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1 Controllability and Lie bracket

Controllability properties of a control system are properties related to the following

questions. (Ql) Can the system be steered from a given initial state x0 to a given

final state x{! (Q2) Can this be done for any pair of initial and final states? (Q3)

How large is the the set of points to which the system can be steered from a given

initial state x$l (Q4) Which trajectories of the system are realizable and how do

we find controls realizing them?

Such questions can be motivated by practical problems and they are basic for any

qualitative study of control systems. Our aim in these lectures will be to develope

tools which will anable us to answer such questions and to understand qualitative

properties of nonlinear control systems. We will see that for a large class of problems

a control system can be represented by a family of vector fields (dynamical systems).

The qualitative properties of the control system depend on the properties of the

vector fields (dynamical systems) and interactions between them. The basic tool

which will anable us to understand the interactions between different vector fields

will be the Lie bracket.

1.1 Control systems and controllability problems

By a control system we shall mean a system of the form

E: x = f(x,u),

where x, called state of E, takes values in an open subset X of H n (or in a differen-

tiable manifold X of dimension n) and u, called control, takes values in a set U. We

call X the state space of the system and U the control set. When the control u is

fixed the system equation x = f(x,u) defines a single dynamical system. Thus, the

control system E can be viewed as a collection of dynamical systems parametrized

by the control as parameter. We will see later that this interpretation is fruitful.

Example 1.1 Boat on a lake. Consider a motor boat on a lake. We can choose

some coordinate system in which the lake is identified with a subset X of M2 and

the state of the boat with a point x = {xi^x^ B X. The simplest mathematical

model of the motion of the boat is the following control system

x = u



where the control u = (^1,^2) is the velocity vector which belongs to the set U =

{u G H2 : \\u\\ < m}, where ||u|| = Ju\ + u^ is the norm of u and m is the maximal

possible velocity of the boat.

A different version of the problem is obtained if we consider a motor boat (or a

rowing boat) on a river. Then the set of velocities of the boat F(x) depends on the

current of the river at this point. This means that in our model we have to change

the equation x = u for

x = f(x) +u,

where the control u is in the set U = {u G R2 : \\u\\ < m} and f{x) denotes the

velocity vector of the current of the river at the point x. We could also keep the

equation x = u and choose the control set U(x) = f(x) + U depending on x (we will

usually try to avoid the latter possibility as more complicated). Clearly, if the set

of available velocities F(x) — f(x) + U contains 0 in its interior then the boat can

be steered from any intitial position to any final position if we use enough time.

Example 1.2 Sailing boat. A more interesting system is obtained when the boat

is a sailing boat. Assuming that the wind is stable (of constant direction and force)

we can model the motion of the boat on a lake by the equation

where 6 is the angle of the axis of the boat with respect to the wind. The angle

9 is treated as control and takes values in the set U = (a, 2TT — a), where a is the

minimal angle with which the boat can sail against the wind. The velocity v, as

a function of #, depends on the characteristics of the boat related to the wind and

it usually looks like in Figure 1 (a). An interesting problem for a sailor appears

when the target is placed in the "dead cone" of the boat, when we look at it from

the starting point. In that case sailing consists of a series of tacks chosen in such a

way that the target is reached even if it is placed in the dead cone. In fact, sailing

against the wind can be restricted to using only two values of the control 9 — ±9opt,

where 9opt maximizes the parallel to the wind component of v{9) (directed against

the wind). In this case the system reduces to two dynamical systems with two

available velocities v+ — v(9opt) and v~ = v(—9opt). By changing the tacks (Fig. 1

(b)) with the time spent for each (left and right) tack proportional, respectively, to



constants A+ and A_ (where A+ + A_ = 1) the sailing boat changes its position as

it was sailing with the average velocity v = X+v(9opt) + \-v(—6opt).

The observation of the above example can be generalized to the following infor-

mal (but intuitively plausible)

Conclusion (principle of convexification). In analyzing controllability properties

of systems E we can replace the set of available velocities F(x) = {/(#, u) : u G U}

by its convex hull, the trajectories of the convexified system can be approximated

(in C° topology) by the trajectories of the original system. In particular, if

0 G intcoF(x)

for all x G X, then the system is completely controllable (any state can be reached

from any other state).

Example 1.3 Car parking I. Suppose we would like to unpark our car blocked by

two other cars parked on the side of the street (Fig. 2 (a)). The simplest but not

always applicable strategy is to use a series of moves that gradually turn the car

until it points to the free part of the street (Fig. 2 (b)).

We use the following mathematical model of our problem. We let x\ and X2

denote the Euclidean coordinates of the geometric center of the back axle of the car

and cf) will denote the angle between the axis of the car and the Xi-axis. We assume

that the street is parallel to the #i-axis. It is enough to consider movements with

two extreme positions of the steering wheel. If we assume that the car moves with

a constant angular velocity ±6 then the velocity of the center of the rear axle moves

along a circle (at each position of the steering wheel). The kinematic movements of

the car in coordinates x = (xi,xi,<f>) can be described by the following two vector

fields on H2 x (-7r,7r) C R3

/ = (r cos 0, r sin </>,6)T, g — (r cos 0, r sin 0, — 6)T,

where r is a constant. Our strategy is to use a series of short moves (with equal

length) where we interchange moving forwards with the leftmost position of the

steering wheel (the vector field / ) and moving backwards with the rigthmost position

of the steering wheel (the vector field —g). Intuitively, the overal movement should

be approximately described by the vector which is a linear combination of the vectors



/ and — g. We have (1/2)/ — (l/2)g = (0,0,6) which suggests that our series of

movements can be approximated by a pure turn.

We shall later show that our approximation is justified by a suitable mathemat-

ical result (Proposition 1.8). The above strategy can not be used if the cars are

approximately rectangular and the blocking cars are parked very close to our car

(then their geometry will not allow for the turn of our car). In this case we have

to use a more sophisticated strategy (Example 1.10) based on the notion of Lie

bracket of vector fields. This strategy allows, approximately, to drive our car almost

parallely in the direction perpendicular to the street (Fig. 2 (c)).

In fact, we shall be able to show later the following much stronger controllability

property of the car. "Given e > 0 and any compact curve in the state space X —

{(#1, x^ 4>) £ 1R2 x 5 1}, there exist admissible moves of the car which approximately

follow the curve. More precisely, they bring it from the initial position of the curve

to the final position of the curve and the car is never at a distance (in the state

space) larger then e from the curve."

1.2 Vector fields and flows

Let X denote an open subset of IRn, possibly equal to IRn (the reader familiar with

the theory of differentiate manifolds may assume from the beginning that X is a

manifold). We denote by TPX the space of tangent vectors to X at the point p.

In the case where X is an open subset of H n one can identify TPX with R n (this

identification depends on the coordinate system).

A vector field on X is a mapping

which assigns a tangent vector at p to any point p in X (Fig. 3). An analogous

mapping defined on an open subset of X, only, will be called partial vector field. In

a given system of coordinates / can be expressed as a column vector

f=(fl,...Jn)T,

where "T" stands for transposition. We say that / is of class Ck if its components

are of class Ck.



We shall usually assume that the vector fields considered here are of class C°°.

The space of such vector fields forms a linear space (with natural, pointwise opera-

tions of summation and multiplication by numbers) denoted by V(X).

For any vector field (or partial vector field) / we can write the differential equa-

tion

x = f(x).

From theorems on existence of solutions of ordinary differential equations it follows

that, if / is of class Ck and k > 1, then for any initial point p in the domain of

/ there is an open interval / containing zero and a differentiate curve t —> x(t) =

7t(p)5* £ I) which satisfies the above equation and x(0) = 7o(p) = P- If / is of

class C°°, then from elementary properties of differential equations it follows that

the map

is also of class C°° and is well defined on a maximal open subset of H x X. The

resulted family j t of local maps of X (Fig. 4), called the local flow or simply the

flow of the vector field / , has the following group type properties ("o" denotes

composition of maps)

7ti ° 7t2 = 7ti+t2> 7-* = (7 t )~ \ 7o = id. (1)

If the solution jtip) IS well defined for all t G IR and p G X, then the vector field / is

called complete and its flow forms a one parameter group of (global) diffeomorphisms

of X. Any one parameter family of maps which satisfies conditions (1) defines a

unique vector field through the formula

and the flow of this vector field coincides with j t .

We shall denote the local flow of a vecor field / by 7/ or by exp(t/). A reason

for the latter notation will become clear later.

Example 1.4 The linear vector field f(x) = Ax is complete and the corresponding

flow is the one-parameter group of linear transformations

p —y eAtp, i.e. j t = eAt.



1.3 Lie bracket and its properties

A nonlinear control system can be considered as a collection of dynamical systems

(vector fields) parametrized by a parameter called control. It is natural to ex-

pect that basic properties of such a system depend on interconnections between

the different dynamical systems corresponding to different controls. We represent

our dynamical systems by vector fields as this allows us to perform algebraic op-

erations on them such as taking linear combinations and a taking a product called

Lie bracket. It is the Lie product which allows studying interconnections between

different dynamical systems in a coordinate independent way.

The Lie bracket of two vector fields is another vector field which, roughly speak-

ing, measures noncommutativenes of the flows of both vector fields. Noncommuta-

tiveness here means dependence of the result of applying the flows on the order of

aplying these flows. These remark, as well as the definition of Lie bracket is made

precise below.

There are three equivalent definitions of Lie bracket and each of them will be

useful to us later. We start with the easiest (but coordinate dependent) definition

in IRn. Let X C Rn , and let / and g be vector fields on X. The Lie bracket of /

and g is another vector field on X defined as follows

[f,g](x) = ^(x)f(p)-^(x)g(x), (2)

where df/dx and dg/dx denote the Jacobi matrices of / and g. We will call this
the Jacobian definition of Lie bracket.

Example 1.5 For the vector fields / = ( l ,0)T and g = (0,Xi)T on R n one easily

finds that [/, g] = (0,1)T. Note that the Lie bracket of / and g adds a new direction

to the space spanned by / and g at the origin.

Let / = b be a constant vector field and g — Ax-be a linear vector field. Then

[/5 g] = [6? Ax] = Ab — 0 = Ab. Similar trivial calculations show that the following

holds.

Proposition 1.6 The Lie bracket of two constant vector fields is zero. The Lie

bracket of a constant vector field with a linear vector field is a constant vector field.

Finally, the Lie bracket of two linear vector fields is a linear vector field.



The basic geometric properties of Lie bracket are stated in the following propo-

sitions. The first one says that vanishing of Lie bracket [/, g] is equivalent to the

fact that starting from a point p and going along trajectory of / for time t and then

along trajectory of g for time s gives always the same result as with the order of

taking / and g reversed (Fig. 5).

Proposition 1.7 The Lie bracket of vector fields f and g is equal identically to

zero if and only if their flows commute, i. e.

[f,g] = 0 <=> T / ° 7 ? ( P ) = 7 ? ° T / ( P ) V^t G R,Vp G X,

where the equality on the right should be satisfied for those s,t and p for which both

sides are well defined.

Proof To prove the implication "4==" it is enough to note that by computing

the partial derivatives (d/dt)(d/ds) at t = s = 0 of the left side of the equality

7/ °7?(p) — 7f °n(p) a n d the same partial derivatives (but in reverse order) of the

right side gives the equality (df /dx)g = (dg/dx)f. The converse implication will

be shown after Proposition 1.13 •

Two vector fields having the property of Proposition 1.7 will be called commuting.

Proposition 1.8 Let us fix a p G X and consider the curve (Fig. 6)

a(t) = 7 ^ o 7—t* o 7f o y[(p).

Then we have that its first derivative at zero vanishes, a'(0) = 0 and the second

derivative is given by the Lie bracket:

a"(0) = 2[f,g}(p).

The above means that, after a reparametrization, the tangent vector at zero to

the curve t -> a(t) is equal to 2[f,g](p) (see Fig. 6). This implies that the points

attainable from p by means of the vector fields / and g lie not only in the "directions"

f(p) and g(p), but also in the "direction" of the Lie bracket \f,g]{p). This fact will

be of basic importance for studing controllability properties of nonlinear control

systems.
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The proof of the above proposition requires a lengthy calculation and is omited

here (see e.g. Spivak [Sp], page 224). Note that the formula in Proposition 1.8 can

be used for defining the Lie bracket [/,#].

Proposition 1.9 Suppose we are given two vector fields f and g on X and a point

p G l and let Ai, A2 be real constants. Define the following (local) diffeomorphisms

ofX
<t>t = 7AI* ° 7A2*> fa = 1-t ° 1-t ° It ° It-

Then the families of curves (Fig. 7)

ak (t) = <f>t/k o • . . o <f>t/k (p), k - times

Pk (t) = fajk o • • • o i\)tjk (p), k2 - times

converge to the trajectories of the vector fields X\f + \2g and [f,g], respectively.

More precisely, we have the convergence

and &(*) —> 7J^](p) as A: -^ oo.

We will not prove this proposition here. However, the reader should find the first

property about the convergence of ak intuitively clear (compare the principle of

convexification from Section 1.1). Namely, the movement which jumps sufficiently

often between trajectories of two vector fields (and the time spent for these vector

fields is proportional to some weights) follows, approximately, a trajectory of the

linear combination of these vector fields (with the same weights). This property

is used, for example, by sailors passing through narrow rivers or canals. A sailing

boat can go against the wind only with certain minimal positive or negative angle

(Example 1.2). But, even if the direction of the canal is in the "dead" cone and the

boat can not go straight in this direction, the sailor tacks sufficiently often spending

suitable amount of time for the left and the right tacks to reach the desired direction.

The property of convergence of /3k can be illustrated by the following example.

Example 1.10 Car parking II. Suppose the strategy of turning the car in Example

1.3 is inadmissible because the blocking cars are too close. There is a better strategy

for unparking which works in any situation. Namely, we use repeatidly the following
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series of 4 moves: LF, RF, LB, RB, where "L" and "R" stand for the leftmost and

rightmost positions of the steering wheel while "F" and "B" stand for forward and

bacward motions. This means that our strategy is precisely the zig-zaging strategy

described by /?*(£) in Proposition 1.9. Therefore, the resulting movement follows

approximately the Lie bracket of the vector fields

f = (r cos <j>, r sin </>, b)T, g = ( r cos 0 , r sin 4>, —b)T.

We compute

dx

'0 0 —

=00

0 0

and — =
ox

0 0 —

0 0 r cos
0 0 0

and the Lie bracket of / and g equals to

) d] — br2(— sin (/> — sin </>, cos <j> + cos 0, 0)T.

In particular, at (j) = 0 we have that

The zig-zaging strategy produces movement approximating the trajectory of the

Lie bracket [/, g], that is the movement keeping the axis of the car approximately

constant (^ = 0) and changing its a^-coordinate only (Fig. 3 (c)). This means that

we should be able to unpark the car no matter how close the other cars are.

1.4 Coordinate changes and Lie bracket

To study what happens with vector fields and flows under coordinate changes let

us consider a global diffeomorphism $ : X —> X (or a partial diffeomorphism

i.e. a diffeomorphism between two open subsets of X). As tangent vectors are

transformed through the Jacobian map of a diffeomorphism, our diffeomorphism

defines the following transformation of a vector field / (see Fig. 8)

Ad*(/)(p) = D$(q) f(q), q = ^(p),
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where D $ denotes the tangent map of $ (Jacobian mapping of $ represented, in

coordinates, by the Jacobi matrix d^/dx). Another commonly used notation for

the linear operator on V(X) corresponding to the change of coordinates $ is

Note that the coordinate change p = $(#) transforms the differential equation

p = / (p) into the equation q = f(q) where / = Ad$/.

If $ is a global diffeomorphism of X, then the operation Ad$ is a linear operator

on the space of vector fields on X, i.e. Ad$(Ai/i + A2/2) = AiAd$(/i) + A2Ad$(/2).

Additionally, if \P is another global diffeomorphism of X, then

where "o" denotes composition of maps.

For further reference we state the following fact.

Proposition 1.11 Consider the vector field Ad$(/). The local flow of this vector

field is given by

at = $ ojt o $""1.

Proof It is easy to see that â  satisfies the group conditions (1) and we have

It is not immediately clear from the definition of Lie bracket in Section 1.3 that

so defined [/, g] is a vector field, that is, it is transformed with coordinate changes

like a vector field. There are also other disadvantages of this definition which are

not shared by the following geometric definition of Lie bracket. We define the Lie

bracket of / and g as the derivative with respect to t, at t = 0, of the vector field g

transformed by the flow of the field / . More precisely, we define (Fig. 9)

[f,g}(p) = ^D^Mip)) g(j{(p)) = | ( A d 7 / ^ ) ( p ) . (3)

Let us check that this definition coincides with the Jacobian definition from

Section 1.3. By taking the partial derivative d/dt at t• = 0 and taking into account
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that 7Q = id and 7o (p) = p w e find that the obove definition, where where t appears

three times, gives

^
r\

t=0 t=0

D{id)('jt(p))g(p) + id —
t=o

where we interchanged the order of taking the tangent map " D" (which is a matrix

of partial derivatives with respect to the coordinates) and the partial derivative d/dt

in the first expression. The first term gives —Df(p)g(p), the second is equal to zero,

and the third equals to Dg(p)f(p), which means that this definition coincides with

the previous one.

It follows from the second definition of Lie bracket that [/, g] transforms with

coordinate changes like a vector field, that is via the Jacobi matrix of the coordinate

change. Namely, we have the following basic property of equivariance of Lie bracket

with coordinate changes.

Proposition 1.12 If ^ is a (partial or global) diffeomorphism of X then

] = Ad* [/,#].

Proof As we have established earlier, the flow of the vector field Ad$/ is equal to

o-i = $ o 7 / o $ " 1 . Thus, applying the geometric definition of Lie bracket gives

[Ad*/,

dt t=0

= Ad

From the geometric definition of Lie bracket we deduce the following relation.

Proposition 1.13 We have

^Ad^g = - [ / , Adjg] = -

Proof To show the first equality it is enough to note that

d d
AA—Aa/g = —

dt 7< oh
Ad/Ad-

h=0
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and apply the geometric definition of Lie bracket to the vector fields — / and Ad fg.

The second equality follows analogously from Ĵ  _ Ad fg = -^\ _ Ad /Ad /#. •
t—U 't I/I—U <t I h

Proof of Proposition 1.7. To show the converse implication note that from

[/, g] = 0 and the equalities in Proposition 1.13 it follows that Ad fg is independent

of £, i.e. Ad fg = Ad fg = g. Therefore, the flow of g is equal to the flow of the
it '0

vector field Ad /#, i.e. 7/ 07^0 y_t = 72, by Proposition 1.11. This implies that

7/ o 7^ — 7! o 7/ and the proposition is proved. •

Below and in the following sections we shall use the following notation. We

denote ad/# = [/>#]• Thus, ad/ is a linear operator in the space of vector fields

V(X). We also consider its iterations

ad/# = g and ad/p = ad/ • • • ad/# i — times.

The following dependence between the operations Ad and ad follows from the for-

mula in Proposition (1.13)

— (Ad fg)(p) = —(ad/(Ad fg))(p)- (4)

In the analytic case we also have an expansion formula which follows from this

relation.

Proposition 1.14 / / the vector fields f and g are real analytic, then we have the

following expansion formula for the vector field g transformed by the flow of the

vector field f:

where the series converges absolutely for t in a neighborhood of zero (more precisely,

each of n components of this series converges absolutely).

Proof. Applying iteratively the formula (4) and taking into account that JQ = id

we find that

Therefore, our equality is simply the Maclaurin series of the left hand side.
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1.5 Vector fields as differential operators

A smooth vector field / on X defines a linear operator Lf on the space of smooth

functions C°°(X) in the following way

(5)

This operator is called directional derivative along f or Lie derivative along f and

it is a differential operator of order one.

Conversely, any differential operator of order one with no zero order term can

be written as

and it defines a unique vector field given in coordinates as / = ( a i , . . . , an)
T. (We

can easily check that the coordinate vector ( a i , . . . , an) of the operator L transforms

with a coordinate change $ by the Jacobi matrix d^/dx. Thus so defined / is a

vector field on X, cf. Remark ??.) This means that there is a unique correspondence

between vector fields and differential operators of order one (with no zero order

term)

Because of the above correspondence mathematicians often identify vector fields

/ with the corresponding differential operators Lf and write

We will rather try to distinguish between these two objects.

We shall close this subsection with a third definition of Lie bracket and some

useful corollaries to it. Let / , g be vector fields and L/, Lg the corresponding

differential operators. Consider the commutator of these operators defined by

[Lf,Lg] := LfLg - LgLf.

Proposition 1.15 The commutator [Lf,Lg] is a differential operator of order one

which corresponds to the Lie bracket [f,g], i.e.,

[Lf,Lg] =L[f9g].

14



Proof. Given any smooth function (f>, we compute the composed differential operator

o n <f>

d r\^ d
 A\ ST t d d

 A

The analogous expression for LgLf4> has the same first summand, due to commuta-

tiveness of partial derivatives with respect to Xi and Xj, thus we have

\T T U T T A T T A \^ f d9j d4> v - dfj d(f>

[Lf, L9}4> = LM - LgLfd> = E / , — E 9
E 9 i .

We see that [Lf,Lg] is a differential operator of order one. Using the Jacobian

definition of Lie bracket from Section 1.3 we see that L[f>g]<f) gives the same expression

which means that [Lf, Lg] = L[ft9]. m

If we identify vector fields / with the corresponding differential operators Ly, i.e.

write / = Lf — $^ fid/xi, then Proposition 1.15 suggests that we can equivalently

define the Lie bracket as the commutator

where g — J2j 9jd/dxj. We shall call this the algebraic definition of Lie bracket.

Clearly, this definition coincides in a given coordinate system with the Jacobian

definition, if we use the identifications f = Lf, g = Lg.

Commutator of linear operators is antisymmetric and satisfies the Jacobi identity

[A, [B,C\] + [E, [C,A]] + [C, [A,B]] = 0 (verify this using the definition [A, B] =

AB — BA of commutator). Therefore, we have the following properties of Lie bracket

[/> 9} = - [9, f], (antisymmetry)

[/, b , h]] + b , [h, /]] + [ft, [/, g]] = 0. (Jacobi identity)

for any vector fields / , g, in V(X). The former property also follows easily from

the first definition of Lie bracket. Because of the above properties the linear space

15



V(X) of smooth vector fields on X, with the Lie bracket as product, is called the

Lie algebra of vector fields on X.

Appendix 1: Lie Algebras

A Lie algebra is a linear space L with a product [•, c] : L x L —> L which satisfies

the following properties

[/> 9} = -[gJ] (antisymmetry),

[/, b , h]] + [g, [h, /]] + [h, [/, g}] = 0 (Jacobi condition).

The Jacobi condition can be equivalently written as the following Leibnitz type

condition

lf,\9,h]] = [\f,g],h] + \g,\f,h]]

or equivalently

ad/[p, h] = [ad/p, /i] + \g, ad//*],

where ad/ denotes the linear operator in L defined by the formula ad/# = [/,#].

There is still another form of writing the Jacobi condition which will be useful to us

where the square bracket on the right denotes the commutator of linear operators

in L: [ad^, ad^] = ad^ad/j - ad^ad^.

A linear subspace K of L which is closed under the product []] : L x L —> L

is called a iLie subalgebra of L. A Lie subalgebra generated by a subset or simply

Lie algebra generated by a subset S C L is the smallest Lie subalgebra of L which

contains S. A Lie ideal of L is a linear subspace I C L such that [/, g] G / , whenever

/ G L and </ G / .

Example 1.16 The space gl(ri) of all square n x n matrices with the commutator

[A, 5] - AB - BA

forms a Lie algebra. There are various Lie subalgebras of this algebra which are in-

teresting and important for mathematics and physics. For example, skew symmetric

matrices form a Lie subalgebra of this Lie algebra.
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Example 1.17 The space V(X) of smooth vector fields on a smooth manifold X

(or simply on X = ]Rn) forms a Lie algebra with Lie bracket as product. When

the vector fields are treated as differential operators of order one, then the Lie

bracket becomes the commutator of operators, as in the above case of square ma-

trices (treated as linear operators). There is no surprise about this, namely, there

is a Lie subalgebra of the algebra of vector fields which is formed by the space of

linear vector fields: / = Ax, or in the operator form

Here, the Lie bracket corresponds to taking commutators of the corresponding ma-

trices [Ax, Bx] = (BA - AB)x = [£, A]x.

Example 1.18 In the Lie algebra of linear vector fields as defined above there is

an ideal which consists of all constant vector fields.

An iterative application of the Jacobi identity in the form (1.5) and of anti-

symmetry of Lie bracket leads to the following general property. Let / i , . . . ,/& be

elements of a Lie algebra L. We shall call an iterated Lie bracket of these elements

any element of L obtained from these elements by applying iteratively the operation

of Lie bracket in any possible order, e.g. [[/i, f±], [/3, /i]]. Left iterated Lie brackets

will be brackets of the form [fh,..., [/;fc_1? /»J . . . ] .

Proposition 1.19 Any iterated Lie bracket o / / i , . . . , fk is a linear combination of

left iterated Lie brackets of / i , . . . , /&.

For example

[[/i, hi [/s, /i]] = [ad/l5 ad/4] l/s, h] = [A, [/4, [/3, A]]] - [/4, [A, [/s, /i]]].

Exercise. Prove the above proposition (you may use induction with respect to

the order of Lie bracket).

Appendix 2: Equivalence of families of vector fields

To close this chapter we shall show that the Lie brackets taken at a point of an

analytic family of vector fields form a complete set of its invariants. As a control
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system can be represented by a family of vector fields, this will have direct applica-

tions to control systems. In another version of this result we will define a family of

functions which forms a set of complete invariants for state equivalence.

Consider two general families of analytic vector fields on X and X, respectively,

parametrized by the same parameter u G U

— {fu}ueu-

We shall call these families locally equivalent at the points p and p, respectively, if

there is a local analytic diffeomorphism $ : X —> X, $(p) — p which transforms

the vector fields fu into fu locally, i.e.

/U = ]u, for u eU

locally around p.

Denote by C and C the Lie algebras of vector fields generated by the families F

and F. Recall that a family of vector fields is called transitive at a point if its Lie

algebra is of full rank at this point, i.e. the vector fields in this Lie algebra span the

whole tangent space at this point.

We shall use the following notation for left iterated Lie brackets

J[u\U2-'-Uk] — [jUD [ / W 2 5 ' * ' 5 [JUk-l-) JUk\ ' ' 'JJ

and analogous for the tilded family. In particular, f[Ul] = fUl.

Theorem 1.20 / / the families F and F are transitive at the points p andp, respec-

tively, then they are locally equivalent at these points if and only if there exixts a

linear map between the tangent spaces L : Tp —> Tp such that

L f[uiU2>~Uk](p) = /[tliU2-vUfcl(p) (6)

for any k > 1 and any U\,..., Uk G U.

Proof Necessity. If fu = Ad$/W, then fu(p) = L fu(p) where L = d<&(p). To prove

condition (6) in general it is enough to use iteratively the property of Lie bracket

from which we get f[Ul-"Uk] = Ad$/[ui...ttfc] and so the condition (6). •

The proof of sufficiency is more involved an will be presented in the next section

together with other versions of the above result.
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2 Orbits, distributions, and foliations

2.1 Distributions and local Frobenius theorem

In this chapter we introduce notions and results which play a basic role in analysis

and understanding the structure of nonlinear control systems. Their are directly

related to controllability properties of such systems. We denote by X an open

subset of R n or a diferentiable manifold of dimension n.

Definition 2.1 A distribution on X is, by definition, a map A which assigns to

each point in X a subspace of the tangent space at this point, i.e.

X 3 p —> A(p) C TPX.

The distribution A is called of class C°° if, locally around each point in X, there

is a family of vector fields {/a} (called local generators of A) which spans A, i.e.

A(p) = spana /a(p). A is called locally finitely generated if the above family of vector

fields is finite. Finally, the distribution A is called of dimension k if dimA(p) = k

for all points p in X, and of constant dimension if it is of dimension fc, for some k.

We will tacitly assume that our distributions are of class C°°.

Definition 2.2 We say that a vector field / belongs to a distribution A and write

/ G A if f(p) G A(p) for all p in X. A distribution A is called involutive if for any

vector fields / , g G A the Lie bracket is also in A; [/, g] G A. If the distribution has,

locally, a finite number of generators / i , . . . , fm then involutivity of A means that

k=l

where </>̂  are C°° functions.

Involutivity plays a fundamental role in the following Frobenius theorem.

Theorem 2.3 If A is an involutive distribution of class C°° and of dimension k on

X then, locally around any point in X, there exists a smooth change of coordinates

which transforms the distribution A to the following constant distribution

span{ei,...,efc},
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where are the constant versors e$ = (0 , . . . , 1 , . . . , 0)T, with 1 at i-th place.

Proof. The proof will consist of two steps.

Step 1. We shall first show that the distribution A is locally generated by k

pairwise commuting vector fields. Let us fix a point p in X and let / i , . . . , /*. be any

vector fields which generate the distribution A in a neighborhood of p. Treating fa

as column vectors, we form the n x k matrix F = (/i,..., /*). Note that multiplying

F from the right by an invertible kx k matrix of smooth functions does not change

the distribution spanned by the columns of F (it changes its generators, only). By

a possible permutation of variables we achieve that the upper k x k submatrix of

the matrix F is nonsingular. Multiplying F from the right by a suitable invertible

matrix we obtain that this submatrix is equal to the identity, i.e. the new matrix

F takes the form
(\

0

0

1

0 0

* *

0

1

*

\ * * . . . * /

where "*" denote unknown coefficients. The new vector fields formed by the columns

of this matrix commute. In fact, since their first k coefficients are constant, the first

k coefficients of any Lie bracket [/$, fj] vanish. On the other hand, from involutivity

it follows that this Lie bracket is a linear combination of the columns of F. Both

these facts can only hold when the coefficients of this linear combination are equal

to zero. This shows that the new vector fields commute.

Step 2. Assume that the vector fields /i,."..,/& generate the distribution A,

locally around p, and they commute. We can choose other n — k vector fields

, . . . , / n so that / i , . . . , fn are linearly independent at p. Define a map $ by

, . . . , tn) i) exp(t2f2) • • • exp(tnfn)p.

As the flows of the vector fields / i , . . . , fk commute, we see that the order of taking

these flows in the above definition can be changed. Therefore, an integral curve of a
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vector field e* = (0 , . . . , 1 , . . . , 0)T, 1 < i < k is transformed to an integral curve of

the vector field fa (as we may place the flow of fa to the most left place). It follows

that the map $ sends the vector fields e i , . . . , ek to the vector fields / 1 ? . . . , fk and

conversely does the inverse map $ - 1 . This inverse map is the desired map which

transforms the distribution A spanned by / i , . . . , / /c to the constant distribution

spanned by e i , . . . ,e&. •

In order to state a global version of this theorem as well as other theorems related

to transitivity of families of vector fields and integrability of distributions we need

more definitions.

2.2 Submanifolds and foliations

Definition 2.4 A subset S C X is called a regular submanifold of X of dimension

k if for any x G S there exists a neighborhood U of x and a diffeomorphism $ :

U —> V C R n onto an open subset V such that

$(UnS) = {x = (xu..., xn) G V I xk+1 = 0 , . . . , xn = 0}

(see Fig. 10). The regularity class of this submanifold is by definition the regularity

class of the diffeomorphism $ (we shall assume that this regularity is C°° or Cw).

In other words, a regular submanifolds of dimension k is a subset which locally

looks like a piece of of subspace of dimension A:, up to a change of coordinates. A

slightly weaker notion of a submanifold is introduced in the following definition.

Definition 2.5 We call a subset S C X an immersed submanifold of X of dimension

A; if

S = U^iSu where Si C 52 C Ss C • • • C S

and Si are regular submanifolds of X of dimension k.

In the case when S itself is a regular submanifold we can take Si = S and so S

is also an immersed submanifold.

Example 2.6 In Figure 11 (a) and (b) are regular submanifolds of H2 while (b)

and (d) are only immersed submanifolds.
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We shall later need two geometric properties of Lie bracket.

Property 1. If two vector fields / , g are tangent to an (immersed) submanifold

S then also their Lie bracket [/, g] is tangent to this submanifold.

This follows from the geometric definition of Lie bracket. In fact, if / is tangent

to *S, then its flow transforms points of S into points of S when the time is sufficiently

small. Therefore, the tangent map to the flow Dj{ transforms the tangent subspaces

of S into tangent subspaces of 5, in particular, it transforms the tangent vectors

g(p) into vectors tangent to S. Moreover, the vectors v(t) = (Ad^_tg)(p) are all in

the tangent space TPS. Taking derivative with respect to t of this expression, which

appears in the geometric definition of [/,#], gives a tangent vector to S.

Definition 2.7 A foliation {Sa}aeA of X of dimension A: is a partition

X =

of X into disjoint connected (immersed) submanifolds 5 a , called leaves, which has

the following property. For any x G X there exists a neighborhood U of x and a

diflfeomorphism $ : U —> V C R n onto an open subset V such that

$ ( ( £ / n Sa)cc) = {x = ( x u . . . , x n ) e v \ x k + l = c £ + 1 , . . . , x n = cn
a},

where Pcc denotes a connected component of the set P and the above property

should hold for any such connected componentm, with the constants c%
a depending

on the leaf and the choice of the connected component (Fig. 12). Similarly as

for submanifolds, the regularity of the foliation is defined by the regularity of the

diffeomorphism <fr.

Examples of foliations on subsets of H2 are presented in Figure 13. A general

example of a foliation of dimension k — n — r is given by the following equations for

leaves

Sa = {x e X | hx{x) = 4 ..., hr(x) = crj,

where cl
a are arbitrary constants and h = (hi,..., hr) is a smooth map of constant

rank r (i.e. its Jacobi map is of rank r).

Property 2. Assume that a vector field g is tangent to a foliation {Sa}aeA,

that is, it is tangent to its leaves. Then, if the flow of another vector field / locally

preserves this foliation, the Lie bracket [/, g] is tangent to this foliation.
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Here by saying that the flow of / locally preserves the foliation {Sa}aeA we mean

that for any point p G Sa there is a neighborhood U of p such that the image of a

piece of a leaf 7 / (5 a D U) is contained in a leaf of the foliation (which depends on

£), for any t sufficiently small.

To prove this property let us choose coordinates as in the definition of the folia-

tion and assume that 7/ locally preserves {Sa}aeA- It follows that the tangent map

to 7/ maps tangent spaces to leaves into tangent spaces to leaves. Therefore the

vector Dr)({p)g{p) is tangent to leaves and, in particular, its last n — k components

are zero (here we use our special coordinates). Differentiating with respect to t at

t = 0 gives a vector with the last n — k components equal to zero (and so tangent

to a leaf), which by the geometric definition of Lie bracket is equal to [/, g](p).

2.3 Orbits of families of vector fields

Consider a family of (global or partial) vector fields T — {fu}ueu on X.

Definition 2.8 We define the orbit of a point p G X of this family as the set of

points of X reachable from p piecewice by trajectories of vector fields in the family,

i.e.

where 7^ denotes the flow of the vector field fu. Of course, if some of our vector

fields are not complete then we consider only such £1, . . . ,£& for which the above

expression has sense.

The relation: " q belongs to the orbit of p" is an equivalence relation on the space

X. In fact, a point q belongs to the orbit Orb(p) if and only if it is reachable from

p piece wise by trajectories of the vector fields in the family T. It is evident that

q is reachable from p if and only if p is reachable from q (symmetry). Also, if q is

reachable from p and r is reachable from q, then r is reachable from p (transitivity).

It follows then that the space X is a disjoint union of orbits (equivalence classes).

Definition 2.9 Let F be the smallest distribution on X which contains the vector

fields in the family T (i.e. fu(p) G F(p) for all u G U) and is invariant under any

flow 7", u G [/, that is
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for all p G X, u G U and t for which the above expression is well defined.

Equivalently, we can write the invariance property (using partial vector fields)

in the form:

g eT => Ad^g G F, for any u eU and t G IR.

The following theorem was proved independently by H. J. Sussmann and P. Ste-

fan. We state it here without proof.

Theorem 2.10 (Orbit Theorem) Each orbit S = Orb(p) of a family of vector fields

F — {fu}ueU is an immersed submanifold (of class Ck if the vector fields fu are of

class Ck). Moreover, the tangent space to this submanifold is given by the distribu-

tion r ;

TpS = T ( p ) , for all p e l

Corollary 2.11 If the vector fields fu are analytic, then the tangent space to the

orbit is given by

TpS = L(p) := {g(p) | g G Lie{fu}ueU },

where Lie{fu}ueU denotes smallest family of (partial) vector fields which contains

the family T and is closed under taking linear combinations and Lie bracket (this

is the Lie algebra of vector fields generated by the family T — {fu}ueu in the case

when fu are global vector fields). In the smooth case the following inclusion holds

L(p) C T(p).

Proof We shall first prove the inclusion. Using the second form of the invariance

property of F and the geometric definition of Lie bracket we obtain the following

implication

ger=>[fu,g]er.

Applying this implicaction iteratively, we deduce that the left iterated Lie brackets
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are in F. As all iterated Lie brackets are linear combinations of left iterated Lie

brackets (1.19), it follows that L(p) C T(p) for peX.

To prove the equality in the analytic case it is enough to use the formula

(1.14) which shows that transformations of vectors under the tangent maps to flows

of fu can be expressed by taking (infinite) linear combinations of Lie brackets. This

implies that T(p) C L(p). m

Example 2.12 The following system in the plane

x2 = u2x2, \u2\ < 1,

represented by the family of vector fields

fu = (u1XUU2X2)
T

has four 2-dimensional orbits (the open octants), four 1-dimensional orbits (open

half-axes) and one zero dimensional orbit which is the origin.

Example 2.13 The family of three vector fields which represent rotations around

the three axes

/ l = (0, S3, ~X2)
T, f2 = (£3, 0, -Xl)T, f3 = (X2, ~XU0)T

has a continuum of 2-dimensional orbits which are spheres with the center at the

origin and one zero dimensional orbit which is the origin itself. Note that the orbits

form a 2-dimensional foliation on the set X = H3 \ {0}.

The following example shows that in the nonanalytic case the equality T(p) =

L(p) may not hold.

Example 2.14 Consider the family of the following two C°° vector fields in the

plane
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where (j)(y) is a smooth function on H positive for y < 0 (for example <f>{y) —

exp(l/y) and equal to zero for y > 0. Then the orbit of any point is equal to the

whole IR2 and from the orbit theorem it follows that dimF(p) = 2 for any p. On the

other hand, we have that L(p) is spanned by the first vector field only, when x\ > 0,

so dimL(p) = 1.

Corollary 2.15 (Chow and Rashevski) If dimL(p) = n for any p e X, then any

point ofX is reachable from any other point piecewise by trajectories of T — {fu}ueu

(allowing positive and negative times), i.e. Orb(p) = X for any p.

Proof It follows from our assumption and the above corollary that F(p) is equal to

the whole tangent space TPX for any p. From the orbit theorem it follows then that

the orbit of any point is of full dimension, so it is an open subset of X. We conclude

that X is a union of disjoint open subsets and, as X is connected, only one of them

can be nonempty. Therefore, X consists of a single orbit and any point is reachable

from any other point piecewice by trajectories of our family of vector fields. •

2.4 Integrability of distributions and foliations

The above results, especially the orbit theorem, allow us to give criteria for integra-

bility of distributions and prove some classicical theorems.

Definition 2.16 We say that a distribution of constant dimension p —> A(p) on

X is integrable if there exists a foliation {Sa}aeA on X such that for any p G X

TPS = A(p),

where S is the leaf passing through p.

Finding the foliation which satisfies the condition of the above definition is usu-

ally called integrating this distribution, while the foliation and its leaves are called

integral foliation and integral (sub)manifolds of the distribution.

Theorem 2.17 (Global Frobenius theorem) A smooth distribution of constant di-

mension A is integrable if and only if it is involutive. The integral foliation of A is

the partition of X into orbits of the family of (partial) vector fields {g \ g G A}.
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Proof. Assume that our distribution is integrable and choose two vector fields / , g G

A and any point p G X. Then / and g are tangent to the leaf S passing through p,

therefore their Lie bracket [f,g] is also tangent to this leaf by Property 1. As this

happens for any p, it follows that [/, g](p) G TPS = A(p) for all p and so [/, g] G A.

Assume now that our distribution is involutive. Consider the family of partial

vector fields f = {/ | / 6 A}. We shall prove that the partition of X into orbits of

this family gives the desired foliation.

Let / i , . . . , /fc, G A span this distribution in a neighborhood of p. We shall show

that A is invariant under the flows of the vector fields / G A, that is the distribution

F in the orbit theorem coincides with A. We have to prove that

2>y/(p)A(p)=A(9), ? = T / ( P ) ,

for / G A. The left hand side subspace is spanned by the vector fields

g\ = Ad7// i5 i = l , . . . ,fc.

From the involutiveness assumption we have that [/,/*] = Yljfajfj- Denote the

functions a? = —fcj o jlt. From Proposition 1.13 it follows that the spanning

vector fields satisfy pointwise the following system of linear differential equations

As the solution of a linear differential equation depends linearly on its initial condi-

tions, it follows that

where i$ are functions. Therefore, the subspace Dj{(p)A (p) is spanned by the

vectors / i ( p ) , . . . , fk(p) a n d so it is equal to A(p).

It follows from the orbit theorem that A gives the tangent space to the orbits

and completes the proof.

To complete the prove it is enough to show that the orbits indeed form a foliation

of X. This follows immediately from the local version of the Frobenius theorem. In

fact, our distribution is constant in appropriate coordinates and so the connected

components of intersections of leaves look like in the definition of a foliation. •
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In order to define integrability of distributions which are not of constant dimen-

sion we have to weaken the notion of foliation. We will do this in such a way that

partitions of the space X into orbits of a family of vector fields form foliations in

this weaker sense.

Definition 2.18 A foliation with singularities is a partition

of X into immersed submanifolds such that, locally, there is a family of vector fields

{9b}/3eB such that TpSa = span{^(p) | f3 G B} for all p and a.

A distribution on X is called integrable if there exists a foliation with singularities

{Sa}aeA which satisfies TPS — A(p) for any p and S denoting the leaf which passes

through p.

Theorem 2.19 (Nagano) Any analytic distribution A is involutive.

Proof. We take the partition of X into orbits of the famify of vector fields {/ | / G A}

as a candidate for the integral foliation. From the orbit theorem and the corollary

to it it follows that the tangent space to the leaf passing through p is equal to

F(p) = A(p). This means that the partition into orbits is the integral foliation of A

indeed. •

Appendix: Global equivalence of families of vector fields

We close this chapter with a proof of sufficiency of the theorem about equivalence

of families of vector fields and a global version of this result. The theorem of Nagano

will be helpful in this proof.

Proof of Theorem 1.20. Sufficiency. In the proof we shall use the method of

graph of Cartan and the theorem of Nagano. The method of graph consists of

considering the product space Z = X x X and constructing the graph of the desired

diffeomorphism <S> : X —> X as an integral manifold of a distribution of vector

fields on Z.

Define the product vector fields on Z by hu..= fux fu, u G [/, where, in H n ,

f y f - ( f l fn f1 fn)T
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Consider the distribution spanned by the Lie algebra Lie{i7} generated by the

family H = {hu}ueu of these vector fields. The Nagano's theorem says that the

distribution Z 3 z —> Lie{H}(z) is integrable, i.e. for each point z G Z there is an

integral manifold of Lie{H} passing through this point.

Take the point z0 = (p, p) G Z. We claim that the integral submanifold 5 passing

through z0 is of dimension n and it is the graph of a local diffeomorphism between

X and X. Since S is the integral manifold, its dimension is equal to the dimension

of the distribution Lie{H} at ZQ. But the vectors defining Lie{if }(ZQ) are of the

form

h[ui—uk] ~ \J[ui—uk]i J[ui—uk]) — \J[ui---Uk]i •LJJ[ui--'Uk]))

the latter equality following from the assumption. From transitivity of Lie{^*} at

p and the above form of the vector fields h[Ul...Uk] it follows that the dimension of

Lie{H}(zo) is at least n. On the other hand, since the second component of these

vector fields depends on the first through the same linear map L, it follows that this

dimension is precisely equal to n.

It follows that the integral submanifold S is of dimension n. To show that it

defines a graph of a local diffeomorphism between X and X we should check that the

projections of the tangent space to S onto the tangent spaces of X and X are "onto".

From continuity, it is enough to show this at the point ZQ. But TZoS = Lie{H}(zo)

and the "ontoness" follows immediately from the above form of vectors h[Ul...Uk] and

the transitivity of T and T.

Let $ be the local diffeomorphism from X to X defined in a neighborhood of p

via the submanifold 5, $(p) = p. Since among the vectors tangent to S there are

vectors hu — (/w, fu), and S is the graph of $, it follows that there is the following

relation between the domain component fu of hu and its codomain component fu:

fu($(x)) = DQ(x)fu{x\ or fu{x) = D$(x)fu(x), x - $"1(£).

The latter equality means that fu = Ad$/W, u G U. The proof of sufficency is

complete. •

Theorem 2.20 (Sussmann) Assume that J7 and T are analytic transitive families

of vector fields on compact, simply connected, analytic manifolds X and X and the

relation between the Lie brackets as in the local theorem holds. Then there exists a

global diffeomorphism $ : X —> X such that Ad$fu — fu, u G U.
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Proof. The proof of this theorem is an extension of the obove proof. Namely, it is

enough to prove that under our assumptions the map $ defined above is a global

diffeomorphism.

We shall first show that the projection maps from S to X and X are onto (and

so they are coverings of X and of X, respectively). It is enough to show this for

X. Take any point q on X. From the theorem of Chow and Rashevskii it follows

that this point is reachable from p piecewice by the trajectories of the vector fields

in F. Consider the point z\ on S which corresponds to q and is reachable from z0

piecewice by the lifted trajectories of the corresponding vector fields in H. It is easy

to see that the projection of z\ onto X is equal to q. Therefore, S is a covering of

X.

As X is simply connected, it follows that this covering is a single covering, i.e. a

diffeomorphism of S and X. In a similar way we show that the projection of S onto

X is adiffeomorphism. We conclude that the families F and F are diffeomorphic. •

30



3 Controllability and accessibility

3.1 Basic definitions

We shall be dealing with two classes of control systems, the general nonlinear systems

S: x = f(x,u),

where x(t) G X and u(t) G U, and the control-affine systems
m

S a / / : x = f(x)

where x(t) G X and u(t) — (wi(t),... ^um(t)) G U. The state space X is assumed
to be an open subset of IRn or a smooth differential manifold of dimension n. The
control set U is an arbitrary set (with at least two elements), in the case of system S,
and a subset of IRm, in the case of Ea//. The vector fields fu — /(•, u), defined by E,
are assumed to be smooth (of class C°°). Similarly, we assume that the vector fields
/> 9i-> - - • ? 9m defined by Sa// are smooth. We will not need regularity of /(#, u) in
S with respect to u when we will use piecewise constant controls. Otherwise, we
will assume that f(x,u) together with the first partial derivatives with respect to u
are smooth as functions of x and continuous with respect to (x, u).

We begin with the formal definition of reachable sets.

Definition 3.1 We shall call the set of points reachable from xo G X for system E
its reachable set from XQ and denote it by TZ(xo). For the class of piecewise constant
controls this is the set of points

Itk ° • • • ° ltixo^ k > 1, uu . . . ;uk G U, tu...,tk> 0.

Similarly, the set of above points with t\-\ \-tk. = t will be called the reachable set
at time t from x0 and denoted by lZt(xo), and the set of such points with t\-\ Hk <
t will be refered to as the reachable set up to time i from xG and denoted by H^Xo).

It is unreasonable to expect that the reachable set of a nonlinear control system
will have a simple structure, in general. Almost never it will be a linear subspace,
even if X — Rn and U — Hm. For example, for the system in the plane

Ti ~ II Tc\ zm II
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with U = IR2 the reachable set from the origin is the positive ortant.

Therefore, our aim will be to establish qualitative properties of the reachable

sets. One of such basic properties is the following.

Definition 3.2 We shall say that the system S is accessible from x0 if its reachable

set TZ(XQ) has a nonempty interior. Similarly, we will call this system strongly

accessible from XQ if the reachable set 7Zt(xo) has a nonempty interion for any t > 0.

3.2 Taylor linearization

We begin with a presentation of a rough sufficient condition for strong accessibility.

Let (xo,Uo) be an equilibrium point of our system E, i.e. f(xo,uo) — 0. Denote

A(x, u) = — (x, u), B(x, u) = — (x, u),

and let Ao = A(xo,uo), Bo = B(xo,uo).

Theorem 3.3 If u0 G intU and the pair (AOjBo) satisfies the controllability rank

condition, then the system is strongly accessible from Xo.

A corresponding result result outside an equilibrium can be stated as follows.

Let u*(') be an admissible control and let #*(•) be the corresponding trajectory of

system S. Denote

A(t) = |£(s*(*),ti'(t)), B(t) = ^(x*(t),u*(t)).

Theorem 3.4 If u*(t) G intU and the linear system x = A(t)x + B{t)x, x(0) =

0 without constraints is controllable on the interval [0, T], then the reachable set

TIT(XO) of system E has a nonempty interior. In particular, if the Grammian rank

condition rankGr(0, t) = n is satisfied for our linear system for any t > 0; then

system E is strongly accessible.

For the proof we shall need the following lemma of the theory of ordinary differ-

ential equations, which will be stated without proof.

Let i / b e a measurable, essentially bounded control and consider an admissible

control in the form of the following variation

ue = u* + eu.
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Denote by xe the trajectory of system E, xe(0) == x0, corresponding to the control

ue. Introduce the variation of the trajectory by

UC 6=0

Lemma 3.5 If f — f(x,u) is of class C1, then the variation of the trajectory

satisfies the following equation, called variational equation

5c = A(x*(t),u*(t))x + B(x*{t),u*(t))u, x{0) = 0.

Both above theorems follow from the criteria on controllability of linear systems

without constraints (presented in the section on controllability of linear systems)

and from the following lemma.

Lemma 3.6 If the variational system (treated as a linear system without constraints

on the control) is controllable, then the original system is strongly accessible.

Proof Denote the matrices A(t) and B(t) as above. As the variational system

is controllable, there exist (bounded) controls vl which steer this system from 0 to

ei = ( 0 , . . . , 1 , . . . , 0)T (with 1 at i-th place) at time T, i = 1 , . . . , n. Take the control

u = u(Xu . . . , An) = Xiv1 H h Xnv
n.

When applied to the original system with the initial condition x(0) = Xo it gives a

final state x(T) dependent on the parameters A(Ai,..., An) in a differentiate way.

In particular, the variation
dx(T)

UA* x=o
satisfies the variational equation with the control u — vl. As xl(T) = e», it follows

that the Jacobi map of the nonlinear mapping

is of full rank. Therefore, it follows from the inverse function theorem that this

mapping maps a neighborhood of the origin to a neighborhood of the origin. As

^(Ai , . . . , An) form admissible controls, for Â  small, it follows that the reachable set

1ZT(X0) contains a neighborhood of the point x*(T). m
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3.3 Lie algebras of control system

We shall be using the following families of vector fields associated to the system S.

Denote

and define the following families of vector fields

? = {fu}ueu, and Q = {fu - fv \ u, v G U}.

We define the Lie algebra of system E as the smallest linear space C of vector

fields on X which contains the family T and is closed under Lie bracket:

fu hec^[fuf2]ec,

or equivalently

heF, f2 e C => fa, f2] e C.
Exercise. Prove equivalence of both conditions using the property of Lie bracket

expressed in the Proposition in the Appendix on Lie algebras, Section 1.1.

We also define the Lie ideal of system E as the smallest linear space Co of vector

fields on X which contains the family Q and is closed under taking Lie brackets with

the elements of T\

/ i G F , / 2 6 £ o = > [ / i , / 2 ] 6 4

Co is closed under Lie bracket and so is a Lie algebra in the usual sense (cf. Ap-

pendix: Lie Algebras in Section 1).

From both definitions it follows immediately that C and Co can be equivalently

defined through the iterative Lie brackets as follows

,---,[/tiik_1J/ttJk]---] | k > 1,• uu---,uk G U },

Co = span{[/ t t l , --- ,[ / t 4 f c - 1 , / t t f c - fUk+1}'--] \k>2, uu---,uk+i G U }.

It follows then that

£ = span{/u*, Co },

where u* is any fixed element of U. In fact, directly from the definitions we obtain

that Co C £ , and also fu* G C. The converse inclusion C C span{/w*,£o} follows

from the equalities

fui = fu* + fui ~ fu2-> U2 — U ,
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where uk+\ = uk-\.

For the control-affine system E a / / the corresponding Lie algebras can be ex-

pressed as

C = Lie{/ ,# i , . . . ,# m } = s p a n l ^ , - - - , ^ ^ , ^ ] • • •] | k > 1, 0 < iu . . . ,ik < m},

where go = f>

Example 3.7 For illustration and also for further use we shall compute the Lie

algebra and the Lie ideal of the linear system

m

x = Ax + Bu — Ax +

where bi are constant vector fields being columns of the matrix B. Taking into

account that g\ — b\,...,gm — 6m, / = go — Ax, and that Lie bracket of constant

vector fields is zero, we find that in the above formula for Co the only nonzero

iterated Lie brackets are

[Ax, h] = -Abu [Ax, [Ax, k}] = [Ax, -Ah] = A%,...,

adA* • • • &dAxbi = ad^&i = (-l)JAJbi.

Therefore, the Lie ideal Co consists of constant vector fields only,

Co = spanjA7^ | j > 0, 1 < i < m} = spa,n{A^bi | 0 < j < n — 1, 1 < i < m},

and C = span{Ax, £0}«

3.4 Accessibility criteria

Given a family of vector fields %, we shall use the notation

U(x) = s p a n { h(x) \heU}.

In particular, C{x) and Co{x) will denote the space of tangent vectors at x defined

by the Lie algebra and the Lie ideal of system E. The following result was first

proved by Jurdjevic and Sussmann [?].
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Theorem 3.8 (a) If for a state smooth system E the Lie algebra is of full rank at

#0; dim£(£o) — n>, then the attainable set up to time t from Xo has the nonempty

interior and so the system is accessible from XQ.

(b) If the system is state analytic and dim£(xo) < n, then the system is not

accessible from XQ.

We present a proof of the first statement (due to A. Krener) which is very simple

and gives insight to the problem of accessibility.

Proof of (a). It follows from the assumption dim£(xo) = n that dimC(x) = n

for x in a neighborhood of Xo (the full rank is realized by n vector fields which

are linearly independent in a neighborhood of XQ). It also follows from the same

assumption that there is a u\ G U such that /Ul(#o) ^ 0. Otherwise, it would follow

from the Jacobian definition of Lie bracket that all the vector fields in C vanished

at xo and so dim£(^0) = 0. The trajectory 7^1
1£Q, t e V\ = (0, ei), ei > 0, forms a

one dimensional submanifold of X which we denote by ..Si.

We now claim that there is a u2 G U such that the vector fields fUl and fU2

are linearly independent at a point x\ G Si. Otherwise, all the vector fields in T

would be tangent to the submanifold Si. As taking linear combinations and Lie

bracket of vector fields tangent to a submanifold gives vector fields tangent to this

submanifold, we would have that all the vector fields in C were tangent to Si which

would contradict dim£(x0) = n (if n > 1).

Let fUl and fU2 be linearly independent at X\ — 7^X0 G Si, 0 < t\ < e\. Define

the map

where V2 is an open subset of H2: V2 = (0, €1) x (0,62), 62 > 0. For €2 sufficiently

small the image of this map contains a submanifold of X of dimension 2 (this follows

from linear independence of fUl and fU2) which we denote by S2.

By an argument analogous to the above there exists a u^ G U and a point x2 G S2

such that the vector field fU3 is not tangent to S2 at x2. Thus the image of the map

(where V3 = (0, €1) x (0,e2) x (0,63)) contains a submanifold £3 of X of dimension

3. Of course, S», i = 1, 2,3 are subsets of the reachable set.
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After n steps of such a construction we obtain a submanifold Sn of X of dimension

n, i.e. an open subset of X, which is contained in the reachable set H(x0) and, more

precisely, in the reachable set TZ<t(x0), where t = e\ H hen. Since eu . . . , en could

have been taken arbitrarily small, it follows that any attainable set TZU t > 0 has

the nonempty interior.

Proof of (b). From the corollary to the orbit theorem it follows that the tangent

space to the orbit from x0 is equal to L(x0). When dimL(x0) < n, it follows that

this orbit is a submanifold of dimension smaller then n. Thus, its interior is empty.

As the reachable set is a subset of the orbit, its interior is empty also. •

The analyticity assumption in statement (b) can not be dropped. This can be

seen in the example presented after the orbit theorem in Section 2 (showing that in

the smooth case we can have F(x) ^ L{x)) by taking an initial point with positive

second coordinate.

If the dimension of the Lie algebra of the system is not full at some point, still

we have the following positive result.

Corollary 3.9 / / the system II is state analytic, then the interior in the orbit

Orb(xo) of the reachable set TZ(xo) is nonempty.

Proof If dim£(xo) = n, then this is simply statement (a) of our theorem. When

this dimension is smaller we can restrict our system to the orbit passing through

the initial point. The corollary to the orbit theorem says that dim£(:ro) is equal

to the dimension of the orbit. Thus, our system reduced to the orbit satisfies the

assumptions of statement (a) of our theorem and our result follows. •

Example 3.10 Consider the system with the scalar control u G U — IR

Xi — U, ±2 = #i , k >2.

It is easy to check that the Taylor linearization of this system, at the equilibrium

XQ = 0 and UQ = 0, is not controllable. Our system is control-affine with / = (0, x\)T

a n d p = (l ,0)T . Then

\g, f] = (0, kxty, b, \g, /]] = (0, k(k - l)*t-2f, adj/ = (0, fc!f,

and so dim£0(^) = dim£(x) = 2 for all x, in particular the system is strongly

accessible from the origin.
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There is an analogous relation between the Lie ideal £Q and the attainable set

at time t which is established by the following theorem.

Theorem 3.11 (a) If the system is state smooth and dim£o(#o) — n, then the

attainable set lZt(xo) has a nonempty interior for any t > 0.

(b) If dimCo(xo) < n, then int 7Zt(xo) — 0 for any t > 0.

Example 3.12 Consider the system on IR2

X\ — 1, X2 = U x\,

and take x0 = (0,0), and U = H. We have

T = {(1, u x\)T
 | M G R } , 0 = span{(0, x\)T }.

The Lie algebra C contains the vector fields

A = (l,0)T, f2 = (l,xl)T, f3 = \fuf2]M^xi)T, [h,M = (0,2)T.

Therefore, dimC(x0) — 2 and so the system is accessible from XQ. (Note that

one gets the same result if the set U is restricted to. two values U — {0,1 }). On the

other hand £o(#o) = sPa n{(0, l ) r } and so the interior of the attainable set at time

t, t > 0, is empty. In fact, it can be proved that the attainable set TZ(x0) is equal

to the open right half plain including the origin and the set TZt(xo) is equal to the

set x\ — t, #2 £ H.

Example 3.13 Accessibility of linear systems without constraints. As we computed

earlier, for autonomous linear system A with unconstrained control we have C{x) =

Im[B, AB,..., An~1B] and C(x) — span{Ar, £(#)}. Thus, such a system is strongly

accessible from x if and only if the controllability matrix

[B,AB,...,An-lB]

is of rank n (such linear systems are called controllable).

Noncontrollable linear system may be accessible from x. This happens when

dimC{x) = n but Ax £ Im[B, AB,..., An~1B]. Then the system is accessible from

those x at which Ax is not in the image of the controllability matrix. The system is

not accessible from the linear subspace of points at which Ax is in this image (this

subspace is the counterimage under A of the image of the controllability matrix).

38



Exercise. Analyse the orbits of the linear system without constrains on the

control. Show that this system may have one orbit, three orbits, or a continuum of

orbits. (The Kalman decomposition theorem from the first section is helpful here).

Example 3.14 Accessibility of linear systems with constraints. Consider now a

linear autonomous system with the constraints u(t) G U C IRm. If the interior

of U is nonempty, then the controllability rank condition implies that the system

is strongly accessible, as we have already established in the section about linear

systems. When U has the empty interior then the situation is more complicated.

To analyse this case it is more convenient to consider our system in the form

x = Ax + v, v G V,

where V is the image of U under the linear map B : IRm —> R n . Let us introduce

the set

W = {v'-v"\v',v" eV}.

The one can easily compute that the Lie algebra of our system contains the vector

fields Ax + v' — {Ax + v") = vf — v" G W, i.e. all constant vector fields / = w,

w G W. Thus, it contains also the Lie brackets [w, Ax + v] = Aw, w G W, and by

induction it contains all the constant vector fields Alw, i > 0, w G W. It follows

then from the Cayley-Hamilton theorem that the linear system with constraints is

strongly accessible from #0 if and only if

dimspan{A^|0 <i<n— l,w e W} = n.

It is accessible from x0 if and only if the same collection of vectors together with

any fixed vector Axo + v, v G V, span the whole space.

Example 3.15 Space-craft with two jets Consider a spacecraft with two pairs of jets

placed so that they angular momenta are parallel to principal axes of the spacecraft.

Then, the equations of motion for the angular velocities take the form

= a2cosUJi+U2:

= a^uo\UJ2'
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Our system is control-affine with

/ = (aiU2uJsj CL2U3UU asUJiUj2)
T, g\ = ( 1 , 0 , 0 ) T , g2 = ( 0 , 1 , 0 ) T .

We compute

It follows easily that

^) = 2 <^> dim£(:z;) = 2 4=^ a3 7̂  0,

for any x = (uo\, uo2, OJ$). Here the coefficient a3 is equal to (Ii—I2)/Is, where /1, /2) /3

are the momenta of inertia along the principal axes. It follows then that the above
system is accessible (equivalently, strongly accessible) if and only if the momenta of
inertia of the space-craft along the axes with two pairs of jets are different.

Example 3.16 Space-craft with one jet. The analysis of the space-craft with one
jet, with the equations

gives a different result. We have that

/ = ( a i ^ ^ , a2us^u a3^i^2)T, 9 = (1, 0,0)T,

[f,9] = -(0,a2a;3,a3a;2)T = - ( ^ I ) " 1 / + {u\T

Computing the higher order Lie brackets does not give anything new:

b,[/,2]] = 0, {f,{f,g}} = (*,0,0)T = 4>g,

where <f> is a function. It follows that

C(x) = span{#(z), [f,g](x)}
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and these two vector fields span an involutive distribution. From the form of g and

[/, g] it follows that the orbits of the system consist of the Cartesian product of

lines along the first coordinate and the trajectories of the vector field (a2CJ3, a$uo2)T

along the last two coordinates. In particular, if a2 i=- 0 ^ a3, then there is one

1-dimensional orbit of the system (the first coordinate axis) corresponding to the

equilibrium of the vector field (a2CJ3, a^u)^1\ and continuum of 2-dimensional orbits.

Our system is not accessible from any x = (wu^ws). We conclude that if there

is only one pair of jets which gives the angular momentum parallel to one of the

principal axes of inertia of the space-craft then, contrary to the case of two pairs of

jets, the system is never accessible.

3.5 Time-symmetric systems

In general, the reachable set is a proper subset of the orbit. It is reasonable to

ask for which systems the reachable set coincides with the orbit. One class of such

systems is called time-symmetric systems.

Definition 3.17 A system E is called time-symmetric if for any value u EC/ of the

control there is another value v G U such that

f(x,u) = —f(x,v), for any x G l .

Proposition 3.18 For any time-symmetric system and piecewise constant controls

we have that 1Z(x0) = Orb(rr0).

Proof. The definition of the reachable set (with constant controls) and the definition

od the orbit differ in the fact that it is not allowed to go forward in time along

trajectories of the vector fields fu — / (# ,u) , in the definition of the reachable set.

For a time-symmetric system going forward with the control v in the above definition

is the same as going backward with the control u. Therefore, for a time-symmetric

system the points which are forward-backward reachable are also forward reachable

and the proposition follows. •
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Proposition 3.19 For any state smooth time-symmetric system we have that

dimC(xo) = n ==> XQ G

Proof. From our theorem on accessibility of systems which satisfy the above Lie

algebra rank condition it follows that the reachable set has a nonempty interior.

Let X\ be a point in this interior, where

Let v i , . . . , Vk be the controls corresponding to u\^..., Uk in our definition of time-

symmetric systems. Then the point

coincides with x$. This point is also in the interior of the reachable set as flows

j^H a r e l° c a l diffeomorphisms and map neigborhood of points into neighborhood of

points. It follows that x0 lies in the interior of the reachable set from XQ. •

As a corollary we obtain another proof of the Chow's theorem (this proof is

independent of the orbit theorem). ;

Corollary 3.20 If our system is time-symmetric and dim£(x) = n for all x G X,

then any point of X is forward reachable from any other by piecewise controls, i.e.

TZ(x) = X for any x G X.

Proof. From the above propositions it follows that the reachable set coincides with

the orbit and is open (as after reaching any point we can also reach a neighborhood

of it be the second proposition). As X is a disjoint union of orbits, it is a disjoint

union of open orbits. From connectedness of X it follows that X consists of one

orbit, which is the orbit of any XQ at the same time. As the reachable set of Xo

coincides with the orbit, it equals to X. m

Example 3.21 Our example of the motion of a c&r (Examples 1.3 and 1.10) gives

a time-symmetric system if, together with the forward motions given by the vector

fields / and g we introduce also backward motions — / and —g. It follows from the
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above result that the reachable set is the whole X, which means that we can reach

any position of the car. In fact, a much stronger result can be proved. Namely, the

movement of the car can "approximately follow" any trajectory in its state space.

In fact, a more general fact takes place. Namely, it can be proved that for any

time-symmetric system which satisfies the Lie algebra rank condition any curve in

the state space X can be approximately followed by trajectories of the system.
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