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ABSTRACT. The purpose of this course is to present a set of concepts and re-
sults on observability, on the problem of synthesis of observers, and on dynamic
output stabilization (using observers). ‘

Most of the results presented here come from the book [15], and from the
paper [6].

In this text, in general, we give no proof of the results: we just present
and discuss definitions, state results and explain some practical methodology.
However, the ideas of the proofs will be explained during the course.

For the last part of the course, (mostly the paper [6]), we give detailed
proofs. These proofs, that are computational, contain some proofs on the con-
struction of observers, that are presented in the Chapter 5.

Prevention on place (and time) does not allow us to present many real
applications: there will be only one. But academic examples will be discussed
along the course. They correspond to the exercises in the text. All the exercises
have a detailed solution in the book [15].

I dedicate thisicourse to Andreas Baader.
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CHAPTER 1

»

Observability concepts.

In this chapter, we will state and explain the various definitions of observability
that will be used in the course.

1. Systems under consideration.

We are concerned with general nonlinear systems of the form:

2 = f (:L' ) u);

dt
g &) Y = bz, ),
typically denoted by %, where x, the state, belongs to X, a n— dimensional,
connected, Hausdorfl, paracompact differentiable manifold, y, the output, takes
values in R%, u, the control variable, takes values in U C R%. For the sake of
simplicity of the exposition, we take U = R% or U = I%, where I C R is a closed
interval. But typically, U could be any closed submanifold of R% with a boundary,
with nonempty interior, and possibly with corners. Unless explicitly stated, X has
no boundary.

The set of typical systems will be denoted by S = F' x H, where F is the set
of u—parametrized vector fields f, and H is the set of functions h. In general,
except explicit mention of the contrary, f and h are C*. But, depending on
the context, we will have to consider also analytic systems (C%), or C” systems,
for some r € N. Thus, if necessary, the required degree of differentiability will be
stated, but, in most cases, the notations will remain S, F, H.

The simplest case is the case when U is empty, the so called "uncontrolled
case”. In that situation, we will be able to prove more results than in the general
case.

Usually, in practical situations, the output function & of the system does not
depend on u. Unfortunately, from the theoretical point of view, this assumption
is very awkward. Making it leads to clumsy statements. For that reason, we will
currently assume that h depends on the control u.

2. Infinitesimal and Uniform Infinitesimal Observability.

The space of control functions under consideration will just be the space L*°[U]
of all measurable bounded, U — valued functions u : [0, T, [— U, defined on semi-
open intervals {0, T,,[ depending on u. The space of our output functions will be the
space L[R%] of all measurable functions y : [0, T,[— R%, defined on the semi-open
intervals [0, T} . Usually, input and output functions are defined on closed intervals.
But this is irrelevant. The following considerations led us to work with semi-open
intervals: for any input @& € L*°[U], and any initial state o, the maximal solution
of the Cauchy problem for positive times:

i



ii 1. OBSERVABILITY CONCEPTS.

di

- = J(@(),4(t)), #(0) = 2o,

is defined on a semi-open interval [0,e(d,zo){, where 0 < e(@,z0) < Ty. If
e(l, o) < Ty, then, e(f, o) is the positive escape-time of zq for the time dependant
vector field f(.,4(t)). It is well known that, for all & € L°[U], the function z¢ —
e(@, xo) € R} is lower semi-continuous. (R% = {a|0 < a < o0}).

DEFINITION 2.1. The input-output mapping P of ¥ is defined as follows:
P: L®[U] x X — L[R%), (&, z0) — P(&,xqo),
where P(4,x0) is the function § : [0, e(@, zo)[— R% defined by
9(t) = h(2(t), a(t))-
The mapping Py : X — L[R%] is Py(z0) = P(4, o).

DEFINITION 2.2. ! A system is called observable if for any triple (i, z,,z2) €
LeU] x X x X, 1 # z2, the set of all t € [0,min(e(d, z1), e(4, z2))| such that
P(0, 21 1(t) # P(d,z2)(t) has positive measure.

Now, we define the "first variation” of &, or the "lift of ¥ on TX”. The mapping
[ X xU — TX induces the partial tangent mapping Txf : TX x U — TTX
(tangent bundle of TX). Then, if w denotes the canonical involution of TTX, (see
[1]), w o Tx f defines a parametrized vector field on TX, also denoted by T f.
Similarly, the function A : X x U — R% has a differential dxh : TX x U — R%.
The first variation of X is the input-output system:

%:T f(f,u =Tx fu f)»
) (TE){ ‘i,:d;h(s,u))= dxxhu((f)-

Its input-output mapping is denoted by dP, and the trajectories of (1) and (2)
are related as follows:

If £:[0,T¢[— TX is a trajectory of (2) associated with the input 4, the pro-
jection 7(§) : [0,T¢g[— X is a trajectory of ¥ associated with the same input.
Conversely, if ¢,(zo, @) : {0, e(@, zg)|— X is the trajectory of T starting from z¢ for
the input 4, the map 2 — @, (z,4) is a diffeomorphism from a neighbourhood of
xo onto its image, for all 7 € [0,e(4, zo)[. Let Tx e, : Tpo X — T2 X, z = ¢ (z0,1)
be its tangent mapping. Then, for all §; € T;, X:

ers(l, &) = ex(l, m(§p)) = es(@, xo),

. and, for almost all T € [0, e(@, zo)|:

3) dP(i, o) (1) = dx A(Tx (2, £0), &(7)) = dx (Pg,4)(§o)-
The right-hand side of these equalities (3) is the differential of the function
%1V — R%, where V is the open set:
V ={zeX|0<T<e(fx)}, and Pg ;(z) = P(ii, 2)(7).

I1n nonlinear control theory, the notion of observabillity defined here, is usually referred to
as "uniform observability”. Let us stress that it is just the old basic observability notion used for
linear systems. )



3. THE CANONICAL FLAG OF DISTRIBUTIONS. iil

For any a > 0, let L{2([0,a[; R%) denote the space of measurable functions
v : [0,a[— R% which are locally in L®. For all & € L®(U), z¢ € X, the restriction
of dP to {4} x Ty, X defines a linear mapping;:

dPﬁ,:Eo : TzoX - L?:c([()v e(ﬁ" 30)[; Rdy)»

4) dPy,2,(€0)(t) = dP(, &) (L).

DEFINITION 2.3. The system X is called infinitesimally observable at (ii,z) €
L>®[U] xX fif the linear mapping dP; . is injective. It is called infinitesimally
observable at 4 € L®[U] if it is infinitesimally observable at all pairs (4,z), x € X,
and uniformly infinitestmally observable if it is infinitesimally observable at
all & € L=[U].

REMARK 2.1. In view of the relation 3 above, the fact that the system is in-
finitesimally observable at & € L°°|U] means that the mapping Py : X — L[R%] is
an immersion of X into L{R%] (as was stated, P; is differentiable in the following
sense: we know that e(i,x) > e(f, xg) — € in a neighbourhood U. of xo. Then Py
is differentiable in the classical sense from U, into L*([0,e(, zo) — €]; R%). P, is
an immersion in the sense that these differential maps are injective). '

This notion of uniform infinitesimal observability is the one which makes sense
in practice, when d; < d,,. In most of the examples from the real life we know of,
when d, < d,, the system is uniformly infinitesimally observable.

3. The Canonical Flag of Distributions.

In this section, we assume that d, = 1. As above, set: h,(z) = h(z,u), fu(z) =
f(=z,u).

Associated to the system X, there is a family of flags {Do(u) D D1(u) D ... D
Dy —1(u)} of distributions on X (parametrized by the value u € U of the control):

Do(u) = Ker( dxh,(z)), where dx denotes again the differential with respect
to the z variable only. For 0 <k <n - 1:

Diy1(u) = Di(u) N Ker(dx (L (hw)),

where Ly, is the Lie derivative operator on X, w.r.t. the vector field f,. Let
us set:

(5) D(u) = {Do() D D1(x) D ... > Dp_y(u)}.

This u—dependant flag of distributions is not regular in general (i.e. D;(u)
has not constant rank n —¢ — 1).

DEFINITION 3.1. the flag D(u) is called "the canonical flag” associated to
3. In the case where the flag D(u) is regular and independent of u (notation:
8, D(u) = 0), the canonical flag is said to be uniform.

The case where D(u) is uniform will be specially important in Chapter 2. In
fact, this case will characterize uniform infinitesimal observability.

Note: Here, for us, a distribution D is just a subset of T'X, the intersection
of which with each tangent plane T, X is a vector subspace of T, X. Once the flag
D(u) defined here is regular, the distributions D;(u) are smooth distributions in
the usual sense.
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4. The Phase Variable Representation.

Here L’}u (hu) denotes the dy,—tuple of functions, the components of which are
Lk (hi), where hi is the i** component of hy = h(.,u). We consider control func-
tions that are sufficiently continuously differentiable only: k times, say.

Consider R(F=1du = Réu x .. x R% (k —1 times) and R¥% = R% x ... x R
(k times). We denote the components of v € RE=Dd by (v, ..., vk-1) and the
components of y € R*% by (y,v/, ..., y*~D).

DEFINITION 4.1. (Valid for X with corners). There exist smooth mappings ®%
and S®F (the notation SOF stands for *suspension of % ”):

(6) Q% : X xUx R(k-—l)du - dey’
QE : (xo,u,u', '")u(k_l)) — (yvy/; -.-,y(k—l)))

(1) 5% : X xUxRE D4 - Ridy x REdu,

S@E : ("l"O)ua U,, “'7u(k—1)) (y y (k 1) s Uy ’U, (k—l)))
which are polynomial in the variables (v, ..., (k 1)), and smooth in (zo,u), such
that if (Z,4) : [0,Ta] — X x U is a semi-trajectory of our system ¥ starting at o,
and t — y(t) = h(Z(t),a(t)) is the corresponding output trajectory, then the jt de-
rivative y9)(0) of y(t) at time 0 is the j* block-component of OF (o, u(0), L& £0), ...,
du
55 (0).

Let us say that the system ¥ has the "phase variable property of order
k”, denoted by PH(k), if, for all zp € X and u(.) k— times differentiable:

(8) y® = F(S®Z (2o, u, 1t ..., uk~ D), u®),

for some smooth (C°°) function H : R¥% x R*+1du _, R4y Notice that if such a
function does exist, it is not unique in general.

If one denotes temporarily by Cg° the ring of smooth functions g : Rkdv+(k+1)du
— R, the property PH(k) means that the components ygk) of y*) belong to the
ring R, pull back of C° by the mapping S®T : ®E = (SF)*Cse, where:

S®T = SOF x Id¥,
§®T(z,u, v, ..., u* D By = (SBE(z,u,u, ..., ulf~D) u®),

Then, we can consider the differential system X, on R¥dv :

21 = 29y u0e ,ék 1 —zk,
9) b)) . -
( ) ( k) { 2L = H(Zl:--')zk,u(t) * dt"’ (t))

This differential system Xy, is called a "phase variable representation” of
3. 1t has the following property, consequence of the uniqueness of the solutions of
smooth O.D.E.’s. For any C* function u, ® maps the trajectories z(t) of = asso-
ciated with u(t) into the corresponding trajectories of Iy, : if z(t) is a trajectory of
¥ corresponding to u(t), then the curve t — ®F (z(¢), u(t), v (t), ..., ut*~1)(¢)) is the
trajectory of X, corresponding to u(t), starting from &3 (z(0), w(0), u'(0), ..., u*~1)(0)).
In particular, the output trajectory t — y(t) is mapped into ¢ — z;(t), where z;
denotes the first d,, components of the state z of ¥.



5. DIFFERENTIAL OBSERVABILITY AND STRONG DIFFERENTIAL OBSERVABILITY. v

A very important particular case where the property P H (k) holds is the follow-
ing: assume that the map S®7 isan injective immersion. For any open relatively
compact subset  C X, let us consider the restriction S@f’a = (S‘I’E)mx U R(k—1)dy -
If I denotes the image of S®2'7, Io C R*% x Rkd«, then, y®)(z,u, o, ..., u®)
defines a function k on Ig x R% and easy arguments using partitions of unity
show that we can extend this function smoothly to all of R*¥v x R(k+1)du We leave
temporarily this simple fact for the reader to show: in Chapter 4, we will state a
slightly stronger (but not harder) result.

Denoting this extension of h by H , we get a phase variable representation of
order k for ¥ restricted to 2.

As we shall see, there are other interesting cases where the map S®F is only
injective, but PH(k), the phase variable property of order k, holds for I, for some
k. This situation will be studied in Chapter 4.

Strongly related to this phase variable property, are the notions of ” differential
observability”, and "strong differential observability”.

5. Differential Observability and Strong Differential Observability.

Differential observability just means injectivity, of the map S@E. Strong differ-
ential observability will mean that moreover S®f is an immersion. Let us relate
precisely these notions to the notion of a ”dynarmical extension of I”.

The control functions u are assumed sufficiently smooth. We can consider the
Nt* dynamical extension =V of £, and the N** dynamical extension fN of f,
defined as follows. f is just the vector field on X x U x RIN-Ddu = X x U x
(R%* x ... x R%), (N — 1 factors R%),

. n F) N-2 d. ; d
(10) fN(m’ u(O)’ RAAae] u(N 1)) = Zl ft(w’U(O))—a—x—‘t " Z() Zlug +1) au(z) ’
= =V = J

Moreover if we set bV = (bN), with b)Y = F’?"‘T , and u™ = (u™), the

“new control variable”,

dy
wMpN = Z uEN)b{V,

i=1

then,

DEFINITION 5.1. the N** dynamical extension TV = (FN h) of T, is just the
control system on X x U X RWN=1du yith control variable uEN ) € R4, parametrized
vector field FN = fN + u™MbN | and observation function b = (h(z,u(?),u(®).

REMARK 5.1. If U = I%, I # R,the state space of =N has corners.

In fact, &V is just the system we get by adding to the state variables the
N — 1 first derivatives of the inputs. The N** derivative is the new control. The
observations are the observations of X and the control variables u; denoted here by
ugo), 1 < i < dy, to stress that the function is the zerot" derivative.of itself. Also,
49| (resp. u()) denotes the vector with components uz(.o) (resp. u? )) ,1<i<dy.

Let us set uy = (u(9, ..... , uM¥=1)) and more generally, for a smooth function
y(t), with successive derivatives y(9(0) at t = 0, yn = (¥(0), ¥'(0), ...... , ¥V -1(0)).



vi 1. OBSERVABILITY CONCEPTS.

The maps ®%, 5% have already been defined in Section 4. It will also be
important to make the system X vary in the set S of systems. Hence we will have
to consider the following maps:

(11) S®y : X xUxRW-Ddu g, gNdy x RNdu,
(@un,T) —  (h(z,u®), Linh(z,uy), ..., (LfN)N:lh(x;".éN),HN) = (QN:"_‘N)
S58% : X xUxRWDd _, pNdy  pNdu,
(xun) — SOn(z,uy,X),
and:
(12) Oy : X xUxRW-VDdu x g, RNy,
(z,upn,X) — (h(z,u(o)),quh(x,y2), ey (LfN)N_lh(:c,yN)) =Y
&% : X xUxRW-Ddu _, gNdy

(z,t_‘LN) - QN(IL‘,_’I&N,E)
Sq)N(zvﬂsz) = (q)N(x’yN’E)’yN) = S(I)Jz\:l(xw-@N) = (Q%(w’.@N)fu—N)-

DEFINITION 5.2. ¥ is said differentially observable of order N, if S®% is
an injective mapping. ¥ is said strongly differentially observable, if S®% is
an injective imunersion.

As we mentioned in Section 4, if ¥ is strongly differentially observable of order
N, then, ¥ possesses also the phase variable property PH(N), when restricted to
Q, where 2 is any open relatively compact subset of X.

The reason for these definitions is that, when d, > d,, strong differential
observability is easily tractable for the purpose of construction of observer sys-
tems. Moreover, roughly speaking, it is a generic property. Therefore, it is a
relevant definition in that case. This is the subject of Chapter 3. The motivation to
consider differential (not strong) observability is that it is the most general concept
adapted to the study of dynamic output stabilization (Chapter 6).

6. The trivial foliation.

Associated to T, there is a subspace © of the space C°°(X) of smooth functions
h: X —-R:

OF is the smallest subspace of C°°(X) containing the components ht of h, =
h(.,u), for all u € U, which is closed under Lie differentiation on X, with respect to
all of the vector fields f, = f(.,v), v € U. It is the real vector subspace of C*°(X)
generated by the functions (Ly, )*(Lys, _ )**...(Ly, )" (hy,), for ug, ..., u, €U,
where L denotes the Lie derivative operator on X.

OF is called the ”observation space” of . The space dx©F of differentials
(w.r.t. z) of elements of ©F, defines a codistribution which is in general singular.
The distribution Ay, annihilated by dx©Z is called the "trivial distribution” as-
sociated to X. The level sets of ©F (i.e. the intersections of the level sets of elements
of ©F) define the associated foliation, called the "trivial foliation” associated to
3.



6. THE TRIVIAL FOLIATION. vii

These notions are classical ([16]). The reason why we call this foliation the
"trivial foliation” is that it is actually trivial (in the sense that the leaves are zero-
dimensional), for generic systems. This is also true for systems that are uniformly
infinitesimally observable, as our results will show. However, it is worth to point
out that:

THEOREM 6.1. ([16]) The rank of Ay is constant along the (positive or negative
time) trajectories of ¥, in the analytic case.

Hence, as soon as the analytic system X is controllable in the weak sense of
the transitivity of its Lie algebra (see Appendix 7 below), then the distribution
Ay is regular. In particular, the leaves of the trivial foliation (the level sets of
©F) are submanifolds of the same dimension.

Now, let us consider the case where Ay is regular, nontrivial, and not neces-

sarily analytic. By Theorem 6.1, it is always regular in the analytic controllable
case.

EXERCISE 6.1. show that Ay is preserved by the dynamics of . (i.e. for any
control function u(.) € L®[U], Txp;(.,u) maps Ag(zo) onto As(p,(zo,u))).

Since h(.,u) is constant on the leaves of Ay, for two distinct initial conditions,
sufficiently close in the same leaf, the corresponding output trajectories coincide
for t small enough, whatever the control function.

In particular, ¥ is not observable, for any fixed value of the control
function, even if restricted to small open sets: for each control, one can find couples
of points, arbitrarily close, that are not distinguished by the observations, for small
times.

The following simple fact is important. We leave it as an exercise.

EXERCISE 6.2. In the case U = &, show the following:

(13) —If (iff in the C¥ case) OF separates the points on X,
then, ¥ is observable.

There is an alternative way to define the distribution Ay in the analytic
case, which will be of interest, together with Theorem 6.1 in Chapter 4:
Let us first define the vector subspace =% of H = C®(X x U), as follows:
=% js the smallest real vector subspace of H which contains the components
h* of b and which is closed under the action of the Lie derivatives Ly, on X, and
with respect to the derivations 9; = 5‘?;;, j=1,...,dy,. % is generated by functions
of the form:

(14) L5185, L (85,)%2 - L (85, hiuy  Kiy5i 2 0.

Fixing u € U, we obtain the vector subspace =¥ (u) C C*°(X), and the space
dxZ¥(u) of differentials of the elements of Z%(u), with respect to the z variable
only. We call Ax(u) the distribution annihilated by dxZF(u).

THEOREM 6.2. a)Ax C Ax(u), .
b)In the analytic case, Ax(u) is independent of u and Ay = Ag(u).
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The point of interest, used in Chapter 4, will be that, in the analytic controllable
case, Ag(u) = Ag is a regular distribution. This is a consequence of Theorem 6.1
and Theorem 6.2 just above.

EXERCISE 6.3. Find a C* ezample for which As(u) # As for some w.

7. Appendix: weak contrellability.

DEFINITION 7.1. A system X being given, with state space X, the Lie subalgebra
of the Lie algebra of smooth vector fields on X, generated by the vector fields f,,
(fulz) = f(z,u)), is called the Lie algebra of ¥, and is denoted by Lie(Z).

The Lie algebra Lie(X) defines an involutive (possibly singular) distribution on
X.

DEFINITION 7.2. Let a system X be given, with state space X. The system
Y is said weakly controllable, if the Lie Algebra Lie(X) is transitive on X, i.e.
dim(Lie(X)(x)), the dimension of Lie(X) evaluated at z, as a vector subspace of
T.X, is equal to n = dim(X), for all x € X.

The following facts are standard, and are used in the text. They come from
the classical ”Frobenius Theorem”, ” Chow Theorem” and ” Hermann-Nagano The-
orem”.

-(1) If a system is weakly controllable, than, the accessibility set Ax(z¢) of
g € X, i.e. the set of points that can be joined from zy by some trajectory of X,
in positive time, has nonempty interior in X, for all zg € X.

-(2) If a system is weakly controllable, then, the orbit Og(zg) of z¢ € X, i.e.
the set of points that can be joined to zg by some continuous curve which is a
concatenation of trajectories of ¥ in positive or negative time, is equal to X,
for all g € X.

-(3) If moreover ¥ is analytic, the statements (1), (2) above are ”if and only
if”.

-(4) If ¥ is C*°, not weakly controllable, but the distribution Lie(X) on X has
constant rank or if T is analytic, then, Ax(zo) has nonempty relative interior in the
orbit Os(zo), which is just the integral leaf through zg of the distribution Lie(X).

-(5) In the statements (1), (2),(3),(4) above, it is possible to restrict to piecewise
constant control functions.



CHAPTER 2

»

The case d, < d,.

We will treat only the case d, = 1, d,, > 1. General results for the case d,, >
dy > 1 are more difficult to obtain. However, the chapter 7 shows a nontrivial
practical example where d, = d,, = 2, that is uniformly infinitesimally observable.

In this chapter, except in the first section, we assume that d, =1,
d, > 1, and everything is analytic.

We characterize analytic systems that are uniformly infinitesimally observable
when restricted to an open dense subset of X. The necessary and sufficient condition
is that 8, D(u) = 0, i.e. the canonical flag is uniform. This condition 8, D(u) =
0 is extremely restrictive, and is not preserved by small perturbations of the system.

The analyticity assumption with respect to the x variable is made for purely
technical reasons. It can certainly be removed to get similar results: see for instance
Exercise 4.6 below.

On the other hand, analyticity with respect to u is essential. It is possible
to obtain results in the nonanalytic case, but they will be weaker in the following
sense: to have uniform infinitesimal observability, a certain condition has to hold
on an open dense subset of X uniformly in «. In the nonanalytic case, we can only
show that this condition has to hold on an open dense subset of X x U. This
is much weaker. The reasons for the "much weaker” result are: to prove the
analytic case, we use the permanence properties of projections of semialgebraic or
subanalytic sets.

Again dx (resp. dy) denotes the differential with respect to the x variables
(resp. u variables) only.

1. Relation between observability and infinitesimal observability.

The relation is stated in the following theorem (also valid for d, > 1):

THEOREM 1.1. (i) For any system ¥ and any input i, the set 6(d) of states
z € X such that T is infinitesimally observable at (@, z) is open in X (could be
empty, of course).

(i) If ¥ is observable for an input 4, then 6(4) is everywhere dense in X.

(iii) If T is infinitesimally observable at (i, x), then there exists an open neigh-
bourhood V of = such that the restriction Px 4|V is injective (i.e. X restricted to V
is observable for the input G).

In the remaining of the chapter, d, = 1.

ix
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2. Normal form for a uniform canonical flag.:

We assume that the canonical flag associated to the system ¥ is uniform. We
will show first that it is equivalent that ¥ can be put everywhere locally in a certain
normal form, called the observability canonical form.

THEOREM 2.1. ¥ has a uniform canonical flag if dnd only if, for all g € X,
there is a coordinate neighbourhood of xg, (Viy,2°,...,a™" 1), such that in these
coordinates, ¥ can be written as follows:

dx® 0.1 dz? 0 .1 i+1
(15) - fo(2% x ,u),....,E = fi(z",z", .., 2" u), ...,
d n—2 n-1
_xdt = fn_g(zo,zl,...,x"'"l,u),—dzdt T =fn—l(xo’xl,~-~7zn—l’u))
h
y = h(z%u), and V(z,u) € V3, x U, %(xo,u) # 0,.
d - ' T
6—f;(x°,xl,u) £0, .., S{%.—iw, a1 ) 0,

Let us set hi(z) = hi(z,u) = L} hy(z).

COROLLARY 2.2. X has a uniform canonical flag if and only if, for all xg € X,
for allv € U, there exists an open neighbourhood Vy, o, of xo, such that the functions
20 = hY|Vig,0, 2! = hg|Vig,u oey ™1 = W71V 0, form a coordinate system on
Voo and on U x Vo, each h* is a function of u, 20, .., xt only, 0 <i<n-—1.

3. Characterization of uniform infinitesimal observability.

The first observation that can be made is the following:

THEOREM 3.1. Assume that X is such that its canonical flag is uniform. Then,
Vzo € X, there is an open neighbourhood V,, of zg such that the restriction Elvzo
of the system X to Vg, is observable and uniformly infinitesimally observable.

The main result in this chapter is that, conversely, the uniformity condi-
tion on the canonical flag is a necessary condition for uniform infinitesimal
observability, at least on an open dense subset of X.

Let us point out the following fact about this result: it is true "almost every-
where” with respect to X, but it is global with respect to U.

This is the hard part to prove. If one is interested with a result true almost
everywhere with respect to both z and u, the proof is much easier.

Before proceeding, let us make the following standing assumptions:

either,

(H,) U =I%, I C Ris a compact interval, and the system is analytic,

or,

(Hy) U = R%, f and h are algebraic with respect to u.

Let M be the subset of U x X :

M = {(u, 2)|dx hS(z) A ... Adxh?}(z) = 0}.
Let M be its projection on X. Then:
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THEOREM 3.2. Assume either (H;) or (Hz) and that T is uniformly infinites-
imally observable. Then:

1. The set M is a subanalytic (resp. semianalytic in case of (Hs)) set of
codimension at least 1. In the case (H;), M is closed. In any case, denote by
M its closure,

2. The restriction Xyx\jy of ¥ to X \M has a uniform canonical flag.

Let us give some comments, examples, and state some complementary results.

4. Complements.

4.1. Exercises:

EXERCISE 4.1. Let ¥ be a system with uniform canonical flag. Show that ©
is strongly differentially observable of order n, and hence has the phase variable
property of order n, when restricted to sufficiently small open subsets of X.

EXERCISE 4.2. Show that the (uncontrolled) system on R? :
irl = xé)iZ = 0) y= (ml)a,
is observable on R?, but not infinitesimally observable at z¢ = 0.

EXERCISE 4.3. The output function does not depend on u and n =
dim(X) = 2. Assume that we work in the class of systems such that h does not
depend on u, u € I%, I compact. Fiz 2° € X.

1. Show that the property that ¥ has a uniform canonical flag in a neighbour-
hood of z° is stable under C2— small perturbations of .

2. Show that, if n > 2, this is not true.

EXERCISE 4.4. In the class of control affine systems (i.e. & = f(x)+u g(z),
y = h(z),U = R), show that the result 1 of Exercise 4.3 is false.

EXERCISE 4.5. Show that the system on X = R :

i = 1,
1 sin(2z(1 + u?)?) g
= —(z- +xsin“u, u€ R
V=3t ey )

is uniformly infinitesimally observable, but Theorem 3.2 is false (U is not com-
pact).

4.2. Control affine systems. We consider the control affine analytic systems
(with single control, to simplify):

(16) (Z4) { y=h(z), v€R.
In that case, there is a stronger statement than Theorem 3.2, which is much eas-
ier to prove. Consider the mapping ® : X — R", ®(z) = (h(x), Lsh(x), ..., L?'lh(m)).
The set of points z € X at which & is not a local diffeomorphism, i.e. dxh(z)
NdxLgh(z) A ... A de}‘_lh(x) = 0 is an analytic subset, closed in X, denoted by
M.
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THEOREM 4.1. 1. If £ 4 is observable, then M has codimension 1 at least,
and, on each open subset Y C X\M such that the restriction @y is a diffeomor-
phism, @)y maps L4y into a system X4 of the form:

2 T2 - ai(z)
T z3 T ga(m, 22)
a7 (Ea)é = S P I . ,
531}—1 ZTn n—1(T1, ..., Tn-1)
Tn (p(.'B) gn(x)

y = x.
_ 2. Conversely, if Q is an open subset of R™ on which the system ¥ has the form
X4, then, the restriction ¥ is observable.

The proof is simple, and contains the basic idea for the proof of Theorem 3.2.

EXERCISE 4.6. Give a statement and a proof of Theorem 4.1 in the C™ case.

4.3. Bilinear systems (single output). Bilinear systems are systems on
X = R", that are control affine and state affine:

&= Axr+u (Bx +b),
(19) @f F=AT
where A: R® — R", B: R™ — R" are linear, b € R™, C € (R")*.
For these bilinear systems, the previous result, Theorem 4.1, can be made much
stronger.

EXERCISE 4.7. show the following theorem:

THEOREM 4.2. The single-output bilinear system (B) is observable if and only
if it has the following form in the (linear) coordinate system z* = (Cz,CAx, ...,
CA™'z) : &* = Az* +u (Bx* +b), y = Cx, where C = (1,0,....,0), B is lower
triangular, and A is a ”companion matriz”:

0,1,0,........,0
0,0,1,0,....,0

(19) A= '
0, oo, ,0,1
(25 PRTTTRRTTTReTe 3y Qp

The bilinear systems (single output or not) play a very special role from the
-point of view of the observability property: the initial—state — output—trajectory
mapping is an affine mapping. In fact, the control function being known, they are
just linear time-dependent systems. Therefore, for instance, the observer problem
can be solved jus using the linear theory.

A very important result is stated in the following exercise:

EXERCISE 4.8. (Fliess-Kupka theorem in the analytic case.) 1. Define a rea-
sonable notion of an immersion of a system into another one.
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2. Show that a control affine analytic system can be tmmersed into a bilinear
one if and only if its observation space ©F is finite-dimensional. (See Chapter 1,
Section 6 , for the definition of the observation space.)

This result (2., Exercise 4.8) is not very difficult to prove. The original result,
in the paper [10], is a similar theorem in the C case, the proof of which is not

that easy.
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CHAPTER 3

»

The case d, > d,.

We refer to the notations of Chapter 1, Sections 4 , 5.

The main purpose in this chapter is to show that, in this case, the picture is
completely reversed: Roughly speaking, the observability becomes a generic prop-
erty. More precisely, the ”strong differential observability property of order
2n +1” (in the sense of the definition 5.2, Chapter 1) is generic (in the Baire
sense only: it is an open problem to prove that the set of strongly differentially
observable systems contains an open dense set of systems. If we were able to show
this openness property, some deep technical complications could be avoided in the
proof of the other results).

Another very important result is the following:

Observability (for all L* inputs) is a dense property, that is, any
system can be approximated by an observable one.

In the case where X is compact, strong differential observability means that
S®3% is an embedding, or ®% (., un) is an embedding for all uy. Therefore, the set
of systems such that S®% is an embedding, is generic, if N > 2n + 1.

Of course, there is no chance to prove such a general result if X is not compact:

EXERCISE 0.9. Show that, even among ordinary smooth mappings between fi-
nite dimensional manifolds X,Y, embeddings may not be dense, whatever the di-
mension N = dim(Y’) with respect to n = dim(X).

(For hints, see [18], page 54.)

The reason for the fact stated in Exercise 0.9 is that embeddings are proper
mappings. For our practical purposes (synthesis of observers, output stabilization),
we don’t need that the fundamental mapping S <I>IE\, be proper. It is sufficient for it
to be an injective immersion.

Hence, all the genericity results we prove are true for a noncompact X and
for the Whitney topology. But for the sake of simplicity, we shall assume in this
chapter that X is a compact manifold, and leave all generalizations to the reader
as exercises.

Also, we will assume that X is an analytic manifold. One should be conscious
of the fact that this is not a restriction: any C'* manifold possesses a compatible
C* structure (see (18], page 66).

Again, in this chapter, U = I+, where I is a closed bounded interval. Since we
make an extensive use of subanalytic sets and their properties, this compactness
assumption cannot be relaxed.

1. Definitions, notations.
The systems under consideration are of the form:

xv
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(20) () %2 = fe,u) 5 y = hz,u®)

or

(21) (0) & = f(z,u®) ; y =),

in order to take into account the more practical cases where the output function
h does not depend on u : the proofs of the genericity results in that case are not
different from the proofs in the general case where ~ depends on u, but the results
do not follow from the results in the general case.

In agreement with the notations introduced in Section 5, Chapter 1, we shall
use the notation u(® for the control variable.

We will assume that f and h are at least C" w.r.t. (z,u(9), for r large
enough. We shall endow the set of systems with the topology of C" uniform
convergence over X x U. The set of systems with this topology will be denoted
by S™. In the particelar case where A does not depend on u, it will be denoted
by S®. Then, 8™ = F" x H", §%" = F" x HO", where F" denotes the set of u—
parametrized vector fields f over X, that are C" with respect to both x and u. Also,
HT denotes the set of C” maps h : X x U — R%, and H%" denotes the set of C"
maps h : X — R%. The spaces F", H", H%" will also be endowed with the C”
topology.

2. Statement of our differential observability results.
Our results are the following theorems, that hold for r > 0, large enough:

THEOREM 2.1. The set of systems such that S<I>IZ\:, i an immersion, contains
an open dense subset of S™ (resp. SO7), for N > 2n.

THEOREM 2.2. The set of systems such that S@,% is an embedding, (i.e. ¥ is
strongly differentially observable) contains a residual subset of S™ (resp. SOT), for
N>2n+1.

A bound B > 0 on the derivatives of the controls being given, denote by Ig
the interval [-B, BJ.

THEOREM 2.3. The set of systems such that the restriction of S<I>§, to X xU x
Igc_l)d“ is an embedding, is open, dense in ST (resp. SO7), for N > 2n + 1.

THEOREM 2.4. (X analytic) The set of analytic systems such that S®% is an
embedding, is dense in S” (resp. S%7), for N > 2n + 1.

Now, we shall give several examples showing that all these theorems are false
when d, = d,, = 1. In all the cases, X = S, the circle, and U = [-1,1].
Consider:

1 6= 17
=) { y = ¢1(8) + a2 (O)u,

with the assumption (H) : ¢;(80) = 0,97 (80) # 0, ¢(80) # 0.
One should observe that the condition (H) is stable under small perturbations
and holds if 8g = 0, ¢, (6) = cos(8), ¢, (9) = sin(6).
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EXERCISE 2.1. Show that, if 6 = g, taking u(® = 0, we can compute u(V, ...,
uN) satisfying the equation:

y M

and show that there exists an open neighbourhood U of & (C? open in S%),
such that S®YF is not an immersion for any k, for T € U.

This is a counterexample of Theorems 2.1, 2.2 when d, < d,. It is also a
counterexample of Theorem 2.4.
A better example is the following system X!, for £ small:

6=1
21 { ’
EI y= ep1(0) + p2(0)u,
with the same assumption (H) on 6y, ¢, and p,. Chose an arbitrary integer k > 0
and a real B > 0.

EXERCISE 2.2. Show that there is an gg sufficiently small so that, for the system
Xl and for a C* neighbourhood V of Tl in 5%, there is a 6y and a point
w©® u®M w1 such that SBT is not immersive at G, u®, uV), . uk-1 40 ¢
UuPelg,1<i<k—-1,TeV.

This is a counterexample to Theorem 2.3.

Using the same typology, we can also construct an example showing that, if
dy > d,, the set of systems ¥ such that Sq),% is an immersion is not open,
for any N. Consider the system:

6=1,
(Z2) ¢ y1 = 01(8) + epy(6)u,
Y2 = O)

with ¢, (8) = cos(8), v, (9) = sin(8). At 6y = 0, the assumption (H) is satisfied.

2
EXERCISE 2.3. Show that, for ¢ = 0,S<I>§5 is an immersion. For e # 0, ¢

=2 . . , . .
small, S®,° is not an immersion for any k, using the same reasoning as in the
previous examples.

EXERCISE 2.4. Show that the mapping:

8™ — CT-N+Y( X x U x RW=Ddu RNdy 5 [J x RIN=1)du),

T — 0%,

is not continuous for the Whitney topology (over CT~*+1(X xUx RIN=1du Rkdy
xU x RIN=1)du)),

REMARK 2.1. Theorem 2.4 is not a consequence of Theorem 2.2: this theorems
does not prove that there is an open dense subset of systems satisfying (F).
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3. Equivalence between ”observability” and ”observability for smooth
inputs”.

In this section, we consider analytic systems, and we show that, for these
systems, C“— observability (i.e. observability for all C* inputs) implies observ-
ability (i.e. observability for all L* inputs). In fact, these notions are equivalent.
This result will be crucial in order to prove our final "approximation theorem” 4.1
in the next section 4.!

The proof of this result is rather hard, and makes a deep use of subanalytic
sets, their projections, and their tangent objects.

EXERCISE 3.1. Show that, in the C° case, observability and C“ observability
are not equivalent properties.

THEOREM 3.1. For an analytic system X, (either & € S¥ or £ € S%%), the
following properties are equivalent:

(i)  is observable for all L inputs,

(ii) L is observable for all C¥ inputs.

4. The approximation theorem.

Recall that, if ¥, (analytic), is as in the previous section 2, such that S®F is
an embedding, then ¥ is observable for all C* inputs (X is observable for all C*
inputs, which is stronger):

A C* input u(t) being given on some interval [0,0)], and z,,z9, z; # z2 being
given initial conditions, assume that the corresponding outputs are equal on some
time subinterval [0, 7]. Then their k — 1 first derivatives at time zero are also equal,
and they, with the u(9)(0), are just the components of S® by definition. This is
impossible since S®F is injective. T is observable for u.

In fact, the fact that S®F is an embedding (strong differential observability)
expresses that Pg ., the initial — state — output — trajectory mapping, is an
embedding for all of the considered k—times differentiable inputs w. Although, =
observable only means that Ps , is injective, but for all L inputs u.

The results of the sections 2, 3, show that, for d, > d,, :

1. Any C, system £° can be approximated by an analytic one !, which is
observable for all C inputs (for all C?**! inputs): Theorem 2.4,

2. 21 is in fact observable (for all L> inputs): Theorem 3.1.

Therefore:

THEOREM 4.1. (Approzimation by observable analytic systems). Any
system X0 € ST (resp. SO7), r sufficiently large, can be approzimated by an observ-
able one ©1 € ST (resp. S®7) (observable for all L™ inputs), that moreover can be
chosen analytic and such that S@El is an embedding, for some k.

5. Complements.

The two following results are important:
The first one concerns uncontrolled systems, i.e. X is of the form:

(Bu) 2 = f(2), y=hiz).

1There is a related result in the paper [34], based upon desingularization techniques.



5. COMPLEMENTS. xix

X is again assumed to be compact. Then, the following theorem holds.

THEOREM 5.1. The set of uncontrolled systems ¥, that are strongly differen-
tially observable, of order N =2n+ 1, (i.e. @,z\:, s an embedding) is open, dense.

EXERCISE 5.1. Prove Theorem 5.1.
This is easy, as a consequence of the main thedrems in this chapter. For a
direct proof, see [11].

The second important result concerns the class of control affine systems. These
systems are very common in practice. Recall that they are of the form:

dy
(Pe) 55 = £) + Y gs(ehus, v = hia).

i=1

The result is:

THEOREM 5.2. The theorems 2.1, 2.2, 2.8, 2.4 , are all true in the class of
control affine systems.

EXERCISE 5.2. prove Theorem 5.2.
This exercise is not that easy, although the general idea of the proof is the
same. This has been done in [2].

Also, the following interesting result holds: X is again an analytic compact
manifold. Let us say that a vector field f on X is observable if there exists a
continuous function h : X — R, such that ¥ = (f, h) is observable.

THEOREM 5.3. (1) An analytic vector field f is observable iff it has only iso-
lated singularities.

(2) If (1) holds, then, the set of analytic maps h such that ¥ = (f, h) is observ-
able, is dense in H".

EXERCISE 5.3. Prove Theorem 5.5.

This is not an easy exercise. For hints, see [22].
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Singular state-output mappings.

In the two previous chapters, all initial —state — output —trajectory mappings
are regular in some sense: either the system has a uniform canonical flag, and it
is also, at least locally, strongly differentially observable (see Exercise 4.1, Chapter
2 ), or, in the case where d, > d,, systems are generically strongly differentially
observable of some order.

In both cases, the initial—state — output—trajectory mapping is an immersion
in some sense, and as a consequence, the systems have the phase variable property.

It can happen that the initial — state — output —trajectory mapping is not an
immersion, but that nevertheless, the system possesses the phase variable property
of some order.

It is interesting to study these singular situations since, for observation or
output stabilization, only the phase variable property matters , as will be
clear in the next chapters. This is the purpose of this chapter.

The uncontrolled case is very different from the controlled one. We will show
that, in the uncontrolled analytic case, a reasonable assumption is that the
map ®% is a finite mapping for some N. Unfortunately, in this case, there is no
C® version of our results.

In both cases (controlled and uncontrolled), the first step of the study is local
(at the level of germs of systems). Afterwards, assuming observability (injectivity),
the phase variable representations can be glued together using a partition of unity.

On the other hand, in the controlled case, we don’t need the analyticity
assumption. But, for the sake of simplicity of the exposition, we let it stand.

1. Assumptions, definitions.

Here, we consider only analytic systems, of the form:
(%) % = f(z,u), y = h(z,u), (controlled case), or,
() % = f(z), y = h(x), (uncontrolled case).

As a first step, we will consider germs of such systems at a point (zg,u(®) €
X x U (controlled case), or zo € X (uncontrolled case). In this chapter, U is not
assumed to be compact. In most cases, for global considerations, we will consider
that U = R%.

Notations.
Again in this section the value u = u(9) of the control plays a role different than -
the higher order derivatives u(*), s > 1. Hence, we introduce the following notations:

xxi
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Given a N—jet fyy1 = (fO, f1, . fN) of a curve f in a Euclidean space
R™, we will write:
fN+1 = (f(O)’fN)'

We use this notation for the case of infinite jets (N = oo), and we drop the

subscript N =00 ( foo = f , foo=1).
Let us define the restricted mappings ®% 5, _, : X X U — RN%s and S5 Min_,

X xU — RN% x Réx,

(23) % a_, (@0, u®) = 8% (20, u®, ity ),
Sq)NuN 1(330’“(0)) = (q) (.’Eo u(O) UN— 1) u(o))

Let Oy, be the ring of germs of analytic functions at z9 € R%.

Let R be a subring of O,,, 2o € R®. For up € RP, R{u;uo} will denote the ring of
germs at (zg,up) € R? x RP of analytic mappings of the form G(u, ¢,(z), ..., ,(z)),
for G analytic at (uo, ©;(Z0), ..., (o)), and for any finite subset {¢;, ..., } C R.
If R is an analytic algebra (in the sense of [29], for instance), then R{u;uo} is also
an analytic algebra.

Rings of functions:

We have to consider several rings of (germs of) analytic functions attached to
the germ of a system ¥ at a point. There are different definitions for the controlled

and uncontrolled case. Let us fix a point zop € X, and an infinite jet (u(()o),u~0) =
Ug.

Let us define the rings Rn(zo), or Ry (zo,uon), ﬁN(xo,_u_ON).
1) In the uncontrolled case:
(24) Rv(2o) = (2X)"(Oyo),
the pull back by <I>§:, of the ring Oy, of germs of analytic real valued functions
(v, n—-1) at the point yo = ®% (o), i.e.,
(25) Ry = {G 0 % (z)|G is an analytic germ at yo = &% (20)}-

2) In the controlled case:

%N(meQN) = (SQNuON ,) (Oyo))
ﬁN(xO’EQ_N) = (S(b )*(Ox),

‘where yo = S@,%,ﬁow_l(wo,u(()o)) and zp = S@,%(xo,u((,o),u'”o]\,_l).

If there is no ambiguity about the choice of g, (u(()o),zT&N_l) =ugn, we will
write Ry, Ry, R in place of Ry (zo), R (2o,u0n), R (zo.uon).

For each N, R can be canonically identified to a subring of Ry 41 : Ry C
Ry
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In both the controlled and the uncontrolled case, Ry and S}N are Noetherian
rings. They form increasing sequences: :

(26) e € RNCRN41C...COpyorO

(Io,ugo)) ’

c RnvcRypc..

In the controlled case, R will denote the ring of gérms of analytic mappings of
the form G(u, ¢y, ---,,) at the point (a:o,u(()o)), for any positive integer p and for
functions ¢; of the form
(27) ;= L (85,) L (95,) ™ LF (8,)° by Kuys0 >0,

(see Formula (14) in the definition of Z%, Chapter 1). Recall that 8; denotes
the derivation with respect to the 4" control variable.

Obviously, ¥ is closed under the action of the derivations Ly, and 8;,1 < j <
d,. Also,

(28) Ry C R for all N. i

R will denote the ring of germs of analytic mappings of the form G(u, ¢, ...,
¢,) at the point (:co,u(()o)), for all functions @; of the form (27) above, with }_ k; +
Zsi S N —1.

REMARK 1.1. (1) The ring @N{u(N),u(()N)} is exactly the ring of germs at a
point of (analytic) elements of the rings ?R”N, defined in Chapter 1, Section {,

(2)the ring R is just the ring of analytic germs at (:co,ugo)) generated by the
germs of the elements of the space ==, plus the control variables, (=¥ has been
defined in Chapter 1, Section 6).

2. The ascending chain property.

DEFINITION 2.1. A germ of analytic system ¥ (at the point xo or at the point
(zo, ugo) ,ug)) satisfies the "ascending chain property of order N”, denoted by ACP(N),
if:

uncontrolled case: ®; = Ry for j > N,

Controlled case: §ARJ'+1 = ﬁj{u(j);ug’)} for 3 > N.

Convention: For simplicity, we will say that a vector function belongs to R
or Ry if each of its components does.

The next two lemmas show the relation between the ascending chain property
ACP(N) and the phase variable property PH(N). The phase variable property
PH(N) has been defined in Chapter 1 for systems. For germs of analytic systems,
the definition is similar and left to the reader.

LEMMA 2.1. T satisfies the ACP(N) at some point iff Rny1 = R, (resp.
Ry = Ry fu® );u(()N)}) in the uncontrolled (resp. controlled) case.

LEMMA 2.2. Each of the following two conditions is necessary and sufficient
for T to satisfy the ACP(N):

(1) v = Uy, gx_1,uD, in) for some analytic function ¥ (locally de-
fined in a peighbourhood of (Sq)}z\:,(:co,ugo) ,%N_l),u(()N) %

(4) y@ = W;(y©, Gin-1,u®,@;) for some analytic function V; locally defined
and for all § > N.
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In the uncontrolled case, the conditions (i) and (i) of Lemma 2.2 give: (i)
y M) = U (Y@, gn-1), and (i) ¥ = Ty, giv_1).

REMARK 2.1. A priorti condition (1) is necessary for & to satisfy the ACP(N),
and condition (ii) is sufficient.

REMARK 2.2. The second (resp. first) condition of Lemma 2.2 is equivalént to
the phase variable property PH(j) of any order j > N (resp. the phase variable
property PH(N) of order N).

3. The key lemma.

Here, we show a lemma about the ascending chain property, which will be used
later on.

Let (f;,7 > 0) be a sequence of analytic germs: (X,zo) — (Y, fi(z0)). X,Y
are analytic manifolds. As we did previously in a particular case, we can associate
a sequence of rings R; to the sequence (f;), in the following way: we denote by
®; : X — Y7 the map ®;(z) = (f1(z), ..., fj(z)), and by R; :

R; = (25)"(0s;(z0))s

the pull back by the map ®; of the ring Og,(s,) of germs of analytic maps at the
point ®;(xzo). Clearly, again we have:

W CR; C Ry C .o C Oy,

DEFINITION 3.1. We say that the sequence (f;) satisfies the ACP(N) at xo if
R; =Ry forj=N..

DEFINITION 3.2. (of finite multiplicity) F: X — Y has finite multiplicity
at g if Og, /[F*(m(O0y,)).Oq,) has finite dimension as a real vector space. Here
m(Oy,) is the ideal of germs of analytic functions at (Y, yo), yo = F(zo), which are
zero at yo.

The dimension is the multiplicity.

There is a simple and convenient criterion for a germ to be of finite
multiplicity:
F has finite multiplicity at z¢ iff there is an integer r > 0 such that:

- (29) [m(0z,)]" C F*(m(0y))-Oxo-

Therefore, to check that F has finite multiplicity at 2o =0, (F: R® = Y), it
is sufficient to check that z]* belongs to F*(m(Oy,)).O,, for some positive integers
ri,t=1,..,n.

Let @y : (X,z0) — YV, &y = (f1,..., fN), where the f; : (X,z9) — Y are
germs of mappings at zg. A ”prolongation of ®5” is an arbitrary sequence ( fj) of
germs of mappings, fj :(X,20) — Y, such that fj = fjfor j < N.

We have the following key lemma:

LEMMA 3.1. (Jouan, [23]) The following properties are equivalent:

(i) All prolongations of ®n satisfy the ACP(k) for some k > N, (k depends on
the prolongation),

(ii) ®n has finite multiplicity.
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Why analyticity?

The proof of this lemma essentially follows from the Weierstrass Preparation
Theorem (see [29)).

If we assume that our mappings are C*, then Lemma 3.1 is false. A counterex-
ample is provided below.

The statement (i) = (i¢) of the lemma is still valid in the C™ case but the
statement (i4) == (%) is not: The proof of (i2) = (i) breaks down because Ry is
not in general Noetherian. We shall construct a smooth map ®; on R? with finite
multiplicity, and a smooth prolongation of it, which does not satisfy the ACP(k)
for any k. This will imply that Ry, in this counterexample, is not Noetherian.

Here, we show a smooth map ®; on R?, with finite multiplicity, and a smooth
prolongation which does not satisfy the ACP(k) for any k.

Counterexample: Let W be the ” Weierstrass manifold”, W = {(zo, z1,)|t2+
it + 29 =0} C R3, and I1 : W — R2, (z0,21,t) = (Zo,1). Certainly, W is a
smooth manifold. Set fo = 2o, fi = z; and f,, = g,(xo, 21 )¢, with the sequence g,
constructed as follows.

Consider on R? the polar coordinates (r,8), and the vector field X:

8 0

We can construct some ”spiraloid” disjoint subsets S,, of R? as follows: we pick
an interval I} = {a1,b1] C R%, I, small enough for Sy N {z; = 0} # {x; = 0},
where S is the union set of all trajectories of X passing through the points (z°,0),
2% € I,. Now, we chose a second interval Iy = [ag,bs), with 0 < az < by < a;
and I, NS; N {z; = 0} = @, and construct the set Sz as the union set of all the
trajectories of X through (Iz,0). Iterating the construction, we get S,. We chose g,
in such a way that its support is Int(Sy,), the interior of S,. This is possible since
the complement of this set is closed, and since, given any closed set, there exists a
C™ function having this set as zero set.

The multiplicity of F = (fo, f1), F : W — R? is finite at (0,0,0) (it is 2).

We show that the sequence f, does not satisfy the ACP(k) for any k. For
this, we work in an arbitrary small ball B centered at (0,0,0) in W. We assume
that fny1 = ¥(fo, f1, ..., fn) on B for some smooth ¥. By construction, if p = ITp’
€ Int(Sp41), then frne1(0") = ¥(fo(p'), f1(¥’),0,...0). Let D be the discriminant
set of W, i.e., D = {(zo,1,t)|zo = $2?3}. We consider ¢ = (co,¢1), ¢ € IIBN
Int(Sp41) NIID, ¢ € BNII~(c), and a sequence (p}) in 171 (Int(Sp41))\D such
that limg_,o p}, = ¢, and we set p = IIp;.

By definition, we have:

gn+1(zo, 1)t = ¥(zo,z1) on Int(Sny1).

Differentiating, we get:

Agn ot ov
'%;E‘l‘(wo,xl)t +gn+1(Io,$1)5x—0 = a—x(;(fo,fvl),

which should hold at py,

B9n1 Ot =%
“B?O—(Pk)t(Pk) + gn+1(Pk) B (pe) = Bz (Px)-
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Taking the limit when & — oo, we get:

9gn+1 ot v
=0T (0)t n =~ = —(c),
PLL (H(E) + 9n1(0) 5 (0) = 5 (9
where g,41(c) is different from zero, and t(c) = —%. Hence, at 3o (c) is well defined.
But, t2 4 z1t + zg = 0 implies 2 3% = 2t+x At»c Ty = cl, t(c) = -%, and

2t +z, = 0. A contradiction.
Hence, despite the fact that the multiplicity is finite, the equality:

fn+1 = \I}(ny ey fn)s

never holds.

The main consequence of this lemma 3.1 is the following theorem.

THEOREM 3.2. Let X be an uncontrolled system. Let xo € X be fixed. If for
some k, ®F has finite multiplicity at o, then, ¥ satisfies the ACP(N) at zo for
some N > k, and by Lemma 2.2, y(N ) = ‘IJN(y(O) In—1) for some analytzc Sfunction
Uy defined in a neighbourhood of % (xo).

ExaMPLE 3.1. X =R, y = h(z), £ = f(z), zo is arbitrary, h is nonconstant.
In that case, of course, the notion of multiplicity is equivalent to the usual nat-
ural notion of multiplicity of a smooth function of a single variable. The multiplicity
is always finite because h is nonconstant, and hence for some N, we have (locally):

y M) = TN (¥, gn-y).

EXAMPLE 3.2. X = R?, y = zy, &1 = 23, #2 = f(x1,%2), o = (0,0). This
system is observable, and by our criterion, the multiplicity is finite. Hence, for some
N, we have also: y'™ = Uy, jn_1).

Of course, it can happen that @5 = (f1, ..., fiv) does not have finite multiplicity,
but some particular prolongations (f,) satisfy the ACP(k) for some k. (just take
the prolongation by the zero sequence for instance).

For uncontrolled systems, there are many other interesting examples where the
ACP(N) holds for some N, but the multiplicity is not finite. A case where the
ACP(N) holds everytime is the following:

EXERCISE 3.1. (Linear systems observed polynomially). X = R y =
p(z) is a polynomial, T = Az is a linear vector field. Show that the ACP(N) holds
for some N. (compare with Ezercise 4.8, Chapter 2).

EXERCISE 3.2. (£): X =R%, y=1xy(z? +x3), A= [ ?_1 (1) } :

1. Show that T is observable.
By the previous exercise, the ACP(N) holds: y? = —y(®),
2. Show that the multiplicity is infinite. (For hints, see [21]).

The following important theorem is a consequence of more general results in
the controlled case. It is a globalization of the previous theorem 3.2.

THEOREM 3.3. (Globalization of the ACP(N) in the uncontrolled case).
Assume that X is compact, T is observable, and for each o € X, there is a N
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(depending on xo, could be), such that <I>,EV has finite multiplicity at xo. Then there
is a k and a C* function y, defined and compactly supported on R*4v, such that:

¥ (2) = o4V (@), §x-1(2)), for allz € X,
i.e., ¥ satisfies PH(k), the phase variable property of order k, globally on X.

4. The ACP(N) in the controlled case.

As stated in Theorem 3.2, the local ACP(N) holds in the uncontrolled case,
as soon as there is a k such that <I>E has finite multiplicity at the point under
consideration. As we shall see, in the controlled case, the situation is not so clear
cut.

Here, as we said, the C“ assumption can be relaxed. Let us keep it for
simplicity of exposition, anyway. But, in Chapter 6, we will use the results in the
case where the systems are C°°.

The main local result is the following.

THEOREM 4.1. A point x¢ and an infinite jet ug =(u§,0),%) are fized. Y satisfies
the ACP(N) iff R = Rn. Moreover, in that case, Ry = Rn41, Ry C R
REMARK 4.1. (i) If the ACP(N) is true at (zo,u((,o),ﬂa) for some ug, then,
Ej’:eN = §~I}1\74-1 at (zo’u(()O))y

(ii) this condition Ry = if?NH 1s implied by the fact that 5?1\70 has finite multi-
plicity for some Ny (in the sense that the map with components the generators of
Rn,, given by Formula (27), has finite multiplicity).

EXERCISE 4.1. (£): X =R2, U=R,y=1,

i = x3-z,
o = :cg + SC%’U,
We work at 29 = (0,0), and u(()o) =0.

Show that:

1. X is observable,

2. R =Ry = {G(z1,23, 2}°, 237, u)},

so that the ACP(4) holds (in fact it holds as soon as (z¢)2 = 0, and the ACP(2)
holds everywhere else).

3. Show that actually, y¥) can be written as a polynomial:

y@ = PO V) 4@ o3) O (1) @),

and compute P.

5. Globalization.

We assume that T is given, and we fix a compact subset K of X. We also
assume that ¥ is differentially observable of order N. We denote by @%K the
following mapping:

uncontrolled case: <I>;:‘V’K is the restriction to K of <I>§',,

K K — oK (K) c RN,

controlled case: <I>12V'K is the restriction to K x U x RN~V of &%,

VK K xUx RN=Ddu _ @0 (K x U x RWW—1duy ¢ RNdy » RNdu,



xxviii 4. SINGULAR STATE-OUTPUT MAPPINGS.
LEMMA 5.1. @IE\,’K s a homeomorphism onto its image, which is closed.

Comments:

(1) Lemma 5.1 shows that, as soon as ¥ is differentially observable, z can be
expressed on K as a continuous function ¥ of (¥, fy_1,2@,dy_;).

(2) If X = R™, then, by Urysohn’s lemma, ¢X can,be extended to a continuous
function defined on all of RV% x RN« hence x can be written as a continuous
function, defined on all of RN9v x RNdu .

T= w%(y(())) gN—ly ,u,(O)’ ﬂN—l)-

(3) If X = R™, (or if X is not R™ but ¢% is globally defined and continu-
ous on R¥N% x RNdv) | the classical assumption that ¢% is smooth is equivalent
to the strong differential observability assumption (in restriction to K) . It is
much stronger than the differential observability assumption made here. Of course,
it implies (in the uncontrolled case) that the multiplicity is finite. Actually, the
multiplicity is one.

It is the case in Chapters 2 and 3: in both chapters, strong differential ob-
servability holds (by assumption in Chapter 3, and as a consequence of uniform
infinitesimal observability in Chapter 2).

EXERCISE 5.1. Consider the system X :
(X) £ =1,y = cos(z) + cos(az), = € R,

- where « ts an irrational number.

1. Show that ¥ is observable,

2. Show that the observation space ©OF of ¥ is finite dimensional. Compare
with Ezercise 3.1.

So that the ACP(N) holds for some N.

3. Show that x cannot be expressed as a continuous function of (¥, 4x),
whatever M.

EXERCISE 5.2. Show that, in the example 3.2 (uncontrolled):

1. T is differentially observable of order 2,

2. depending on the choice of f, it can happen that <I>§, is an immersion for
some N, or &% is not an immersion for any N.

EXERCISE 5.3. Show that, in Fxercise 4.1:
1. ¥ is differentially observable of order 2,
2. S®% is not an immersion for any N.

The main result is the following:

THEOREM 5.2. Assume that T satisfies the ACP(N) at each point, and is dif-
ferentially observable of order N. Consider K, any fized compact subset of X. Then,
there exists a C™° function 301’5, compactly supported w.r.t. (y(o),g]N_l), such
that:

(30) y ™ = oK (4O gy_1,u® ay),

forallz € K, allu,un. That is, T satisfies PH(N), the phase variable property of
order N, in restriction to K.
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Compactly supported w.r.t. (3(9, §x_,) means that, for any K’, a compact
subset of U x RN+ oK restricted to RN% x K’ is compactly supported. (It is not
equivalent that % is compactly supported, for all fixed u,diy).

The following corollary will be also used in Chapter 6.

COROLLARY 5.3. Theorem 5.2 is valid not only for y\™), but for any function
o in Ryt = Ry {u®™; 0§} (ie. the germs of o at’each point belong to Rn41)-
It is true also for any function o in Ry, and in that case:

(31) o= ‘PII\(/(y(O))gN—lsu(o)aaN—l)a
for allz € K, all (u©@®,in_,).

EXAMPLE 5.1. Ezample 3.2 and Exercise 4.1 (see also the ezercises 5.2, 5.8)
satisfy, in the uncontrolled and controlled cases, the assumptions of Theorem 5.2. In
the case of Exercise 4.1, it has been already stated that Formula (80) holds globally,
(for goff} a certain polynomial).

EXERCISE 5.4. (single output, dy = 1). Let ¥ be a system with uniform canoni-
cal flag. Remember that & satisfies the phase variable property PH(n) in restriction
to small neighbourhoods of each point in X (Ezercise 4.1, Chapter 2). Assume that
moreover L is differentially observable of some order N. Show that ¥ satisfies the
PH(N) (in restriction to any compact subset K of X).

6. The controllable case.

Let us assume that ¥ is controllable, in the usual weak sense of the transitivity
of its Lie algebra (see Appendix 7, Chapter 1). We will use the theorems 6.1, 6.2,
of Chapter 1, which in this case allow us to conclude that the trivial foliation
Ay is regular , and equal to the foliation Ay, as was already stated just before
Theorem 6.2 in Chapter 1.

Assume that these foliations are not trivial (i.e. their dimension is strictly
> 0). Then, as was also stated in Chapter 1, Section 6, ¥ cannot be observable, for
any fixed input. Hence, ¥ cannot be differentially observable.

The consequence in the (analytic) controlled case, if ¥ is controllable, is that
this part of the theory is void : assume that, as in the assumptions of Theorem
5.2, ¥ satisfies the ACP(N) and is differentially observable. Then, the ”trivial
foliation” has to be trivial, which implies that Z*(u) has full rank everywhere,
hence rank(dx®) = n. By Theorem 4.1, the ACP(N) holds iff ® = Ry, and in
that case, Ry C Ry Therefore, rank(dx§RN) = n, and .S'<I>N is an immersion.
In fact, we are back to the situation of Chapters 2, or 3, where ¥ is strongly
differentially observable.

EXERCISE 6.1. Study the controllability (in the weak sense) for the system of
Ezxercise 4.1.
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CHAPTER 5
Observers: the high-gain construction.

The subject of this chapter is observers. The purpose of an observer is to
obtain information about the state of the system, from the observed data.

In Section 1 of this chapter, we are going to discuss the concept of observers.
The main ingredient of that concept is the notion of "estimation”. There is no
completely satisfactory definition of estimation. For that reason, we have to present
several definitions of an observer, ea,chi having its domain of application.

We shall explain these different definitions of observers, and point out the
relations between them.

In the remainder of the chapter, we shall construct explicitly several types
of observers. The fundamental idea behind all of these constructions is to use the
classical observers for linear systems and to kill the nonlinearities by an appropriate
time rescaling.

The construction we present, and its variations, provide explicit, efficient, and
robust algorithms for state estimation. It is closely related to the results of the three
previous chapters and it applies in all the cases dealt with in these chapters.

Qur observers can be used for several purposes:

a)-state estimation in itself,

b)-dynamic output stabilization.

They will be used in the next chapter 6 for the purpose b).

There are several problems in defining an observer. First, there is no good
definition of a state observer when the state space X is not compact. A second
difficulty is the ”peak phenomenon”, explained below, for observers with arbitrary
exponential decay.

Finally, let us point out that our construction of observers is related to nonlinear
filtering theory. But this is beyond the scope of this book. A good reference for this
relation is [8].

In this chapter, we will make the following basic assumption: the system (%)
is differentially observable of a certain order NV > 1.

1. Definition of observer systems and comments.

An observer system is a system X, the inputs of which consist of the ” observed
data” of T, i.e. the inputs of ¥, their derivatives, and the outputs of ¥. The task
of the observer is the estimation of the state of L.

Let us make a few remarks. The inputs are selected by the ”operator” of the
system. In particular, he can chose them differentiable, and then, their derivatives
are known. On the other hand, it is hard to estimate the derivatives of the outputs
from the knowledge of them. For this reason, we strictly avoid any use of these

xXxxi
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derivatives in our theory: actually, the first problem we shall deal with, will be to
estimate the derivatives of the outputs.

Because X is differentially observable, for sufficiently snooth controls, esti-
mating the state is equivalent to estimate the NV —1 first derivatives of the outputs,
UN-1.

We denote by U™Z the set of inputs u : [0,00[— ¥ = I%, such that u is r — 1
times continuously differentiable, its r** derivative belongs to L°°([0, oo[; R%+) and
all the derivatives up to order r are bounded by B > 0. U%Z is just the subset of
L>([0,00[; U) formed by the u(.) that are bounded by B. (Here, U = I% is not
necessarily compact: I = R is possible), ||.|] is the canonical Euclidean norm
on R% or on RNdv,

1.1. Output observers.
1.1.1. Definitions. We use again the notation i, = (u(,...,u("), introduced
in Chapter 4, Section 1.

DEFINITION 1.1. An U™B output observer of T, relative to Q is a system
(oM, r>N:

r, B, d_i = F(Znu(o)(t)>ﬁ7‘(t)>y(o)(t)))
(32) (&g, ™) { n(d) = H(2(t), w0 (1), s (1), 5O (1)),

on the dz dimensional manifold Z, where 2 C X is open, where 0, the output,
belongs to RN%, F and H are C™, and satisfy the following condition:

for all uw € U™B, for all xo € Q , such that the corresponding semi trajectory of
T, z(t,20), is defined on [0, +o00] and stays in Q, for all zg € Z, the output n(t) is
well defined and,

(3) Jim[1n() — gy @)l =0.

REMARK 1.1. We will be mostly interested in two cases: X is compact and Q =
X , or X is noncompact but Q is relatively compact.

Definition 1.2 below strengthens Definition 1.1.

DEFINITION 1.2. An exponential U™B output observer of &, relative to Q, is a
one parameter family of output observers of ¥, depending on the real parameter o >
0, with state manifold Z, independent of c, which satisfies the following condition
(84), strengthening (33):

for any K, a compact subset of Z, for all zo € K, for all zg € Q , for all
ue UnB:

(34) lIn() — vy Ol < k(e)e™*4{n(0) - y (O],

as long as z(t,zo) stays in ) , where k : Ry — Ry is a function of polynomial
growth, depending on K in general.
Such a one parameter family will be typically denoted by (ngén)

REMARK 1.2. The fact that k(a) has polynomial growth warrants that, if @ is
large enough, the estimate can be made arbitrarily close to the real value
in arbitrary short time.
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1.1.2. Comment. Let us assume that (EgyB Y is an “output observer” and
r = N. Since ¥ is differentially observable of order N, we obtain an estimation
Z(t) of the state z(t) of T as follows.

For @' open, cl(Q2) C &, denote by E(t, zp) the set:

(35) .
{z" € cl(@)] lIn(t) ~ @R (2™, u(®), ana @)l = inf |In(t) - 2R (@, u(t), dn-1 )1}

If Q is relatively compact, then €’ can be taken relatively compact. In that
case, this set E(t, zp) is not empty, and for any metric d on X, compatible with its
topology, limy_, 1 o d(E(t, 29), z(t)) = 0. If Q is not relatively compact, this is
not true.

EXERCISE 1.1. In this situation, show that lim_, o #(E(t, 20)) = 1, if more-
over & is strongly differentially observable (of order N), for a trajectory z(t, zo)
that stays in Q for allt > Q.

1.1.3. The observability distance. The following could be a way to overcome
the problems linked to the noncompactness of X or £: one should try to construct
a canonical distance over X, related to the observability properties. This canonical
distance could then be used in the definition of observers.

A trivial way to do this is to define the distance on X :

(36) do(z,y)=  sup 1% (2, v, an-1) - Ry, u', @n-1)|l-
e a1 [I<B

EXERCISE 1.2. Show that (36) actually defines o distance over X.
Unfortunately, this distance is not compatible with the topology of X in general:

EXERCISE 1.3. Consider the system of Exercise 5.1, Chapter 4, (uncontrolled
case). Show that the observability distance is not compatible with the topology of X.

Moreover, this distance is not very natural because it depends on both B (the
bound on the input and its derivatives) and on N (the degree of differential observ-
ability).

There is a special case where the situation is better: if X is compact, and if
¥ is analytic, uncontrolled and just observable, then by the proof of Theorem 3.3
in the previous chapter 4, there is an N such that ¥ is differentially observable of
order N. Taking the smallest such NV, we get a canonical observability distance, in
that case. Unfortunately, this is not very interesting, because X is compact.

EXERCISE 1.4. Show that this distance is compatible with the topology of X.

1.2. State observers.
1.2.1. Definitions.

DEFINITION 1.3. AnU™E state observer of T, relative to Q, is a system (ng,n) :
dz . -
(37) = = F(u®,00,y9),0 = H(z,u0, 4, y),

on the dz dimensional manifold Z, where Q0 C X is open, 1, the output, belongs to
X, F and H are C*, and satisfy the condition:
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for all uw € U™B, for all zg € Q , such that the corresponding semi trajectory
of T, z(t, o), is defined for t € [0, +o0[ and stays in Q , for all zg € Z, the output
n(t, 29) is well defined and,

(38) Jlim_d(n(t, %), 2(¢, 70)) = 0,
where d is any metric compatible with the topology of. X.
Again, this definition makes sense if Q is relatively compact only.

DEFINITION 1.4. An exponential U™ state observer of X, relative to Q, typ-
tcally denoted by (ng éﬂ), is a one parameter family of state observers for ¥, de-
pending on the real parameter o > 0 (on the same manifold Z ), which satisfies the
following condition (89), strengthening (38):

for any compact K C Z, for any Riemannian distance d on X, there exists
a >0, and k : R+ — R+ with polynomial growth, k and a depending on d and K,
such that:

for all zo € Q, for allu € U™B, for all z5 € K,

(39) Infla, d(n(t, 20), z(t, 0))] < k(e)e™**d(n(0, 20), z0),
as long as z(t,zo) stays in Q.

It is important to note that, in the preceding definition, one can
replace ?there exists a > 0" by ”for all a, 0 < a < a¢”.

Again, if X is not compact, and 2 is not relatively compact, the inequality
(39) also does not make sense: all Riemannian metrics are not equivalent, hence
the inequality (39) cannot hold for all Riemannian metrics.

REMARK 1.3. There is no hope to have a reasonable theory if we ask that the
condition (39) in Definition 1.4 to be valid for any distance on X (compatible with
the topology of X), even if Q) is relatively compact. But for Riemannian distances,
everything is fine, since differentiable mappings between Riemannian manifolds are
locally Lipschitz.

REMARK 1.4. The inequality (39) is more complicated than the inequality (34),
due to the "peak phenomenon”, well known to engineers (and to control theo-
retists). In fact, it happens already in the linear theory. We explain it now.

1.2.2. Peak phenomenon. Assume that Q is relatively compact. Let d be a given
Riemannian metric, and assume that the following inequality is satisfied, instead
of (39):

(40) d(n(t, z0). 2(t, z0)) < ka(a)e™*d(n(0, z0), zo),

where kg has polynomial growth.

(40) cannot hold for all Riemannian metrics on X. This is due to the "peak
- phenomenon”:

It can happen that there exists a trajectory z(t,z¢) of £, with 2o € Q , and a
function @ € R} — t, € R.., which tends to zero as « tends to +00, and such that,
if n,(t, 29) denotes a corresponding trajectory of the observer, ,(ta, z0) — oo as
a tends to 4-o0.

One can construct a Riemannian metric on X such that for the associated
distance function § on X. §(n4(ta, 20), (ta,Zo)) tends to +oo faster than any
power of a.
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The ”peak phenomenon” already occurs in the linear theory for the classical
Luenberger’s or Kalman'’s observers.

Of course, estimations of z that do not belong to Q are irrelevant, but this
is unimportant: the only important point is that relevant estimations of = are
obtained in arbitrary short time, for « large enough.

1.2.3. Consistency of our definition of an exponential state observer.

EXERCISE 1.5. Show that, on a manifold X, and on any compact set C C X,
the distances induced on C by Riemannian distances are all equivalent.

LEMMA 1.1. If Q is relatively compact, then Definition 1.4 is independent
of the choice of the Riemannian metric d on X.

1.2.4. Alternative definitions of an exponential state observer. We give now two
other apparently different definitions, but more tractable than Definition 1.4.

DEFINITION 1.5. An exponential U™ state observer of ¥, relative to , is a
one parameter family of state observers for ¥, depending on the real parameter
a > 0 (on the same manifold Z independent of a), whieh satisfies the following
condition:

There exists a Riemannian metric d such that relation ({0} holds, for all
xg € Q, for all K compact, for all zg € K, for allu € U™B, as long as z(t, z¢) stays
in Q. The function kq has polynomial growth and depends on K.

DEFINITION 1.6. An erponential U™ state observer of &, relative to , is a
one parameter family of state observers for X, depending on the real parameter
a > 0 (on the same manifold Z independent of a), which satisfies the following
condition:

There exists a Riemannian metric d such that relation (40) holds, for all
zg € Q, for all 29 € Z, for allu € U™B, as long as z(t, zo) stays in Q. The function
k4 has polynomial growth.

Of course, Definition 1.6 is strictly contained in Definition 1.5. On the other
hand, if Q is relatively compact, by Lemma 1.1, Definition 1.5 is itself contained in
Definition 1.4. But, in fact, we have:

PROPOSITION 1.2. Definitions 1.5, 1.4 are equivalent.

The only motive to introduce the equivalent definition 1.4 is that it
is independent of any special Riemannian metric over X.

The observers that we will construct will be of two types, as in the classical
linear theory: 1) Luenberger type, 2) Kalman’s type.

For the Luenberger case, the statement of Definition 1.6 is valid, and in the
Kalman’s case, the statement of Definition 1.5 is valid. This is true both for the
classical linear theory and our nonlinear theory.

1.3. Relations between state observers and output observers. (1)
Assume that ng s an output observer. If X = R, if { is relatively compact,
then, by Lemma 5.1 and the comment just after, in the previous chapter 4, there is
a continuous function @ : RV% x RNdv — X such that = = ¢ (y, fN-1,u, Gn_1).
This function provides a continuous single-valued estimation Z(¢) of z(t, zo) : Z(t) =
o%(n(t),u(t), an—1(t)). If |.| denotes any norm on X = R", one has:

(41) t_l}gloo |z(t) — £(t)| = 0.
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Therefore, in that case, the output observer EBB < allows to construct an U™B
state observer, relative to Q .

(2) The assumptions are the same as in (1) but ¥ is strongly differentially
observable of order N, and (34) holds. Then, the function ¢ can be taken smooth,
compactly supported, and if d is any Riemannian distance over X, d(x(t),£(t)) <
kq(a) e~** for some function k4 with polynomial growth , depending on 4,9 , K.

(3) Assume that E" B2 1 > 0 is a state observer. Then, a fortiori, it is an
U™ B state observer for some o, for all r > r9 > N. We know that 2 is relatively
compact. We can use the mapping ®Z in order to construct an U™ output observer
as follows: we can replace ®Z by a smooth (C°°) mapping ®Z, which is constant
outside a compact set, and the restriction of which to Q xV coincides with ®Z.
Here, V is the set of (r — 1) jets at ¢ = 0 of control functions u(t), the r — 1 first
derivatives of which are bounded by B (V = (UN (I5)%) x(I)"~14). Taking the
composition H of this mapping <I>>: with H, as the output mapping of the observer,
we get an U™® output observer relatlve to .

If £32? is exponenttal, then: 1) ||8Z(n(t, 20), 1. () — T (2(t, zo), 2, (B))]] <
Md(n(t, Zo) (t, xo)) for X large enough. 2) ||&F(n(t, 20), u.(t) — $F((2, 20), 2,(¢))l]
< M because <I> is single-valued outside a compact. Hence, for A large enough:

“‘i’;‘:(ﬂ(t’ ZO)a@r(t)) - é?(x(t7x0)’ﬂr(t))ll < A Inf(d(n(t, zO)ax(t>1:0)), T),

”éf(n(t’ Z()),'li,,.(t)) - &)E(x(ta xO)a.@r(t))“ < A k(a)e—atd(n(o! 20)7‘7:0)'

EXERCISE 1.6. (dy, > dy, 7 > 2n + 1.) If moreover ¥ is strongly differen-
tially observable of order r, prove that ®Z can be chosen so that, d(n(0, zp), o)
< v [|®E((0, 20), u,.(0)) — <I>2(:c(0 20),u,-(0))|l, for all 2 € K, all xo € Q, where
v depends on the compact K. This shows that the modified observer is an U™P
ezponential output observer.

2. The ?high gain construction”.

2.1. Discussion about the "high-gain construction”. The ”high-gain
construction” is a general way to construct either state or output U™5 observers,
that are moreover exponential. Before explaining this construction, we want to
point out a certain number of facts, concerning the results in this chapter.

1. Systems with a phase variable representation: for the systems ap-
pearing in Chapters 3, 4, we obtain a phase variable representation of a certain
order N. As we shall see, our "high-gain observers” work for systems in the phase
_ variable representation, for CV controls. Hence they apply to these general classes
of systems.

2. Systems with a uniform canonical flag: (the single output controlled
case of Chapter 2). In that case, as we know (see Exercise 5.4, Chapter 4), X
satisfies the phase variable property of some order, either locally or in restriction
to arbitrarily large compact sets if moreover % is differentially observable.

Hence, the construction also applies for sufficiently smooth inputs. But there
is a stronger result: If ¥ has the observability canonical form (15) of
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Chapter 2, then, our observers work also for arbitrary L* inputs, i.e. they
are U%B observers.

3. The high gain construction has mainly two versions: referring to the
terminology of linear systems theory, the first version is in the ”Luenberger style”
and the second version is in the "Kalman filter style” (a deterministic version of
the Kalman filter). .

4. There are versions of the ”high gain observer” that are ” continuous-
continuous”, and others that are ”continuous-discrete”: continuous- contin-
uous means that the observer equation are ODE’S, and observations are continuous
functions of time. In the continuous-discrete version, which is more realistic, the
observer equations are ODE’S with jumps, and observations are sampled.

2.2. The ”Luenberger style” observer. This section will concern uni-
formly infinitesimally observable systems.

Let us assume that X = R” and our system X, analytic, has the observability
canonical form (15) globally. Recall that this canonical form exists locally as soon
as ¥ has a uniform canonical flag.

Let us denote by z; the vector (z0,...,2%). The following two additional as-
sumptions will be crucial.

(A1) Each of the maps f;, i = 0,..,n — 1, is globally Lipschitz w.r.t. z;,
uniformly with respect to u and z**1,
(Az) there exists two real o, 8, 0 < a < (3, such that

(42) a
of;

Azitl

IA

oh
|5@1S@

a<| <B,0 < i<n-2

In fact, these assumptions can be automatically satisfied, as soon as one is
interested only in the trajectories that stay in a given compact convex set ' € X =
R"™, as shows the following exercise.

EXERCISE 2.1. Assume that X = R™, I’ C X is the closure of an open, rela-
tively compact, convex subset of X, and X has the normal form (15), (it is suffi-
cient that it has this normal form only onT').

Show that, for all B > 0, ¥ can be extended smoothly (C™) outside of T x Vp,
so that the assumptions A;, Az, are satisfied (globally) on X x U. (Here, Vg =
{ueU; [u| < B})

In order to prove the main result of this section, the following technical lemma
is crucial:

LEMMA 2.1. Consider time-dependant real matrices A(t) and C(t) :

0, p5(t), ... ,0
0) O’ (103(t)1 aO
At) = : , C(t) = (01(£),0, .., 0).
0,0,....,0,9,()
0.0, vovvverenn '0,0
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A(t) is n x n, and C(t) is 1 x n. Assume that there are two real constant «, 3,
such that:

O<a<fa<p(t)y<pl<i<n.

Then, there is a real X > 0, a vector K € R", and a symmetric positive definite
n X n matriz S, A and S depending on o, 3 only, such that:

(A(t) — KC(t))'S + S(A(t) — KC(t)) < —A Id.

Here, (A(t)—KC(t)) means transpose of (A(t) — KC(t)) and < is the (partial)
ordering of symmetric matrices defined by the cone of symmetric positive semi-
definite matrices.

Now, let us define the dynamics of our ”observer system” X as follows:

(43) 2 = 1(8,0) - Ko(h(2,u) ~v),

where Ko = MoK, Ap = diag(8,67,...,0™) for 6 > 1, and K (together with S
and A) comes from Lemma 2.1, relative to ¢, 3, in the assumption Ay, (42).

THEOREM 2.2. For any a > 0, there is a 8 > 1 (large enough) such that:

(44) V(wo, %0) € X x X, ||2(t) — 2(t)]| < k(a)e™||z0 — woll,

for some polynomial k, of degree n, where Z(t) and x(t) denote the solutions at time
t of the observer system Lo and the system %I, with respective initial conditions %y,
Io.

COROLLARY 2.3. For all B > 0, for any relatively compact Q@ C X, the system

Yo given by Formula (48) is an U%B ezponential state observer for I, relative to
Q.

COROLLARY 2.4. Let £ be an open relatively compact convex subset of X =
R"™. Assume that the restriction ¥jqq) is globally in the observability canonical
form (15). Then, for all B > 0, there is a U%B exponential state observer for T,
relative to €2 .

Observation: in both corollaries, the polynomial k(a) is independent of the
compact set K in the definition of the observer.

Corollary 2.3 is an immediate consequence of Theorem 2.2 and of the definition
of a state observer. Corollary 2.4 is a consequence of Exercise 2.1 and of Theorem
2.2,

2.3. The case of a phase-variable representation. Here, d,, is arbitrary.

Let us assume that we have a system in the phase-variable representation,

y ) = o(y®, §n_1,u® @), then, the previous construction can be adapted

" to obtain an exponential UN'B output observer, at the cost of an additional as-

sumption:

(A3) ¢ is compactly supported w.r.t. (3, §y_1). (Remember that this means
that for any K’, a compact subset of U x RV% the restriction of ¢ to RVN% x K’
is compactly supported).

As we know, this assumption is satisfied in many situations, for instance:

-In Chapter 4, in the situation of Theorem 5.2,
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-In particular, in the case where d;, > d,,, we have generically a phase variable
representation. If we restrict £ to a compact subset 2 of X, Theorem 5.2 gives us
a phase-variable representation for ¥, with the additional property (As).

Let us denote by A the (Nd,,d,) block-antishift matrix:

0,1dg,,0, . .covvnn. 0
0,0,1dg,,0, ......,0
A=| o,
0,0, ceeerreenen. ,0, Idy,
0,0, cveerererenne. ,0,0

# denotes a typical element of RV, Then % = A2 is the linear ODE on RN%
corresponding to the vector field:

8
A2) = {Zid,+ig—}
i=1,.2.,;v—1 ’ az(i—l)duﬂ'
J=l,d,

b(2,u®, i) is a vector field on RN%, depending on u(?), iy, defined as follows:

d
- 0
b(i,u(o),ﬂ,N)) = ¢'(2au(o),ﬂN) S .
; ! OZ(N-1)dy+j

C: RN% — R% is the linear mapping with matrix:
C = (1dg,,0,...,0),

i.e. C(2) denotes the vector of R% the components of which are the d,, first com-
ponents of 2.

DEFINITION 2.1. A square matriz A is called stable if all its eigenvalues have
strictly negative real parts.

Consider the system S, on RV%, with output p € RNy,

W) (Zo) %= A@)+ bz, u®, i)~ Ko(C(3) ~y(t))m =
where 6 > 1 is a given real, Kp = AgK, Ay is the block diagonal matrix:
Ag = Block — diag(61da,,6%Ida,, ...,0" Idy,),
and K is such that the matrix A — KC is a stable matrix.

RS

EXERCISE 2.2. Prove that such a K does exist.

THEOREM 2.5. £o is an exponential UN'B output observer relative to an ar-
bitrarily large relatively compact Q@ C X (if the assumption Ag is satisfied. If not,
one has first to modify the mapping ¢ outside SOX (Q x RN%) in order that As be
satisfied. In that case, the observer system depends on Q).

Observation: again, the function k in the definition of the exponential output
observer does not depend on the compact K (in which the observer is initialized).
This will not be the case any more in the next paragraph.

2.4. The ”extended Kalman filter style” construction.
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2.4.1. Introduction and main result. No prerequisites about the Kalman filter
are required to understand this section. We remain in the deterministic setting, and
complete proofs of all results can be given in a very elementary way. Let us just
add a few ”comments”, about the”extended Kalman filter”.

The "extended Kalman filter” (for simplicity denoted by "E.K.F.”) applies the
linear time dependant version of the Kalman filter, to the linearized system along
the estimate of the trajectory. If it was along the real trajectory, then, the
procedure would be perfectly well defined. But, it has to be along the estimate
of the trajectory, since the real trajectory is unknown: the purpose of the filter is
precisely to estimate it.

Because of this, it is an easy exercise to check that the equations of the "ex-
tended Kalman filter” are not intrinsic. They depend on the coordinate system.
They were introduced by the engineers, and they perform very well in practice,
because they take the noise into account.

Our point of view in this section is like that:

1) We use special coordinates, for instance, the special coordinates of the uni-
form observability canonical form (17), in the single output control affine case, or,
the coordinates of a phase variable representation in other cases. These coordinates
are essentially uniquely defined, hence, the extended Kalman filter written in
these coordinates, becomes a well defined object,

2) it is possible to adapt the high gain construction shown in the previous
section in order that the equations of the E.K.F. in the special coordinates give the
same results as in the previous section (arbitrary exponential convergence of the
estimation error).

The main difference with the Luenberger style version, is that the correction
term ” Ky” is not constant: it is computed as a function of the information ap-
pearing at the current time ¢t. We have observed in the applications that the E.K.F.
performs very well in practice, probably for this reason.

Let us present this construction in the single-output, control-affine case: this
last requirement seems essential. We make the following assumption:

al) ¥ is globally in the normal form (17).

This is true in several situations, for example if ¥ is observable and if we make
one of the following assumptions (a2), (a3).

a2) ® = (h, Lsh, ..., L?’lh) is a global diffeomorphism,

or, weaker,

a3) in restriction to I'. the closure of an open relatively compact subset of X,
@ is a diffeomorphism.

Remember that the observability assumption implies that ® should be almost
everywhere a local diffeomorphism from X into R", and that, in the coordinates
defined by ®, the system ¥ has to be in the normal form (17). (See Theorem
4.1, Chapter 2). In the case of the assumption a3), all the functions ¢ and g; in
the normal form (17) can be extended to all of R™ so that they are smooth and
compactly supported w.r.t. all their arguments, and g; depends on (1, ..., z;) only.
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Let us recall the normal form (17):

od 2 gi(z1)
T2 z3 g2(x1,22)
& = = +u
Tp_ Zn gn—l(Ila'“’x‘n—l)
Tn »(z) 9x()

y = o
Let us assume moreover that:

ad) ¢ and g; are globally Lipschitz. In the case a3), this will be automatically
true, by what we just said.

Denote again by A the antishift matrix:

0,1,0,....,0
A= ,
| 0,1
0,0,.....,0,0
C is the linear form over R™ with matrix C = (1,0,....,0). Let us rewrite the
normal form (17) in matrix notations as follows:
(46) t = Az + b(z,u), y = Cz,

where b; the i*" component of b depends only on z; = (z1, ..., ;) and .

Let @ be a given symimetric positive definite n x n matrix. r,6 are positive
real numbers, Ag = diag(1. §, ..., (3)™1). Let b*(z, u) denote the Jacobian matrix
of b(z,u) w.r.t. x. Set Qo = 8%(Ag)~1Q(Ag)". The following equations:

47 () %i— = Az+b(z,u) = SEt)1CrHCz - y(t)),
()% = —(A+5(w)'S — SA+(50) +C'rIC - 5Qo8,
(48) n = z

define what is called the ”extended Kalman filter” for our system (46), (Qs and
r are analogous to the covariance matrices of the state noise and the output noise
in the stochastic context).

The following theorem holds:

THEOREM 2.6. Under the assumptions (al), (af), for 6 > 1, for allT > 0, the
 extended Kalman filter ({7) satisfies, for t > %-:

(49)  sl)) ~ a0l < 6" KT) I2(5) — ol )| e DD,

for some positive continuous functions k(T),w(T), u(T).

COROLLARY 2.7. Under the assumptions (al), (a4), for any open relatively
compact @ C X = R™, for any B > 0, the extended Kalman filter is an exponential
UY%E state observer, relative to Q.
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In fact, this theorem and this corollary generalize to the case of a multi output
system, having a phase variable representation. Let us assume that ¥ has the
phase variable representation yN) = ©(y,jn_1,u,1%x), and that ¢ is compactly
supported w.r.t. (y,¥n—-1), as in Section 2.3.

We consider systems on RVP, of the general form:

(50) ’Z—: = Anpz + b(z,u),
where p is an integer, Ay is the (Np, p)— antishift matrix:
0,1d,,0,...,0
AN,p= ’
0y ey 0, Id,
0, ceorerrrernn 0

and where %J’% = 0 if, for some integer k :
kp<i<(k+1)p, and j >4k + 1)p,
and all the functions b;(x,u) are compactly supported w.r.t. their 2 arguments.
Clearly, this form includes the normal form (17), but also the systems with
p outputs, that are in the phase variable representation (in this case, u in (50)
denotes not only the control, but its N first derivatives).
Let us consider the same ”extended Kalman filter” equations:
(6) & = Anpz+b(z,u) - S(t)~1C'r~1(Cz - y(t)),
(11)%2 = —(Anp + 0*(2,u))'S — S(An,p + b*(2,u))+
C'r=1C — 8QsS,
n=2z,
where C = (Id,,0, ...,0), Qs = 6°A~'QA~1, A = BlockDiag(Idy, 3Idyp, ..., (3)N~11dy).
b*(z,u) is again the Jacobian matrix of b(z,u) w.r.t. z.
As in the case of our ”Luenberger type” observers, we have:

THEOREM 2.8. Theorem 2.6 holds also for systems of the form (50).

COROLLARY 2.9. If a system X has a phase variable representation of order N,
then, for all open relatively compact subsets Q@ C X, for all B > 0, the system (51)
is an exponential UN'B output observer for B, relative to Q.

(51)

Corollary 2.9 is just a restatement of Corollary 2.7 in this new context.
The following theorem is crucial for the proof of these results.

THEOREM 2.10. If So is positive definite, then, the solution S(t) of the Riccati
equation (51, (i) is well defined and positive definite for all t > 0. For ollT > 0,
there are constants 0 < v < 8, depending on T,B, @, r only (not on Sy !) such that,
fort>T:

Yldnp < S(t) < 5Ide.

This is classical, but one has to be very careful: all original versions of state-
ments and proofs of this theorem are wrong. In particular, the following classical
inequality is false:
a2

1
R < < —-
(T ey < PUE) < Ty (= + 62),
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where «;, 3, are the bounds on the Gramm observability matrix, and as, 8, are
the bounds on the Gramm controllability matrix.

2.4.2. The continuous-discrete version of the High-gain extended Kalman filter.
This is a more realistic version of the previous high-gain observer: Observations are
sampled.

As the continuous high gain extended Kalman filter, it applies to systems that
are in the normal form (50), in restriction to compact sets. In particular, it applies
to all systems that have a phase variable representation for sufficiently smooth
controls, and to control affine systems that have a uniform canonical flag, for general
L controls.

For the statement of our result, let us make exactly the same assumptions as
in the previous section 2.4.1. For simplicity in exposition, let us consider the single
output case only.

Let us chose a time step 6, small enough. The equations of the continuous-
discrete version X, 4. of our ”extended Kalman filter” are, for t € [(k — 1)ét, k6t|:
(Prediction step:)

(52) (2) %—i— = Az +b(z,u),

(z’z‘)%’? = (A4 (2,w)'S — S(A+b*(2,1)) — SQoS,

and at time két :
(innovation step:)

(83) (1) 2e(+) = 21(=) = Sk(+) 71O (Car(=) — wr),
(#) Se(+) = Sk(=)+C'riCét.
The assumptions being the same as for Theorem 2.6, Corollary 2.7, we have:

THEOREM 2.11. For all T > 0, there are two positive constants 6y, p, such
that, for all 6t small enough, 8 > 8y, 8 6t < u, one has, for allt > T :

- T
l2(6) — a(@)l] < k8"e= 00N D|[2(2) ()],
for some positive constants B\ w.

This is the continuous-discrete analog of Formula (49). Hence it is possible to
state the continuous-discrete analogs of the other corollaries in the previous section.
We leave this to the reader.
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CHAPTER 6

Dynamic Output Stabilization.

Using the results of the previous chapters, we can derive a constructive method
to solve the following problem. We are given a system X:

® { izfew

u € U = I, where I is a closed interval of R (possibly unbounded). This system
is assumed to have an equilibrium point x¢ which is asymptotically stabilizable by
smooth, U—valued state feedback, that is: there is a smooth function «(z), such
that z¢ is an asymptotically stable equilibrium of the vector field & = f(z, a(z)).

The problem is the following: is it possible to stabilize asymptotically by using
not the state information (as does the state feedback a(z)), but by using only the
output information. As usual in this type of problem, we avoid to differentiate the
outputs (since, from the physical point of view, we would have to differentiate the
noise, or the measurement errors, which is not reasonable).

We will be interested only by the behaviour of ¥ within the basin of attraction
of the equilibrium xg, hence, we can restrict X to this basin of attraction and
assume that X = R™ (see [38]).

The basic idea, coming from the linear theory, is to construct a state observer,
and to control the system using the feedback « evaluated on the estimate Z of the
state.

1) We will show that this is possible for the systems of Chapter 2, for which a
uniform canonical flag exists, and we can construct an exponential state observer,
by the previous chapter.

2) In the general case where we have a phase variable representation only, i.e.
for systems of Chapters 3, 4, we will show that this is possible by using exponential
output observers, but the construction is a bit more sophisticated.

In fact, we will not be able to cover (as in the linear case) the whole original
basin of attraction: we will obtain asymptotic stability within arbitrarily large
compact sets contained in this basin of attraction, only.

At the end of the chapter, we will say a few words about a situation in which
the results can be improved from a practical point of view: our theorems depend
very essentially on the high-gain construction. Moreover, the output stabilization is
"twice high gain” (in a sense that will be clear later on: first, we need high gain for
the observer to estimate exponentially, second, this exponential rate of the observer
has to be very large). It is important to understand that, in some situations that
are very common in practice, only exponential convergence of the estimation of the
state is required, but the exponential rate can be small.

xlv
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1. The case of a uniform canonical flag.

We will make the assumptions of Section 2.2 of the previous chapter 5: X = R",
and our system is globally in the normal form (15). We know already that we can
modify the normal form outside any open ball B® for the Lipschitz conditions
(A1), (A2) of this chapter 5 to be satisfied globally over X. In the proof of the main
theorem 1.1 below, the semi-trajectories of ¥ undér consideration will not leave a
compact subset, denoted below by D,,;. This justifies making these assumptions.

We will consider first the ”Luenberger type” observer. The same task can be
performed by the ”Kalman type” observer, but it applies to the control affine case
only, and the proof is more complicated, as we shall see.

1.1. Semi global asymptotic stabilizability. The most convenient notion
to be handled in this chapter is not "global asymptotic stabilizability”, but the
weaker ”semi-global asymptotic stabilizability”, that we define immediately.

Notation: In order to shorten certain statements, let us say that a vector field
on X is "asymptotically stable at £ € X within a compact set ' C X” if
Zg is an asymptotically stable equilibrium point and the basin of attraction of zg
contains I.

DEFINITION 1.1. We say that the (unobserved) system ¥ on X, £ = f(z,u)
is semi-globally asymptotically stabilizable at (xq,uo) if, for each compact T C X,
there is a smooth feedback ar : X — Int(U), ar(zo) = uo, such that the vector field
on X:

(54) & = f(z,ar(z)),
s asymptotically stable at x¢ within T

We make the assumption that X = R", but it may not be clear that the state
space X of a semi-globally asymptotically stabilizable ¥ should be R™. But in fact,
this is true: by definition, any compact subset I' C X is contained in the basin
of attraction of z¢ for a certain smooth vector field. By the results of [38], such a
basin of attraction is diffeomorphic to R™.

Then, since we assumed X paracompact, the Brown-Stallings theorem gives
the result.

Comment: It does not follow immediately from [38] that the basin of attrac-
tion of the origin, for an asymptotically stable vector field, is diffeomorphic to R™,
since it is assumed in the paper that the state space is R™. But, one can modify
slightly the arguments to make them work for a general (paracompact) manifold.

1.2. Stabilization with the Luenberger-type observer. We assume (repara-
metrization) that z = 0, u = 0 is the equilibrium point under consideration, and
the smooth stabilizing feedbacks are ar(z), i.e. ar(0) =0, and z =0 is an asymp-
totically stable (within I') equilibrium point of the vector field:

(55) z = f(z, ar(z)).

Now T is fixed, together with the corresponding ar. The basin of attraction of
zero is Br, I C Br.
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We have to study the following system on X x X :

z= f(x)&(z)),
(56) ¢ = f(2,8(2)) — Ko(h(z,8(2)) — ),
y = h(z,&(2)),

where Kj is as in Theorem 2.2 of Chapter 5. The,purpose is to show that, if 8 is
large enough, (0, 0) is an asymptotically stable equilibrium of (56), and the basin of
attraction of (0, 0) can be made arbitrarily large in Br x X, by increasing 8. Here, &
is a certain other smooth feedback, depending on the compact I', that we construct
now:

Using the inverse Lyapunov theorems, we can find a smooth, proper strict
Lyapunov function V' : Br — R, for the vector field (55), V(0) = 0. This means
that, along the trajectories of %, u‘;tﬂ < 0 (except for z = 0). The function V
reaches its maximum m over I'. Let us consider Dy, = {z|V(z) < m + 1}, and
let us replace ar by & such that:

1) & = ar on Dm-i-l’

2) & is smooth, compactly supported, with values in Int(U) (we have already
assumed above that, by translation in the U space, 0 € Int(U)).

Let us also set B = sup,¢ g |[@(z)||. The following theorem holds:

THEOREM 1.1. Given arbitrary compact sets U',TV C X, if 0 is large enough,
then, (56) is asymptotically stable at the origin within T’ x IV,

Comment: This theorem means that, provided that we know a compact set
I" where the system starts, and provided that we modify the stabilizing feedback
at infinity, we can just plug the estimate of the state given by our ”state observer”
into the feedback, and the resulting system is asymptotically stable at the origin.
Moreover, the semi trajectories starting from I' x I tend to the origin. That
is, we can asymptotically stabilize at the origin via the observer, using
observations only. This can be done within arbitrarily large compact sets.

As it appears in the proof, it is very important that the observer is exponential,
with arbitrary exponential decay: we need the exponential decay for local asymp-
totic stabilization, but we also need an arbitrarily large exponential in order to
estimate the state very quickly.

1.3. Stabilization with the high-gain E.K.F. Assume that we are in the
control affine case. Then, we could try to use the "high gain extended Kalman
filter” exactly in the same way (see Theorem 2.6, Corollary 2.7, Chapter 5). There
are several additional difficulties, but the same result holds:

THEOREM 1.2. Replacing the ”Luenberger High-gain observer” by the ”High-
gain extended Kalman filter”, Theorem 1.1 is still valid, i.e. : for any triple of
compact subsets T,T",T", T x I x I C R™ x R"™ x Sp(+), for 8 large enough, the
”High gain extended Kalman filter” coupled with the system ¥ to which the feedback
control &(z) is applied , is asymptotically stable within T x IV x I at (0,0, Sxo).

EXERCISE 1.1. Give the proof of Theorem 1.2.

We can also use the continuous-discrete version of the high gain extended
Kalman filter:
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EXERCISE 1.2. State and prove a version of Theorem 1.2 using the continuous-
discrete version of the high-gain EKF.

2. The general case of a phase variable representation.

2.1. Preliminaries. We will now deal with the case of Chapters 3, 4 , where
the system has a phase variable representation of & certain order. This happens
generically if dy > d,, (at least for bounded and sufficiently differentiable controls,
but it will be the case here).

The systems of the previous paragraph have a phase variable representation, as
we have noticed already. So that, one could ask: why the considerations in the pre-
vious paragraph? The answer is that the procedure for stabilizing (asymptotically)
via output information is much less complicated in that case. In particular,
now, we will have to deal with a certain number of successive derivatives of the
inputs, because we have only UMN'Z output observers. In the previous paragraph,
we had a U%E state observer, hence, these problems did not appear.

We will obtain the result with the high-gain Luenberger output observer. Gen-
eralizations to the case of the high-gain extended Kalman filters (either continuous-
continuous or continuous-discrete) can be done in the same way as in the proof of
Theorem 1.2 above. We will leave these generalizations as exercises.

2.1.1. Rings of C*® functions. Recall that, in Chapter 4, we introduced several
rings of (germs of) analytic functions: §RN,§fEN,§fEN,§fE. Recall that Ry was just
the pull back ring: Ry = (S<I> )* (Ozo) where 25 = (a:o,u((,o) ,Uon—1)- We will
consider the C°° analogs R, R, R of the rings éRN, §RN,§R ie.

§RN(.‘L‘0 ‘ll.( ) uN 1) = {GOSCD },

where G varies over the germs of C* functions at the point S®% (zo,u®,in-1),
and

5RN($0, © yUN - 1)"‘{GOS‘I)NU,N 1}

where G varies over the germs of C* functions at the point S®F ;. _ (zo,u(®).
it(a:o, u(o)), or simply §fE, if there is no ambiguity, will be the ring of germs of
functions of the form
G(U, 12 ER (pp)
at the point (zo,u(?)), where G is C* and all the functions ¢; are of the form:

= L%1(8;,)" L (8;,)..... L} (8;,)° h.

(Again, 85 = (2) ).
Recall that, in the analytic case, the condition ACP(N) is equivalent to R =

Ry C Ry, by Theorem 4.1, Chapter 4. Of course, if ACP(N) holds, then, a
fortiori,

(57) f]} = g_?N C §)~?N :
the above generators u, @; of R belong to Ry C §RN, hence C* functions of them

belong to R . Therefore RcC SRN Using the same reasoning, R c Ry C R
Also, by definition, Ry C R.
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Moreover, the analyticity assumption plays no role in this result, so that, it is
also true for a C'*° system ¥ that ACP(N) is equivalent to the condition (57).

2.1.2. Assumptions. We will start with the most general situation, that is, we
assume that our system ¥ satisfies the assumptions of Theorem 5.2, Chapter 4, i.e.:

(H1)-X satisfies ACP(N) at each point,

(H2)-Z is differentially observable of order N. »

In particular, if 3 is strongly differentially observable of order N (the ”generic”
situation of Chapter 3), these assumptions are satisfied.

For the same reasons as above, we assume also that X = R™.

In this chapter, ¥ is semi globally asymptotically stabilizable at (xg =0, up =
0). We will have to make an additional assumption (Hj), relative to the stabilizing
feedbacks ar :

(H3)- The germs of the ar ;(.) at z1, j = 1,....,d,,, belong to Ry (z1,u@, dy_1),
for all z; € X = R", for all (u(®,iiy_;) € U x RN~V Equivalently, these germs
belong to R, by virtue of (57).

2.1.3. Comments. 1) This assumption (Hs), (together with (H,), (Hz)), is au-
tomatically satisfied if T is strongly differentially observable of order N :
in that case, the ring Ry is just the ring of germs of smooth functions at (x;, u(?).

EXERCISE 2.1. Prove this last statement.

2) We have defined the C™ analogs R, R, R of our rings Ry, Ry, R for the
following reasons: first, in this section, we want to deal with C*® systems (recall
that the results of Chapter 4 are valid also in the C'* case). Second, it could
happen that, even if ¥ is analytic, and asymptotically stabilizable, then it is
asymptotically stabilizable by a feedback which is only C*°.

3) At this point, it is important to say a few words about U. In the previous
section, we assumed that U = I9 where I is a closed interval of R. Assume that
I is not equal to R. Then, we can find a diffeomorphism ¥ : Int(I}) — R. The
rings above are intrinsic objects, that do not depend on coordinates on U. So that
ACP(N) does not depend on a change of variable over . On the same way, the
assumption (Hz) is intrinsic. Also, the fact that the germ of ar,; belongs to R at
each point is intrinsic.

Therefore, since our stabilizing feedbacks ar take their values in the interior of
U, we see that we can replace v by v, v; = ¥(u;) and assume that I = R.
This is what we will do in the remainder of this section.

2.1.4. A crucial lemma. In order to state our main theorem in this section, we
need a preliminary result:

LEMMA 2.1. Assume that T is given, and that (H;), (H3) are satisfied. Then,
(H1), (H3) are also satisfied for £7, the rth dynamical extension of .

The definition of the rt* dynamical extension of ¥ is given in Chapter 1, Defi-
nition 5.1.

COROLLARY 2.2. If T satisfies (H,),(H3), then TN is stabilizable within any
arbitrary compact set T’ with a feedback ar that belongs to Rn(X) (the germs of
which belong to Rn(X)).
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2.2, Output stabilization again. First, we will consider the Luenberger
version of the output observer.

We set M = N(dy,+d,), where N is such that ¥ satisfies the condition ACP(N)
and is differentially observable of order N. RM = RN(dyt+d.),

We chose I' C X, IV ¢ RV4v, I c RN, three arbitrary compact sets. We
denote, (as in the previous chapters) by A, the (mp,p) block-antishift matrix,
ie. App: R™ — R™P,

Also, Crnp : R™ — RP and by, p : RP — R™P denote the matrices:

Comp = (Idy,0,......,0),

bm’p

1d,

We take a feedback o, ., given by Corollary 2.2, that stabilizes the N**
dynamical extension &V of £ within " x I'”. Recall that £V is given by:
z=f (.’L‘ ) u):
(58) { w=ANd4,w+bNna,un.
with the notation w = (u(®,@y_1).
Then, the feedback system:
: ;= (0)

@ = AN,d,w + bN,d, 0y p (2. 0),

is asymptotically stable at (x¢, 0) within I'xI™". Let B denote the basin of attraction
of (zq,0) for (59).

Let V be a proper Lyapunov function for this vector field on B. The function V
has a maximum m over I" x I'”'. Setting Dy = {s|V(s) < k}, k 2 0, let us consider
Dy Dppya. Then, I" x I'" c D, C Int(Dm+1)

Using the C*° version of Corollary 5.3, Chapter 4, we can find a C* function
a defined on all of RM such that:

(60) o o (z, u®, iy 1) = (SOF (z, vV, in-1)),
for all (z,u(9,iy_1) € Dm+1, and moreover, o can be taken compactly supported.
' Hence, « reaches its maximum over RM. So do u(?, v, 1 <i < N -1 over
D,yt1. Let B be the maximum of these maxigna. Let T" be the image of D,,41 by
the projection Iy : X x RN9« — X The set I is compact.
We consider the golf\, given by Theorem 5.2, Chapter 4, applied to £ and T, i.e.:
y(AV) = SOyV(y(0)1 gN—h u(O), ﬂ.\')’

forall z €T, all u®, diy.
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We can "now couple” the feedback o, ., with the UN:B output observer in
its Luenberger form (Formula (45), Section 2.3, Chapter 5).
Let us write the equation of the full ”coupled” system over X x RM :

6) ()& = f(z,u?)
(zz) w = AN,duw + bN,dua(z,w), .
(66) 2 = (Ang, — KoCn,a,)z + Koh(z,u®) + by 4,0 (2,0, a(z,w)).
Our result will be the following, as expected:

THEOREM 2.3. Assumptions (H,), (Hz), (H3) are made. For any " C RN%,

for 8 large enough, the system (61) is asymptotically stable within I' x I x I at
(anOa 0)

This theorem means that, in all the cases we have dealt with in the
previous chapters, we can stabilize asymptotically, using output infor-
mations only, within arbitrarily large compact sets, as soon as we can
stabilize asymptotically within compact sets by smooth state feedback.

In particular, if the system X is strongly differentially observable
of some order N, which is generic if d, > d,, and if ¥ is smooth state
feedback stabilizable, this theorem applies.

EXERCISE 2.2. Consider the system T of Exercise 4.1, Chapter 4:
X=R?,U=R,y=h(z)=m,
1.21 = IL‘g - i,
Iy = :L'g 4 :c%u
1. Show that the feedback u.(z) = —r (x2)3, r > 0, stabilizes asymptotically &
at (0,0). Show that the basin of attraction is b, = {z| 2 < r}.

2. Show that the previous theorem applies, but £ is not strongly differen-
tially observable, of any order.

THEOREM 2.4. The statement of Theorem 2.3 also holds when we replace the

Luenberger version of the output observer by ils extended Kalman filter version
(Corollary 2.9, Chapter 5).

EXERCISE 2.3. Give a proof of Theorem 2.4.

EXERCISE 2.4. State and prove a version of Theorem 2.4, using the high-gain
extended Kalman filter in its continuous-discrete form (Theorem 2.11, Chapter 5).

3. Complements:

3.1. Systems with positively invariant compact state spaces. Thisis a
situation which seems to be very common in practice. In particular, it will appear
in the first application of the next chapter. We make the additional assumption:

(Hy) : (i) The system X is such that the state space isnot X = R™, but a certain
relatively compact open subset 2 C R™. We assume that ¥ is also defined and
smooth on the boundary 9%, and the closure CIl(f) is positively invariant for the
dynamics of ¥ whatever the control u(.), with values in U,

(#%) the state feedback is asymptotically stabilizing within CI(2).

Observation: (Hy, (7)) implies that Q also is positively invariant for the dy-
namics of . ‘
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PROPOSITION 3.1. In the case where the assumption (Hy) holds, all the the-
orems in the two previous sections in this chapter are true with a refinement: as
soon as the observers are exponential , with any rate of decay of the error, the
Jull system controller+observer is asymptotically stable within C1(£2) x X , where X
is the state space of the observer.

EXERCISE 3.1. Give details of the previous proof, specially in the case of the
high gain extended Kalman filter.



CHAPTER 7

Something Between the HGEKF and the EKF.

1. Introduction, systems under consideration

1.1. Systems under consideration. We consider nonlinear systems of the
following form (62), on R™. The control space U, is a closed subset of R%. Only for
simplicity of the exposition of the proof of the main result, the observation
is taken to be single-valued: it is a u— dependant linear form on R”.

dx

(62) - = A(u)z '+ b(z, u),

y = C(u)z.
A(u) , C(u) are matrices:
C(u) = (a1(u),0,....,0),

0, as(u),0,....,0
0,0, a3(u),0, ,0
A(u)
0, ,0,a,(u)
Oy eerveeerreeeeeen 0

where a;{.), i = 1,...,n, are positive smooth functions, bounded from above
and from below:

0<am Sai(u) SO,M.

Also, b(z,u)is a smooth, u—dependant vector field, depending triangularly on
z and compactly supported:

a 1o} Is}
b= b1($1,u)a—xl + bz(xl,ﬂ«"z,u)a—xz + oo+ b (21, --~;xmu)$_'

This assumption corresponds in fact to a special case of an (observable and)
uniformly infinitesimally observable system. For instance, observable control affine
systems of the form (17), or systems with a phase variable representation (46), are
‘special subcases of this normal form. The assumption 0 < an,, < a;(u) < ap is
the analog of assumption (42) in the general ” uniformly infinitesimally observable”
case.

The reason for this form in this chapter is the practical application we present
below (a distillation column, Section 3, see also the notes 1 and 2 below). It is
a multi output generalisation of this normal form (62). All the results we prove
here generalize easily to this multi-output case. We leave this generalization to the
reader.

liii
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Also, we leave to the reader the generalization to the general case of systems
of the form (50), which is also straightforward: multi-output systems with a phase
variable representation.

With the same justification as in Chapter 5, the compact support assumption
for b(z, u) can be made, eventually modifying b outside an arbitrarily large compact
set. .

‘We stress again that here, the single output assumption can be removed
everywhere.

1.2. Presentation of the results. Qur purpose herein is to construct ob-
servers, for the observable systems (62) described above.

In fact, for these systems, several types of nonlinear observers can be con-
structed. We will focus on two types of construction that both turn around the
?extended Kalman filter”, in either its deterministic or its stochastic form:

1. First construction: The Extended Kalman Filter itself,

2. Second construction: The High Gain Extended Kalman Filter,

3. Our construction in this chapter: a mixing of 1. and 2.

Let us just give some details now, to explain where we want to go.

1. The extended Kalman Filter.

It is known that, under observability conditions, the Extended Kalman
filter, has good ("local”) properties:

(i) In its deterministic form, it is a local observer in the following sense. For
sufficiently small initial error on the estimate of the state, the estimation error
converges exponentially to zero. The prototype of these results can be found in [3]
for instance.

For our systems (62), with the assumptions of Section 1, it is not hard to check
that they are uniformly infinitesimally observable, and hence, the linearized systems
along any trajectory are uniformly observable, (in the classical sense of the linear
theory, and with uniform bounds on the Gramm observability matrices). Therefore,
this result applies.

(ii) In its stochastic form, except for the linear case, where the EKF is the
”optimal” filter, there is no general theoretical result that applies. Even for good
observable systems in our normal form (62), for small noise, small initial variance
and dimension 1: there is a counterexample of such a system, in [30] for instance,
where the EKF doesn’t work at all.

Nevertheless, despite the lack of these theoretical justifications, people use it in
practice for nonlinear filtering and it may give very good results (even for systems
that have much weaker observability properties than those considered here).

In the application of our techniques, presented in section 3 below, we will show
a (family of) practical examples which is very interesting because, it seems that,
the results of [30] on the EKF for small noise, apply in general, and that the ”small
parameter” has a physical interpretation.

We will not say more about that because this is beyond the scope of this
course. But it is one more justification of the use of our method developed here to
this application.

2. The High Gain Extended Kalman Filter.
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As it was explained in Chapter 5, we consider the equations of the extended
Kalman filter, in which the ”covariance matrix Q” depends on a real parameter 8,
8 > 1, in the following way:

Qi =0"71Q};.

For § =1, it is exactly the EKF. For 8 large enough, it is what we called here
the ”"High gain extended Kalman filter”. :

(i) In the deterministic setting, as we have shown, the estimation error has
arbitrarily large exponential decay (depending on #). This holds whatever
the initial error is, (that is, this is a global result).

(ii) In the stochastic setting, it is a nonlinear filter with ”bounded variance”
(the variance is bounded in 6™, which is not that good, but it is bounded anyway).
([8], for instance).

3. What we want to do in this chapter.

The idea in this paper is the very simple following one: we give the parameter
0 in the HGEKF an exponential decay from 8y large, to 1.

What is expected, (and what happens) is the following:

(i) The beginning of the transient of the estimation error is the one of the high
gain extended Kalman observer: there is an exponential decay that can be made
arbitrarily large.

(i) There is a global exponential decay of the estimation error (but, of course,
it cannot be controlled).

(iif) The asymptotic behavior is the one of the standard ”extended Kalman
filter”, (that people like in practice, as stated above).

Our main result, Theorem 2.1 in Section 2 proves (i) and (ii). The proof is
more or less an improvement of the proof of convergence of the high gain Kalman
observer, chapter 5. (In particular, it contains the proof of the results of chapter
5).

Of course, this construction has a terminal defect: it is time dependant. In
deterministic terms, it will work for large initial estimation errors, but not for big
”jumps” of the state at intermediate times. In the section 2.3, we propose a very
simple practical way to make the observer "recursive”.

In the section 3, we show the application of this procedure to a binary distil-
lation column in which the ”quality of the feed” is unknown, an subject to large
changes. It was already noticed in the book [15] that this application is a nontrivial
nice application of the observability theory, and of high gain observers.

Here, it is even much more convincing: when the feed changes, (a big ”state
jump”), the behavior of the observer is the one of a high-gain observer: recovering
arbitrarily fast the quality of the feed, and when the feed does not move, the
asymptotic behavior of the observer is the one of the extended Kalman filter, almost
optimal with respect to small noise in that case (but we do not prove anything about
this optimality in this paper).

For first applications of "high gain observers” to distillation columns, see [36],
[37].

Note 1. The reasons for which we make the matrix A(u) depend on u in the
normal form (62) may look not clear, because, in all the cases described above, it
doesn’t.
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In fact, the only reason to consider this dependance is the following: the formal
computations we do in the proof of our main result, work for that type of systems.
Moreover, in the application we describe in Section 3, the matrix A actually does
depend on u.

Note 2. In that case were a; depends on u, the following should also be noticed:
even the high gain version of the extended Kalman filter is much better in practice
than the "high gain Luenberger observer” mentioned above: the high gain observers
both kill the nonlinearities contained in the vector field b. But the extended Kalman
filter takes into account the variations of u, through the matrix A(u). The standard
high gain observers in Luenberger form don’t do this. This is the case in the
application, Section 3 below.

2. Statement and proof of the theoretical result

The observer we propose, is based upon the High gain extended Kalman filter
of Chapter 5.

2.1. The observer and the statement of the theorem. The equation of
the observer is:

(2) ﬁ; = A(u)z + b(z,u) — S(t)"1C'r™1(Cz - y(t)),
(1)%2 = —(A(u) + b*(2,u))'S — S(A(u) + b*(2z, )+
C'r~1C — 8QsS,

%g = )‘(1 - 6),

where C' = (a1(1),0,...,0), Qo = 8°A™1QA™Y, A = diag(1,},...,(3)""1). Here,
b*(z,u) denotes the Jacobian matrix of b(z,u) w.r.t. 2z, and r, X are positive scalars.
@ is a symmetric positive definite matrix.

(63)

Comments:

1. @,r, in the stochastic context, are the covariances of the state noise and
output noise respectively.

2.Ifx=0and y = 1, or if A > 0, but ¢ is large, this is exactly the (deterministic
version of) the extended Kalman filter.

3. If 6y is large, and if 7 < T, then, this equation is almost the equation of
the high gain extended Kalman filter with gain 8(T). Hence, for 7 < T, setting
e(7) = 2(1) — z(r), (¢ is the estimation error), we can expect the following, for
o large enough in front of T

(64) lle(r)I? < 6(r)2" =D H(c)e™ @0T=aa)T|1e(0) 2.

Here, a3, as are positive constants, H(c) is a decreasing positive function of ¢,
where S(0) > ¢ Id. Also, 8(T) = 1+ (6o — 1)e™*T.

In particular, this implies that the error £(¢) can be made arbitrarily small,
in arbitrarily short time, increasing 6y. For 6 constant, this is the behavior of
the "high gain extended Kalman filter. We will prove it below for 8 nonconstant.

Our main result herein will be the following:

THEOREM 2.1. 1. For all0 < A < Xg, (Mo = 4—(03"5;—), where Q@ > QnId and
a comes from Lemma 2.2 below), for all 8 large enough, depending on A, for all
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So > ¢ Id, for all K C R™, K a compact subset, for all eg = z9 — x9, ¢ € K, the
following estimation holds, for all T > 0:

%) lle(r)II* < R(A, e)e™ 7lleol *A(6o, 7, 1),
A(6o, 7, ), = 002(n—1)+%6_§00(1—e_’\7),

where a > 0. R(\, ¢) is a decreasing function of c.

2. Moreover the short term estimate (64) holds for all T > 0, 7 < T, for all
8y > 0, Oy = e’\T(a%a —1) + 1, where L'is the sup of the partial derivatives of b
w.t.t. T.

Comments.

a. Note that the function A(fg, 7, ) is a decreasing function of 7, and that, for
all 7 >0, A > 0, A(6g, T,A) can be made arbitrarily small, increasing ;.

b. This means that, provided that ) is smaller than a certain constant \g, and
6y is large in front of ), the estimation error goes exponentially to zero, and can be
made arbitrarily small in arbitrary short time.

c. The asymptotic behavior of the observer is the one of the extended Kalman
filter,

d. The "short term behavior” is the one of the "high gain extended Kalman
filter”.

2.2. Proof of Theorem 2.1.
2.2.1. Preparation for the proof. Let us recall that:

(66) 8(t) =1+ (6o — 1)e™",
and let us set F = diag(0,1,2,...,n —1). Then:
d(3) __M1-9)

(67) dT - 02 ]
dA AM1-9)
dr FA g
dA—1! _1AM1-96)
dr FA 6

The equations under consideration are:

(1) & = A(we +b(zw) — bz, ) - SEICrICe,
68) (i) = —(A(u) + b*(2,w))'S — S(A(w) + b*(z,u)) + C'r=1C — 5Q4,
(iit) %€ = X1-9).
We make the following changes of variables, with P = §~!:

(69) F=Ari=Azie=2—2,8=0¢ S =0A7ISATY,

P=§1= %APA,B(z) = Ab(A™12),b%(2) = Ab* (A~12)AL,

Remark : It should be noted that the Lipschitz constant of b is the same
as the one of b, and the maximum of ||b*|| is the same as the one of ||b*|| (recall that
the component b; of b is compactly supported with respect to all of its arguments
(z1,..., i, u), and that > 1).
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An obvious computation gives:

(70) _d_(g)=e[(,4_ Pem-10)z +1(5(z) 5 ))_,\(1 ) sy
—(5)—0[ (A+ b*() (Id+F)A(1 )),S
o -5 g - g + P 9 oo o
dag
d—T=/\(1—0).

Important comment. At this place, we used the observability properties:
the normal form (62) is crucial in the computation above.

Now, we can make a time rescaling. We set:
T
=0(1)dt, or t = / 6(v)dv,
0

&(r) = &(t), 8(r) = 5(t), P(r) = P(t), 6(r) = 8(2),
to get the final set of equations:

(1) ) 2@ =((A-PCr0R+ 3 bE) - b@) - 29 - ) e,

i) 2(8) =4+ 35(2) - (“+F>( Oys
o THf= Id ( ) t..—1
—S(A+§b(z) (5 +F) =) + C'riC - 5Q3),
(zn) d0 = /\(159).

First, there are some classical results allowing to bound the solutions of the
Ricatti equation (72), (ii), for §p > 1, and A < 1. To apply these results, one has
to notice that the linear time dependant systems:

= (A(u(®)) + 3 b*( z) = ( F)
y = Clu(®) )w(t),

are uniformly observable (in the sense of linear systems), for all bounded measurable
functions a;(u(t)), b7 ;(2(t)),0(t), with ay > a; > a > 0. Precisely, we have:

/\(1 9)

)2(8),

LEMMA 2.2. If the functions a;(u(t)), |bf J(z(t))l 8(t), are all smaller than
ap > 0, and if a;(u(t)) > am > 0, (which is the case by our assumptions), if
0< A< 1, and 1 < 8(t) then, the solution of the Ricatti equation 72, (ii), satisfies
the following inequality,

aId< S(t) < B Id,

for oll Ty > 0, for all t > Ty, where o and B depend on Ty, am,an (but do not
depend onc, So > c Id !)
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Straightforward computations with (72) give:
(1) 2 (eYS0E0) < ~Qm #5()% + 2250 (H2) — b(2) - (2)9))
+ Llé;i)é'g(t)é,

»

where Q > Q.. Id.
In particular, if ¢ > Tp, with a given by Lemma 2.2, this gives:

(74) %(é(t)’ﬁ(t)é(t)) < —(Qma+ ’\(99; 1)) E'S(t)e +

25’5’(:&)(%(5(2) —§(@) - b*(2)2)).

Using this equation, and again Lemma 2.2, we will now prove the theorem.

2.2.2. Proof of the short term estimation 64. This proof is in two steps. We
will first prove an estimation for T > t > T > 0, and after for ¢ < Ty. Gluing them
together, we get the short term estimation (64).

Step 1, T >t > T.

Straightforward computations using (74), Lemma 2.2 and the remark in Section
2.2.1 give:

(75) Bt S()E(t) < E(To) S(To)E(To)e™@me=atm) 6= To)

Therefore £(t)'S(t)e(t) < ﬂl|E(T0)||2e_(Q"‘°‘_5%)(t_T°), and finally:
(76) T>t>Tp:

= :6 - ma—-L =T0) (=
[E@I? < Ze™@mamam T e ) 2.

Step 2,t < Tp.
We need a more straightforward estimation here. A very rough one is obtained
just using Gronwall’s identity. For certain s,k > 0, we have:

(77) PO < (PO +k)e™.

We assume that S(0) = Sp lies in the compact set: ¢ Id < Sp < d Id. As a
consequence, P(0) < 1Id.

By the equation (72), we have, for t < Tp : £(8) = (A— PC'r~1C)e + 3 (b(2) -
b(z)) — ﬁ%}ezFé, hence:

EAI < IO +/0 lle(m)IP@ILAl + 20121 P+ %)dﬂ

and by 77, we know that HP®)| < @,(To) + ||Pollpo(To). Then, since Py =
3 APRA(0), 60 > 1, |IP@)]] < ¢1(To) + | Polle2(To) < ¢1(To) + ¢2(To) = ¢(To, ©)-

lEON® < [EOI® + D(To,C)/O llE()lPdr,

and 5(Tp, ¢) is a positive decreasing function of c.
Gronwall’s inequality implies that:

llE®)II? < ¥(To, )lIEO)I?,
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with: (T, c) = e”To, U(Ty, ¢) is also a decreasing function of c.

In particular, ||£(T0)]|%> < ¥(Tb, c)||E(0)|[2. Plugging this in (76), we get:

(78) @I < —g—e‘(QmQ‘ﬁ%)‘t‘T°’m(To,c)na(om?, for T >t > To.
Hence, for T >t > Tp, ,

(19) I < Zem@nemathy)teanTog(my, o) jz(0) 2.
Going back to ¢ < Tp, we have:

EOIP < UTo, NEOI? < 2T, )2 120

< Be@neityt ety (m, g0,
Hence, in all cases (either t < Tp or Tp < t), we have:
(80) IE@IE < H(To, c)er @3 20)||2, 0< t < T,

with H(Tp,c) = LU(Ty,c)e@m*To, a decreasing function of c. Therefore, going
back to the initial time 7, since t = f(; f(v)dv, and t < T, then, 7 < 7(T), and
t > 0(r(T))r:

B < H(Tp,c)e=@medrO=LI()|2,7(T) 2 7 2
if C = Qmad(r(T)) — L' > 0, which is implied by

L
ATy~ _
(81) 6o >e (Q > 1) +1,

m

indeed, if (81) holds, since 8(7(T)) = 8(T) = 1 + (6o — 1)e~>7(T) > Q_€:?
Since ¢ = A~ and 6 > 1, |[e(7)|12 < ||[(A~)|2||E(1)||? < 02(""1)|[§(T)H2, we
get,forall 79 >72>0:
lle()II? < 62@=D(1)H(To, c)e™@medro)=LI7)|¢(0)| 2,

’

Qma

for 6y > e*™(

—1)+1,
14
Qma'

H(Tp, ) is a decreasing function of c.

or equivalently, 6(q) >

This is the short term estimation (64). If A = 0, it gives the standard high gain
estimation.

2.2.3. proof of the long term estimation. Going back to (74), and using Lemma
4.2, in Section 4, we get, for all \, 0 < A < 1, t > Ty,

2 @0'8(02(0) < ks E3(0)e + R OIS 1P,

where k; = Qma, ks is a positive constant.
Lemma 2.2, applied to the Riccati equation in (72), implies:

() SEOSO0) <k #3002+ k17 [EE/SEEOE,

for another positive constant k3.
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Now, we apply Lemma 4.1, in Section 4, to get that, for ¢t > T > Tg:
(83) E(t)S(t)E(t) < 4e~ M (-TIg(T)' 5(T)e(T),

as soon as

() srYSRpryeD < Sk

Setting, ¢ = &(T)'S(T)&(T)8(T)%™=2), let us use the short term estimation
(80). It gives g < BH(To, c)e™ 77| 2(0)] |PB(T)2"2),

0 < BH (T, e @3 5(0) 65",

If:
(84) 6o > AT( —-1)+1,
Qm
thein -Qg',— 0(T) > %’f,‘—"- Indeed, in that case, 8(T) > 6(T) =1+ (§p — 1)e T >
2L
Qma

Then, let us chose T = T* = Log(—-£2=1- ),\ > Tp (in order to get the equality in
Qma

(84)). This is possible, since we can assume from the very beginning that L -1>0
(we can increase L’ for this) and—z—g,—— > eTo > 2o (we can take 6 large enough)
L

ma

2L’

" Qmo | _ -
4 < BH(To, o)(3p2-) B [l2() P65

< BH(Tp, C)IIE(O)||2(2(Q2—i';¥ - 1))25‘iﬂ 0,2n-2)- 92

Then, if:
Qma
4(n-2)’
for 6, large enough, for ||eo|| bounded, g is arbitrarily small.
This means that the property () above is met at T = T*(6g, ), as soon as A

satisfies (85) and 8 is large enough.
In that case, (83) above holds, for ¢t > T* (> Tp) :
£(t)'S(t)&(t) < 4T )g(T*) §(T*)&(T™),
- 1 by *\/ O %\ o= *
< de klt(gLT:—l)jLE(T ) S(T*)&(T).

(85) A<

This implies, with (80):

. B - -

IE@I* < 4=e “t(, > )“*‘IIE(T I,
Qma

<45 H(To,c)eLT‘ -’“‘(———w .

Qma 1

1 .« +L 2
£
22— " el

)3 {leol 2,

B ok
<4aH(T c)e llt( 2L,

Qma

fort > T* (> To).
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For ¢t < T, using (80), and the fact that k; = Qo :
IEOI® < H(To, c)e™*1%e"|eol 2,

< H(To, )™ 4E (0 =) 55 e,

e
because -—-22,97— > 1. g
Therefore forallt>0:
_ 1 .« +L
E@I? < 4= H(To c)e klt(—z‘y__l) lleoll?,

Qma
< H(Ty, ¢, )\)e‘k‘teo x= “6‘0”2
where H is a decreasing function of ¢. Hence:
BN < B(To, ¢, e 10" [leoll?,

and, with t = 7+ %51(1 - e77),

TP < H(To,c, \e 1760 "5 ek B 0= ) g2
Finally,
eI < A (T, A)e™7eol 26y 55 +2m-emma R A=),
where H(Ty,c, )) is a decreasing function of c.

This is the long term estimation. It holds as soon as )\ satisfies (85), and for
8¢ large, depending on .

2.3. Practical implementation: making the observer ”recursive”. We
consider a one parameter family {O,,7 > 0} of observers of type (63), indexed
by the time, each of them starting from Sy, 6y, at the current time 7. In fact,
in practice, it will be sufficient to consider, at time 7, a slipping window of time,
[t — T,7[, and a finite set of observers {Oy,, 7~ T < t; < 7}, with t; = 7 —
i=1,..,N.

As usual, we call the term I(7) = §(7) — y(7), (the difference at time 7 be-
tween the estimate output and the real output), the ”innovation”. Here, for each
observer Oy, ,we have an innovation I, (7).

Our suggestion (very natural and very simple), is to take as the estimate of the
state, the estimation given by the observer O, that minimizes the absolute value
of the innovation.

Let us analyze what will be the effect of this procedure in a deterministic
setting:

. T
ZN,

1. Let us assume that there is no ”jump” of the state. Then, clearly, the best
estimation will be given by the "oldest” observer in the window, O, . Then, the
error will be given by the ”long term” and ”short term” estimates at time T":

lle(r + T)II? < R(A, e)e™ Tlle()|I*A(80, T, M),
lle(7 +T)II? < O(T)*" "D H(e)e™@0D=)T le(7)| 2.

a. If T is large enough, the asymptotic behavior will be the one of the ”extended
Kalman filter”.
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b. At the beginning, the transient is the one of the HGEKF.
c. the error can be made arbitrarily small in arbitrary short time, provided that
6 is large enough.

2. If at a certain time we have a ”"jump” of the state, then, the innovation of
the ”old observers” will become large. The ”younggst” one will be chosen, and the
transient will be the same as the one of the HGEKF, first, and of the EKF, after
T.

This looks very promising. We show on an example in the next section, that it
works very well.

3. Application: observation of a binary distillation column

3.1. The constant molar overflow model. The model we consider is the
classical ”constant molar overflow” (CMO) model. It is one of the most simple
distillation models, and it is used by many process engineers (for instance, even in
its static form, it is used for simple short-cut distillation calculations).

Since everything here follows from the very special ”tridiagonal” structure of
this model, and since any reasonable distillation model possesses such a structure,
all what we do in this paper can certainly be extended to more precise distillation
models.

The equations are based upon:
a. a thermodynamical relation describing the thermal equilibria for each tray.
b. Material balances on each plate.

Thermal balance on each plate is replaced by the "Lewis hypotheses”, that lead
to the fact that the liquid and vapor flowrates along the column are constant in
the "stripping” (above the feed) and "rectification” (below the feed) zones. For
justification of these assumptions, see [19].

The equations of this model are:
Total condenser:

dz

(86) Hy=—t = (V+ FV)(y - 21).

Rectifying section, j = 2,--- ,f —1:

dx;

(87) H;—t = L(zj1 = &) + (V+ FV)(g41 — yj).

Feed tray:

dr

(88) Hy—L = FL(Zp ~ ) + FV(k(ZF) - yy)

+ L{zg_y —zf) + V(yre1 — y5)
Stripping section, 7 = f+1,--- ,n—1:
dz;
j-d—tJ = (L + FL)(:l:j_l - :Ej) + V(y,-.,.l — yj)‘

Bottom of the column:

d
(90) Hn—gtﬁ = (L+ FL)(n—1 — Zn) + V(zn — n).

(89)



Ixiv 7. SOMETHING BETWEEN THE HGEKF AND THE EKF.

The parameters have the following physical meaning:

n number of trays,

f index of the feed tray,

H; liquid hold up on the j** tray (a geometric constant),

z; liquid composition on the jt* tray;

Yj vapor composition on the jt* tray,

FL,FV,L,V | feed (liquid and vapor), reflux and vapor flow,

Zr feed composition (molar fraction of light component in feed).

On each tray the liquid and vapor compositions, z; and y;, are linked by
the liquid/vapor equilibrium law y; = k(z;). We assume that the function k is
monotonic, i.e. we do not consider azeotropic distillation.

Each of the equations is relative to a tray. It just expresses the accumulation
of the liquid on the corresponding tray, and the thermodynamical equilibrium.

The condenser and the bottom of the column are asskmilated to tray 1 and tray
n respectively. The state of the model is the liquid composition profile of the more
volatile component on each tray, denoted by (z;).

The top and bottom product compositions z; and z, are the two observed
variables. In practice, they are also the two variables that one wants to control:
they are the ”qualities” of the products going out of the column.

The two control variables are the reflux flow-rate L and the vapor flow-rate V.

There are also two disturbances to be counteracted:

a. changes in the feed rate F = FL + FV. In general this is a "measured
disturbance”, (a flowrate measurement),

b. the in-feed composition Zz. In general, it is unknown, and it is practically
very expensive to ”observe it”. Moreover, it may change brutally. We will consider
this feed composition Zr as an unknown (constant) state variable. When Zp
changes, the consequence is a jump of the state of the system.

The qualitative properties of this model are very nice (see [15], [33], [32]):

a. For positive control variables L and V, (negative doesn’t physically makes
sense), the ”physical” domain D = [0, 1]” is positively invariant under the dynam-
ics. This means that all the state variables z; remain between 0 and 1.

b. In the domain D, all other variables «(than the z;’s and the y;’s) being
constant, there is a single equilibrium, which is globally asymptotically
stable.

c. It has very nice observability properties, as will be discussed later on.

Our goal in this section is to construct an estimator of the state x, and more
specifically of the feed composition Zg, by using the results of the previous sections.

3.2. Observability of the model and synthesis of the observer. A com-
plete analysis of observability and observer synthesis has been carried out in [15] in
the general case. It happens that, even if the feed is considered as an unknown state
variable (meeting the equation d—gtﬂ = 0), the model is observable in the strongest
possible sense. In particular, as we shall see, it can be put in a normal form similar
to (62).
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Our purpbse here is just to apply the observer described in the previous sections.
Hence, we will fix a special case of distillation column. But all what we show works
in general. We will chose:

e n=>5and f =3,
e The function k is a diffeomorphism from [0, 1] into itself and is given by,

ox

k(z) = ——————.
() 1+4(a—-1)z

Here « is the "relative volatility” of the mixture. It is a physical parameter

larger than 1 (but close to 1). The closer to one, the most difficult distillation.

If & = 1, the two products are thermodynamically identical, and cannot be

distillated (the model is not controllable).

e Let us observe that k is a diffeomorphism from —ﬁ, +oo| to {—o00, %5 [

o The feed is assumed to enter the column at its "bubble point”. As a conse-
quence, F' = FL.

Let us make the following change of state variables: £, = z;, £, = k(z2),
§3 =23, {4 =24, {5 = x5 and {g = Zp.
Then, the system can be rewritten as:

( Hlﬁtl' = V(£2—£1),

HySr = K (B71(&)) (L& — k71 (6)) + V(K (€3) — €2))
©1) ) H3Z: = F(E— &)+ L(k71 (&) — &) + V(K (£4) — K (£3)),
Higt = (L+F)(&— &)+ V(&) — k(&)

HsZ2 = (L+F)(—&)+ V(€ — k(&)
LHGT{L = Oa
or:
dﬁt_ s
(92) S = AL V)& +BE VLY,
where,
0 % O 0 0 0
0 0 0 0 0 2
0 O 0 0 0 A
00 0 &£ o0 o0
0 0 0 6 0 0
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and,

v
-6
K (k71 (€3)) (L(&, — k72 (€9)) + V(K (&3) — &) / H2
B(L,V,€) = (—F&s + L(k™! (&3) — &3) + V(K (&) — Kk (£3))) /H3
T (—(L+F)¢,+V(k(&) —k(£4))) /Hy ’
\ (—(L+F)55+V(()§5 — k(&) /Hs

(V&)

l?g (L’V)gl" . )55)

— bi}v(L’ v, €3:84, ‘55)

by (L,V;€4,85)
b5 (L’OV’ §5)

The observations are then given by i
1 00000
y‘(o 000 1 o)f‘cf'

Now, since in fact the only pertinent (and positively invariant) part of
the state space is D’ = [0,1]%, we can manage the things for b be compactly
supported, as in section 1, and unchanged on D’. Let us change Z(L, V,€) in the
following way outside [0, 1]6 : replacez(L, V,&) by b(L,V,€) = Z(L, V,® (£)) where

®(&y,...,86) =(p(&1),... ,¢(&)) and @ (§) is any C* function from R to [0, 1]

equal to one in [0,1] and equal to zero outside |—~1r, 21 [ This modification
2 2

does not change the ”physical trajectories”.

Our system has the property to be observable for any input, as soon as the
control variables L and V are > 0. Here, we assume that L,V are bounded from
below (and from above) by > 0 constants:

Lyy2L(t)>e1>0, Vg 2V(t) 2e2>0.

This assumption is the analog of the assumption 0 < a,, < a;(u) < apy, in
section 1. It is a realistic requirement from the physical point of view.

To finish, let us point out the fact that we are in case 1 of Chapter 2 above
(i.e. the nongeneric case): The number of observations is equal to the number of
control variables (it is 2).

Due to these observability properties, we will be able to apply the observer of
the previous section 2.3. In fact, it will be an adaptation of the results of section 2,
Theorem 2.1, to this multi-output case.

We leave the reader to check (this is really straightforward) that all
the reasoning in the proof of Theorem 2.1 can be strictly repeated, and
that the statements of this theorem are valid for the distillation column.

Of course, in practice, we didn’t compute the theoretical bounds A and 6p(}).
We have just got some values for them by experimentation. Also, the number N of



3. APPLICATION: OBSERVATION OF A BINARY DISTILLATION COLUMN Ixvii

"parallel” observers, and the "sampling times” ¢; of section 2.3 have been chosen
experimentally.

Finally, the state of our observer is the collection of the states of N indepen-
dent observers (z;, S;, 9i)i=1,... v+ Each observer is a set of three equations of the
following form:

»

2_; = A(u)z+b(u,2)—S@t) ' CTR; (Cz -y (t))
% = —A@+r (z,w))' S — 8 (A(u) + 6" (2,u)) + C'R;1C — SQoS
@ — A(1-96)

where u = (L, V).

Due to the multi-output structure, with ”Brunovsky-like” blocks of different
dimensions (4 and 2), a way to make the proof of Theorem 2.1 work, is to take a
matrix R depending also on 8, as shown below. This could be avoided by increasing
the dimension of the state as explained in [15].

It is not hard to check that a good choice is to set:

. 1 1 11 1
A—dlag('o_z’aj)b'ingwaj)

with Qp = 6°A~1QA~! and Ry = (CA~'C") R(CA™I(CY).

In practice, we have chosen N = 5 observers, and we have taken a regular
sampling % That is to say, at each time step kL, the oldest observer is replaced
by a new one (with § = 0y and a new guess of state and covariance matrix). At the
beginning of the simulation, we chose an initial value g of 8 for each observer, such
that the 4% observer has 6; = 1 + e "% (6o —1
represent reinitializations.

), see figure 3, where ”crosses”

We have implemented our observer as described in the previous section. Since
the state has dimension 6, each observer requires to solve 28 ordinary differential
equations (for the state, the Riccati matrix, and the very simple equation for 8).
Finally, our observer is a set of 140 ODE’s. We have solved it in conjunction with the
model (6 equations) using LSODAR from ODEPACK ([17]), without taking into
account the possibility of decoupling these equations (which are indeed equivalent
to five systems of 34 equations, including the model into each system). A simulation
of 3 hours of real time takes about 40 seconds on a Pentium III machine.

3.3. Simulation results. We have chosen the following constant parameters:
o Hold-up H; =40, H; =10 for j = 2,3,4 and Hs = 80,
* Relative volatility a = 2.

We have applied the following scenario:

- During the simulation, the state noise is simulated by the sum of several sine
functions at some random frequencies representing a band limited noise with an
amplitude of 10~8 before the time ¢, = 116 mn40s and 10~2 after this time,

- Moreover, at time ¢; = 66 mn 40s, we simulate a step in the feed quality Zg
from 0.45 to 0.60. Hence we can consider that there is no perturbation before time
ti, where a large ”jump of the state” occurs,
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- after that, nothing happens until time ¢5 where a periodic perturbation on
Zp is applied.

We have also added a measurement noise at some random high frequencies
and with amplitude of 10~2. The effect of noise can be seen on Figure 1 (top and
bottom lines).

To make the simulation more realistic, we have applied a very simple controller,
which calculates the inputs L and V in order to regulate top and bottom qualities
at a reasonable level (that is, 73% for the top quality and 23% for the bottom
quality).

As we said already, the parameters of the observers where tuned in order to
obtain good performances, and not caring about the theoretical bounds.

Practically, we have used 6y = 10, % =10mn and A = 5%5 s~1, in such a way
that the time of life of an observer is ' = 50mn, and then an old observer has
0 =~ 1.16. Also, there is always an observer with 8 > 4.3 which is running.

Finally, R is equal to 102 times the 2 x 2-identity matrix and Q is 10~2 times

the 6 x 6-identity matrix.

First of all, the behaviour of the observer is very good during the unmodelled
transient as well as during smooth operation, see Figure 1: top and bottom quality
measurements are plotted, as well as the unknown feed quality, each curve being
represented by a continuous line. The overall estimation of the feed quality, corre-
sponding to the estimation of the feed quality provided by the observer with the
smallest innovation, is represented by a dashed line. It is very close to the actual
feed quality.

0. r - . . : - . ‘
0.7 :
0.6/ , A
0.5 1
0.4 ]
0.3

m/\/\/WA/\/WvaW
0. W 100 120 140 160 180

FIGURE 1. Measured output and estimation of the feed quality.

A more accurate plot is presented on Figure 2 where we have only shown the
relative estimation error of the feed quality. The estimation provided by the best
observer (in our sense, that is to say, the observer with minimal innovation) is
the continuous line. The crosses represent the estimation of Zr provided by other
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observers every minute. One can see that our criteria on the innovation to select
the right observer is a good choice, at least in this case.

1 % T

0%

0 20 40 60 80 100 120 140 160 180

FIGURE 2. Relative error between the actual feed quality and its
estimation by the selected observer (continuous line) and the oth-
ers.

Moreover, the behavior of the observer is very close to what we expected from
the theoretical results:

- When no perturbation arises, the best observer (that is to say the observer
with the smallest innovation) is the one with the smallest value of @ i.e. the oldest
observer which is also the observer which is the closest to the pure extended Kalman
observer.

-If a large perturbation occurs (such as the feed change at time ¢t; = 66 mn 40s),
the best observer becomes the youngest one, i.e. the observer with the highest 6.

-Of course, small perturbations are well corrected by oldest or intermediate
observers. This is very clear on the figure 4.

Our conclusion, from these simulations, is that even if the use of several ob-
servers in parallel requires the introduction of new tuning parameters (fp, A, N and
T), the choice of these new parameters is very easy, due to their very clear effect
on the results.

>From a practical point of view, g, A, N and T have to be chosen such that
at any time, there is an HGEKF and an EKF-like observer running at the same
time, that is to say such that 1+ e=*¥ (8, — 1) is large enough (to ensure that at
least one observer is a HGEKF) and such that 1 + e~ (g — 1) is close to 1.

Also, an important point, for people that are used to tune Kalman’s observers,
is that the choice of the @@ and R matrices is less crucial than with a single observer
which has to be tuned in order to be efficient both with and without perturbations.

Moreover, this approach allows us to obtain a diagnosis of abnormal behavior:
if the smallest innovation is provided by the last reinitialized observer then one
can conclude that the model has encountered a perturbation. If this happen for a
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0 20 40 60 80 100 120 140 160 180

FIGURE 3. The 5 observers. Time of reinitialization of each ob-
server (x), and the best one (continuous line).

10 EE L

0 20 40 60 80 100 120 140 160 180
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FIGURE 4. Various values of § versus time (dotted lines), and best
observer (continuous line).

long time then one can conclude that the model has some difficulties to deal with
certain unmodelled perturbations. Indeed, the scenario that we have applied in our
simulations can be easily deduced from the figure 4.

4. Appendix. Technical lemmas
LEMMA 4.1. Let {z(t) > 0, t > 0} C R™ be absolutely continuous, and satisfy-

ing:

dx
e
= < Mz + kx/z,



4. APPENDIX. TECHNICAL LEMMAS Ixxi

for almost all t > 0, for A,k > 0. Then, as soon as z(0) < 4—’\:5, z(t) < 4z(0)e~ A,

LEMMA 4.2. Let B = b(z) — b(z) — b*(2)e be as in Section 2: ¢ = z — =z,
b(z) = Ab(A~1z), b*(2) = Ab*(A~1z)A~Y, where b*(z) is the Jacobian matriz of
b at z, and where b is compactly supported. A = dzag(l, F1eer 0,,_1) 6 > 1. Then,
||B]| < K 6™ }||e]|?, for some K > 0.

»
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