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A simple exothermic batch reactor.

Coolinc
u -*—

Constant Volume

Dynamics:

d
dt

x\ = -koexp(-E/R6) a

d
—i
dt

= kexp(-E/R0) u.



Modeling: mass and energy balance, Arhenius kinetics,

i(yXl) =-Vr(x,0)
at

at

—(VpCpO) = VAHr(x, 0) + Q
dt

= koexp(-E/R0)

Set k = 4 ^ and u = jAr- to obtain

= -koexp(-E/R0)
dt

—6 = kexp(-E/R0) (xx)a + u.
dt



Explicit description of batch trajectories

Instead of fixing the initial condition a?i(O) = a?§, 0(0) = 0°, the
control £1—• u(t) and integrating

rf» ^ — — is* _ / ~ \ xx r^ # LJ i L^S £_i i # / - ^ . i ^ -^

dt

dt

take the system in the reverse way and assume that x\ is a known
time function

Then you bypass integration



The inverse system has no dynamics

Set xi = y(t) and compute 0 and u knowing that

—Xl = -koexp(-E/R0)
dt

—0 = kexp(-E/R6)
dt

The mass conservation gives the temperature 0,

exp(-E/R0) = — ^ - = function of
koy

a

and energy balance gives exchanger duty u,

d —y
= 6 + ^ = function of (y, y,y)6 + ̂

dt k



Explicit description.

The system

= -k0 exp(-E/R0) Oi)a , — 0 = k exp(-E/R0) (x±)a + u
dt

Xl k0 exp(E/R0) O i ) ,
dt dt
and the system

xi = y, 6 = function of G/,y), u = function of (y,y,y)

represent the same object. It is just another presentation of the
dynamics with an additional variable y and its derivatives. Dy-
namics admitting representation similar to the second system are
called flat and the additional quantity y is then the flat output.

For the batch reactor, this is the simplest way to use the fact
that the system is linearizable via static feedback and change of
coordinates.
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Motion planning: controllability.

[0,T]
x(T) = q

X{0)=P

Difficult problem because it requires, in general, the integration
of

d
dt

(for the batch reactor x =

x = f(x,u(i)).
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Motion planning for the batch reactor

The initial condition

and final condition

provide initial and final positions and velocities for y

y(0) = x°x jty(O) = -k0 exp(-E/R6°)

= x\= x\

and in between y{t) is free for t > 0 and t < T.
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Motion planning for the batch reactor

Take t i-> yr(t) with such initial and final constraints. Compute
ur as

ur — function of (yr,yr,yr)

Then the solution of the initial value problem

d

dt
= -koexp(-E/R6)

dt
is

d 0 = kexp(-E/R6) (Xl)
a + wr(t), 0(0) = 0°

xi(t) = yr(t), 0(t) = function of (yr(t),yr(t))

and thus reaches q = (x^,0T) at time T.



Tracking for j-tx — f(x,u): stabilization.

real trajectory
V

reference trajectory

Compute Au, u = ur + A t i , such that Ax = x — xr tends to 0

10



Tracking for the batch reactor

The reference trajectory defined via 11-> yr(t):

x\ = yr, 0r = function of (yr,yr), ur = function of (yr,yr,yr)

The change of variable:

The linearizing control:

u = function of (y, y, v) = ur + An

The stable closed-loop error dynamics:

with ^ > 0 and UJQ > 0 design parameters.
li



Fully actuated mechanical systems

The computed torque method for

d
dt

dL
dq dq

consists in setting 11-> q(t) to obtain u as a function of q, q and

(Fully actuated: and M(q) invertible).
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Two oscillators

Dynamics

x\ = LUi(u — Xi), X2 = W2(u — X2)

Brunovsky output via u elimination:

2^1 ^\X2 = c

Controllable when c î ^ ^ 2 with Brunovsky (flat) output

y = UJ2X1 — u

For classical SISO system z(s) = rttu>(s) (z i s the output here),
then just put

z(s) = P(s)y(s), u(s) = Q(s)y(s).

Since P and Q have no common divisor, exist R and S such that
= 1, i.e., y = Ry + Su \s the "flat" output.
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We have then

= linear combination of

Steady-state to steady-state steering via y with the following
shape (take, e.g., a polynomial of degree 9):

y(T)

y(0)o T

y(4) = 0 for t = 0
W = 0 for t = T

14



Inverted linearized pendulum

\\T\\*tmg
m

mg

T

0 O~T~O X
D D + 10

Under the small angle approximation:

d
(D + 10) = g6,

d
= -mgO + T.

15



The Brunovsky output

The dynamics

+ W) = 00, M^D = -m^ + T

admits y = D + 10 as Brunovky (flat) output.

This comes from

0 = y/g, D = y- ly/g,

Up to static linear feedback and linear change of coordinates it
reads

v.

Not very robust to control directly this fourth order system: the
trolley dynamics is not well known (friction).

16



Hierarchical control

^ ^ = -mg(y - D)/l + T

Use the fact that T only appears in the trolley equation (strong
structural and physical property) to dominate modelling uncer-
tainties via a high gain loop on the trolley position.

High gain feedback with u as the set-point for the trolley position:

T = -M/ciD - Mk2(D - u)

with k\ > 10/T, &2 > 10 /T 2 where r = ^JY/g is the characteristic
time of the pendulum (for this gain design, we assume that
m< M

The slow pendulum dynamics is close to:

d2

17



The well known slow pendulum dynamics
d2 y ~u

Take a reference trajectory (yr,ur)

d2 y

and set

u — y-r yr(t) + 2r(y - yr(t)) + (y - yr(t))

then the error dynamics e = y — yr satisfies the stable second
order system

2e e

r T2
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5 degrees of freedom(#i,#2>#3) and the direction SH. 3 motors

19



Huygens isochronous pendulum

mg

equivalent
to H

mg
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The implicit model (S is the control)
s

I

mg

Newton law

mH= T + mg

Constraints

H T//H.

T \HS\\ =1

21



H as flat output

radius I H-g

S

Since

f/m = H-g and T//HS

we have S via

US II H-g and US —I.
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Planning the inversion trajectory Any smooth trajectory con-
necting the stable to the unstable equilibrium is such that H(t) =
g for at least one time t. During the motion there is a switch
from the stable root to the unstable root (singularity crossing
when H = g)

stable root

unstable root

23
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Crossing smoothly the singularity H = g

The geometric path followed by i f is a half-circle of radius lof
center O:

H(t) = 0 + 1 with 0(s) = /X(S)TT, S = t/T e [0,1]
- cos 6(s)

where T is the transition time and /x(s) a sigmoid function of the
form:

0

25
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Time scaling and dilation of H - g

Denote by ' derivation with respect to s. From

H{t) = 0 + Z O(S) =
s\n 0(s)

- cos0(s)

we have

H = H"/T2.

Changing T to aT yields to a dilation of factor I/a2 of the closed
geometric path described by H-g for t e [0,T] (# (0) = H(T) =
0), the dilation center being -g.

The inversion time is obtained when this closed path passes
through 0. This construction holds true for generic /x.
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The crane

mH = T + mg
f //

HD = r

m
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The geometric construction for the crane

0

Singularity when H - g is horizontal.
29



Flat systems (Fliess-et-alf 1992 1999)

A basic definition extending remark of Isidori-Moog-DeLuca (CDC86)
on dynamic feedback linearization (Charlet-Levine-Marino (1989)):

—x = f(x,u)
at

is flat, iff, exist m = dim(w) output functions y = h(x,u,... ,u^),
dim(/i) = dim(n), such that the inverse of u i-> y has no dynam-
ics, i.e.,

x = A ( y , y , . . . , y ) , ( y , y , , y )

Behind this: an equivalence relationship exchanging trajectories
(absolute equivalence of Cartan and dynamic feedback: Shad-
wick (1990), Sluis (1992), Nieuwstadt-et-al (1994), . . . ).
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The equivalence relationship (Fliess-et-al 1992 1999)

Elimination of u from the n state equations j^x — f(x, u) provides
an under-determinate system of n—m equations with n unknowns

;,— x 1 = 0.
dt J

An endogenous transformation x i—> z is defined by

2 = 0(x, a;,...,

(nonlinear analogue of uni-modular matrices).

Two systems are equivalents, iff, exists an endogenous transfor-
mation exchanging the trajectories or the equations. A system
equivalent to the trivial equation z\ — 0 with z = (21,22) is flat
with Z2 the flat output.
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Single car

d *XJ "~""~*r_
dp
d,

vcosO
vs\nO
v
7 = UJ

I — ±

cos 6 d p
V

V
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The time scaling symmetry

For any T i-> cr(T), the transformation

t = *(T), (a, y, 0) = (X, y, 0) , (v, a;) =

leave the equations

—x = i;COS^, —y = vS\nO, —0 = UJ
dt dt dt

unchanged:

- cos - , - ^ - sin - , — - -

33



SE{2) invariance

For any (a,6,a), the transformation

x

y

X cosa — Y sin a + a
cosa

,0 = 0 - a ,

leave the equations

dt
unchanged:

d
dt

d
dt'

d.

d
dt

—
at
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Control system with symmetries: a first definition.

The system
dx

dt
admitting a symmetry group G of transformations (any element
of G is just a change of state-variables), iff, for any change of
state variables x = g(X), g e G, exists a feedback

such that with X, U the state equations remain unchanged

dt

35



Invariant tracking

translation
+ rotation \

36



Invariant tracking for the car: goal

Given the reference trajectory

t i—>• Sr •—> Pr(sr), 6r(sr), Vr = ,

and the state (P,6)

Find an invariant controller

V = Vr + . . . , U = L0r 4"

37



Invariant tracking for the car: time-scaling

Set

V = V Sr, 00 = UJ Sr

and denote by ' derivation versus sr.

Equations remain unchanged

P I — —> —*/ — —̂

= v r, r = UJ v
with P = (x,y), r — (cos^,sin^) and V = (-s\n6,cos6)

38



Invariant errors

Construct the decoupling and/or linearizing controller with the
two following invariant errors

en = (P - Pr) ' Tr, e ± = ( P - Pr) • VT.
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Computations of en and ej_ derivatives

Since en = (P — Pr) • rr and ej_ = (P - P r) • Vr we have (remember
that ' = d/dsr)

ej| = (P' - P̂ ) • rr + (P - Pr) • rr.

But P ; = vr, P'r — rr and rr = Krvr, thus

e|i = VT • Tr — 1 + Kr(P — Pr)

Similar computations for e'L yield:

ej, = t;cos(# — Or) — 1 + ftre_L, e^ = ^7sin(6> — 0r) —

40



Computations of en and ej_ second derivatives

Derivation of

ej| = vcos(0 — 0r) — 1 + Kre±, ej_ = vs\n(0 - 0r) —

with respect to «sr gives

eff = v'cos(O-0r) -£ovs\n(0 -0r)

— 0r) + Kf
rej_ — K%

ef[_ = vf s\n(0 - 0r) + uv cos(0 - 0r)

— 0r) — Kr
e\\ + ^r +

41



The dynamics feedback in sr time-scale

We have obtain

ej[ = vfcos(0 - 0r) -aHJsin(0 - 0r) + W\

_[ -0r) +cDvcos(0 - 0r)

Choose v1 and a) such that

e(f = — —T- H o e\\ —
L} ' L? " L^L?

e /±~ lziZi. | e±

Possible around a large domain around the reference trajectory
since the determinant of the decoupling matrix is v « 1.
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The dynamics feedback in physical time-scale

In the sr scale, we have the following dynamic feedback

Since ' = d/dsr = d/(srdt) we have

=
dt , 4 ) s

and the real control is

V

Nothing blows up when sr(t) tends to 0: the controller is well
defined around steady-state via a simple use of time-scaling sym-
metry.

43



Conversion into chained form destroys SE(2) invariance

The car model
d d d v
—x = vcos6, —y = vs\n6, —0 = -
dt dt dt I

can be transformed into chained form
d d d

- j . , ~X2 — ui-> — X 3 = =

dt dt dt
via change of coordinates and static feedback

dy
tan 0, X3 = y.

dx
But the symmetries are not preserved in such coordinates: one
privileges axis x versus axis y without any good reason. The
behavior of the system seems to depend on the origin you take
to measure the angle (artificial singularity when 0 = ±TT/2) .
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The standard n-trailers system

Pn-1

45



Motion planning for the standard n trailers system

final state

initial state
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The general 1-trailer system (CDC93)

a

Rolling without slipping conditions (A = (x,y), u = (v,cp) )

jkx = v cos a

iv = v sina

j-t(3 = I (f tan v? cos(/3 - a) + sin(/3 - a

47



B
A

With S = BCA we have

D = P- L(5)V with L(5) = ab f
J U

- COS a
da

b2 + 2ab COS a

Curvature is given by

sin 6

cos 5 va 2 + b2 — 2ab cos S - L(5) sin 8

48



The geometric construction

Assume that s i-» P(s) is known. Let us show how to deduce

(A,B,a,/3) the system configuration.

We know thus P, f" = dP/ds and K = dO/ds (0 is the angle of f\

T

49



The geometric construction

From I<L we deduce 6 = BCA by inverting K = K{5)

D is then known since D = P - L(8)i>.

Finally r is parallel to AB and DB = a and DA = b.
v

50



The complete construction

One to one correspondence between P, f and K, and
V

51



Differential forms: eliminate v from

d d d v d
—x = v cos a, —y = v sin a, —a: = — tancp, —p
dt dt dt I ^ dt

to have 3 equations with 5 variables

| fty = 0

d t a ^ / ; dtx v ^ ) dty —u

SL

defining a module of differential forms, / = {771,7725^3}

771 = sin a dx — cos a

773 =

52



Derived flag

Compute the sequence / = /(°) D j W D / ( 2 ) . . . where

{^ | y = o mod

and find that

The Cartesian coordinates (X,Y) of P are obtained via the Pfaff
normal form of the differential form \± generating

dY.

(X, y ) is not unique; SE(2) invariance simplifies computations.

53



Contact systems:

The driftless system ^x — h(x)ui + /2(#)^2 Ss a'so a Pfaffian
system of codimension 2

n
aj(x) dxj = 0, i = 1, . . . , n — 2.

Pfaffian systems equivalent via changes of ^-coordinates to con-
tact systems (related to chained-form, Murray-Sastry 1993)

= 0, dx^ — x^dx\ = 0, . . . dxn_\ — xndx\ = 0

are mainly characterized by the derived flag (Weber(1898), Car-
tan(1916), Goursat (1923), Giaro-Kumpera-Ruiz(1978), Murray
(1994), Pasillas-Respondek (2000), . . . ) .
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Interest of contact systems (chained form):

dx2 — x^dxi = 0, dxs — x/\.dxi = 0, . . . dxn_\ — xndx\ = 0

The general solution reads in terms of z \-+ w(z) and its deriva-
tives,

d vo
= z, x2 = w(z), ,^3 = —-, . . . ,xn — n~dz

In this case, the general solution of jj-tx — f\{x)u\ + f2u2 readsjj-t

in terms of 11-> z(t) any C1 time function and any Cn~2 function
of 2, 2 H w(z). The quantities x i = z(t) and ^2 = «;(^(t)) play
here a special role. We call them the flat output.
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Flatness Characterization

Single input system.

The ruled manifold criterion

Flatness and dynamic feedback linearization: endogenous
feedback versus exogenous feedback.

Driftless systems with two controls.

56



The general n-trailer system for n > 2 is not flat.

Proof: by pure chance, the characterization of codimension 2
contact systems is also a characterization of drifless flat sys-
tems (Martin-Rouchon 1994) (adding integrator, endogenous or
exogenous or singular dynamic feedbacks are useless here).

57



When the number n of trailers becomes large,

tends to

58



The nonholonomic snake: a trivial delay system.

Head

Implicit partial differential nonlinear system:

dP
dr

dP dP
at

General solution via s\-^Q(s) arbitrary smooth

,t) = Q(s(t)
k>0 k\

59



Nonlinear mixing process: three tanks and two nodes,
b1

nodep Vr

Quantity
Y

60



The product tank quantities (Yi,F2:^3) a s f'at output.

Y{ o oa (Xi + Yo) ° Off , ,
= 1 a , , , ,, (Y[ + Fo

{ Y2 + Yi) o a&(t) -Ul-u2

with

crp = (Xl + Y2 + Ys)'1 o
da = (YX + Y2)-1 o (YX +Y2 + Va) o

1 = —, a : arbitrary time function
da

O G(J

61



Batch Scheduling

Q"

a

init
i

o a oc
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Two linearized pendulum in series

ra2

Flat output y = u + li$i + 12O2:

g m2

• 0 2

and u = y - I1O1 - 12O2 is a linear combination of (y,

63



n pendulum in series

Flat Output y = u + Ii9i + . . . + ln0n-

When n tends to oo the system tends to a partial differential
equation.
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The heavy chain
U(t)

Jz =

X(z,t)
d2X d

dt2 dz
X(L,t)=U(t)

dX\
dz)

Flat output y(t) — X(O,t) with

V S\n A

65



With the same flat output, for a discrete approximation (n pen
dulums in series, n large) we have

<t) = y(t) + aiy(t) + a2y
(4)(t) + ... + any(2n\t),

for a continuous approximation (the heavy chain) we have

U(t) = ^ j ^ y(t + 2^LJg sin

Why? Because formally

y(t + 2^L/g s in0 = y(t) + ...+ V V , >- y^n\t)
v n\

But integral formula is preferable (divergence of the series. . . ) .
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The general solution of the PDE

d2X _ d / dX\
~W ~ V 9Z~dz~)

is
7 T ( ^ J s\n() d(

'0
where t w-> y{t) is any time function.

Proof: replace ^ by s, the Laplace variable, to obtain a singu-
lar second order ODE in z with bounded solutions. Symbolic
computations and operational calculus on

OV_ d / dX

67



Symbolic computations in the Laplace domain

Thanks t o x = 2J-, we get
9

, t dX, . d2X f ,
, t) + — ( z , t) - x—^tx, t) = 0.

ox tz

Use Laplace transform of X with respect to the variable t

O X . OX , . 9v / \ r\
X—-~-(X, S) + -r—(X, 5) - X8 A (X, s ) = 0.

OXZ OX

This is a the Bessel equation defining JQ and

*(*, s) = A(s) J0(2isJzTg) + B(s)
Since we are looking for a bounded solution at z = 0 we have B(s)
0 and (remember that Jo(O) = 1):
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Using Poisson's integral representation of

/
2?r JO

we have

l r27T

J 0 ( C ) = — / e x p « s i n 6 > ) dO, ( e C
2?r JO

Jo(2is\[x/g) = — / exp(2s\/x/g s'm 6) dO.
v 2?r JO V

In terms of Laplace transforms, this last expression is a combi-
nation of delay operators:

*2TT

'0

with y(t) =X(0,t).

dO

69



Explicit parameterization of the heavy chain

The general solution of

, U(t)=X(L,t)
oz*- oz \ oz j

reads

X(z,t) = — I y(t + 2J^Jgs\n0) dO
2TT JO V

There is a one to one correspondence between the (smooth)
solutions of the PDE and the (smooth) functions t \-^ y(t).
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Heavy chain with a variable section

f T'(Z) d

9 dt2 dz
dX\

X(z,t)

z=0\

X(L,t) =u(t)

71



The general solution of

{ r\z)
9

d2x _ d
Iti2 ~~dz

dX\

~dz~)

where r(z) > 0 is the tension in the rope, can be parameterized
by an arbitrary time function y(t), the position of the free end
of the system y = X(O,t), via delay and advance operators with
compact support.

72



Sketch of the proof. Main difficulty: r(0) = 0. The bounded
solution B(zJs) of

dz \ dz J g
is an entire function of s, is of exponential type and

R 3 UJ H-> B(z,mj)

is L2 modulo some JQ. By the Paley-Wiener theorem B(z,s) can
be described via

/
a
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GD
x

d2

L_z —

is equivalent to

\X(z,t)

d2x d

x g
z—\

dt2 dz
X(L,t)=U

z = 0

dX
dz

The following maps exchange the trajectories:

x(t) = X(O,t) X ( z , t ) = ̂  I ^x(t-
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The Indian rope.

d
dz

dX d2X
= 0

dp

X(L,t) = U(t)

( T T T

The equation becomes elliptic and the Cauchy problem is not
well posed in the sense of Hadamard. Nevertheless formulas
are still valid with a complex time and y holomorphic

_ 1
~ 2TT JO

y[t-(2Jz/g sinC) \ / r
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I D Tank: Saint-Venant equation (shallow water)

h(,x)

D(t)

+ (hv)x = 0, vt + D + vvx = -ghx

with v(t,-l) = v(t,l) — 0.

11 Steady-state controllable": Coron 2000.
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ID tank: tangent linearization.

h(t,x)
v(t,x)

-I +1

t D(t)

Assumptions: h = h + H, \H\ <C h\ \D\ <C g, \v\ <C c — Jgh

02H -d2H
= gh-

dH
dt2 dx2'

3H

77



Non controllable system

Since H = </>(£ + x/c) + ip(t - x/c), with <p and ̂  arbitrary, one
gets

<t>'(t + A) - ^ ( t - A) = -cD(t)/g

4l{t - A) - ^ ( t + A) = -cD(t)/g

with 2A = Z/c. Elimination of D yields

^(t + A) + V'(t + A) = 0;(t - A) + rl>\t - A).

So the quantity 7r(t) = ^(t) + i/;(t) satisfies an autonomous equa-
tion (torsion element of the underlying module)

7r(t + 2A) = TT(£).

The system is not controllable.
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Trajectories passing through a steady-state
Since TT(£) = <£(£) + ip(t) = 0 we have

<t>'(t + A) + <//(£ - A) = -cb(t)/g

thus

f(t), D(t) = (y(t + A) + j/(t - A))/2

and

h

9
x/c) - y'(t - x/c)

_ 1
~~ 2

with t K-> y(t) an arbitrary time function.
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Physical interpretation of y

M"
O

y
M

/* 0 rL

= / h(t,x) dx M+ = / h(t,x) dx
J-l JO
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The tumbler in movement: 2D cylindrical tank

81



Modelling the 2D tank

The liquid occupies a cylinder with vertical edges with the 2D

domain Q as horizontal section. The tangent linear equations

are:

d2H
dt2 = gh/\H in

\7H -n = — -ft on dQ.
9

with D = (D1,D2), n the normal to <9Q.
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2D Tank, circular shape.

Steady-state motion planning results from a symbolic computa-
tions in polar coordinates:

X\ cos a + X2 sin a1 /=
= -yh/g /

7T V J O

cos a y± [t —

y'2 (t-
x\ cos a -{-

7T

D2(t) = -
7T

a yi[t —
I cos a

c
/sin

c

da

da

da

wi th £ 1-* 2/1 ( t) and 11-> 2/2(*) a s y ° u want.
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Open question

Under which conditions on Q and is the 2D tank described by

d2H
= ghAH in Qdt2

i = —

9

u
\/H -n = ft on dQ.

D(t) = ix

steady-state controllable ?

It is true for Q a disk or a rectangle.
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Heat equation
, t) = 0

Q(x, t) 6(7, t) = u

0 x 1

dt0(x, t) = d%0(x, t), x e [0,1]
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Its general solution parameterized via 11-> y(i) e R, C°° (y(t)

0(0,*))

/ j - - - x

Uit) =
^ (20!

Convergence when y is of Gevrey order a < 2:

, Vi > 0, |yW(t)| < M(Ki)ai
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Flexible beam

moteur

J
M

r= 1

X(r,t) = V{r,t) + r6(t)

r = 0

87



Dynamics (Euler Bernoulli )

X(O,t) = O, dxX(0,t)=8(t)

dxxx(i,t) =-
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General solution via y C°° of Gevrey order < 2

EE (4n)!

with

2(4n+ 1) 2(4n+ 1)

and

A(4n + 4)(4n
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Reaction/diffusion systems

For

dx
(0,0 =

the series can still be calculated. Convergence ?
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Conclusion

Adding new quantities, the flat output here, is a powerful idea:
constraint optimization and Lagrange multipliers, stabilization
and Lyapounov function.

No algorithm to decide whether a system is flat or not: similar
to Lyapounov functions or first integrals.

Importance of the physics: implicit description via differential/algebraic
systems, symmetries.
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