
problem can be put in feedback form: it is exactly two times the feedback law (3.3). It follows some
details.

3.2.1 The associated optimization problem

Let a continuous, positive definite and radially unbounded function h(x) be given. We associate to (3.1)
the following cost functional

^ (h((t)) + ^ ^ J dt (3.4)

where ip(t) — <p(t; x0, U(-)). For a given initial state xo, we say that the minimization problem defined by
(3.4) is solvable if there exists an admissible input, denoted by u^.o(t) such that

for any other admissible input u(t). The value function is defined by

V[XQ) is actually a minimum if and only if the minimization problem is solvable for



3.2.2 From stabilization to optimality

Assume that there exist a radially unbounded, positive definite, C1 function V(x) and a positive number

7 such that (3.1) is asymptotically stabilizable by means of the continuous feedback (3.3). Assume further

that the closed-loop system admits V(x) as a strict Liapunov function, with the additional requirement

that the derivative of V{x) with respect to the closed loop system is radially unbounded (this last

assumption is not restrictive).

Set h(x) = -2VV»/(V) + i\\VV(x)G(x)\\2.

Then, the optimization problem has a solution for each xo, the solution can be put in feedback form

u = k(x) = --,iVV(x)G(x))t (3.5)

and the value function coincides with V(XQ). Going from stabilization to optimality is called an inverse

optimization problem in [122] (where the problem is treated with h positive semi-definite).

3.2.3 From optimality to stabilizability

Assume that there exist a continuous, positive definite, radially unbounded function h(x) and a positive

number 7 such that the minimization problem (3.4) is solvable for each initial state x$. Moreover, assume

that the value function V(XQ) is radially unbounded and of class C1. Then, system (3.1) is asymptotically

stabilizable by means of the continuous feedback

u = k(x) = -a(\/V(x)G{x))t (3.6)

for any a > ^. Moreover, the value function V represents a strict Liapunov function for the closed loop

system.

3.2.4 Hamilton-Jacobi equation

Solvability of the optimization problem (3.4) is equivalent to the following statement.

The first order partial differential equation (of the Hamilton-Jacobi type)

VU(x)f(x) - | | |W(z )& ' ( z ) f = -%&• (3.7)

has a solution U(x) which is radially unbounded, positive definite and of class C1.

Problem 15 Prove that if the system is linear, h(x) = 2||x||2 and 7 = 1/2, then the Hamilton Jacobi

equation reduces to the matrix equation (the so-called Algebiwic Riccati equation)

PA + AtP - PBBtP = - / (3.8)

where I is the identity matrix ofW1 and the unknown P is symmetric and positive definite.

3*3 Dissipation

So far we were mainly concerned with internal stability properties. However, there are also relevant

notions of "stability" which relate the behavior of the output (or the state evolution) to the size of the

external input. The most popular is probably the notion of ISS, due to E. Sontag. We report here the

original definition (but many variants are known). For the sake of generality, we state the definition for

the general system



x = f(x,u) (3.9)

although many applications are limited to the relevant case of affine systems. Recall that j3 G CK. means

that p : [0,-foo) x [0,+oo) —>• M is decreasing to zero with respect to the first variable and of class /Co

with respect to the second one.

Definition 9 We say that (3.9) possesses the input-to-state stability (in short, ISS) property, or that it

is an ISS system, if there exist maps j3 G CK-, 7 G /Co such that, for each initial state xo, each admissible

input u : [0, +00) —>• Mm, each solution <p(-) G Sxo,u(-) and each t > 0.

Problem 16 / / the system is ISS and we set u — 0, then we obtain a globally asymptotically stable

system. Prove it.

The following Liapunov-like characterization of the ISS property is very useful [137], [138]).

Theorem 14 For the system (3.9) the following statements are equivalent:

(i) the system possesses the ISS property

(n) there exist a positive definite, radially unbounded C°° function V : Mn —> M and a function p G /Co

such that

VV(x) -f(x,u) < 0

for all x G Mn (x ^ 0) and u G Rm, provided that \x\ > p(\u\)

(in) there exist a positive definite, radially unbounded Cio° function V : Mn —> M and two functions

OJ, a G /C-o° such that

VV(x).f{x,u)<u(\u\)-a(\x\)

for all x G Mn and u G Mm.

A systems is said to be IS-stabilizable if the ISS property can be recovered by applying a suitable

feedback law of the form u — k(x) + u. The following result concerns the affine system (3.1) ([126]).

Theorem 15 Every globally asymptotically stable (or continuously globally asymptotically stabilizable)

affine system of the form (4.5) is IS-stabilizable.

In fact, ISS systems can be reviewed as special cases of dissipative systems. We proceed to introduce

this notion. First of all, we complete the description of the system by associating with (3.9) an observation

function c(x) : Mn —> Mp. In other words, we consider

x = f(x,u)

. y = c(x) -

The variable y is called the output: it represents the available information about the evolution of the

system. Let w : Mp x Mm -> M be a given function, which will be called the supply rate, and consider the

following three dissipation inequalities.

( D l ) (intrinsic version) For each admissible input u(-), each Lp G *^o,u() anc^ f° r each t > 0



(note the initialization at xo = 0).

(D2) (integral version) There exists a positive semidefinite function S(x) (called a storage function such

that for each admissible input w(-), each initial state XQ, each (p £ Sxo,u(-)
 a n d f° r e a c n ^ > 0

fl

S((p{'t)) < S(xo) + / iy(c(v?(s)), u(s)) ds .0
t/0

(D3) (differential version) There exists a positive semidefinite function S(x) G C1 such that for each

/(a?,w) < w(c(x),u) .

It is clear that (D3) => (D2) = > (Dl ) . However, these conditions are not equivalent in general.

The implication (Dl ) = > (D2) requires a. complete controllability assumption, while the implication

(D2) = > (D3) requires the existence of at least one storage function of class C1.

In the literature, inequalities (Dl ) , (D2), (D3) are alternatively used to define dissipative systems

([149], [72], [146], [130]). Moreover, several notions of "external" stability can be given by specializing

the supply rate w. For instance we have

1) passivity, for w = yu

2) finite L'2-gain, for w — &2||u||J — ||y||2, where k is some real constant.

To explain the name given to the second property, observe that it implies the estimation

f\\y(s)\?ds<k2 f \u{s)\\2ds
Jo Jo/o Jo

The ISS property can be interpreted as an extension of the finite L2-gain property. Indeed, according

to Theorem 14 (hi), ISS systems are dissipative in the sense of (D3), with c(x) =Identity and supply

rate w(x, u) = UJ(\\U\\) — a(||a?|)). Hence, for zero initialization, the following estimation holds

/ aiWrWW) ds<k2 I u>(\u(s)\\)ds (3.11)
JO Jo

(alternatively, we can set c(x) = y/a(11x\|), so that the integrand at the left hand side becomes ||y||2)-

In the remaining part of this section we focus on the finite 1,2-gain property, which has been deeply

studied in [146]. Moreover, we limit to afflne systems or, more precisely, systems of the form (3.10) where

(3.9) is replaced by (3.1).

It is well known that if (3.10) possesses the finite -Z^-gain property and a suitable observability

condition is fulfilled, then the unforced part of the system is asymptotically stable at the origin. In

particular, the required observability condition is automatically satisfied when c(x) is positive definite.

Vice-versa, assume that (3.1) is smoothly stabilizable. Then, by using a possibly different feedback the

system can be rendered ISS (Theorem 15). As a consequence, we have an estimation of the form (3.11),

but in general we cannot predict the nature of the functions u and a. As an application of the theory

developed in the previous sections, we now give a more precise result. For notational consistency, we put

k2 = 1/(27). The starting point is the following important result ([72], [146])1.

1 The theorem is invertible under some restrictive assumptions, but here we need only the direct part



Theorem 16 Assume that there exists a positive semidefinite function <&(x) G C1 which solves the
equation (of the Hamilton- Jacobi type)

\\V*(x)G(x)\\* = -\\c(x)\\3 . (3.12)

for each x G Mn. Then, the affine system (3.10) has a finite L,2-gain.

Theorem 17 Associated with the affine system (3.1) we consider the optimization problem (ref.JJ), where
h is positive definite and continuous. Assume that the problem is solvable for each XQ, and that the value
function V(x) is C1. Then, by applying the feedback

u = k{x, u) = -j(VV{x)G(x))t + u

and choosing the observation function c(x) — \J(h(x)/2), the system (3.10) has a finite Lo-gain.

As a corollary, we see that if the affine system (3.1) is stabilizable by a damping feedback

u = k{x) = ~(VV(x)G(x))t

where V(x) can be taken as a strict Liapunov function for the closed loop system, then the "doubled"
feedback u = 2k(x) + u gives rise to a system with finite L2-gain.

3.4 The generality of damping control

It is well known that if a linear system is stabilizable by means of a continuous feedback, then it is also
stabilizable by means of a linear feedback and in fact by a feedback in damping form (u — —aB^Px,
where a > 1/2 and P is a solution of (3.8)). Surprisingly, this fact has an analogue for the nonlinear
case.

The following result is basically due to [78].

Theorem 18 Consider the affine system (3.1) and assume that

\f(x)\ < A\x\2 + C and ||G(x)|| < D

for some positive constants A, C, D. Assume further that (3.1) admits a stabilizer u — k(x) such that:

(i) k(x) is of class C1 and k(0) = 0,

(n) k(x) guarantees sufficiently fast decay: more precisely, we require that each solution of the closed loop
system is square integrable i.e..

( ) (3.13)
o

for each XQ G Mn.
Then, there exists a map V(x) such that the feedback law (3.3) is a global stabilizer for our systems.

In other words, the system also admits a damping control.



Chapter 4

Control Liapunov functions

Consider for the moment a general system of the form

x = f(x,u) (4.1)

where /.is continuous and /(0,0) = 0. The non-existence of continuous stabilizers for (4.1) is related to

certain obstructions of topological nature. The most famous one is pointed out by the following result,

usually referred to as Brockett's test (see [27], [118], [155]).

Theorem 19 Consider the system (4-1) and assume that f is continuous and that /(0,0) — 0. A

necessary condition for the existence of a continuous stabilizer u = k(x) with k(0) = 0, 25 that for each

e > 0 there exist S > 0 such that

My e Bs 3x e Be , 3u G B£ such that y = f(x, u) .

In other words, / must map any neighborhood of the origin in Mn + m onto some neighborhood of the

origin in Mn (note that in the linear case, the condition of this theorem reduces to rank (A, B) — n).

There exist whole families of systems (typically, full rank nonholonomic systems with less inputs than

states) which do not possess the property of Theorem 19. The most famous example of a system which

does not satisfy Brockett's test is the so-called nonholonomic integrator

< x2 = u2 (4.2)

The following interesting example is due to Z. Artstein. It passes Brockett's test. Nevertheless, it

cannot be stabilized by a continuous feedback.

xi = u(x\ - x\) ( 4 ;^
X2 = 2UX\X2

(see [132] for a discussion).

4A Smooth control Liapunov functions

We need the following variant of the notion of Liapunov function (see [126], [124]).

Definition 10 We say that (4-1) satisfies a smooth global control Liapunov condition (or that (4.1)

has a smooth global control Liapunov function) if there exists a radially unbounded, positive definite, C1

21



function V(x) vanishing at the origin and enjoying the following property: for each x G Mn there exists
u G Mm such that

W(a?) • / ( * ,« ) < 0 . (4.4)

According to Kurzweil converse Theorem, it is clear that if there exists a continuous global stabilizer
u — k(x) for (4.1), then there exists also a smooth global control Liapunov function. The converse is
false in general.

Problem 17 Prove that the system

X\ — U2U3

X2 = U1U3

possesses the control Liapunov function V(x\, xn, #3) = x\ + x\ + x\ but it does not pass Brockett's test.

However, it turns out to be true in the affine case

m

x = f(x) + Y^Vi9i{*) (4.5)
1 = 1

where / , #1, . . . , gm are continuous vector fields of Mn (Z. Artstein [4]; but see also [127]). In order to

state the theorem, we need to update the terminology. A feedback law u — k(x) is said to be almost

continuous if it is continuous at every x E l n \ {0}. Moreover, we say that a control Liapunov function

satisfies the small control property1 if for each e > 0 there exists 8 > 0 such that for each x G Bs, (4.4)

is fulfilled for some u G B£.

Theorem 20 // there exists a smooth global control Liapunov function for the affine system (4-5), then
the system is globally stabilizable by an almost continuous feedback u — k(x). If there exists a control
Liapunov function which in addition satisfies the small control property, then it is possible to find a
stabilizer u — k(x) which is everywhere continuous.

We do not report here the proof of this theorem, but some illustrative comments are appropriate. For
sake of simplicity, we limit ourselves to the single input case (m = 1). If the vector fields / and g\ are
of class Cq (0 < q < +00) and a control Liapunov function of class Cr (1 < r < +<DO) is known, the
stabilizing feedback whose existence is ensured by Theorem 20, can be explicitly constructed according
to Sontag's "universal" formula

r 0 if b(x) = 0

k(x) = I ^ . y g y + g w iib{x)^0 (4.6)
where a(x) = —W(x) - f(x) and b(x) = W(x) • g\(x) (see [127] for more details). We emphasize that
such k(x) is of class Cs (with s — min{#, r — 1}) on Mn \ {0}. If the small control property is assumed,
then the feedback law given by (4.6) turns out to be continuous also at the origin, but further regularity
at the origin can be obtained only in very special situations.

It is worth noticing that the universal formula above has a powerful regularizing property. Indeed, if a
continuous stabilizer for (4.5) is known, then KurzweiPs Converse Theorem applies. Hence, the existence
of a C°° strict Liapunov function V(x) for the closed loop system is guaranteed. It is not difficult to
see that the same V(x) is a control Liapunov function for (4.5). But then, the universal formula can be

1 If the system admits a continuous stabilizer u = k(x) such that k(0) — 0, then the small control property is automatically
fulfilled.



applied with this V(x), and we obtain a new stabilizing feedback with the same order of differentiability

as / and g\ (at least for x ^ 0).

We have already noticed that Artstein's theorem is limited to affine systems. However, the following

extension holds (see the remark after Lemma 2.1 in [46]; see also [107]).

Theorem 21 Consider a system of the form (4.1), where f is continuous and / (0 , 0) = 0. The following

statements are equivalent.

(i) There exists a discontinuous feedback which stabilizes the system in Filippov's sense and which fulfills

the additional condition

limesssup ||w(#)|| = 0 (4.7)
s^° \\x\\<6

(ii) Tthere exists a smooth control Liapunov function for which the small control property holds.

4,2 Asymptotic controllability

In this section we assume that f(x,u) is continuous with respect to the pair (x,u) G Mn x Mm, and

Lipschitz continuous with respect to x (uniformly with respect to u). We assume also that / (0 ,0) = 0.

Definition 11 System (4-1) l$ said to be globally asymptotically controllable at the origin (see [34]) if

there exist Co > 0, C > 0 such that:

(a) for each XQ G Mn there exists an admissible input uXo(t) : [0, +oo) -» Mm such that the unique solution

Lp(t; XQ, UXO(-)) IS defined for all t > 0 and satisfies

lim *>(<; *o, ««„(•)) = 0 (4.8)
t—t-j-oo

(b) for each e > 0 it is possible to find r\ > 0 such that if \\XQ\\ < rj then there exists an admissible input

uXo(t) such that (4-8) holds, and in addition

Mt;x0,uXo(-))\\<s for all t>0 (4.9)

(c) if in (b) the state xo satisfies also \\XQ\\ < Co, then the input uXo(t) can be chosen in such a way

for a.e. t > 0.

If (4-8) is required to hold only for each XQ in some neighborhood of the origin, then we say that the

system is locally asymptotically controllable.

The meaning of this definition is that the system is asymptotically driven toward zero by means of

an open loop, bounded control which depends on the initial state.

It is clear that if (4.1) is stabilizable by means of a continuous feedback, then it is asymptotically

controllable. The converse is true if the system is linear2, but not in general. The classical counter-

example is given by the nonholonomic integrator: it is possible to prove that the system is asymptotically

controllable: however, we know that it does not pass Brockett's test, so that it is not continuously

stabilizable. In fact, because of Ryan's extension of Brockett's test [118], it follows that large classes of

asymptotically controllable systems can be stabilized not even by discontinuous feedback, at least as far

2 For linear systems asymptotic controllability, stabilizability by continuous feedback and stabilizability by linear feedback
are all equivalent: see [67].



as the solutions are intended in Filippov's sense. Important progress toward the solution of this problem

has been recently made ([34], [1], [105]) by exploiting suitable extensions of the notion of control Liapunov

function and/or new notions of solutions for discontinuous ordinary differential equations.

In order to give an idea of such developments, we start by a simple remark. It is clear that if an

affine system without drift (like the nonholonomic integrator and the Artstein example (4.3)) admits a

smooth control Liapunov function, then the small control property is automatically fulfilled. It follows

from this simple remark and Theorem 20, that there exist no smooth control Liapunov functions for (4.2)

and (4.3). Nevertheless, both systems are asymptotically controllable. This suggests the possibility of

characterizing asymptotic controllability by some weaker notion of control Liapunov function.

Note that if the differentiability assumption about V is relaxed, then the monotonicity condition can

be no more expressed in the form (4.4). In [125] (see also [128]) E. Sontag proved that if / is locally

Lipschitz continuous with respect to both x,u, then the global asymptotic controllability is equivalent to

the existence of a continuous global control Liapunov function. The monotonicity condition is expressed

in [125] by means of Dini derivatives along the solutions (see Chapter 2). In [136] (see also [34]) it is

pointed out that the same condition can be also expressed by means of contingent directional derivatives.

With these motivations, we propose a general definition.

Definition 12 Let V :
Rn -> M be continuous, positive definite and radially unbounded. Moreover, let D(x) be a set valued

map (D(x) should be thought of as some generalized gradient of the map V). We say that V is a

(nonsmooth) global control Liapunov function (with respect to D) if there exist two maps W : Mn —> M

and a : [0, +oo) -> [0, +oo) such that:

1) W is continuous, positive definite and radially unbounded

2) a is increasing

3) for each x G Mn and each p G D(x) there exists uXfP G Mm such that \\uXtP\\ < <r(\\x\\) and

P[f(x) + G{x)uX)P < -W(x) . (4.10)

Problem 18 There is another possible definition which does not make use of the map a. There exist a

continuous, positive definite and radially unbounded map W : Mn —¥ M for which the following holds. For

each compact set K C Mn there exists a compact set U C Mm such that for each x G K and each p G D(x)

there exists uXyP G U such that (4.10) holds. Prove that the two formulations are actually equivalent.

Now, an improvement of the aforementioned Sontag's result can be stated in the following way ([105],

[106], see also [132]).

Theorem 22 Consider the system (4.1) and assume that f is locally Lipschitz continuous with respect

to both x,u. Then, global asymptotic controllability is equivalent to the existence of a nonsmooth global

control Liapunov function V(x) (with respect to the proximal gradient dpV(x)). In addition, V(x) can

be taken locally Lipschitz continuous.

Note that this result applies in particular to Artstein's example (4.3) (by the way, a locally Lipschitz

continuous control Liapunov function for (4.3) is explicitly given in [132]).

We conclude this chapter by recalling the following stabilizability results.

Theorem 23 ([34]) Assume that the system (4-1) is globally asymptotically controllable. Then it can be

stabilized by time-sampled discontinuous feedback3.

3 Roughly speaking, this means that the value of the feedback remains constant for a small interval of time



Theorem 24 ([107]) Assume that the system (4-1) admits a locally Lipschitz continuous, nonsmooth
global control Liapunov function V(x) (with respect to the Clarke gradient dcV(x)). Then there exists
also a smooth control Liapunov function, so that the system is actually stabilizable in Filippov sense.

We emphasize that the tool used to express the monotonicity condition actually plays a crucial role.
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