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Pendulum

k

motor
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5 degrees of freedom(61,6-,63) and the direction SH

. 3 motors.



A simple exothermic batch reactor.
Constant Volume

Cooling X1 ¥ Xo

U —t—

Dynamics:
d

—1 = —koexp(—E/R0) (1)”

%9 — kexp(—E/RO) (z1)® + u.



Modeling: mass and energy balance, Arhenius kinetics.
d
— (Vi) = =Vr(x,0)
d
ziz(VZBQ) = Vr(xz,0)

%(VpCPH) = VAHr(z,0) +Q
r(z,0) = kgexp(—E/RA) (x1)“

_ AH — _Q i
Set k£ = 'pr' and u = m to obtain

d
;lzwl = —kg exp(—E/RQ) (xl)a

%e — kexp(—E/RO) (z1)® + .



Explicit description of batch trajectories

Instead of fixing the initial condition z1(0) = z¥, 6(0) = 69, the
control t — u(t) and integrating

%331 = —kgexp(—E/RO) (x1)“
%9 = kexp(—E/R8) (1) + u(t)

take the system in the reverse way and assume that z; is a known
time function

t— a1 = y(t).

Then you bypass integration.



The inverse system has no dynamics

Set 1 = y(t) and compute 6 and v knowing that

d
S = —koexp(—E/ROA) (x1)“

%9 = kexp(—E/RO) (x1)% 4+ wu.

The mass conservation gives the temperature 6,

d

exp(—E/RO) = —kao—t;a = function of (y,7),

and energy balance gives exchanger duty u,

= d@—l— ad%y = function of (y,y,y)
U= — = = :
dt k‘ y7y7y



Explicit description.

The system

%xl = —ko exp(—E/RO) (:Cl)a, %9 = kexp(—E/RG) (a:l)o‘ + u

and the system

x1 =1y, 0= function of (y,y), wu = function of (y,v, %)

represent the same object. It is just another presentation of the
dynamics with an additional variable y and its derivatives. Dy-
namics admitting representation similar to the second system are
called flat and the additional quantity y is then the flat output.

For the batch reactor, this is the simplest way to use the fact
that the system is linearizable via static feedback and change of
coordinates.



Motion planning: controllability.

?

[0,7] 5 ¢ — u, (1)

Difficult problem because it requires, in general, the integration

of

d

prede f(x,u(t)).

(for the batch reactor x = (z1,0)).



Motion planning for the batch reactor

The initial condition

p= (29,6
and final condition
g = (x1,6")
provide initial and final positions and velocities for y:
d
y(0) =27  —y(0) = —koexp(~E/RE°) (29)
d
y(T)==21  —y(T) = —koexp(~E/R6T) (a1)

and in between y(t) is free for t >0 and t < T.



Motion planning for the batch reactor

Take t — y"(t) with such initial and final constraints. Compute
u” as
u” = function of (¢y",y",4")

Then the solution of the initial value problem

d
—w1 = —hoexp(~E/R0) (21)*,  21(0) = af

%9 — kexp(—E/RO) (z1)® 4+ u"(t), 6(0) = ¢°

z1(t) = y"(¢), 6(¢t) = function of (y"(¢),y"(¢))

and thus reaches ¢ = («1,67) at time T.



Tracking for Sz = f(z,u): stabilization.
Phe \

. ”
real trajectory -
T g
4

”’
Ax P .
.~ reference trajectory
-
- -

r

Compute Au, v = ur + Au, such that Az = = — =, tends to O.
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Tracking for the batch reactor

The reference trajectory defined via t — y" (¢):

] =vy", 6" = function of (y",9"), «" = function of (¢v",9",4")

The change of variable:

(xla 6) AN (ya y)

The linearizing control:

u = function of (y,y,v) = u" + Au

The stable closed-loop error dynamics:

j=v=74" —2Ewo(y—3§") —wily—y")
with & > 0 and wg > O design parameters.
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Fully actuated mechanical systems

The computed torque method for
d {OL oL
N =22+ Mg
dt | 0q 0q

consists in setting t — q(t) to obtain «w as a function of ¢, ¢ and
q.

(Fully actuated: dimg = dimu and M(q) invertible).

12



Two oscillators

Dynamics
# = wi(u—21), 2 =uws(u—22).
Brunovsky output via u elimination:
w%il — w%éﬁz = w%w%(xz —x1).
Controllable when wq # wp with Brunovsky (flat) output

— ,2 2
Y — WoXx1 —wW1I2.

For classical SISO system z(s) = B(i)u(s) (z is the output here),
: Q(s)
then just put
2(s) = P(s)y(s), uls) =Q(s)y(s).

Since P and @) have no common divisor, exist R and S such that
PR+QS =1, ie., y= Ry++ Su is the “flat" output.

13



We have then

(x1, o, u) = linear combination of (v, i, y(*).

Steady-state to steady-state steering via y with the following
shape (take, e.g., a polynomial of degree 9):

j=i=9y3 =y® =0 fort=0

14



Inverted linearized pendulum

Under the small angle approximation:
d? d?

L (D4+10) =90, M==D = —mgb+ F.
(D +10) =g 1 mg6 +

15



The Brunovsky output

The dynamics

d? d?

admits y = D + 16 as Brunovky (flat) output.

This comes from

=i/g, D=y—1lj/g, F=mij+MG-1y®/g).
Up to static linear feedback and linear change of coordinates it
reads

NOR

Not very robust to control directly this fourth order system: the
trolley dynamics is not well known (friction).

16



Hierarchical control
d2 d2
a?(y) =g(y — D)/I, M@D =-mg(y—D)/I+F

Use the fact that F only appears in the trolley equation (strong
structural and physical property) to dominate modelling uncer-
tainties via a high gain loop on the trolley position.

High gain feedback with u as the set-point for the trolley position:
F=—-MkiD — Mko(D — u)

with k1 > 10/7, ko > 10/72 where 7 = ,/l/g is the characteristic
time of the pendulum (for this gain design, we assume that
m< M ).

The slow pendulum dynamics is close to:

d2
@(y) — g(y — U)/l
17



The well known slow pendulum dynamics

2 —Uu
: (y) =9y —uw)/l= yTQ :

dt?
Take a reference trajectory (yr,ur)
d2 Yr — Ur
E;(yr) — 5

and set

w=y—7Gr) + 27y — 5r () + (y — yr (1))

then the error dynamics e = y — y, satisfies the stable second
order system

18



2k7 the juggling robot

Pendulum motor
)T
e
0 motor
7~ laboratory
frame

5 degrees of freedom(6q,0-,03) and the direction SH. 3 motors.
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Huygens isochronous pendulum

S

equivalent
to

mg

20



The implicit model (S is the control)

S

Newton law
mH="T + mg

Constraints

y  T//HS

T ||HS|| =1

21



H as flat output

Since

— .. — _—
T/m=H-g and T // HS

we have S via

_— ‘e
HS /) H—§G and HS=I

22



Planning the inversion trajectory Any smooth trajectory con-
necting the stable to the unstable equilibrium is such that H(t) =
g for at least one time t. During the motion there is a switch
from the stable root to the unstable root (singularity crossing
when H = §)

stable root

unstable root

23
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Crossing smoothly the singularity H = §

The geometric path followed by H is a half-circle of radius lof
center O:

sin6(s)

H(t) =0+1 {— cos(s)

} with 6(s) = u(s)wr, s=1t/T € [O0,1]

where T is the transition time and u(s) a sigmoid function of the
form:

25



s

e

S

S
=3
A
RS
QNN
” S

B i N
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Time scaling and dilation of H — §

Denote by / derivation with respect to s. From

sin(s)

H(t) =0+ {— cosf(s)

} ,  0(s) = p(t/T)m
we have
H=H"/T?.
Changing 1T to oT yields to a dilation of factor 1/042 of the closed

geometric path described by H—g for t € [0,T] (H(0) = H(T) =
0), the dilation center being —g.

The inversion time is obtained when this closed path passes
through 0. This construction holds true for generic pu.

27



The crane

28



The geometric construction for the crane

Singularity when H — § is horizontal.

29



Flat systems (Fliess-et-al, 1992,...,1999)

A basic definition extending remark of Isidori-Moog-DelLuca (CDC86)
on dynamic feedback linearization (Charlet-Lévine-Marino (1989)):

d

“o = f(a,u)

is flat, iff, exist m = dim(w) output functions y = h(x,u, ..., uP)),
dim(h) = dim(w), such that the inverse of u — y has no dynam-
ics, i.e.,

xZA(y,y,...,y(Q)>, u——-"Y‘(y,y',...,y(q—l_l)).

Behind this: an equivalence relationship exchanging trajectories
(absolute equivalence of Cartan and dynamic feedback: Shad-
wick (1990), Sluis (1992), Nieuwstadt-et-al (1994), ...).

30



The equivalence relationship (Fliess-et-al 1992,..., 1999)

Elimination of u from the n state equations dit:c = f(x,u) provides
an under-determinate system of n—m equations with n unknowns

F (:c, iaz) = 0.
dt

An endogenous transformation x — z is defined by
2= P(x,x,... ,a:(p)), x=W(z,z2,... ,z(Q))

(nonlinear analogue of uni-modular matrices).

Two systems are equivalents, iff, exists an endogenous transfor-
mation exchanging the trajectories or the equations. A system
equivalent to the trivial equation z; = 0 with z = (21, 27) is flat
with zo the flat output.

31



Single car

— N

)
_ d
V= iHazPH
cosf| _ 4P
sing| v
tan g = ldet(P,P)
v/ |v]

32



The time scaling symmetry

For any T — o(T'), the transformation

t=0o(T), (z,y,0)=(X,Y,0), (v,w) = (V,2)/0’(t)

leave the equations

d
— = v CO0S 6,
dt

unchanged:

iX = V cos O,
dT’

d
—y = vsing, —d—9=w
dt dt

iY = Vsin ©, i6) = Q2.
dT dT’

33



SE(2) invariance

For any (a,b,«), the transformation
x| |Xcosa—Ysina+a
y| ~ |Xsina+Ycosa+b
leave the equations

d d d
—x =vCosf, —y=wsinf, —0 =
g’ =" a’ =V a

,9:@——Oé, (an):<V7Q)

unchanged:
d

—X =V Ccos O, iY:Vsin@, i@zQ.
dt dt dt

34



Control system with symmetries: a first definition.

The system

dx

?d—t_ - f(ZIZ, ’LL)
admitting a symmetry group G of transformations (any element
of G is just a change of state-variables), iff, for any change of

state variables z = g(X), g € GG, exists a feedback
u=k(X,U)

such that with X, U the state equations remain unchanged

dX

35



Invariant tracking
/

6 7
P 0,

s P,

-

translation
+ rotation
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Invariant tracking for the car: goal

Given the reference trajectory

t— sp—= Pr(sr), O0r(sr), vr = s,

and the state (P,0)

Find an invariant controller

Wpr = Sr/ir(Sfr)

v=vr+..., w=wr+...

37



Invariant tracking for the car: time-scaling

Set

V=0 S, W=W S
and denote by ’ derivation versus s;.
Equations remain unchanged

P=v7 =00

with P = (x,y), T = (cos@,sinf) and 7 = (—sin6,cos?).

38



Invariant errors

Construct the decoupling and/or linearizing controller with the
two following invariant errors

ell—_—(P—P'r)'%r, €_|_:(P—Pr)ljfr

39



Computations of ¢ and e; derivatives
Since e = (P—Py)- -7 and e; = (P — Pr)-vr we have (remember
that l = d/dS'r)
efl =(P -P)- % +(P-P) 7.
But P/ = v+, P. =7 and 7. = ks, thus
eTl :1_).7__’7—37"— 1+K/7"(P_Pfr)]7r
Similar computations for e’L yield:

eh == ’ECOS(G — Qr) —1 + Kr€ |, G/J_ == 65”](6 — 87“) - H)fr@“.

40



Computations of €| and e, second derivatives

Derivation of
eil =vcos(d —0,) —1+kre;, €| =vsin(@—06)— Kre|
with respect to s, gives
efl’ = 7' cos(0 — 0;) — @vsin(6 — 6;)

+ 2krvsin(0 — 6,) + m;neL — mgen

e/l =¥’ sin(0 — 0r) + v cos(d — 6y)
— 2KpU COS(9 — Qr) — H:;aen + Kr -I— Iﬂ:geu.

41



The dynamics feedback in s, time-scale

We have obtain

e” = 7' cos( — 6,) — ovsin(6 — 6;) + 44
e/l =v'sin(0 —0,) + ovcos(d —0,) + W,

Choose ?/ and © such that

1 1 1
67":*( il +Lﬁ> U (Lﬁﬂﬁ) |

1 1 1
" /
ei__(~T+_2—>eL—<ﬁ>eJ—
L LA Ly LA

Possible around a large domain around the reference trajectory
since the determinant of the decoupling matrix is v ~ 1.
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The dynamics feedback in physical time-scale

In the s, scale, we have the following dynamic feedback
v = ®(v, P, Pr,0,0r, kr, K.)
o= \V(v,P,Pr,0,0, kr, K..)
Since ' = d/dsy = d/($rdt) we have
% — ®(B, P, Pr, 0, 0r, rir, kL) $0(1)
o=\W(v,P, P 0,0, kr, k)

and the real control is

v ="0s-(t), tang =

<i| €

Nothing blows up when s,(t) tends to 0: the controller is well
defined around steady-state via a simple use of time-scaling sym-
metry.

43



Conversion into chained form destroys SE(2) invariance

The car model
d d d
—x = vC0Sfh, —y=wsing, —O:Btango
dt dt dt [

can be transformed into chained form

d d d
—r1 = Uy, —T2=Up, ~—I3 = TOU
prag! 1 7 2 2 7103 2U1
via change of coordinates and static feedback
d
r] =z, x2=—y=tan9, r3 = .
dx

But the symmetries are not preserved in such coordinates: one
privileges axis x versus axis y without any good reason. The
behavior of the system seems to depend on the origin you take
to measure the angle (artificial singularity when 6 = +7/2).
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The standard n-trailers system

45



Motion planning for the standard n trailers system

initial state

46



The general 1-trailer system (CDC93)

Rolling without slipping conditions (A = (z,y), u = (v,p) ):

%x:v COS
@y:fu Sin «

o= %tan Y
Eldiﬁ =1 (%tan pcos(B — a) +sin(B - O‘)) '

47



With 6 = BCA we have

7+ — COS
D=P—L(5)7 with L(5) = ab /O 7 do

Va2 + b2 + 2abcos o

Curvature is given by
sSiné

cos§ \/a2 + b2 — 2abcosd — L(5) siné

K(8) =

48



T he geometric construction

Assume that s — P(s) is known. Let us show how to deduce
(A, B, a, 3) the system configuration.

We know thus P, 7 =dP/ds and k = df/ds (0 is the angle of 7
®

v

U
l)

49



The geometric construction
From x we deduce § = BC'A by inverting k = K(§).
D is then known since D = P — L()7.

Finally 7 is parallel to AB and DB = a and DA = b.

~~~
-~
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The complete construction

One to one correspondence between P, 7 and x and (A, «, ().

51



Differential forms: eliminate v from

d COS d sin d “tan dﬁ
—r =V o, —Yy =V Q, —Q = — , —0 = ...
dt dt” EP Rl
to have 3 equations with 5 variables
Sin « %m—cosa %y =0
d_ _ (tangpcosa) d,.  (fanepsina\ d, . __
< ( z ) 2L ( l ) zY =0
d
Eﬁ' ..

defining a module of differential forms, I = {n1,n2,13}

n1 = Sina der — CoSa dy

no = do — (tan golCOSCv) dr — (tancglsin a) dy

n3=dg—...

52



Derived flag

Compute the sequence I = 19 2 (1) 5 1(2) where
I D) =i e 1) | dn=0 mod (I
and find that
dmI1® =3  dimiM =2 dimi@ =1, dimi® =o.

The Cartesian coordinates (X,Y) of P are obtained via the Pfaff
normal form of the differential form . generating 1(2)

pw=flo,B) dX + g(a, B) dY.

(X,Y) is not unique; SE(2) invariance simplifies computations.
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Contact systems:

The driftless system %m = f1(x)uy + fo(x)uo is also a Pfaffian

system of codimension 2

no
w; = Z ag(:c) de; =0, +=1,...,n—-2.
Jj=1
Pfaffian systems equivalent via changes of xz-coordinates to con-
tact systems (related to chained-form, Murray-Sastry 1993)

dxo —x3dry =0, dxrz—x4dr1 =0, ...dx;;_1— Tndry1 =0

are mainly characterized by the derived flag (Weber(1898), Car-
tan(1916), Goursat (1923), Giaro-Kumpera-Ruiz(1978), Murray
(1994), Pasillas-Respondek (2000), ...).
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Interest of contact systems (chained form):

dro — x3drqy =0, dxrz—axgdxq1 =0, ...dr,_1—2xndry =20

The general solution reads in terms of z — w(z) and its deriva-
tives,

dw A" 2w
1 =2, a2 =w(z), ,:13325, Tn = s
In this case, the general solution of %a: = f1(x)u1 + fouo reads
in terms of t — 2(t) any C1 time function and any C™~2 function
of z, z — w(z). The quantities x1 = 2(¢) and x> = w(z(t)) play
here a special role. We call them the flat output.

55



Flathess Characterization

e Single input system.

e [ he ruled manifold criterion.

e Flatness and dynamic feedback linearization: endogenous
feedback versus exogenous feedback.

e Driftless systems with two controls.
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The general n-trailer system for n > 2 is not flat.

Proof: by pure chance, the characterization of codimension 2
contact systems is also a characterization of drifless flat sys-
tems (Martin-Rouchon 1994) (adding integrator, endogenous or
exogenous or singular dynamic feedbacks are useless here).

57



When the number n of trailers becomes large. ..

tends to

58



The nonholonomic snake: a trivial delay system.

r=0.--.

\

Tail Q Head
}=L P(l’,t)

Implicit partial differential nonlinear system:

8P oOP
H or 815 =0
General solution via s — Q(s) arbitrary smooth:
I — k d k
PO = Qs +L—r) = ¥ L W4y

k>0

59



Nonlinear mixing process: three tanks and two nodes.

Quantity
Y

]

60



The product tank quantities (Y7,Y>,Y3) as flat output.

Yl’oaa (Y{+Y2/)005 / / / :

t) = Y- Y- Y-
Yioo (Y/ 4+ Yoo .
up(t) = 2078 1T Y2)0% (v 4 V44 D) oos

(Y{+Y)) ooa (Y] + Y+ Y)oog
uz(t) = (Y{ + Y3+ Y3) 006 (t) —ug — up

with

o= Y1+ Ya+Y3) to(Y1+ Yo+ Y3+ Vj)

oo = (Y1 +Y2) T o (Y1 + Y24 Va) 00

d : :
| = d—,a . arbitrary time function
o
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Batch Scheduling

Y

A

l b

a b
Qi +Q;
Q(L

)
Qi naut
)

-
S
=
:‘.
Q
)



Two linearized pendulum in series

Flat output y = u + 11071 + 1205

e /'__/;\
Y _ m1(y —l202) mo
92 — T 91 — - -+ 02
g (m1+mo)g m1+mo

and v = y — 1161 — lo0 is a linear combination of (y,y(2),y(4)).

63



n pendulum in series

Flat output y =u + 11601 + ... + [n6n:

u=1y-+ aly(z) +4- agy(4) + ...+ any(zn).

When n tends to oo the system tends to a partial differential
equation.

04



The heavy chain
U(t)

z=0:

Flat output y(¢t) = X(0,t) with

0°X 0 ( 90X
a2 0z \9° 52
X(L,t) =U(t)

Ut) = — /Qﬂy@—z L/g sin§> dc

21 0

)

65



With the same flat output, for a discrete approximation (n pen-
dulums in series, n large) we have

w(t) = y(t) + a19(t) + axyD @) + ... + any @V (1),

for a continuous approximation (the heavy chain) we have

U(t)z% /027Ty<t—|—2 L/g sing> dc.

Why? Because formally

(2 L/g sin C)n

n!

y(t+2y/L/g sin¢) =y(t) + ...+ gy (@) + ...

But integral formula is preferable (divergence of the series. . .).

66



The general solution of the PDE

Ot2 0z

9=—(—

92X a< 8X>
0z

X(z,t)-——-% /wa<t—2 /g sing> d¢

0
where t — y(t) is any time function.

Proof: replace a‘it by s, the Laplace variable, to obtain a singu-
lar second order ODE in z with bounded solutions. Symbolic
computations and operational calculus on

0 0X
2

X = — — .
° 8z<gzc9z>

67



Symbolic computations in the Laplace domain

Thanks to x = 2\/2 we get
g

82X 82X
Use Laplace transform of X with respect to the variable ¢
82X

(z,s) + —(33 s) — zs°X(z,s) = 0.

a 2
This is a the Bessel equatron defining Jg and Yp:

X(z,8) = A(s) Jo(2154/2/g9) + B(s) Yp(21s4/2/9).
Since we are looking for a bounded solution at z = 0 we have B(s) =
0 and (remember that Jy(0) = 1):

X(z,s8) = JO(QZS\/Z/_Q)X(O, s).

68



R (z,8) = Jo(215/2/9) X (0, 5).

Using Poisson’s integral representation of Jy

we have

JO(Q’LS\/;E) = %/OQW exp(23\/;/—gsin 6) db.

In terms of Laplace transforms, this last expression is a combi-
nation of delay operators:

X(z,t) = él;r—/(DQWy(t -+ 2\/%sin6’) db
with y(t) = X(0,1t).

69



Explicit parameterization of the heavy chain

The general solution of

0°X _ 8 (gz%};{), U#) = X(L. 1)

ot2 Oz
reads

1 2m
X(z,t) = 57;/0 y(t +21/2/gsin ) do

There is a one to one correspondence between the (smooth)
solutions of the PDE and the (smooth) functions t — y(t).

70



Heavy chain with a variable section

(7(2) 82X __8_( (Z)(’?_)_(_>
g o2 9z " 0z

\ X(L,t) = u(t)

71



The general solution of

((z) 82X O ( ( )8X>
= —|(7(2)—
] g ot2 0z 0z

\ X(L,t) = u(t)

where 7(z) > 0 is the tension in the rope, can be parameterized
by an arbitrary time function y(t), the position of the free end
of the system y = X(0,t), via delay and advance operators with
compact support.
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Sketch of the proof. Main difficulty: 7(0) = 0. The bounded
solution B(z,s) of

B, 0X 27
2 (r02X) =@ «
0z 0z g
IS an entire function of s, is of exponential type and

R3>wr+— B(z,w)

is L2 modulo some Jy. By the Paley-Wiener theorem B(z, s) can
be described via

b
/a K(z,¢) exp(s¢) dC.
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e -

X
[\
& is equivalent to

= $(u-2)

d2z
dt?

The following maps exchange the trajectories:

(z(t) = X(0,1) ( X(z,t) = -2-1;;/02%@—2 z/gsing> d¢

\

? .
w® =300 | vw =4 [a(t-2/L/gsin) dc
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The Indian rope.

= 0

a( 8X> 92X
0z

oz ot2
X(L,t) = U(t)
The eq‘uation becomes elliptic and the Cauchy problem is not

well posed in the sense of Hadamard. Nevertheless formulas
are still valid with a complex time and y holomorphic

X(2,1) =2i /wa<t—(2\/z—/§ sin ¢) \/——1) dc.

T 0]
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1D Tank: Saint-Venant equation (shallow water)

Y

hi + (hv)2 =0, v+ D + vvgy = —gha
with v(t, 1) = v(t,l) = 0.

" Steady-state controllable”: Coron 2000.
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1D tank: tangept linearization.

Y

Assumptions: h =h+ H, |H| < h; |D| < g, |v| € ¢ = y/gh.

0°H _ -9°H

OH OH 1 ..
G a4 9 o t) —l) = — 3 —_ =
ot2 12 or b D =gy (b =2 D)

7



Non controllable system

Since H = ¢(t + x/c) + ¢ (t — x/c), with ¢ and ¢ arbitrary, one
gets

{ o't + A)—y'(t—A) = —cD(t)/g
't — D) = (t+ D) = —cD(t) /g
with 2A = [/c. Elimination of D yields
P+ D)+ (t+ D) =¢'(t— D)+t - D).

So the quantity n(t) = ¢(t) + 1 (¢) satisfies an autonomous equa-
tion (torsion element of the underlying module)

7t +24A) = 7 (t).

The system is not controllable.
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Trajectories passing through a steady-state
Since w(t) = ¢(t) + ¥ (t) = 0 we have

Pt+ D)+ ¢ (t—A)=—cD(t)/g
thus

P(t) = — (2—CQ> y'(t), D)= (yt+2A)+ylt—-2A))/2

and

H@w)=%$zhﬂf+xk)—dﬁ—xkﬂ
¢ g

1
D(t) = Z ly(t + A) +y(t - A))
with ¢ — y(t) an arbitrary time function.
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Physical interpretation of y
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The tumbler in movement: 2D cylindrical tank
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Modelling the 2D tank

The liquid occupies a cylinder with vertical edges with the 2D
domain €2 as horizontal section. The tangent linear equations

are.

O2H _
D
VH-ﬁ:——@-ﬁ on 052
g

with D = (D1, D>), 7t the normal to 9f2.
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2D Tank, circular shape.

Steady-state motion planning results from a symbolic computa-
tions in polar coordinates:

1 = 2m x1 COSa + xoSin«
H(t,x1,x0) = —\/h / [COSa ! (t—— >
(t,21,22) = —yh/g | Y1

C

Fsina yb (t— 1 COSOA"I‘QZ‘QSlﬂCV)] do
C
1 2rg I cos
D1(t) = ;/o cos® a yq (t — a)] do
1 p2mp I sin
D5(t) = —/ (Slnza Yo (t _ 2 a)} da
T JO R C

with ¢t — y1(t) and t — yo(t) as you want.
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Open question

Under which conditions on € and is the 2D tank described by

82H— ARAH in
o2 Y
VH-ffiz—g-ﬁ on 052
g
D(t) =u

steady-state controllable 7

It is true for €2 a disk or a rectangle.
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Heat equation
0,0(0,t) =0

010(z,t) = 820(x,t), =z € [0,1]
9:0(0,t) =0 0(1,t) = u(t).
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Its general solution parameterized via t — y(t) € R, C* (y(t) =

6(0,t))

ESEAUG
o(z,t) =Y L

,L; (29)!

+o00 (1)

Convergence when y is of Gevrey order o < 2:

CBQi

IK,M >0, Vi>0, [y <MK
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Flexible beam.
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Dynamics (Euler Bernoulli )

8ttX = —OrpzaX

X(0,t) =0, 0:X(0,t) = 6(t)
6(t) = u(t) + k02X (0,t)

Oxx X (1,t) = — A0y X (1,1)
Oraz X (1,t) = pdyu X (1,t)
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General solution via y C'°° of Gevrey order < 2:

1\ ,,(2n) _1\n ,,(2n42)
X(a,y =3 EVEO p oy 4 32 EVV T 06, @)
n>0 n>0

(4n)! (4n + 4)!
with
_ pAn+1 (% _ %)(1 — x4+ Z)471—[—1 N )
PTL(:B) T 2(4n + 1) + 2(4n + 1) +N\S(1—CU+’L)4
and
Quay = 2T DEnEIERT2) (5 - R)(1 - 2 4 1)+ — 2¥41)

2
—2MA4n 4+ 4)(4n 4+ 3)R(1 — x + )42,
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Reaction/diffusion systems

For
( 80 920
L, = 502 T
{
—(0,t) =0
8:18( )
0(1,t) =u

the series can still be calculated. Convergence ?
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Conclusion
Adding new quantities, the flat output here, is a powerful idea:
constraint optimization and Lagrange multipliers, stabilization

and Lyapounov function.

No algorithm to decide whether a system is flat or not: similar
to Lyapounov functions or first integrals.

Importance of the physics: implicit description via differential /algebraic
systems, symmetries.

91



