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Chapter 1

Set-Valued Analysis

This chapter is concerned with the differential inclusion (multivalued
equation):
o'(t) € F(tz(t), z(to) = o (1.1)

Its investigation was initiated in the thirties by the Polish and French
mathematicians Zaremba in [42], [43] and Marchaud [31], [32].
Control theory motivated the renewal of the interest to the differ-
ential inclusion (1.1) in the earlier sixties. Filippov [14] and Wazewski
[41] have shown that under very mild assumptions the control system

2 = f(t,z,u(t)), u(t) € U is measurable, z(tg) = zp (1.2)

can be reduced to differential inclusion (1.1). This placed control sys-
tems in the framework of ordinary differential “equations” with the
difference that the right-hand side of these equations is multivalued.
However, very fortunately, the development of differential inclu-
sions followed the same route that ODEs. There are existence results
of Peano and Cauchy-Lipschitz type. When F is Lipschitz, then so-
lutions depend on the initial condition in a Lipschitz way. We can
as well differentiate solutions with respect to the initial condition
(and to obtain wariational inclusions instead of variational equa-
tions.) The only, but very important difference, is due to the fact
that the solution to (1.1) is a set (of absolutely continuous functions
x(-) starting at zo and satisfying z'(t) € F(t,z(t)) almost every-
where.) For this reason the set-valued analysis arguments [5] have
to be used in an essential way to investigate differential inclusions.

7



8 1 - Differential Inclusions

In Section 1 we recall Painlevé-Kuratowski limits, tangents to sets
and generalized derivatives of functions and in Section 2 definitions
concerning regularity and differentiation of set-valued maps that we
shall use. We also gather some results on measurability and integra-
tion. The detailed study of these topics can be found for instance in

[5].

Section 3 is devoted to differential inclusions. We start by the
fundamental Filippov theorem and its applications. This is more
than an existence theorem a la Cauchy-Lipschitz, but implies the
same kind of consequences than the Gronwall inequality. In par-
ticular, we can compare solutions under perturbations of dynamics
and/or initial conditions, and, in this respect, this theorem is par-
ticularly useful. We also discuss there a result due to Filippov and
Wazewski which states that solutions to (1.1) are dense in solutions
to the relaxed differential inclusion

#'(t) € @ F(t,z(t), z(to) = zo

This allows to extend the concept of infinitesimal generator to set-
valued semigroups (reachable maps) and also to derive variational
inclusions by differentiating solutions with respect to initial condi-
tions.

Finally we state the very useful viability theorem for problems
under state constraints. See [4] for many results of this theory.

A natural question do arise:
Can differential inclusion (1.1) be reduced to control system (1.2)?

This is not true in general and examples of “nonconvex” dif-
ferential inclusions justify their study in the nonparametrized form.
However, the answer is positive when F' has convex images.

We state in Section 4 some theorems concerning parametrization
of set-valued maps. Most of the results of this section are provided
without proofs.
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1.1 Preliminaries

1.1.1 Limits of Sets

Let X be a metric space supplied with a distance d. When K is a
subset of X, we denote by

di(z) = d(z,K) = yiél}f{d(m,y)

the distance from x to K, where we set d(z,0) := +oo. Limits of
sets have been introduced by Painlevé in 1902, as it is reported by
his student Zoretti. They have been popularized by Kuratowski in
his famous book TOPOLOGIE and thus, often called Kuratowski lower
and upper limits of sequences of sets.

Definition 1.1.1 Let (K,)nen be a sequence of subsets of a metric
space X. We say that the subset

Limsup, Ko = {z € X | liminfd(z, K,) =0}
is the upper limit of the sequence K, and that the subset
Liminf, s oo K, = {z € X | lim,00d(z, K,) = 0}

1s its lower limit. A subset K is said to be the limit or the set limit
of the sequence K, if

K = Liminf, K, = Limsup,_, K, =: Lim, K,

Lower and upper limits are obviously closed. We also see at once
that
Liminf, , K, C Limsup,_, Ky

and that the upper limits and lower limits of the subsets K,, and of
their closures K, do coincide, since d(z, K,) = d(z, K,).

Naturally, we can replace N by a metric (or even, topological)
space X, and sequences of subsets n ~ K, by set-valued maps z ~»
F(z) (which associates with a point z a subset F'(z)) and adapt the
definition of upper and lower limits to this case, called the continuous
case.
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1.1.2 Tangent and Normal Cones to a Subset
We begin with a presentation of the contingent cones:

Definition 1.1.2 (Contingent Cones) Let K C X be a subset of
a normed vector space X and x € K belong to the closure of K. The
contingent! cone Ty () is defined by

. . K-z
Tk(z) = {v| I}Lni(l)rifd;((x +hv)/h =0} = lesuph_%OJr—}—l———-

It follows from the definition that Tk (x) is a closed cone.
It is very convenient to have the following characterization of this
cone in terms of sequences:

v € Tk(z) ifand only if 3h, - 0+ and Jv, > v
such that Vn, x4+ h,v, € K

It implies that when K is convex, Tk (z) = Ux>¢ AM(K — 7). We also
observe that

if z€ Int(K), then Tg(z) = X

This situation may also happen when z does not belong to the inte-
rior of K (see Figure 1.1.)
We shall need the following very useful theorem.

Theorem 1.1.3 Let X be a finite dimensional vector-space and K
be a closed subset of X. Then for every ¢ € K

Liminf, ,, ; Tk (y) = Liminf,,,, @(Tx(y)) C Tk(x)
See for instance [5] for the proof.

Definition 1.1.4 (Subnormal Cones) Let K C X be a subset of
a normed vector space X and z € K belong to the closure of K. The
subnormal cone Ny (z) is defined by

NY(z) == {pe X*| <p,v><0 VoveTk(x)}

Yfrom the Latin contingere, to touch on all sides, introduced by G. Bouligand
in the 30’s. This term was already used by R. Descartes, in a 1638 letter to
Mersenne criticizing P. de Fermat’s method on tangents.
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Figure 1.1: Contingent Cone at a Boundary Point may be the Whole
Space

Subset K such that Tx(0) = X

1.1.3 Generalized Differentials of Nonsmooth Functions

Definition 1.1.5 Let X be a normed vector space, ¢ : X — R U
{£o0} be an extended function and xo € X be such that p(zo) # Foo.
The superdifferential of ¢ at xq ¢s the closed convex set defined

by:
')

. — —<pax-—
O+p(To) = {p € R" | limsup ©(z) — (o) P, T — Ty >
) ”:E — -TOH

IN

where < -,- > denotes the scalar product.
The subdifferential is defined in a similar way:

O_p(zg) = {p eR"| lin_lénf p(z) = p(xe)— < p,z — 39 > 0}
I—T0

llz = ol

We always have d,0(xp) = —0-(—¢)(x0).
The super and subdifferentials may also be characterized using
contingent epiderivatives:

Definition 1.1.6 Let X be a normed vector space, ¢ : X = R U
{*oo} be an extended function, v € X and o € X be such that

p(zo) # Loo.
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The contingent epiderivative of ¢ at xo in the direction v is given
by

Dyp(z)(v) =  liminf p(xo + hv') — p(xo)

h—0+, v/ —v h

and the contingent hypoderivative of ¢ at xy in the direction v by

hv') —
D p(zp)(v) = limsup p(zo + hv') — p(z0)
h—0+, v/ —v h

Clearly
Dyp(z0) = —Dy(—¢)(0)

By a direct verification Dyp(zg) is a lower semicontinuous map tak-
ing its values in RU {400} whose epigraph is equal to the contingent
cone to the epigraph of ¢ at (zg, ¢(xg)).

When ¢ : R™ — R is Lipschitz at zg, then the contingent epi and
hypoderivatives are reduced to the Dini lower and upper derivatives:

.. plzo + hv) — (o)
= f
Dro(o)(v) = limin -

and

ho) —
Dyo(zo)(v) = Timsup LEHAY) = ¢l@o)
h—0+ h

Proposition 1.1.7 [5] Let ¢ : R® — R U {xoo} be an eztended
function. Then

d-p(zg) = {peR"| Vv eR", Diyp(zo)(v) ><p,v>}
and
drp(zg) = {peR"| Vv € R", Dip(zo)(v) < <p,v>}

It is not difficult to show that ¢ is Fréchet differentiable at zg if
and only if both super and subdifferentials of ¢ at zy are nonempty.
Moreover in this case

Oy p(zo) = 0-p(zo) = { Ve(zo) }
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Definition 1.1.8 Let ¢ : R" — R be Lipschitz at xo. We denote by
J*o(xg) the set of all cluster points of gradients V(z,), when x,
converge to xg and @ is differentiable at x,,, i.e.,

9%p(zo) = Limsup, ,,, { Vio(z) }

Proposition 1.1.9 (Clarke) If 8*p(zg) is a singleton, then ¢ is
differentiable at xg.

See [11, p.33] for the proof.

1.1.4 Semiconcave Functions

Definition 1.1.10 Consider a convex subset K of R™. A function
¢ : K+ R is called semiconcave if there exists w: Ry x Ry — Ry
such that

Vr<R,Vs<S, wlrs)<w(R,S) & lim w(R,s) = 0 (1.3)

s—0+

and for every R >0, A € [0,1] and all z,y € KNRB
Ap(z) +(1=A)e(y) < oAz +(1-ANy)+ A1 =Nz -yl w(R, |z —yll)

We say that ¢ is semiconcave at xg if there exists a neighborhood of
xg in K such that the restriction of ¢ to it is semiconcave. We call
the above function w a modulus of semiconcavity of .

Observe that every concave? function ¢ : K — R is semiconcave
(with w equal to zero.)

Exercises

1. Let K be a convex subset of R” and ¢ : R” — R be continu-
ously differentiable on a neighborhood of K. Show that the restric-
tion of p to K is semi-concave.

2. Consider a subset K of R™ and define the function ¢ : R" —
R, by ¢(z) = dist(z, K)2. Show that ¢ is semiconcave.

“Recall that a function ¢ : K — R, where K is a convex subset of a vector
space, is called concave if for all z,y € K and A € [0,1], oAz + (1 — N)y) >

Ap(z) + (1= N)ep(y).
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3. Show that a continuous semiconcave function ¢ : R” — R is
locally Lipschitz. O

In general a Lipschitz function does not have directional deriva-
tives. Our next result implies in particular that for a semi-concave
function, the directional derivatives exist.

Theorem 1.1.11 Let K C R be a convex set, zg € K and let a
function ¢ : K — R be Lipschitz and semiconcave at xo. Then for
every v € Tk (xg)

oz’ +h') — p(a’)
h

lim inf
v = v,h— 0+
¥ =gz, ¥+ e K

o(zo + hv') — p(z0)

= lim

v' = v, h — 0+ h

0+ hv € K
In particular, if zo € Int(K), then

d4(zo) = co (9" ¢(o)) (1.4)
(Clarke’s generalized gradient of ¢ at zy), where co states for the
convexr hull. Furthermore, setting ¢ = —oo outside of K, for all
g € K
Limsupa)-—ﬂnt(K)(l}O a‘i"(p(a:) C 8+(p(x0)

Proof — It is enough to consider the case ||v]] < 1. Fix such

v and let § > 0 be so that ¢ is semiconcave on K N Bas(xz) with
semiconcavity modulus w(-) := w(24,-). Let x € K N Bs(zp). Then
for all 0 < hy < hy < 6§ such that z + hov € K we have

oz +hv) —plz) = ¢ (Z—;(x + hov) + (1 - ,’%) ac) — o(x)

> Ho(z+hov) — Bo(e) = b (1- ) [loflwihe o)

Consequently,

oot ) —ole) ot lan) o) _ (Y g )
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and we proved that for every x € K N Bj(xg) and all 0 < h' < h < 4,

plz + 1) —pl) _ pl@+ hv) — p(z)

> > ) —wihlel) (1)

Thus for every 0 < h < ¢

liminf 2@+ W) —p@) | ez + ho) - o(z)
A = 0+ % = h
v =
r+h'v e K

= w(h|lol))

Taking limsup in the right-hand side of the above inequality when
x = xg, we deduce that

p(x0 + h') — (o)

lim
h—=0+,v = wv h
z0+hv' € K

does exist. Fix € > 0 and 0 < A < 4. From the Lipschitz continuity
of ¢ it follows that there exists 0 < « < ¢ such that for all x €
K N Bu(zg) and v’ € By (v)

p(zo + Av) — p(m0) _ plz+ M) — p(z)

h < h + €

where g + \v € K, 2+ A’ € K. Thus, using (1.5), we obtain that
for all sufficiently small a > 0,

o(zo + Av) — (zp)
A

. - ol +hv') ~ pla)
x € K N By(xp) h
h €10,A],v" € By(v)
z+h' e K

+ wA|) + e

Letting £, and X\ converge to zero we end the proof of the first
statement. The second one results from the alternative definition of
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Clarke’s generalized gradient, i.e. p € co (0*¢p(z¢)) if and only if for

all v
oz’ + ') — o(z')

lim inf <<p,v>
v = v, h = 0+ h
z — 2o
To prove the last statement we set ¢ = —oo outside of K. Con-

sider a sequence z,, € Int(K) converging to zg and a sequence p,, €
O+ (zm) converging to some p. We have to show that p € 9, p(zg).

From (1.4) and the Carathéodory theorem, we deduce that there
exist A7* > 0 and z* € Int(K) converging to g when m — oo
such that ¢ is differentiable at 2" and for all 4 the sequence Vp(z[")
converges to some p; when m — oo, and for every m, > i g A\ =1,

n
. m ™m —
lim (;_0 A"V(z; )) =p

Taking a subsequence and keeping the same notations, we may as-
sume that (AF,...,A7') converge to some (Ag,...,An). Thus p =
Yoo Aipi- Since 04¢(xg) is convex, the above yields that it is enough
to prove our statement only in the case when ¢ is differentiable at
Zm. Fix v € Tk (z¢) and consider h,, — 0+ such that z,, + h,v € K
and

T + ) — @(x 1
™m m
This and the first claim imply that
hv') —
lim sup (2o + hv') = p(@o) < (p,v)
v —v, h—0+ h

Hence from Proposition 1.1.7 we deduce that p € 0 p(z¢). O

Proposition 1.1.12 Let ¢ : R™ — R be Lipschitz and semiconcave
at zg. If Orp(xo) is a singleton, then ¢ is differentiable at z¢ and

I*p(xo) = { Ve(zo) }

In particular, if 0r@(x) is a singleton for all x near xg, then ¢ is
continuously differentiable at zy.
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Proposition 1.1.13 Let ¢ : R" — R, x¢g € R™. If ¢ is Lipschitz at
g and both ¢ and —p are semiconcave at xg, then ¢ is continuously
differentiable on a neighborhood of xg.

Proof — Since ¢ and —¢ are semiconcave at zg, by Theorem
1.1.11, there exists a neighborhood A of z( such that for all z € N

d4p(x) = co(0"p(z)), O-p(x) = =04 (—p)(x) = —co(d"(—p)(z))

Hence both d;1¢(z) and 0_p(z) are nonempty. Therefore ¢ is dif-
ferentiable on M. The conclusion follows from Proposition 1.1.12.
0

We investigate next closedness of the level sets of regularized
lower derivatives.

Proposition 1.1.14 Let K C R"™ and ¢ : K — R be locally Lips-
chitz. Define the set-valued map Q@ : K ~ R™ by:
for all z € K, Q(x) is equal to

p(z’ + ') —p(a') _ 0}

lim inf
{v] imin - <

v = v, h = 0+
o —gr,r +heK

Then @ has closed nonempty images and Graph(Q) is closed.

Proof — Clearly for every x, 0 € Q(z). It remains to show that for
every sequence (zn,v,) € K xR"™ converging to some (z,v) € K xR"
and satisfying v, € Q(z,), we have v € Q(z). Fix such a sequence
and let ¢, — 0+. Then there exist h, — 0+, z}, =K z, v, = v
such that for every n, z,, + h,v), € K and

(2, + hnvy,) — (1)
hn,

< én
Taking liminf in the above inequality we end the proof. O

1.1.5 Subnormal Cones to the Epigraph

Recall that
Ep(Drp(za)) = Tep(y) (To, 9(T0)) (1.6)
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where £p denotes the epigraph.
The subnormal cone to Ep(p) at (xp, ¢(x)) is given by

Ng o) (@, 0(m0)) := {P € R" | Vv € Tepp) (w0, ¢(70)), (p,v) < 0}
Thus

Proposition 1.1.15 Let ¢ : R® — R U {*oo} and zy € Dom(yp).
Then the following statements are equivalent

i) p € O0_p(xo)

i) Yu € R, <p,u>< Dyp(zo)(u)

ii) (p,—1) € Ng, (@0, ¢(z0))
We shall also need the following technical result.

Lemma 1.1.16 ([37]) Consider an extended lower semicontinuous
function ¢ : R" = R U {+00} and zy € Dom(p). Let p € R™ be
such that

(p7 O) € Ngop(w)(antp(:EO))’ p 75 0
Then for every € > 0, there exist x¢, p. in R” and q. < 0 satisfying

lze —zoll <& llpe —pll<e & (pe,qe) € ng(w)(xea@(me))

1.2 Regularity of Set-Valued Maps

We recall next some definitions concerning set-valued maps. Let
X, Y denote metric spaces and F : X ~ Y be a set-valued map.
For every 2 € X the subset F(z) is called the image of F' at z. The
domain of F is the subset

Dom(F) := {z € X | F(z) # 0}
and its graph

Graph(F) = {(z,y) € X xY | y € F(z)}
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Definition 1.2.1 The map F is called upper semicontinuous at z if
and only if for any neighborhood U of F(zx),

31 >0 suchthat V'€ By(z), F(z')cU

It is said to be upper semicontinuous on o subset K C X if and only
if it 48 upper semicontinuous at any point x € K.

The map F is called lower semicontinuous at x if and only if for
any open subset U C'Y such that U N F(z) # 0,

371 >0 such that V' € By(z), F('ynU # 0

It is said to be lower semicontinuous on a subset K C X if for every
x € K and for any open subset U CY withUU N F(z) # 0,

3n >0 such that V2’ € By(z)NK, F@')nU # 0

We shall say that F is continuous at z if it is both upper and
lower semicontinuous at z, and that it is continuous on a subset
K C X if and only if it is upper and lower semicontinuous on K.

Notice that if F' is upper semicontinuous on X, then its domain is
closed.

When F(z) is compact, F' is upper semicontinuous at x if and
only if

Ve>0,3n>0 such that V'€ B,(z), F(z') C U B:(y)
yEF ()

Proposition 1.2.2 [5] The graph of an upper semicontinuous set-
valued map F : X ~ Y with closed images is closed. The converse
is true if we assume that Y is compact.

Definition 1.2.3 When (X, dy) is a metric space and Y is a normed
space, we shall say that F : X ~ Y is Lipschitz (L— Lipschitz) on a
subset K C Dom(F) if there exists L > 0 such that

Vi, zo € K, F(xy) C F(z2)+ Ldx(x1,72)B

The set-valued map F is called locally Lipschitz around x € X if
there exists a neighborhood N of x such that F is Lipschitz on N.
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We recall next definitions of derivatives of set-valued maps.

Definition 1.2.4 Let X, Y be normed spaces, F : X ~ Y be a
set-valued map and y € F(x).

The adjacent derivative dF'(z,y) is the set-valued map from X to
Y defined by

Vu € X, v € dF(z,y)(u) <= Yh, =0+ Fu,—u

such that lim dist (v, Fz + hnun) “y> -0
n—oo

b,

If F is Lipschitz around x, then an equivalent definition is given by

Vu € X, dF(z,y)(u) = Liminfy o, ZEHU=Y =

lim dist <v,

F(x—l—hu)—y) _ 0
h—0+ -

h

We shall need the following proposition.

Proposition 1.2.5 [5] Let us assume that the images of F are con-
vex and that F' is Lipschitz around x. Then for any (z,y) € Graph(F)
the images of the adjacent derivative dF(x,y) are convex and

dF(z,9)(0) = Tr)(y)
Yu € Dom(dF (z,y)), D’ F(z,y)(u) + dF (z,y)(0) = dF (z,y)(u)

Proof — Let v; and vy belong to dF(z,y)(u). Then, for any
sequence h, > 0 converging to 0, there exist sequences u1, and uo,
converging to v and sequences vy, and vy, converging to vy and v
respectively such that

Vn, y+havp € Flz+ hyuy) (=1,2)

Since F is Lipschitz around z, there exists I > 0 such that for all n
large enough,

y+ hnvon € F(LB + hnuln) + lhn““’Zn - Uln“
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so that we can find another sequence vs, converging to ve such that
Y+ hpvs, C F(z + hpuiy)
Now, F(x + hpu1y) being convex, we deduce that for all A € [0, 1],
Y+ hn(Avip + (1 — ANvsn) € F(z + hpuin)

Since Aviy, + (1 — A)vs, converges to Avy + (1 — A)ve, this element
belongs to dF (z,y)(u).

Notice that v € dF(z,y)(0) if and only if d(v, (F(z) — y)/h)
converges to 0. Since F(z) is convex, it coincides with the tangent
cone.

Since 0 € dF (z,y)(0) we obtain that

Vu, dF(z,y)(u) C dF(z,y)(u) + dF(z,y)(0)
To prove the opposite inclusion fix
v € dF(z,y)(u) & w € dF(z,y)(0)
Let A, — 0+, v, — v be such that
Vn, y+hyv, € F(z+ hyu)

By convexity of F(z), there exist w, — w such that for n large
enough, y +v/hpw, € F(z). Then, by the Lipschitz continuity of F,
for all large n and for some w),, we have

y +Vhawl, € F(z+ hou); |wl —wn| < IV hnllull
Thus
(1 —~Vhn)(y + hovn) + Vhn(y +Vhnwy,)
= y+hy(vy +wh) — Vhy hyvn = y+ hp(v + w) + hpe(hy)
€ F(z + hpu)

where ¢(hy,) converges to 0. Hence

F(z + hpu) —y) ~ 0
by, N

lim dist <v + w,
n—o0
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This ends the proof. O

Let X be a complete separable metric space, tg < T be real num-
bers and U : [tg,T] ~ X be a set-valued map with closed, possibly
empty images. It is called (Lebesgue) measurable if for every open
subset O C X, the set

{tete,T)| Ut)NO # 0} is Lebesgue measurable
or, equivalently, if for every closed subset C C X, the set
{tet,T)| Ut)NC # 0} is Lebesgue measurable
A measurable single-valued map u : [to, T] — X satisfying
Vi € [to,T], ult) € U(t)

is called a measurable selection of U(-).
Measurable selections are dense:

Theorem 1.2.6 [5] Let X be a complete separable metric space and
U : [ty,T] ~ X be a set-valued map with closed nonempty images.
Then the following two statements are equivalent:

i) — U is measurable

it) — There exist measurable selections uy(-) of U(:), n=1,...
such that for every t € [to,T], U(t) = Up>1 un(t).

Proposition 1.2.7 [5] Let X be a complete separable metric space
and Uy, : [to,T] ~ X, n = 1,... be measurable set-valued maps with
closed images. Then the set-valued maps

t~ [(Ualt), t~ |JUn(®)
n>1 n>1

and
t ~ Liminf, oo Up(t), ¢~ Limsup,_, ., Un(t)

are measurable.
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Corollary 1.2.8 Let X,Y be complete separable metric spaces, x :
[to, T) — X be a measurable single-valued map and F : [ty, T] x X ~
Y be a set-valued map with nonempty closed images satisfying the
following assumptions:

i) Ya €X the set-valued map F(-,z) is measurable

i1) For almost every t € [to,T], F(t,-) is continuous at z(t)
Then the map t ~ F(t,z(t)) is measurable.

Proof — Since z(-) is measurable, there exist measurable maps
Zp : [to, T] = X assuming only finite number of values such that for
almost every t € [tg, T, lim, 00 Zn(t) = z(t). From the assumption
i) we deduce that the map ¢ ~ F(¢,z,(t)) is measurable and from
the assumption i), that for almost all ¢ € [ty, T

F(t,z(t)) = Liminf, ,o F(t,2,(¢))
Proposition 1.2.7 completes the proof. O

Let us denote by B(z, p) the closed ball in X of center z and ra-
dius p. When K C X and y € X we denote by IIx(y) the projection
of y on K given by

lIg(y) == {z € K| dx(z,y) = dist (y,K) }

Of course it may happen that the set I (y) is empty. Denote by ¢o
the closed convex hull.

Proposition 1.2.9 [5] Let X be a separable Banach space, U :
[to,T] ~ X be a measurable set-valued map with closed nonempty
images and g : [to,T] — X, k : [to,T] — R4 be measurable single-
valued maps. Then the maps

t ~ 2o U(t), t ~ B(g(t),kt)), t ~ Iy (g(t)
and t — dist(g(t),U(t)) are measurable. Consequently, if
{fvelU()||lv—g®)| < kt)} # 0 almost everywhere in [tg, T

then there exists a measurable selection u(t) € U(t) such that for
almost all t € [to, T], lju(t) — g(t)]| < k(¢).
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Consider a metric space Y. We recall that a map ¢ : [tg, T|x X —
Y is called Carathéodory, if for every z € X, (-, z) is measurable
and for almost all ¢ € [to, T], the map ¢(¢,-) is continuous.

Proposition 1.2.10 [5] Consider complete separable metric spaces
X,Y, a Carathéodory map ¢ : [tg,T] x X — Y and a measurable
set-valued map U : [tg,T] ~ X with closed nonempty images. Then
for every measurable map h : [to, T] — Y satisfying

h(t) € o(t,U(t)) almost everywhere in [ty,T]

there ezists a measurable selection u(t) € U(t) such that h(t) =
o(t,u(t)) for almost all t € [ty,T].

Dgﬁnition 1.2.11 Consider metric spaces X,Y and a set-valued
map G : [to, T)x X ~ Y with closed images. It is called a Carathéodory
set-valued map if for every x € X, the map t ~ G(t,x) is measurable
and for every t € [to, T, the map x ~ G(t,z) is continuous.

Theorem 1.2.12 (Direct Image [5]) Let X be a complete sepa-
rable metric space and U : [to,T] ~ X a measurable set-valued mayp
with closed images.

Consider a Carathéodory set-valued map G from [ty, T]| x X to a
complete separable metric space Y. Then, the map

[to,T] 3 ¢t ~ G(t,U(t))
s measurable.
Denote by L'(ty,T;R") the Banach space of (Lebesgue) inte-
grable maps v : [¢g,T] —» R™ with the norm
T
fulps = [ fute)l et
to

Definition 1.2.13 Consider a set-valued map U : [ty, T} ~ R" and
denote by U the set of integrable selections of U, i.e.,

U:={uec L' (t, T;R") | u(t) € U(t) almost everywhere in [to,T] }
The integral of U on [to, T is defined by

T T
Udt = {/ w(t)dt | u € u}
to to
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We say that a set-valued map U : [to,T] ~ R"™ is integrably
bounded if there exists an integrable function ¥ : [tg,T] — R4 such
that U(t) C 4(t)B almost everywhere in [ty, T'].

Let K be a nonempty subset of a vector space Y. A point x € K
is called extremal if for all y,z € K and 0 < A < 1 satisfying z =
Ay + (1= A)z, we have z =y = 2.

Theorem 1.2.14 (Aumann) Let U : [t,,T] ~ R" be a measur-
able set-valued map with nonempty closed images. Then the integral

];g Udt is convex and extremal points of c€o (ftf Udt) are contained
m ftz: Udt. If in addition U s integrably bounded, then the integral
of U is also compact and ftf Uds = Lf coUds.

See for instance [5] for the proof.

Theorem 1.2.15 Let U : [ty,T] ~ R" be a measurable set-valued
map with closed images having at least one integrable selection.

Then for every e > 0 and integrable selection u(t) € ¢o U(t) there
exists an integrable selection u(t) € U(t) such that

¢ t
sup / u(s)ds—/ u(s)ds| < e
te(to, T} 1V 0 to
In particular this yields that
T T
/ coUdt = Udt
to to
Proof — Fix ¢ > 0, an integrable selection %u(t) € @ U(t)

and let up(-) be an integrable selection of U(-). Define measurable
set-valued maps Uy, : [to,T] ~ X with closed nonempty images by

Vit € [to,T], Un(t) = ug(t)U (U(t) NnB)

and set e¢,(t) := dist(u(t),co(Un(t))). By Proposition 1.2.9, e,(-)
is measurable for each n. Furthermore, the sequence {€n(')}n21 is
integrably bounded and lim,, . e,(t) = 0 for ¢ € [ty,T]. Using
again Proposition 1.2.9, we deduce that for every n > 1 there exists
a measurable selection uy,(t) € € U,(t) such that

llun(t) —u(t)|| < en(t) almost everywhere in [to, T



26 1 - Set-Valued Analysis

Therefore, by the Lebesgue dominated convergence theorem, the se-
quence u, converges to @ in L'(t5, T; R™) and for all n large enough

/t: up(s)ds — /t: u(s)ds

It remains to show that for every n > 1 there exists an integrable
selection u(t) € Uy (¢) C U(t) such that

/t: u(s)ds — /t: un(s)ds

Fix n > 1 and let ¢ : [tg,T] — Ry be an integrable function such
that U,(t) C ¥(t)B for t € [to,T]. Let i > 1 be so large, that for
any measurable subset I C [to, T} of the Lebesgue measure less than
(T — to)/i we have [;9(s)ds < /4. We denote by I; the interval

3

T
< [ lunls) - <

sup
to 2

t€[to,T)

sup <

3
tefto, T 2

-1 ] . .
I; = {to+]~—Z—(T—t0)> t0+%(T—t0)}7 J=10
By Theorem 1.2.14,

Vi=1,..1, / co Uy (s)d / U,(s)ds

I

This yields that for every 1 < j < ¢ there exists a measurable selec-
tion f;(t) € Upn(t) such that

/Ij fi(s)ds = /Ij Un(s)ds

Let u be a selection of U, equal to f; on the interior of I; for every
J =1,...,15. Then for every ¢ € [ty,T], there exists j such that ¢t € I;
and

1 (= wn)(s)as|| < [SIZE 1, ( u—un>(s)dsl|+f,j lu— wall (s)ds

< Jp, ()l + llun(s)l) ds < 2f; d(s)ds < e/2 O
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1.3 Differential Inclusions

Consider ty < T and denote by C(to,T;R"™) the Banach space of
continuous maps from [tg, 7] into R™ with the norm

lzlle = sup [lz(®)]|
tE[to,T]

We first define what we call a solution to differential inclusions.

In the case of differential equations, there is no ambiguity since
the derivative z’(-) of a solution z(-) to a differential equation z'(¢) =
f(t,z(t)) inherits the properties of the map f and of the function z(-).
1t is continuous whenever f is continuous and measurable whenever
f 1s continuous with respect to & and measurable with respect to t.

This is no longer the case with differential inclusions?.

We recall that a function = € C(tyg,T;R"™) is called absolutely
continuous if for for almost all ¢ € [tg, T] the derivative z'(t) exists,
z' € L'(tp, T;R™) and

t
Vi e [to,T), z(t) = z(to) + 7'(s)ds

to

Let Whl(tg, T; R™) denote the Banach space of absolutely continuous

3The extension of Peano’s Theorem to differential inclusions is due to Mar-
chaud and Zaremba who proved independently in the thirties the existence of
respectively contingent and paratingent solutions to differential inclusions (called
champs de demi-cones at the time. The generalization of the concept of deriva-
tive to the notion of contingent derivative is due to B. Bouligand, who wrote: “...
Nous ferons tout d’abord observer ... que la notion de contingent éclaire celle de
différentielle”.) Then Wazewski proposed at the beginning of the sixties to look
for solutions among absolutely continuous functions. He wrote: “.. I learned
the results of Zaremba’s dissertation before the second world war, since I was
a referee of that paper. Then a few years ago I came across with some results
on optimal control and I have noticed a close connection between the optimal
control problem and the theory of Marchaud-Zaremba.” The author learned that
this “coming across” happened during a seminar talk of C. Olech on a paper by
LaSalle at Wazewski’s seminar.

Wazewski proved that one can replace the contingent or paratingent deriva-
tives of functions by derivatives of absolutely continuous functions defined almost
everywhere in the definition of a solution to a differential inclusion, that he called
orientor field.
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functions from [to, T] to R™ with the norm*

T
lallwre = (o)l + /t I (1) |t

Consider a set-valued map F from [to,T] x R™ into subsets of
R". We associate with it the differential inclusion

¥ € F(t,z) (1.7)

An absolutely continuous function z : [tg, 7] — R™ is called a
solution to (1.7) if

z'(t) € F(t,z(t)) almost everywhere in [to,T] (1.8)

1.3.1 Filippov’s Theorem

We investigate here some properties of solutions to differential inclu-
sion (1.7) in the case when F is Lipschitz with respect to z.

We denote by Sy, 71(wo) the set of solutions to (1.7) starting at
zo € R™ and defined on the time interval [to, T}:

Sito,1)(%0) = {z | 7 is a solution to (1.7) on [to, T], z(ts) = zo}

and set L'(ty,T) = L'(tg, T;R,) (the set of nonnegative integrable
functions.)

Let y € WHl(ty, T;R™) be an absolutely continuous function.
Filippov’s theorem provides an estimate of the distance from ¥ to the
set St,,17(Z0) C Whl(ty, T; R") under the following assumptions on
F.

i) VY (t,z) € [to,T] xR™, F(t,z) is closed

11) V x € R" the set-valued map F(-,z) is measurable
(1.9)

i1) 3B > 0, k € L'(tg,T) such that for almost all

t € [to,T], F(t,z) is nonempty for z € y(t) + B

the map F(t,-) is k(t) — Lipschitz on y(t) + B

\

It is called Sobolev space.
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Theorem 1.3.1 Consider a set-valued map F : [ty,T] x R* ~ R"
and an absolutely continuous function y € Whi(te, T;R™). Assume
that (1.9) holds true and that the function

b y(t) = dist(y' (1), F(t,y(2))

is integrable. Let § > 0 and set

"t k(rydr 't ¢
n(t) = ejto k(r)dr 5 " +(s) o, KT 4
to
If n(T) < B, then for all zy € R™ with ||zg — y(to)|| < 0, there exists
T € S(yo,1)(w0) such that

Vit € [to, T, ll=(t) —y@)I < n(t)
and
|2'(t) — ¥'(®)] < k®)n(t) + v(t) ae. in [ty, T)

Remark —  From Corollary 1.2.8 and Proposition 1.2.9 follows
that under assumptions (1.9) the function ¢ — dist(y'(¢), F(¢,y(t)))
is always measurable. O

The proof can be found in [14], [1]. The above result can be
extended to the whole half line:

Theorem 1.3.2 Consider a set-valued map F : R4 XxR™ ~ R" and
an absolutely continuous function y € WH1(0,00; R™). Assume that
(1.9) holds true with the time interval [ty, T replaced by R and that
the function t — ~(t) := dist(y'(t), F(¢,y(t))) is integrable on [0, oo|.
Let 6 > 0 and set

ot t t
n(t) = eo g / v(s) eJs KT g
0

If limsup,_, ., n(t) < B, then for all o € R™ with ||zo — y(0)|| < 4,
there exists x € S oof(0) such that

Vi 20, [z(t) —y@®| < n(f)

and
2'(t) — y'®)] < E@n(t) + y(t) ae. in [0,00]
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Proof — Theorem 1.3.1 yields an estimate on the finite interval
[0,1]. Hence there exists a solution z(-) € S 1)(wo) satisfying the
required estimates on the interval [0,1] and in particular

1 . L
Jo() ~y()l < ek 98 1 [yl 0w,
0

This and Theorem 1.3.1 imply that there exists a solution z(-) €
Sp,2)(z(1)) satisfying the 1equired estimates on [1,2]. Hence we can
extend z(-) on the interval [0, 2] by concatenating it with z(-) and we
reiterate this process. 0O

The above theorems yield the following corollaries.

Corollary 1.3.3 Consider a set-valued map F : [ty,T] x R™ ~» R"
and a point xo € R™. We assume that F satisfies (1.9) with y = xg
and is lower semicontinuous at (tg,zg). Then for every u € F(tg, xo)
there exist t1 >ty and a solution x(-) € Sy, 4)(w0) with 2'(to) = u.

Proof — Fixu € F(ty,xo). It is enough to consider the absolutely
continuous function

Vit e [to,T], y(t) = zy + (t - to)u
Then for every t € [tg, T] such that (¢ — &) ||ul] < 8 we have

dist (u, F'(t,y(t))) < dist (u, F(t,20)) + k(¢) [y(t) — 2ol

= dist(u, F(t,20)) + k(t)(£ — to) [|ull

By Theorem 1.3.1 there exist ¢; > to and a solution z € Sy, 4,}(%0)
such that

() — y(B)] < f1 (dist(u, F(s,29)) + k(s)(s — to) Jul]) e #D¥ds

< el (Ji, dist(u, F(s,50))ds + (t = to) |[ull [, k(s)ds)

for all ¢t € [tg,t;]. Thus
Vit € [to,t1], llz(t) —zo— (t —to)ull = oft —to)

and the result follows. O
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Corollary 1.3.4 Let yo € R", y € Sy, 77(v0) and assume that F, y
satisfy (1.9). Then there exists 6 > 0 depending only on k(-) such
that for all xo € B(yo,d) we have

< eftz k(s)ds

inf ) lz —yllc lzo — woll

TES,, T1(Z0

1.3.2 Relaxation Theorems

Let zg € R™. In this section we compare solutions to the differential
inclusion

z'(t) € F(t,z(t)) almost everywhere in [to, 7T (1.10)
{L'(to) — Xy )
and of the convexified (relaxed) differential inclusion:
z'(t) € To F(t,xz(t)) almost everywhere in [tg,T] (1.11)
z(to) = o ’

Observe that if F satisfies (1.9), then so does the set-valued map
(t,x) ~ co(F (¢, z)).

Theorem 1.3.5 Let y : [tg,T] — R"™ be a solution to the relaxed
inclusion (1.11). Assume that F' and y satisfy (1.9) and that the
set-valued map [tg,T] > t ~ F(t,y(t)) has at least one integrable
selection (or, equivalently, that the map t — dist(0, F(t,y(t))) is
integrable.)

Then for every e > 0 there exists a solution x to (1.10) such that
[z —ylle <e.

Proof — By Corollary 1.2.8 and assumptions (1.9) the set-valued
map ¢t~ F(t,y(t)) is measurable and has closed images.

Fix € > 0 so small that ¢ < 8—¢. By Theorem 1.2.15 there exists
an integrable selection u(s) € F(s,y(s)) such that

[ vds

0

sup

t€(to, ] to

T T -1
<ee Jig K125 (1 + k(s)ds)
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Define the absolutely continuous function 7 : [tg, T] — R" by
t
Vit € [to,T), Jt) = o+ [ u(s)ds
to

Then g(tg) = z¢ and
Vi€ [to, ), [Igt) -y@l < e

Thus F(t,-) is k(t)—Lipschitz on the ball B(%(t), 5—¢). Furthermore,
for almost all ¢ € [t, T,

[ = v)ds

0

dist(¥/ (1), F(t,5(t))) < k() [7(t) —y(®)l = k(t)

Set
t t
n(t) = [ dist(@(s), F(s,9(s))) els "0 ds
to
Then, by the choice of u and ¢, n(T) < e < 8 —e. Theorem 1.3.1
ends the proof. O '

Theorem 1.3.6 (Relaxation) Let F' : [tp,T] x R™ ~ R" be a set-
valued map with closed nonempty images and xg € R™. Assume that
there exists k € L'(to,T) such that for almost everyt € [ty, T], F(t,")
is k(t)-Lipschitz and that the map t ~ F(t,0) has at least one inte-
grable selection.

Then solutions to differential inclusion (1.10) are dense in solu-
tions to the relazed inclusion (1.11) in the metric of uniform conver-
gence.

Proof — It is enough to observe that for every y € C(to,T;R")
we have F(t,0) C F(t,y(t)) + k(t) |ly(¢)|| B. Since t ~ F(t,0) has an
integrable selection, from Proposition 1.2.9 we infer that so does the
set-valued map ¢t ~ F(¢,y(t)). Theorem 1.3.5 ends the proof. O

Theorem 1.3.7 Let o € R™ and S[Ct‘(’)’T](:co) denote the set of solu-
tions to the relazed inclusion (1.11). Under all assumptions of The-
orem 1.3.6 suppose that the set-valued map t ~ F(t,0) is integrably
bounded.

Then the closure of S[to,T](CEO) in the metric of uniform conver-
gence is compact and is equal to SﬁZ’T](ZEO)-
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Proof — We first show that Sy, 1)(20) is relatively compact in
C(to,T;R™) (i.e., its closure is compact.) Indeed consider a sequence
Zn(-) € Syr)(zo) and let () € L'(to,T) be such that F(t,0) C
¥ (t)B almost everywhere in [tp,T]. Then for almost all ¢ € [ty, T
and for all n > 1 we have

lzn@®l < sup el + k(@) lzn(®)] < (&) + k(@) lza(t)]

e€F(t,0)

Thus
t t
Y1 fto,T] llzn®)] < llzoll + / P(s)ds + / (s) [l ()] ds

This and Gronwall’s lemma® imply that there exists M > 0 such
that

Thus the sequence z,(-) is integrably bounded and thereby the se-
quence z,(-) is equicontinuous. By the Dunford-Pettis criterion® a
subsequence {z], } converges weakly in L' (¢, T; R") to an integrable
map ¢ : [to, T] — R™.

Using Ascoli’s theorem, taking a subsequence and keeping the
same notations, we may also assume that z,, (-) converge uniformly

5Which states that if continuous functions » and « from [to, T] into R satisfy

Vit e [to,T], u(t) < a(t) + / k(s)u(s)ds

to

for some integrable function k € L' (to, T; R+ ), then
¢ Gy
Vit € [to,T], u(t) < aft) + / k(s)a(s) efs (r)dr
to

(see [1].)
SWhich states that a bounded subset K C L (to, T; R") is weakly sequentially
precompact if and only if

lim /f(s)ds = 0 uniformy for f in K
pw(E)—0+ E

where 1 denotes the Lebesgue measure on [to, T
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to a continuous map z : [tp, 7] — R"™. Since for every n > 1,
Zn(t) = zo + ftto xy(8)ds, taking the limit we obtain that

t
Vi€ [to,T], «(t) = :c0+/ g(s)ds
¢

0

Thus z(-) is absolutely continuous and z’ = g. Since

T, (t) € WF(t,2n(t)) C TOF (¢, 2(t)) + k(t)||2(t) — za(t)|| B
Mazur’s theorem yields that z(-) is a solution to the differential in-
clusion (1.11). Theorem 1.3.6 ends the proof. 0O
1.3.3 Infinitesimal Generator of Reachable Map

Consider T' > 0, a set-valued map F : [0,T] x R® ~» R" and let
29 € R™, p > 0 be given. In this section we assume that

(i) V(t,z) €[0,T] xR", F(t z) is closed

W) VYa € R" F(,z) is measurable

iii) ¥ (t,z) € [0,T) x By(wo), Flt,a) # 0 (1.12)
i) 3 L >0 such that for every ¢ € [0,T],
Vz,y € By(zo), F(t,z) C F(t,y)+Llz—yllB
For all 0 <ty <t <T and £ € R" set
R(t1,t0)§ == {z(t)) | = € Spo,ty)(§) }
This is the so-called reachable set of the inclusion
' € F(t,z) (1.13)

from (tg,&) at time ¢;. :
We first observe that the set-valued map R enjoys the following
semigroup properties:

VO<t <to<t3 <T, VEeR" Rts,t2)R(t2,11)¢ = R(t3,11)¢€

VO<t<T, VE€R™, R(tt)¢ = ¢
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When F is sufficiently regular, the set-valued map ¢oF'(-,-) is the
infinitesimal generator of the semigroup R(:,-) in the sense that the
difference quotions (R(t + h,t)¢ — &€)/h converge to eoF'(t,&):

Theorem 1.3.8 Assume that (1.12) holds true and let ty € [0,T7.
If F is lower semicontinuous at (tg,zp), then
R(to + h,to)z0 — T
h

If F is upper semicontinuous at (to,zo) and F(tg,xo) is bounded,
then

co F(t(), 33()) C Liminf, g4

R(to + h,to)zo — zo
h

Consequently, if F' is continuous at (tg,xo) and F(tg,zo) is bounded,
then

Limsupy,_, 0.4 C @0 F(to,zo)

1 h,t —
Limh—>o+R( 0t ’hO)xO gl @ F(to, o)

Proof — The set-valued map (t,z) ~ ¢o F(t,z) is lower semi-
continuous at (tg,zo) if so is F. Fix u € €F(tg,x9). By Corol-
lary 1.3.3, there exist t; > ¢¢ and a solution z(-) to the relaxed inclu-
sion (1.11) with T replaced by t; such that z'(ty) = u. Using The-
orem 1.3.5, we deduce that for every sufficiently small A > 0, there
exists () € Sjyg,t0+4)(T0) such that ||zy(to + h) — z(to + )| < h2.
Hence

R(to + h, to):L‘o )

h
Since u is an arbitrary point in ¢oF (¢, zo), the first statement fol-
lows.

To prove the second one we first observe that our assumptions
imply that for some € > 0, M > 0 and all ¢ € [tg,t +¢], z € Be(xo)
we have F(t,z) C MB. This yields that for some ¢; > ¢y and all
T € Sjyy11)(%0)

u € Liminf, o4

Vit e [to,tl], ”:E(t)—(l?()” < M(t—to)

Fix v € Limsupy,_, o, [R(to + k, to)zo — o]/~ and consider a sequence
hn >0 converging to zero and x,(+) € S[t,,40+h,](%0) such that

n—00 hn
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Since F is upper semicontinuous at (¢p, o), there exist £, — 0+ such
that

Vit e [to,t0+hn], F(t,.’l?o) C F(to,xo) + e, B

Since for all large n

Tn(to + hn) — za(te) € [0 F(t, 0q(t))dt
C ft°+h" F(t,zo)dt + ( [loFhn Ll (2) — ol dt) B
to+hn t0+hn
C ot Fto,zo)dt + (S0 (en + LM(t — t9))dt) B

- hn@(F(tO,Jio)) + (Enhn + LMh%) B

dividing by h, and taking the limit we get v € €o(F (to,zg))-

1.3.4 Variational Inclusions

This section is devoted to differentiability of solutions to differential
inclusion (1.7) with respect to the initial condition.

We denote by d, F(t,Z,y) the adjacent derivative of F'(t,-,) (with
respect to z) of the set-valued map F'(¢,-) at (Z,7) € Graph(F'(¢,-)).

Theorem 1.3.9 (Adjacent variational inclusion) [5] We consider
the solution map S[to,T](‘) as the set-valued map from R™ to Whl(ty, T; R")
and a solution y(-) to differential inclusion (1.10). Assume that (1.9)
holds true, u € R™ and let w € WHl(tg, T;R™) be a solution to the
linearized inclusion.

{ w'(t) € doF(ty(t),y' () (w(t)) ae in [to, T] (1.14)

Then for all up, € R™ converging to u when h — 0+ and for all small

h > 0, there exists xp € S[tO,T](xO + huyp) such that the difference

quotions (xj, — x)/h converge to w in Whi(ty, T;R™) when h — 0+.
In particular, w € d S(zg,y(:))(u).

The above result was proved in [5] in the case when u, = u. Corollary
1.3.4 allows to extend it to an arbitrary sequence uy.
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Theorem 1.3.10 (Convex adjacent variational inclusion) We
constder the solution map S[tO,T](-) as the set-valued map from R™ to
C(to, T; R™). Let y be a solution to the differential inclusion (1.10).

Assume that (1.9) holds true, w € R"™ and let w be a solution to
the inclusion

w'(t) € dg(@ F)(t,y(t),y' (1)) (w(t)) ae. in [to,T]
w(ty) = wu

Then for all up, € R™ converging to u when h — 0+ and for all small
h > 0, there exists zp, € Spy,r)(To + huy) such that the difference
quotions (xp — x)/h converge to w in C(to,T; R™) when h — 0+.

Proof — It is enough to apply Theorems 1.3.5 and 1.3.9. O

1.3.5 Viability Theorem

We recall here some definitions and the statement of Viability The-
orem.
Let F' : R™ ~ R" be a set-valued map and K C Dom(F) be a
nonempty subset.
The subset K enjoys the wiability property for the differential
inclusion
' € F(z) (1.15)

if for any initial state zo € K, there exists at least one solution z(-) to
(1.15) starting at z¢ which is viable in K in the sense that z(t) € K
for all t > 0. The viability property is said to be local if for any
initial state zo € K, there exist T'(zg) > 0 and a solution starting at
xo which is viable in K on the interval [0,T(z¢)] in the sense that
for every t € [0,T(x0)], z(t) € K.

We say that K is a viability domain of F if

Vze K, R(z):=Fx)NTk(z)#0

Theorem 1.3.11 (Viability Theorem) If F is upper semicontin-
uous with nonempty compact convex images, then a locally compact
set K enjoys the local viability property if and only if it is a viability
domain of F. In this case, if for some ¢ > 0, we have

VeeK, |R@) = inf | < cllel +1)
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and if K is closed, then K enjoys the viability property.

We refer to [4, Aubin] for the proof and many applications of viability
theory. .

The following result provides a very useful duality characteriza-
tion of viability domains:

Proposition 1.3.12 (Ushakov, [27]) Assume that the set-valued
map F : K ~ R" is upper semicontinuous with convex compact
values. Then the following three statements are equivalent:

i) Veze K, Flz)NTk(z) # 0
i) VYzeK, Flz)neo (Tk(x)) # 0 (1.16)

iii) Yz €K, Vpe Nx(z), o(F(z),—p) > 0

where o(F(x),-) denotes the support function of F(x).

(see for instance [5] for the proof).

1.4 Parametrization of Set-Valued Maps

We recall here few results concerning parametrization of set-valued
maps. Their proofs can be found in [5, Chapter 9]. Theorems com-
paring solutions to differential inclusion and solutions to the corre-
sponding parametrized system will be provided in the next chapter.

Consider a metric space X, reals tg < T and a set-valued map
F :[to,T] x X ~ R™

Definition 1.4.1 Consider subsets C(t) C X, where t € [to,T).
The set-valued map F is called measurable/Lipschitz on {C(t) }ie(t,,1]
if for every t € [to, T], there exists k(t) > 0 such that

Vz € X, F(-,z) is measurable

Vit € [to,T),Vz € C(t), F(t,z) # 0 and is closed

Vit € [to,T], F(t,-) is k(¢t) — Lipschitz on C(t)
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Definition 1.4.2 Let U be a metric space and C(t) C X, t € [to, T]
be given nonempty subsets of X. We say that a single-valued map

fi[te, T)x X xU — R"

is a measurable/Lipschitz parametrization of F' on {C(t) }s¢ft,,r) with
the constants k(t), t € [to, T if

i)y  V{t,z) € [to,T| x X, F(t,z) = f(t,z,U)
it) V(z,u) € X xU, f(,z,u) is measurable

i) Y (t,u) € [to,T) x U, f(t,-,u) is k(t)-Lipschitz on C(t)

| ) VY (t,z) € [to,T] x X, f(t,z,-) is continuous

Theorem 1.4.3 (Parametrization of Unbounded Maps) Con-
sider a metric space X and a set-valued map F : [to,T] x X ~ R"
with closed convex images.

Assume that F is measurable/Lipschitz on {C(t)}ic(s,,1) and let
k(t), t € [to,T] denote the corresponding Lipschitz constants.

Then there exists a measurable/Lipschitz parametrization f of F
on {C(t) }ie(to,r) with U = R"™ such that:

Y (t,u) € [to,T] x R, f(t,,u) is ck(t) — Lipschitz on C(t)

vV (t,z) € [to,T] x X, f(t,z,-) is ¢ — Lipschitz on R"
with ¢ independent of F'. Furthermore if F is continuous, so is f.
Theorem 1.4.4 (Parametrization of Bounded Maps) Under
the assumptions of Theorem 1.4.3 suppose that the images of F' are
compact.

Then there exists a measurable/Lipschitz parametrization f of F

on the family of sets {C(t)}iefso,r) with U equal to the closed unit
ball B in R" such that:

i) VY (t,u) € [to,T] x B, f(t,-,u) is ck(t) — Lipschitz on C(t)

ity Vit € [t,T), V2 € X, YVu,v € B

£ (t,5,0) — F(t2,9)]| < ¢ (maxyepuq) lll) llu = o]
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with ¢ independent of F. Furthermore if F' is continuous, so is f.



Chapter 2

Control Systems and
Differential Inclusions

In this chapter we discuss several types of control systems and their
relations to differential inclusions. Namely, we shall single out

e Explicit control systems
e State dependent control systems

o Implicit control systems

The explicit control system
' = ft,z,ut), ut) € Ut)

is the most investigated in the literature. It is well adapted to the
techniques of Ordinary Differential Equations and can be seen as a
parametrized family of ODE’s. Indeed let us define the set of admis-
sible controls U as the set of all measurable selections u(t) € U(t) and
with every u(-) € U, let us associate ¢y (t,2) = f(t,z,u(t)). Then
the above control system may be replaced by ordinary differential
equations

= pu(t,z), u €U

So questions of existence, uniqueness and differentiability of solutions
with respect to initial conditions may still be investigated using clas-
sical results. Another possible approach is to define the set-valued

41
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map F by F(t,z) = f(t,z,U(t)) and to consider the differential in-
clusion
¥ € F(t,z) (2.1)

In Section 1 we show that under quite mild assumptions on the maps
f and U, these two problems are equivalent. We apply this fact and
variational inclusions from Chapter 1 to characterize variations of
solutions. This will be used in Chapters 3 and 5 to prove necessary
conditions for optimality.

State dependent control systems
o' = f(t,z,u(t), u(t) € U(t,z)

present additional difficulties: we can no longer choose controls inde-
pendently of the state. A possible solution to this would be to pick
first a selection u(t,z) € U(t,z) and then to consider the differential
equation

' = f(t,z,u(t,z))

However we have to use classical existence theorems to guarantee
existence of a solution to such equation and, thereby, to assume at
least continuity of u with respect to the state variable z. This would
exclude a quite large number of solutions, because it is not possible
to associate with every of them such regular selection u. This is why
it is more natural in this case to use differential inclusion (2.1) with
the set-valued map

F(t,z) = f(t,z,U(t2) = { f(tz,u) | v € Ult,2) }

In Section 2 we show that this new system has the same solution set
and prove some results about variations of solutions.
Linear implicit system (descriptor system)

Ex' = Az + Bu(t), u{t) € U

where E, A, B are possibly rectangular matrices, arises in models
of electrical networks. When FE, A are square, the above system is
sometimes called singular because E¥ may be noninvertible. Solutions
to such system are usually understood in the distributional sense.
Here we restict our attention to absolutely continuous solutions only
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and prove in Section 3 that this implicit system may be reduced to
the explicit one (in the sense that the sets of solutions are the same):

= Dz + o), v(it) €V, z € Q

where V' C () are subspaces obtained using E, A, B and D is a linear
operator from  into itself whose range is orthogonal to V.
Nonlinear implicit control systems

fla,2'ult) =0, ut) € U

appear often in different models. To investigate them, we shall use
differential inclusion (2.1) with the set-valued map F(t,z) = {v |0 €
f(z,v,U)} for answering in Section 4 the same type of questions:
comparison of solution sets and variations of solutions.

Although the nature of these systems appear to be different, the
differential inclusion formulation allows to develop a unified approach
to all of them. However one should always keep in mind that differ-
ential inclusions being rather an abstract representation, their inves-
tigation would remain unsatisfactory as long as the results are not
translated in terms of the original systems. This is why we are also
computing derivatives and variations of set-valued maps F defined
in the above examples.

2.1 Nonlinear Control Systems

Consider a complete separable metric space Z, real numbers tg < T
and a map (describing the dynamics)

filte,T] x R* x Z— R"

Let U : [ty,T] ~ Z be a set-valued map (of controls) with nonempty
images. We associate with these data the control system

= f(t,z,u(t)), u(t) € U), t € [ty,T] (2.2)

An absolutely continuous function z : [tg,T] — R" is called a solu-
tion to (2.2) if there exists a measurable map w : [to, T} — Z, called
admissible control, such that

' (t) = f(t,z(t),u(t)), u(t) € U(t) almost everywhere in [tg, T
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2.1.1 Reduction to Differential Inclusion
Define the set-valued map from [ty, 7] x R" to R™ by
F(tz) = f(ta,U(t)
and consider the differential inclusion
z'(t) € F(t,z(t)) almost everywhere in [tg,T] (2.3)

Clearly every solution z to control system (2.2) satisfies (2.3). Hence
z is also a solution to differential inclusion (2.3).

The natural question arises whether (2.3) has the same solutions
than the control system (2.2)7 The answer is positive for a quite
large class of maps f.

We impose the following assumptions on f and U:

Viz,u) € R"x Z, f(,z,u) is measurable
Vit € [to,T], f(t-,-) is continuous (2.4)

U(-) is measurable and has closed nonempty images

Theorem 2.1.1 Assume that (2.4) holds true. Then the set of so-
lutions to control system (2.2) coincide with the set of solutions to
differential inclusion (2.3).

Proof — Fix a solution z(-) to differential inclusion (2.3). By
Theorem 1.2.12 and our assumptions, the map (t,u) — f(¢, z(t),u)
is Carathéodory. So the proof follows from Proposition 1.2.10. O

The images of the set-valued map F' defined above in general are
not closed, while most Theorems of Chapter 1 deal only with closed

valued maps. We provide next two results concerning “closure” of
F.

Proposition 2.1.2 Assume (2.4) and define the set-valued map clF
by

V(tz) € [to,T] xR", cF(t,z) = f(t,z,U(1))
Then clF(-,x) is measurable for every x € R™. Furthermore if for
some 19 € R", ¢ >0, T € [to,T) and all w € U(Z), f(1,-,u) is k(f)-
Lipschitz on Be(zq), then so is clF(t,-). Finally, if U(-) has compact
images, then so does F and, consequently, clF = F.
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Proof — Measurability follows from Theorem 1.2.12. The proof
of the last two statements is obvious. 0O

Theorem 2.1.3 Assume (2.4) and let T(-) be a solution to the dif-
ferential inclusion

T'(t) € cF(t,z(t)) almost everywhere in [tg, T] (2.5)

Further assume that there exist p > 0 and k € L'(to,T) such that
for for almost every t € [to,T| and all u € U(t), the map f(t,-,u) is
k(t)-Lipschitz on B,(Z(t)).

Then for all ¢ > 0 there exists a solution z(-) to (2.2) such that
#(to) = Tlto) and [}z — Tllyra < e.

Proof — By Theorem 1.2.12 and (2.4) the map (t,u) — f(¢,Z(¢), u)
is Carathéodory. Fix € > 0, N > 1. By Proposition 1.2.10 there ex-
ists a measurable selection u(t) € U(t) such that

|[7'(¢) = f(t. (1), u(t)|| < e/N
Consider the system
z = ft,z,u(t), =(to) = T(to)

Choosing N large enough and using Filippov’s Theorem 1.3.1 with
F(t,z) = f(t,z,u(t)) and y =T we end the proof. O

Theorem 2.1.4 Assume that (2.4) holds true and for some vy €
LY(to,T) and for almost all t € [ty,T)

Vz € R, sup |If(t,z,u)ll < v(£)(1+]zl)
ueU(t)

Further assume that for every R > 0 there exists kg € L'(to, T) such
that for almost all t € [to,T] and for every u € U(t), f(t,-,u) is
kr(t)-Lipschitz on Br(0).

If the sets f(t,z,U(t)) are closed and convex, then the set of solu-
tions to control system (2.2) starting at zg is compact in C(ty, T; R™).

Proof — It is enough to apply Theorems 2.1.1 and 1.3.7. O
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2.1.2 Linearization

Consider a solution z to control system (2.2) and let @ be a corre-
sponding control. We associate with it the following linearization of
(2.2) along the solution-control pair (z,u):

w'(t) = SL(t,2(),a(t))w(t) + v(t)
(2.6)
v(t) € V() = Tmp,200),0)) (f (2, 2(8), u(2))) ae.

where Tesp(z 2(0),0 (1)) (f (£, 2(2),u(t))) denotes the tangent cone to the
convex set cof(t, z(t),U(t)) at f(t,z(t),T(t)).
We assume that

The derivative %xi(t,z(t),ﬂ(t)) exists a.e. in [tg, T

. (2.7)
For some e >0, k € L'(ty,T) and for a.e. t € [tg,T]

VYu € Ult), f(t,-,u) is k(t) — Lipschitz on B.(z(t))

Recall that the solution w(-) to (2.6) starting at wy and corre-
sponding to an integrable selection v(s) € V(s) is given by

Vi e [ T], wlt) = X(two + [ X(E)X(s) " w(s)ds

to

where X (-) denotes the fundamental solution to the linear system
/ af -
X(t) = 5=(t,2(1),u() X (t), X(to) = Id (2.8)

Theorem 2.1.5 Assume that (2.4) and (2.7) hold true. Then for
every solution w(-) to linearized system (2.6) and elements {wp }h>o0
in R™ satisfying limp_,o4 wp, = w(ty), there exist solutions {xp}r>0
to (2.2) such that

zp(te) = z(tg) + hwy, for all A > 0 small enough

and the difference quotients (xp —z)/h converge uniformly to w when
h goes to zero.
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Proof — DBy Theorem 2.1.3 we may replace control system
(2.2) by differential inclusion (2.5). Propositions 2.1.2, 1.2.5 allow to
apply the variational inclusion (Theorem 1.3.10) and to deduce the
result after observing that

v w, %(t,z(t),ﬂ(t))w € d F(t,z(t),2' (t))(w) ae. in [to,T] O

2.2 State Dependent Control Systems

In the previous section we have considered the map of controls U(-)
depending only on time. When it also depends on the states, then
the control system is called a state dependent control system.

Let Z be a complete separable metric space and let

U:[te, T] x R" ~ Z
be a given set-valued map. Consider the control system
¥ = f(t,z,u), v € Ult,z), t € [to,T] (2.9)

An absolutely continuous function z : [tg,T] — R"™ is called a so-
lution to (2.9) if for some measurable selection u(t) € U(t, z(t)) we
have

7'(t) = f(t,z(t),u(t)) almost everywhere in [to,T)

2.2.1 Reduction to Differential Inclusion
We introduce the set-valued map F : [tp,T] x R™ ~ R" defined by
F(t,z) = f(t,z,U(t,x)) = {f(t,z,v) | v € U(t,z)}
and replace (2.9) by the differential inclusion
z'(t) € F(t,z(t)) almost everywhere in [tg, T (2.10)
We impose the following assumptions:

V(z,u) € R"x Z, f(-,z,u) is measurable
Vi € [te,T)], f(t,-,+) is continuous (2.11)

U is Carathéodory and has closed nonempty images
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Theorem 2.2.1 If (2.11) holds true, then the sets of solutions to
control system (2.9) and differential inclusion (2.10) do coincide.

Proof — Clearly every solution to (2.9) solves also (2.10). Con-
versely, consider a solution z to differential inclusion (2.10). By
Theorem 1.2.12 the set-valued map t ~» U(t, z(t)) is measurable and
the map (¢,u) — f(t,2(t),u) is Carathéodory. Applying Proposition
1.2.10 we can find a measurable selection u(t) € U(¢,z(t)) such that
z'(t) = f(t,z(t),u(t)) almost everywhere in [to,T]. O

Hence we can rewrite dynamical system (2.9) in the differential
inclusion formulation (2.10). In general F' does not have closed val-
ues. However, using arguments comparable to those from the proof
of Theorem 2.1.3 we get

Proposition 2.2.2 Assume that (2.11) holds true. Then the set-
valued map clF' : [ty, T] x R™ ~ R"™ defined by

dF(t,z) = f(t,z,U(t, 7))

is measurable with respect to t. Furthermore if for some t € [to,T],
k(t) >0, I(t) >0, z0 € R™, p >0, the map f(t,-,-) is k(t)— Lipschitz
on B,(zo) x Z and the set-valued map U(t,-) is l(t)—Lipschitz on
B,(zq), then clF(t,-) is k(t)(1 + 1(t))—Lipschitz on B,(zo).

Let T(+) be a solution to the differential inclusion

2'(t) € cF(t,z(t)) almost everywhere in [to,T] (2.12)

Further assume that there exist p > 0 and k € L'(tp,T) such that
for for almost every t € [ty,T] and all u € U(t, z), the map f(¢,-, u)
is k(t)-Lipschitz on B,(Z(t)).

Then for all ¢ > 0 there exists a solution z(-) to (2.9) such that
z(to) = T(to) and ||z — Fl|ya L e.

2.2.2 Linearization

In this section we assume that Z is a separable Banach space. Con-
sider a solution z to (2.9) and let w(t) € U(¢, 2(t)) be a corresponding
control. We associate to it the following linearization of (2.9) along
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the pair (z,%):

w'(t) € A(t)w(t) + B(t)dUl(t, 2(t),a(t))(w(t)) + v(t)
(2.13)
0(t) € Taopie,2(0),U(t20))) (f (£, 2(1),@(t))) ae. in [to,T]
where
of _ _of _
%(tvz(t)»u(t)% B(t) - %(t7z(t)7u(t))

and d,U denotes the (partial) adjacent derivative of U with respect
to the state variable x.
We impose the following assumptions

Alt) =

The derivative —(,)T‘Z%(t, z(t),w(t)) exists a.e. in [ty, T

Je >0 and functions k, [ : [tg,T] — R4 such that (2.14)
f(t,-,+) is k(t) — Lipschitz on B.(z(t)) x Z and
U(t,-) is [(t) — Lipschitz on B (z(t)) for a.e. t € [ty, T

Theorem 2.2.3 Assume that Z is a separable Banach space, that
(2.11), (2.14) hold true and the map t — k(t)(1 +1(¢t)) is integrable.
If at least one of the following two conditions holds true:

i) VY(t,xz) €
it) V(t,z) €
then for every solution w(-) to (2.13) and elements {wp}p>o in R™

satisfying limp_,o04 wp, = w(to), there exists a family {xn(-)}nso of
solutions to (2.9) such that

[to, T) x R™, f(t,z,U(t,z)) is closed
[to,T] x R™, U(t,z) is convex

zp(to) = 2(to) + hwy, for all small h >0

and the difference quotients (xp —z)/h converge uniformly to w when
h goes to zero.

Proof — We apply the variational inclusion (Theorem 1.3.10)
to deduce the result from the following relation:

Vo eR"™ A(t)v+ B(t)d,U(t, z(t),w(t))v C dF(t,2(t), 2 (t))v

for almost all t € [tg, 7). O
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2.3 Linear Implicit Control Systems

Let E, A € L(R™,R™) be linear operators from R" into R™, U be
a finite dimensional vector space and B € L(U,R™). Consider the
implicit control system

Ei' = Az + Bu, u € U (2.15)

When n = m this system is sometimes called singular, because
FE may be noninvertible.

An absolutely continuous function z : [tp, T} — R is called a
solution to (2.15) corresponding to a measurable control u : [tg, T'] —
U if

Ex'(t) = Ax(t) + Bu(t) almost everywhere in [to, T]

Our aim is to reduce (2.15) to the explicit system

¥ =Dz +v, veV zeQ (2.16)

where V C @ are subspaces of R™ and D is a linear operator from

Q@ into Q.
Let us denote by B the range of B and for every y € R™ set

E'(y) = {c€R"| Bx = y}
We introduce a decreasing family of subspaces:
Ky=R" ..., Kpyy = AYEKL,+B), £ >0
Since they are subspaces of R™, we obtain

Q= [)Kr = K;

k>1

for some j < n — 1. Furthermore A™'(EQ + B) = Q and therefore
the set-valued map F : @ ~ @ given by

Ve € Q, F(z) = ETHAz+B)NQ

has nonempty images. It is also clear that for every z € Q, F(z) is
an affine subspace of Q.
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Theorem 2.3.1 FEvery solution z(-) to (2.15) defined on the time
interval [to, T satisfies x(t) € Q for all t € [to, T].

Proof — Fix a solution z : [t5,T] — R™ = Kj. Assume that we
already know that for some 0 < k <n —1, z(t) € Ky for all ¢. Then
z'(t) € K}, almost everywhere and, consequently,

z(t) € A7YEx'(t)+ B) ¢ A YEK, + B) = Ky for ae. t€ [t,T)

Continuity of z(-) yields that z(¢t) € Ky for all ¢t € [to,T] and the
proof ends by the induction argument. O

Let the map D : @ — @ and the subspace V' C @ be defined by

Vz€Q, Dz Flz), |Dzl| = min |ly||, V=EB)nQ = F(0)
yeF(z)

Proposition 2.3.2 The map D defined above is a linear operator
from Q into itself. Furthermore for every z € Q, F(z) = Dz +V
and Dz is orthogonal to V.

Proof — Since Graph(F) is a subspace,
Dx+V C Flz)+V = F(z)+F(0) C F(z)

To prove the equality, consider y € F(z) C Q. Then Ey € Az + B,
EDx € Az + B and therefore y — Dz € Q and E(y —Dzx) € B. Hence
y—DxeVand F(z) =Dz +V.

It remains to show that D is linear. The element Dz being the
orthogonal projection of zero onto Dz + V, we deduce that D(Q) C
VL (orthogonal to V in Q). Fix z, y € Q. Then

—~EDr e —~Az+ B, —EDyec —Ay+ B, ED(z +y) € Az + Ay + B
Adding these inclusions, we get E(D(x +y) — Dz — Dy) € B. Thus
Dz+y)—-Dz—Dy € VNVt = D(x+y) = Dz+Dy

Finalkly D is homogeneous, because

F(Az) = ET'(0MMz+B)NQ = A\F(z) O
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Theorem 2.3.3 Solutions to (2.15) and (2.16) do coincide. Denote
by BT the orthogonal right inverse' of B. Then the map

_ | Bt (EDz - Az) ifz € Q
u(z) = { 0 if not

is a regulation law for (2.15): for every zo € Q there emists a
C*®—solution to the singular system

Ezx' = Az + Bu(z), z(0) = =z (2.17)
defined on [0,00[. It is unique if and only if ker(E) N Q = {0}.

Proof — By Theorem 2.3.1 and Proposition 2.3.2 every solution
to (2.15) solves (2.16). Conversely every solution z : [tg,T] — R™
to (2.16) satisfies Ez'(t) € Az(t) + B almost everywhere. Hence, by
Proposition 1.2.10, z(-) solves (2.15).
Fix o € @ and consider the solution z(-) € C* to the linear
system
¢ = Dz, z(0) = =z

It is defined on [0, +00] and is also a solution to (2.15). To prove the
latter statement of our theorem, observe that (2.17) may be written
as:

Ex = EDz, z(0) = xo (2.18)

So the solution to (2.17) is unique if and only if the solution to (2.18)
is unique. But this happens whenever zero is the only solution to the
differential inclusion

r € Dr+ker(E)NQ, z(0) = 0
Consequently uniqueness is equivalent to ker(E)NQ = {0}. O

Observe that the above results allow to study implicit system
(2.15) even in the case when the solution corresponding to a given
control and a given initial state is not unique. We investigate next
necessary and sufficient conditions for uniqueness.

'That is BY is the linear operator from B into U with BTz equal to the
orthogonal projection of zero onto B~ (x). Clearly for every x € R™, BBz = .
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We say that (2.15) enjoys uniqueness if to every measurable con-
trol @ : [0,7] — U, T > 0 and every initial state zyp € R™ corre-
sponds at most one solution to control system (2.15) starting at xp.
Set (A'E)°(R”) = R" and define recursively

Vi > 0, (A'E)M(R") = A7'E ((A“lE)"(R”))

Theorem 2.3.4 Consider the subspace P = (A~'E)""Y(R"). The
following statements are equivalent :

i) System (2.15) enjoys uniqueness

i) ket ENP={0}

Proof — Observe that i) is equivalent to: Z(-) = 0 is the only
solution to the linear system Ex’' = Ax starting at zero. Hence, by
Theorem 2.3.3 applied with B = 0, (2.15) enjoys uniqueness if and
only if 77) holds true. O

2.4 Nonlinear Implicit Control Systems

Let Z be a complete separable metric space, f : R"XR"x2Z — R™
be a continuous map and U C Z be a given closed set. Consider the
implicit control system

flz, 2, u(t)) =0, wu(t)eU t € [t,T) (2.19)

An absolutely continuous function z : [tg,T] — R™ is called a solu-
tion to (2.19) if there exists a measurable map wu : [ty,T] — U such
that f(z(t),z'(t),u(t)) = 0 almost everywhere in [tg, T

2.4.1 Reduction to Differential Inclusion
Define the set-valued map F : R" ~» R™ by
F(z) = {v € R"| 3u € U with f(z,v,u) = 0}
and consider the differential inclusion
2'(t) € F(z(t)) almost everywhere in [tg, 7] (2.20)

Clearly every solution to (2.19) solves (2.20). The following lemma
implies the converse statement.
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Lemma 2.4.1 If f is continuous, then the solution sets of (2.20)
and (2.19) do coincide.

Proof — Fix a solution z to (2.20). The existence of a measurable
selection u(t) € U with f(x(t),z'(t),u(t)) = 0 almost everywhere in
[to, T] follows from Proposition 1.2.10. O

The introduced set-valued map F' has a closed graph whenever f
is continuous and U is compact. If moreover for all T € R™

Je >0 such that liminf min [|f(z,v,u)]] > 0 (2.21)
[lv]| =00 xE€B:(Z), uclU

then
3R > 0 such that Vz € B.(Z), F(z) C Bgr(0) (2.22)

This and Proposition 1.2.2 yield that if (2.21) holds true and f is con-
tinuous, then F' is upper semicontinuous on its domain of definition
and has compact images.

Another sufficient condition for the upper semicontinuity of F is
given by

Proposition 2.4.2 Assume that Z is o finite dimensional vector
space, f is continuous and for every T € R™

Je >0 such that liminf inf If(z,v,u)|]| >0 (2.23)
||v|| — 00 TEB:(T),uel

[[ufl = o0

Then (2.22) holds true, F is upper semicontinuous on its domain of
definition and has compact images.

In general the images of F' are not convex and for this reason
inclusion (2.20) is not easy to investigate even when F is upper semi-
continuous.

Our next aim is to provide a sufficient condition for Lipschitz
continuity of F. We assume that

f(-,+,+) is continuous
Vu € U, f(-,-,u) is differentiable (2.24)

(-,-,-) is continuous

)
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Theorem 2.4.3 Assume (2.24) and that for an open subset N' C R™
the following holds true

Y (z,v,u) € f71(0) with z € N, u € U, g—i(:v,fu,u) is surjective

Further assume that at least one of the following two conditions is
satisfied:

1) U is compact and for every T € N (2.21) is valid

i1) Z is finite dimensional and every T € N satisfies (2.23),

Then the set Dom(F) NN is open and F is locally Lipschitz on
it. Furthermore for all (z,v,u) € f~Y0) with (z,u) € N x U, we
have

ker (%(m,v,u)) C Graph(dF'(z,v))

The proof results from the inverse mapping theorems [22].

2.4.2 Linearization of Implicit Systems

Consider a solution z to (2.19) and let @ be a corresponding control.
We associate with it the following linear time dependent implicit
system

At)w(t) + B(&)(w'(t) —v(t)) = 0

(2.25)
v(t) € Twp(z(t))(z’(t)) a.e. in [tg,T]
where
AW = L, 20,50, Bo = 2e0,70,70)

Theorem 2.4.4 Assume that all hypothezis of Theorem 2.4.3 hold
true with N' = z([0,T]) + pB, where p > 0. Let w be a solution to
(2.25).

Then for all elements {wp}pso in R™ satisfying limp_,o4 wp =
w(ty), there exist solutions xp, to implicit system (2.19) such that

zr(to) = z(to) + hwy, for all small h >0

and the difference quotients (zp, —z)/h converge uniformly to w when
h goes to zero.

Proof — To prove this result we apply Lemma 2.4.1, Theorems 2.4.3,
1.2.5 and variational inclusion (Theorem 1.3.10). O



56

2 —

Control Systems and Differential Inclusions



Chapter 3

Value Function of Mayer’s
Problem

In this chapter we address the Mayer problem arising in control the-
ory. We start with the free end point case:

minimize g(z(7T))
over all solutions to the control system
¥ = ft,z,ut), u(t) € U@} (3.1)
satisfying the initial condition
z(0) = &o (3-2)

By a simple change of variables the classical Bolza problem

T
minimize{g(:c(T)) + /O L(t,x(t),u(t))dt}

over all state-control solutions (z,u) of (3.1), (3.2) may be reduced
to the Mayer problem.

The basic objective of optimal control theory is to find necessary
and sufficient conditions for optimality and to construct optimal solu-
tions. Necessary conditions are available in the form of Pontriagin’s
maximum principle. It implements the Fermat rule in the case of
optimal control problems.

57
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When applied to an abstract minimization problem: mingc g ¢(z),
where K is a subset of a normed space, Fermat rule states that if
T € K is a minimizer, then

Vv € Tk(Z), (Ve(Z), v) > 0

In the above Tk (Z) denotes the contingent cone to K at T.

In the same way as the Euler-Lagrange equation is a consequence
of the Fermat rule in Calculus of Variations, the maximum principle
can be deduced from the above rule: If the state-control pair (z,%)
is optimal, then the solution p(-) (called the co-state) to the adjoint
system

8 *
PO = = (Z0.20,30)) 0, §(T) = ~Vg(()
satisfies the transversality condition
p(t) € N%(t)(z(t)) almost everywhere in [0, T]

where N?i(t) (2(t)) denotes the subnormal cone to the reachable set
R(t) of (3.1) from & at time ¢. This last inclusion implies the maxi-
mum principle:
{p(t), f(t,2(8),u(t))) = max (p(t), f(t 2(t),u)} ae in [0,T)
uelU(t)
In Section 3 we complete these conditions to obtain sufficient ones
by using the value function

V(to,z0) = inf{ g(z(T)) | z is a solution to (3.1), z(ty) = zo }
and the Hamiltonian H of the control system (3.1):

H(t,z,p) = sup (p,[(t,z,u))
uelU(t)

In general V and H are nonsmooth functions and we have to use
notions of superdifferentials from Chapter 1.

The value function allows to single out optimal solutions. Indeed,
it is nondecreasing along solutions to (3.1) and is constant along
optimal solutions.
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Sufficient conditions that we prove are of the following type: for
almost every t € [0, T, there exists p(¢) such that

(<p(t)7z,(t)>’ _p(t)) € 8+V(t,z(t))

where 0,V denotes the superdifferential of V. We also show that
the co-state of the maximum principle verifies the above relations.

To find the value function from its definition at first glance seems
to be an impossible task, because it amounts to solving as many
optimization problems as there are initial points (¢p,z¢). But very
fortunately, under quite general assumptions, the value function is
the unique solution to the Hamilton-Jacobi equation:

—%—Z(t,x) + H(t,x,—g—‘;—(t,x)) =0, V(T,)) = g()

However, since even in very regular situations the value function is
merely Lipschitz, solutions of the above Hamilton-Jacobi equation
have to be understood in a generalized sense, where derivatives are
replaced by subdifferentials (see Chapter 4.)

We also investigate what are the regularity properties of the sys-
tem which are inherited by the value function (Lipschitz continuity
in Section 1, semiconcavity in Section 4 and lower semicontinuity in
Chapter 4.) In Section 3 we show that differentiability of V is re-
lated to uniqueness of optima and is preserved along each optimal
solution.

When the Hamiltonian H is smooth enough and the value func-
tion is differentiable at (0,&p), then the following necessary and suf-
ficient condition for optimality holds true:

Let z(-), p(-) solve the Hamiltonian system

() = SL(t,2(t),p(t))

Pty = —9Z(t2(t),p(t), t € [0,T)

Then z is optimal if and only if z(0) = &, p(0) = —%%(0,50).
The value function can be also used to construct the optimal
feedback map:

Glt,z) = {v e [t U0)| Frm(ta) = 0}
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Namely the following property holds true: a solution T to (3.1) is
optimal for our minimization problem if and only if it is a solution
to the differential inclusion

2 € G(t,z), z(0) = & (3.3)

To investigate the regularity of the set-valued map G, we show in
Section 4 that for sufficiently smooth f and g, the value function is
semiconcave. As a consequence, we obtain that the feedback map
G is upper semicontinuous on [0,T[x X and has nonempty compact
images. In particular whenever G is single-valued, it is continuous
and optimal solutions are continuously differentiable.

If the data are convex, then the value function is convex, G has
convex values and inclusion (3.3) fits the well investigated framework
of upper semicontinuous convex valued maps (see [1].)

3.1 Value Function

3.1.1 Mayer and Bolza Problems

Consider T > 0, a complete separable metric space Z, a set-valued
map U : [0,T] ~ Z and a map f : [0,T] x R" x Z — R". We
associate with it the control system

() = ft,z(t),u®), u(®) € U®) (3.4)

Let an extended function g : R" — RU{+o0} and {; € R" be given.
Consider the minimization problem, called Mayer’s optimal control
problem :

min {g(z(T)) | zis a solution to (3.4), z(0) =&} (3.5)

The value function associated with this problem is defined by: for
all (to,xo) S [O,T] x R™

V(to, zo) = inf{g(z(T)) | = is a solution to (3.4), z(ty) = zo} (3.6)

We impose the following assumptions
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V(z,u) € R"x Z, f(,z,u) is measurable
For a.e. t € [0,T), f(¢t,-,-) is continuous (3.7)

U(-) is measurable and has closed nonempty images

and

i) 3k € LY0,T) such that for a.e. t € [0,7],
YueU(t), f(t,-,u) is k(t) — Lipschitz

i) Iy € LY(0,T) such that for a.e. ¢t € [0,7], (3.8)
SUPyeu(t) ”f(t,O,U)“ < ’Y(t)

1) g is locally Lipschitz

These assumptions imply that V' is actually equal to the value func-
tion of the relaxed problem in which system (3.4) is replaced by the
differential inclusion

2'(t) € e (f(t,z(t),U(t))) almost everywhere (3.9)
Hence for all (¢, zg) € [0,T] x R",

V(to,z0) = inf{g(x(T))| z solves (3.9), z(to) = z0} (3.10)

The Bolza problem has the same nature, but its cost involves the
integral functional: Consider in addition a function L : [0,T] x R™ x
Z — R and the following minimization problem:

T
minimize{ 9(@(T)) + /0 L(t,x(t),u(t))dt} (3.11)

over all solution-control pairs (z,u) to (3.4) with z(0) = &.
We denote by z = (2%, z) elements of R"™! and we set

vie[0,T)], = (z%2), u€ Z, f(t,2,u):= (Lt z,u), f(t,z,u))
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Then it is not difficult to realize that a solution-control pair (z,u) of
(3.4) is optimal for problem (3.11) if and only if the map

b 3(t) = </OtL(s,z(s),ﬂ(s))ds, z(t))
solves the problem
minimize (g(:z:(T)) + rcO(T))

over all solutions to the control system

o~

#'(t) = f(t,3(t),u(t), u(t) € U), (0)=(0,&)
This new problem is of Mayer’s type.

3.1.2 Lipschitz Continuity of the Value Function

More generally consider an extended function ¢ : R™ — R U {400},
a set-valued map F : [0,T] x R" ~ R", £ € R” and the differential
inclusion

#'(t) € F(t,z(t)) almost everywhere (3.12)

We investigate the minimization problem
min {g(z(T)) | z is a solution to (3.12), z(0) = &}
The corresponding value function is given by:
For all (¢9,z¢) € [0,T] x R™,

V(to,zo) = inf{g(z(T)) | = solves (3.12), z(tp) = xzo} (3.13)

Let Sis,.77(w0) denote the set of solutions to (3.12) starting at zo
at time ty and defined on the time interval [¢g, T]. The value function
is nondecreasing along solutions to (3.12):

Vze ‘S[to,T]($0)> v to<t1 <t < Ta V(thzc(tl)) < V(t27x(t2))
and satisfies the following dynamic programming principle:

Vi€ to,T), Vito,z0) = inf{V(t,x(t))l xes[tO,T](xo)} (3.14)
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Furthermore & € Sy, 7(@0) is optimal for problem (3.13) if and only
if V(t,z(t)) = g((T)).
We impose the following assumptions on F and g

i) F has closed nonempty images
i) VzeR® F(,z) is measurable

ii) 3k € LY0,T), YVt € [0,T], Vz,y € R",

F(t,z) C F(t,y) +k(t) ||z —y|| B (3.15)

) 3y e LY0,T), Vte0,T), F(t0)Cy(t)B

L v) g is locally Lipschitz

and observe that if the map f from Section 3.1.1 satisfies (3.7) and
(3.8), then, by Chapters 1,2, assumptions (3.15) hold true for the set-
valued map F(t,z) := o (f(¢t,z,U(t))). This and (3.10) yield that
results of this section may be applied as well to the Mayer problem
considered in Section 3.1.1.

We recall that the directional derivative of a function ¢ : R™
R at zo € R™ in the direction v € R™ (when it exists) is defined by

; o(zg + hv) — @(zq)
ov h—0+ h

Theorem 3.1.1 Assume (3.15). Then for every R > 0, there exists
Lgr > 0 such that
i) For all (to, o) € [0, T]xBr(0) and every solution x € Sjy, 11(Zo)

Vitelt, T, =@l < Lr

and the map [to,T] 3t V(¢,2(t)) is absolutely continuous.
Furthermore for almost every t € [to,T), the directional derivative

ov

ottt )

does exist.
i1) For allt €10,T), V(t,-) is Lr-Lipschitz on Br(0)
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Finally, if for all R > 0, there exists cp > 0 such that

For a.e. t€[0,T], Yz € Br(0), sup |y| < cr (3.16)
yeF (t,x)

then for every R > 0, there exists Cr > 0 such that
Vz € Bgr(0), V(,z) is Cr— Lipschitz

Proof —  Consider any solution = € Sy, 77(z0) to differential
inclusion (3.12). Then for almost all ¢ € [to, T

2'(t) € F(t,z(t)) C F(t,0) + k() ||z(¢)|| B
Thus

Vi e [Tl 2] < ool + /t:v(s>ds+ /t:ms) ()] ds

This and Gronwall’s lemma yield the first statement. Since ¢ is
locally Lipschitz we deduce 47) from Filippov’s theorem.

Let z; € Sy, 1)(70). We claim that the map ¢t — V(t,z1(t)) is
absolutely continuous. Indeed fix tg < t; < to < T. By (3.14), there
exists T3 € Spy, 77(z1(f1)) such that

V(t2, 22(t2)) < V(ta,z1(t1)) + [t2 — ta
Then from i) we deduce that for i = 1,2

li(t2) =2 <[22 v(s)ds + [2 k(s) llwi(s)]| ds

IA

22 ¥(8)ds + Loy [y k(s)ds
Thus, by 1), for a constant L depending only on ||z||
0 < Vit,z1(t2)) — V{t, z1(t1))

< Vty, m1(t2)) — V(ta, 22(t2)) + [t2 — 1]
< L|lz1(t) = ma(t2)|| + |62 — ti] (3.17)
< L(llz1(t2) — z1(t)|) + w2 (t2) — z1(t)]]) + [t2 — #|

< 2L [2 y(s)ds + 2Ly L J;? k(s)ds + [t2 — t1]



3.1.  Value Function 65

Recall the following characterization of absolutely continuous maps:
A function f : [a,b] — R is absolutely continuous if and only if

Z) E!v(f)>0,Va:algblg...gamgbm:b,
iz1 [ (bi) = flas)| < o(f)
1) Ve>0,35>0 suchthat Va<a; <b;<b,i=1,....m

satisfying |a;, b;{ N]aj,b[ = 0 for i # 5, Y% (bi—a;) <9

we have 3% |f(bi) — flai)| <e

Thus, by (3.17), the map t — @(t) := V(¢,21(t)) is absolutely con-
tinuous.

Fix t € [to,T] such that ¢ and z; are differentiable at ¢. Then
from the local Lipschitz continuity of V' with respect to the second
variable

! _ —
o Vo) + hef(®) = VEai(t) _ | elt+h) —olt)
h—0+ h h—0+ h

To prove the last statement of our theorem, observe that (3.16) and
i) imply that for all R > 0, there exists [ such that every z €
Sito,7](w0) is lg-Lipschitz whenever zo € Bgr(0). Fix 0 <ty < t; <
T, zo € Bgr(0). By (3.14) there exists z € Sy, 1)(w0) such that
V(t1,z(t1)) < V(to,z0) + |t1 — to|- Then

IV(tla :EO) - V(t0,$0)|

< WVt 2(t1) = Vito, 2o)l + [V{tr, z(61)) = V(t1, 20)]

IA

|t1-—t0|+LR “ZL‘(tl)—ZIZoH < (LRIR—Fl)ltl —tg! O

3.1.3 Optimal Feedback

When the value function is directionally differentiable, it has many
properties related to dynamics of the system.
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Proposition 3.1.2 Assume (3.15). If for some (to, zo) € [0, T[xR™,
F is lower semicontinuous at (tp, xo) and for some v € ¢ (F(ty, xo)),
the directional derivative of V' at (ty, zg) in the direction (1,v) exists,
then this directional derivative is nonnegative.

Proof — Consider a solution z(-) to differential inclusion (3.12)
satisfying z(to) = =zo, 2'(tp) = v. Since V(¢,-) is Lipschitz on a
neighborhood of z( with the Lipschitz constant independent of ¢ and
since V is nondecreasing along solutions to (3.12),

. V(to + h,zo + h’l)) - V(to,xo)
limyp, 04 3

— lim V(to + h,z(to + h)) — V(to, zo)
h—0+ h

>0 O

To characterize optimal solutions, we introduce the following
feedback map G : [0,T] x R™ ~» R™ defined by

v (t2) € [0,T] x R", Gt,z)= {v € Flt7) | %(t,x) =o}

(notice that the sets G(t,z) may be empty.)

Theorem 3.1.3 Assume (3.15) and let tg € [0,T). Then the follow-
ing two statements are equivalent:
i) x is a solution to the differential inclusion

Z'(t) € G(t,z(t)) almost everywhere in [tg,T] (3.18)

ii) x is a solution to differential inclusion (3.12) defined on the
time-interval [ty, T] and for every t € [to, T, V(¢,2z(t)) = g(z(T)).

Proof —  Fix a solution z to (3.12) defined on [to,T] and set
w(t) = V(t,z(t)). By Theorem 3.1.1, ¢ is absolutely continuous and
for almost all ¢ € [to, T

1) = a—u?f,—@))(t,x(t))
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Assume that 7) holds true. Hence, for almost every ¢ € [to,T], the
set G(t,z(t)) is nonempty and ¢'(¢) = 0 almost everywhere in [to, T].
Consequently ¢ = V(T,z(T)) = g(=(T)).

Assume next that i) is verified. Then, differentiating the map
t — ©(t), we obtain that for every to < t < T, ¢'(t) = 0. Therefore
for almost all t € [ty, T, 2/(t) € G(¢,z(¢)). O

Corollary 3.1.4 Assume (3.15). Then, a solution x € Sy, )(z0) is
optimal for problem (8.13) if and only if it is a solution to differential
inclusion (8.18) satisfying the initial condition z(ty) = .

Theorem 3.1.5 Assume (3.15) and that the images of F are con-
vez. Then for every ty € [0,T] and xo € R™, inclusion (3.18) has at
least one solution x € Sy, 1)(%o)-

Proof — By Theorem 1.3.7, problem (3.13) has at least one op-
timal solution Z. Furthermore V(¢,Z(t)) = ¢(Z(T)). Theorem 3.1.3
ends the proof.

3.2 Maximum Principle for Free End Point
Problems

3.2.1 Adjoint System

Consider a complete separable metric space Z, real numbers tg < T
and
fi[to, T) xR" x Z—R"

Let U : [tg,T] ~ Z be a set-valued map and consider the control
system

= f(t,z,u(t), u(t) € Ut), t € [to,T] (3.19)

Fix a state-control solution (z,%) to control system (3.19). We
assume that (3.7) holds true and

The derivative %%(t,z(t),ﬂ(t)) exists a.e. in [to, T

2
For some € > 0, k € L'(t,T) and for a.e. t € [ty, T (3.20)

VueU(t), f(t,-,u) is k(t) — Lipschitz on B.(z(t))
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Denote by X(-) the fundamental solution to the linear system

_ 9

X'(t) = ax(t,z(t),'d(t))X(t), X(to) = Id (3.21)

We recall the following property of the fundamental solution.

Proposition 3.2.1 Let X(t)* denote the transposed matriz. Then
every solution p to the adjoint system

= (Fsxem6)) b (3.22)

verifies p(t) = (X (£)*) " X(T)*p(T) for all t € [ty, T).

Proof — Set A(s) = %ﬁ(s,z(s),ﬂ(s)). Then, differentiating the
identity X (¢)X(¢)~! = Id, we obtain that for almost all ¢ € [tg, T
0= X'(O)X®H)™ + X)X H(t)
= AB)XOX ()™ + XX (t) = A(t) + X (O)(X 1) (2)

Hence (X 1) (t) = —X(t)"LA(¢) and therefore (X (-)*)~! is the fun-
damental solution to

Y'(t) = —A@#)*Y(t), Y(t) = 1d

Thus the solution p(-) to (3.22) verifies p(t) = (X (¢)*) ™! p(to) for all
t € [to, T]. So, p(to) = X(T)*p(T) and the proof follows. O

Let us associate with control system (3.19) the Hamiltonian H :
[0,T] x R™ x R™ — R defined by

H(t,z,p) = sup <p,f(t,z,u)>
u€eU(t)

Under assumptions (3.7), (3.8), H is measurable with respect to ¢,
locally Lipschitz with respect to (z,p) and convex with respect to
the third variable p.

Denote by R(t) the reachable set of (3.19) at time ¢ from z(%p):

R(t) = {z(t)| z is a solution to (3.19), z(to) = z(to)}
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by T (2(t)) the contingent cone to R(t) at 2(¢) and by

Niw (1) = (Tae (=)

the subnormal cone to R(t) at z(t) (negative polar cone of the con-
tingent cone to R(t) at z(¢).)

Lemma 3.2.2 Assume that (8.7) and (3.20) hold true. If p is a
solution to adjoint system (3.22) such that p(T) € N%(T)(z(T)), then

Vit e fto,T], p(t) € Npy(2(t) (3.23)
and the following maximum principle holds true:
(p(t), f(t,2(t),u(t))) = H(t 2(t),p(t)) ae in [to,T]  (3.24)

Proof — From Theorem 1.3.9 we deduce that for allv € Ty (2(t)),
X(T)YX(t)"'v € Triry(2(T)). Thus (p(T),X(T)X(t)"'v) < 0 and,
using Proposition 3.2.1, we obtain

<p(t)v>= (XOY) " X(@)p(T), v) < 0
If w solves the linearized system (2.6) and to = 0, w(0) = 0, then
w(T) € Trery(2(T)) and w(T) = f§ X(T)X(s)"'v(s)ds. Thus
T
02< p(T), w(T) >=< [ < (X)) X(T@)P(T),0(s) > ds
0
Thus < _[(;F < p(s),v(s)ds >< 0 for all integrable selection v(s) €
TEBf(s,z(s),U(s))(Z/(S))' Since
0€ @f(saz(s% U(S)) - ZI(S) - TEf(s,z(s),U(s))(f(svz(5)7ﬂ(3)))

we deduce, using results on measurable set-valued maps from Chap-
ter 1 that

T
02</ sup < p(s),v>ds>0
0 wvedaf(s,z(s),U(s))—2'(s)

Which yields (3.24) O
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3.2.2 Maximum Principle

Let ¢ : R™ — R be a differentiable function and zy € R™ be given.
Consider the problem

minimize g(x(T))
over all solutions to control system (3.19) satisfying z(ty) = zp.

Theorem 3.2.3 If a state-control solution (z,%) solves the above
problem and (3.7), (3.20) hold true, then the solution p to adjoint
system (3.22) such that

p(T) = —Vg(2(T))
satisfies (3.23) and mazimum principle (3.24).

Remark — The map p(-) in the above theorem is called co-state
or adjoint variable associated with (z,7). O

Proof — Since z is optimal, we have

yénRi(r%)g(y) = g(2(T))

Let v € Tg(1)(2(T)) and hy, — 0+, v, — v be such that 2(T)+h,v, €
R(T). Then g(2(T)+hnvn)—g(2(T)) > 0. Dividing by h, and taking
the limit we obtain < Vg(z(T)),v > > 0. Hence —Vg(2(T)) €
N%(T)(z(T)). Lemma 3.2.2 yields the conclusion. O

The above theorem can be applied to derive necessary optimality
conditions for various minimization problems:

Exercises

1. Minimization with respect to both End Points. Con-
sider a differentiable function ¢ : R™ x R" — R and the problem

minimize ©(z(ty),z(T))

over all solutions to control system (3.19). Assume that a state-
control solution (z,%) is optimal and (3.7), (3.20) hold true.
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Show that the solution p to adjoint system (3.22) such that

p(T) = ——(2(t), 2(T)) (3.25)

2. Problem with Initial Point Constraints. Consider the
same problem as in Exercise 1 with an additional restriction

z(to) € K (3.26)

where K is a given subset of R™. Assume that a state-control solution
(z,7) is optimal and (3.7), (3.20) hold true.
Show that the solution p to adjoint system (3.22), (3.25) satisfies
maximum principle (3.24) and transversality condition
Oy

p(to) € EE(Z(to),z(T)) + Ni(2(to)) (3.27)

3. Bolza Problem. Let ¢, K be as in Exercise 2. Consider a
function L : [to,T] x R™ X Z +— R and the optimization problem

minimize {go(a:(to),:c(T)) + tTL(t,:v(t),u(t))dt}

over all state-control solutions (z, u) to system (3.19) satisfying (3.26).
Assume that a state-control solution (z,%) is optimal and that the
map (f, L) satisfy assumptions (3.7), (3.20).

~ Show that the solution p to the equation

= (Leea0.50)) p — Ftt,2(0,7(0)

satisfying (3.25) verifies transversality condition (3.27) and the max-
imum principle:

(p(t), £(t, 2(t),u(t))) — Lt z(¢),u(t))

= ma'XuEU(t)(<p(t)7f(taz(t)7u)> - L(t’z(t)7u)) a.e. in [thT]
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4. Free Time Mayer Problem. Let g be a function as in
Section 5.2.2 and consider the problem

minimize g(z(t))

over all solutions to control system (3.19) satisfying z(ty) = z¢. Let
(z,7) be an optimal state-control solution, T' > 0 be the correspond-
ing optimal time and assume that (3.7), (3.20) hold true. Let p
denote the corresponding co-state. Assume in addition that f(-, z, )
is continuous, U(-) is lower semicontinuous and for all z € R", the
set f(T,z,U(T)) is bounded. Show that

e <p(T), f(T,2(T),u) >=0 0O
3.3 Necessary and Sufficient Conditions for
Optimality

We begin this section with a sufficient condition for optimality in-
volving the superdifferential of the value function.

3.3.1 Sufficient Conditions

Theorem 3.3.1 Assume that (3.7), (3.8) hold true and let (to, zq) €
[0,T] x R™. Consider a solution z : [to,T] — R™ to control system
(8.4) with z(tg) = zo and let T be a corresponding control. If for
almost every t € [to, T], there exists p(t) € R™ such that

((p(8),2'(8)) , —p(t)) € 0LV (8, 2(t)) (3.28)
then z is optimal for problem (3.6).

Proof — By Theorem 3.1.1 the map 1 (¢) := V (¢, 2(t)) is absolutely
continuous. Let ¢ € [tg,T] be such that the derivatives ¢'(¢) and
Z'(t) do exist and (3.28) holds true. Then, using Theorem 3.1.1 and
Proposition 1.1.7

0 = ((<p(t),2'(t) >, —p(1)),(1,2'(1))) = DyV (2, 2(2))(1, 2' (1))

V(t+h,2(t + B) — V(¢ 2(t))
h

= ¢'(¢)

> limsupy_,o4



3.3. Necessary and Sufficient Conditions for Optimality 73

This yields that ¢ is nonincreasing. Since the value function is also
nondecreasing along solutions to control system (3.4), we deduce that
the map ¢ — V(¢, 2(¢)) is constant. So z is optimal. O

3.3.2 Necessary and Sufficient Conditions
Theorem 3.3.2 Assume (3.7), (3.8), that f is differentiable with

respect to x and g is differentiable. A state-control solution (z,u) to
control system (3.4) with z(to) = xo is optimal for problem (3.6) if
and only if the solution p: [tg,T] — R™ to the adjoint system

10 = (Le20,50)) plo), 1) = ~Volam)  (329)

satisfies the mazimum principle
< p(t), f(t, 2(t),T@(t)) > = H(t,2(t),p(t)) ae. in [to,T] (3.30)
and the generalized transversality conditions
(H(t, z(t),p(t)), —p(t)) € 0+V(t,2(t)) ae. in [to,T) (3.31)

—p(t) € 04V (t,2(t)) for every t € [ty,T] (3.32)

where .V, (t, z(t)) denotes the superdifferential of V(¢,-) at z(t).
Furthermore, if V is semiconcave and H is continuous, then
(3.31) holds true everywhere in [to, T].

Proof — Sufficiency is a straightforward consequence of The-
orem 3.3.1 and (3.30), (3.31). The fact that (3.29) and (3.30) are
necessary follows from Theorem 3.2.3.

Fix ¢t € [tg,T], v € R"™ and consider the solution w(-) to the
linear system

S\
—_~
w
~—
fi
Q

(s, 2(s),u(s))w(s), € [t,T]

w(t) =

<

Then w(T) = X(T)X (t)"'v, where X(-) is the fundamental solution
to (3.21). For every h > 0, let 5 be the solution to the differential
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equation

#'(s) = [f(s,2(s),7(s)), s € [t,T]

z(t) = 2(t) + hv

From the variational equation we know that the difference quotients
(xp, — z)/h converge uniformly to w.
To prove (3.32) it is enough to observe that

(=p(t),v) = (X)) X(T) Vo (2(T)),v) = (Ve(2(T)), w(T))

> limsupy_ (V(t 2(8) + hv) — V(t, 2(8))) /b

To prove the necessity of (3.31) fix t € [0,T[ such that 2/(¢) =
f(t, z(t),w(t)) and equality (3.30) holds true, v € R"™, o € R. Then
from (3.30), using that V (¢,-) is locally Lipschitz, that V is nonde-
creasing along solutions to (4.3) and is constant along z, we deduce

limsupy_yo, (V(t+ ah, 2(t) + h(az () +v)) = V(t, 2(t))) /b

= limsup,_,q (V (£ + ah, z(t + ah) + hw(t + ah)) = V(t, 2(¢))) /h
= limsupy_,o, (V(t+ ah, zy(t + ah)) — V(t,2(£))) /h

< limsupy,o4 (9(za(T)) — @(2(T))) /b = (Veo(2(T)), w(T))

= (Ve(=(T)), X(D)X (£)'v) = {(X(2)) ™ X(T)*Vip(=(T)), )

= (=p(t),v) = (=p(t),—eZ'(t)) + (-p(t),az'(t) +v)

= aH(t,2(t),p(t)) + (-p(t),2'(t) +v)
Hence we deduce that for every o € R and v; € R
DV (t,z(t) (e, v1) < aH(t 2(t),p(t) + (—p(t),v1)

and (3.31) follows from Proposition 1.1.7.
When V is semiconcave, then, from Theorem 1.1.11, its superdif-
ferential is upper semicontinuous. Thus the last statement results

from (3.31) and continuity of H(-), p(-), 2(-). O
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For autonomous systems, that is with f and U independent of
t, the Hamiltonian is constant along any optimal state/co-state pair
(z,p). Indeed, recalling (3.30), (3.29), for almost all s € [tg,T] we
obtain

H(2(t),p(t)) — H(z(s),p
{p ((t) f(?)( () = f(2(s),u(s))) + (p(t) — p(s), f(2(s),0(s)))

for all ¢ € [to, T]. Since the above argument is symmetric,

|H(2(¢),p(2)) — H(2(s),p(s))] < of|t —s)

Using that t — H(z(t),p(t)) is absolutely continuous, we deduce that
H(z(t),p(t)) is constant.

When the Hamiltonian H (¢, -, -) is differentiable at (2(t),p(t)) for
all ¢ € [tg,T], then z and the co-state p satisfy the Hamailtonian
system

A
[V

~

=

v iz

A(t) = Gt 2(t),p(1))

pl(t) = —%—g(t,z(t),p(t)) a.e. in [tg,T)
This follows from Theorem 3.3.2 and

Proposition 3.3.3 Let (¢,2,D) € [to,T] x R" x R™ and w € U(t) be
such that (p, f(t,z,w)) = H(t,2,p). Then
i) If H(t,-,p) is differentiable at z, then

0 0 *
wan = (Lesw) p

1) If H(t,z,-) is differentiable at P, then

0H

—é;(t7z>p) = f(t,Z,U)

Proof — It is enough to observe that for every v € R™

@, f(tz+hv,T)—f(1,2,0))
h

H(t>z+hv7ﬁ)_H(t727ﬁ)
h

limp 04 > limp_04

= <1_7, gf:—(t,z,ﬂ)v> = <(%£(t,z,ﬂ‘))*ﬁ, v>
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and

2 limh__)o-{- (ﬁ-i—hv, f(t»z’ﬁ})l)_(ﬁv f(taz7ﬂ)>

. H(t,z,pt+hv)—H(t,z2,p
limny o, 2L o) H(t:2)

= (v, f(t,z,w)) O

3.3.3 Co-state and Superdifferentials of Value

Proposition 3.3.4 Assume (3.15) and let z be an optimal solution
to problem (3.13). Then for almost every t € [to, T,

V(ptapx) €8+V(t,z(t)), —Pt — <plazl(t)> =0 (333)

Furthermore, if F is lower semicontinuous, then for almost every
t € [to, T},

Y (pt,pz) € 04V (8, 2(t)), —p¢ + H(t,2(t),—pz) = 0 (3.34)

If (8.16) holds true and F is continuous, then (3.34) is satisfied for
alltg <t <T.

Proof — Let ¢ € Jto, T[ be such that 2/(t) € F(t,z(t)). Then for
all (pt,pe) € 04V (¢, 2(1))

. Vi(s,2(8)) = V(¢ 2(t) —pi(s —t) — (pz, 2(8) — 2(t))
0> hgjgp |s —t| + |lz(s) — z(D)||

Since V' (-, 2(+)) is constant, the above estimate yields

o —pi(s — 1) — (pe, 2(s) — 2(t))

_ _ /
Jim, P = —pt = (P 7 (1))

By the same arguments, taking s — t— we derive 0 > p; + (pz, 2'(t))
and so (3.33) is proved. Assume next that F' is lower semicontin-
uous and fix v € F(to,2¢),t0 < T. Consider z € Sy r)(wo) satis-
fying z'(t9) = v. Since for all small A > 0, V{(to,z0) < V(to +
h,z(to + h)), we deduce that D,V (tg,20)(1,v) > 0. Consequently,
for all (pt,pe) € 0+V(tg,z0), P+ < pz,v >> 0. But this yields
—p¢ + H(to, o, —pz) < 0. From the last inequality and (3.33) we get
(3.34).
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If (3.16) holds true and F' is continuous, then z is Lipschitz.
Fix t9 < t < T. Then for a sequence h, — 0+ and some v €
co (F(t,2(2)))

Fix (pt,pe) € 04V (¢, 2(t)). Applying exactly the same arguments as
before, we deduce that p; + (p,,v) < 0 yielding equality (3.34) at ¢.
(]

Theorem 3.3.5 Assume (3.7), (3.8), that f is differentiable with
respect to x and g is differentiable. Suppose further that V(tg,-) is
differentiable at x¢ and let (z,7) be an optimal state-control solution
to problem (3.6). Then the co-state p : [to,T] — R™ corresponding
to (z,4) and gien by Theorem 3.3.2 verifies

{—p(t)} = 04Vg(t,2(¢t)) for all t € [ty,T]
Hence if V(t,-) is semiconcave, then %—(t,z(t)) = —p(t).

Remark — In Section 4 below, we show that under some addi-
tional regularity assumptions on f, V is semiconcave. O

Proof — We already know from Theorem 3.3.2 that
—p(t) € 04Vi(t,2(t)) for all ¢ € [to,T]

Thus p(to) = — %% (to, 2o).

Fix v € R™ and let w, zp, have the same meaning as in the proof of
Theorem 3.3.2 with ¢ replaced by ¢9. Then, since V is nondecreasing
along solutions to control system (4.3) and constant along z,

ov . Vite,To + hv) = V(to, o)
(o) = g st

<—p(t0),U> = ox

< Timsup Ltb#r (1) = V(E:2(1))
h—0+ h

I V(t, z2(t) + hw(t)) — V(t, 2(t))
= limsup Y
h—0+
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for all ¢ € [ty,T]. Hence for every ¢ € 9.V, (¢, z(t)) we have

(=p(to),v) < (guw(t)) = (g, X(H)v) = (X(£)"q,v)

where X denotes the fundamental solution to (3.21).

Since v € R" is arbitrary, p(tg) = —X(¢)*¢. On the other hand,
p(+) being a solution to (3.29), we know that p(tg) = X (¢)*p(t) and we
deduce that —p(t) = ¢q. This yields that 9,V (¢, z(¢)) is a singleton
and ends the proof. O

3.3.4 Hamiltonian System

Whenever H happens to be more regular we can prove the following
theorem concerning optimal design. For every (to,zo) € [0,T] x R"
define
a*Vx(to,iﬂo) - 3*W(1L’0)

where W is given by W(z) = V (¢y, ).
Theorem 3.3.6 Assume (3.7), (3.8), that f is differentiable with
respect to z, g is differentiable and that H(t,-,-) is differentiable! on
R™ x (R™\{0}) for almost every t € [to, T).

Further assume that the sets f(t,x,U(t)) are convex and compact

and for every R > 0, there exists a nonnegative integrable function
Igr € LY(0,T) such that for all z,y € RB and p,q € RB\}—{B

|

%_i;[(t7xap) - aa_il'(t’yvq)H + H%_I;(tvxvp) - %_;I(t7yaQ)H
(3.35)

< k@ Uz =yl +1p—dl)
Let (tg, o) € [to, T] X R™ and py # 0 be such that —py € *Vy(to, x0)-

Then the Hamiltonian system

g(t) = GE(t,z(t),p(1)), z(to) = zo

Pty = =4t a),p®), plto) = po (3.36)

p(t) # 0 forall ¢ € [to,T]

Tt is well known that H(t,z,-) is not differentiable at zero when f(t,z,U(t))
is not a singleton. For this reason we exclude zero in our differentiability
assumptions.
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has a unique solution (2(-),p(-)) defined on [tg,T)]. Moreover 2(-) is
optimal for problem (3.6).
Consequently, problem (3.6) has at least as many optimal solu-
tions as there are elements in the set 9*Vy(ty, zo)\{0}.
Furthermore, if Vg(-) is continuous at z(T), then p(-) is the co-
state corresponding to z(-) given by Theorem 3.3.2.

Remark — A typical example of a nonlinear control system
with closed convex images is the affine system:

¥ = f(z) + iuigi(x), u; € [a;, bl
=1

where f and g; are maps from R" to itself and a; < b; are given
numbers. O

Proof —  From the very definition of 0*V,(tg, ) it follows
that there exists a sequence zy converging to xg such that V' (¢o, ) is
differentiable at z; and

— = lh B_V(t )
e

Let (2, ur) be an optimal state-control solution for problem (3.6)
with ¢ replaced by zx. By Theorem 3.3.2 (applied with z¢ replaced
by zy), for every k there exists an absolutely continuous function
Py : [to, T] — R™ such that

~Fet) = (8t z(t),w () Balt), ae in [to, T)
(3.37)
—Pr(to) = Z(to,zx), Pp(T) = —Vg(z(T))

Therefore, pr(t) # 0 for all ¢ € [tg,T] and sufficiently large k. By
Proposition 3.3.3, for every ¢ € [to, T,

t9H
ze(t) = zo + F(S,Zk(s)’ﬁk(s))ds
to OP
(3.38)
tOH

pk(t) = Po — o _a—x(s>zk(s)7ﬁk(s))d3
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Recalling assumptions (3.8) and Theorem 3.1.1, we conclude that
zr, k = 1,... are equicontinuous and equibounded. Furthermore,
from (3.8) and (3.37) it follows that P, are also equicontinuous and
equibounded, because the maps ¢ — g%(t, zk(t), uk(t)) are integrably
bounded on [tp, T]. So, taking a subsequence and keeping the same
notation, we may assume that (2x,p,) converge uniformly to some
(2,P) and %%(,zk(),uk()) converge weakly in L'(ty,T;R™ x R")
to some A(-). In particular B(t9) = po # 0 and P solves the linear
system

—p'(t) = A(t)*p(t), almost everywhere in [ty,T]
Thus p(t) # 0 for all t € [ty, T]. Fix R > 1 so that

2 R

v to, T, = < |Ip < =

selon Tl = < Bl < 2
Then, for all sufficiently large k£ and all s € [tg,T], we have

1
= < Il < R
So, using (3.35) and taking the limit in (3.38), we deduce (2z,P) is a
solution to Hamiltonian system (3.36).

Since P never vanishes, assumption (3.35) implies that (z,P) is
the only solution to (3.36). On the other hand

V(to,zo) = kli_{gov(to,zk(to)) = kli_)ngog(zk(T)) = g(2(T))

and therefore z is optimal for problem (3.6).

If Vg is continuous at z(T), then from (3.37) it follows that
p(T) = —Vg(2(T)) # 0. Let p; be a co-state corresponding to the
optimal solution z given by Theorem 3.3.2. Then p;(t) # 0 for all
t € [to, T] and, by Proposition 3.3.3 it solves the problem

—p'(t) = (¢t 2(t),p(t)), ae. in [ty,T)

T

p(T) = —Vg(2(T))

Since P is also a solution to this system, p; = P by uniqueness. O
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3.3.5 Uniqueness of Optimal Solution and Differentia-
bility of Value Function

Theorem 3.3.6 yields that if 9*V;(to,z0)\{0} is not a singleton, then
optimal solution to (3.6) is not unique. We prove a similar statement
under less restrictive regularity assumptions on H (¢, z, ).

Theorem 3.3.7 Assume (3.7) (3.8), that g is continuously differ-
entiable, f is differentiable with respect to z, f(t,z,U(t)) are convez
and compact and that for every t € [0,T], %—Ig(t, .-} 48 continuous.

Further assume that for every R > 0, there exists o nonnegative
integrable function g € L'(0,T) such that

OH OH
: - - < -
Vz,y,p € RB, “ B (t,z,p) 5 (t,y,p)H < Ir(t) |z -yl

If problem (3.6) has a unique optimal solution z, then for all t €
[to, T, 0*Vy(t,2(t)) is a singleton and, consequently, V (t,-) is differ-
entiable at z(t).

Proof — Observe that for every t € [tp,T], problem (3.6) has a
unique optimal solution with (¢g,z¢) replaced by (¢, z(t)). For this
reason we prove the result only for V (¢, -).

By Proposition 1.1.9, it suffices to show that 9*V,(tg,zo) is a
singleton. Let p1,ps € 9*V,(to, o) and consider sequences {z}} and
{z2} converging to zg, such that

v .
kBI-lI-loo-a—;(to,xk) = Pis 2—1,2

Let z,’c be optimal solutions to problem (3.6) with xy replaced by
.’L'i., i = 1,2 and denote by p}'c the corresponding co-states given by
Theorem 3.3.2. Then, by Proposition 3.3.3,

(pﬁc)/(t) = —%(t7zlic(t)7p2(t)) a.e. in [thT]
pe(T) = =Vg(z(T)), pilte) = —F5(to,z})

By Theorem 3.1.1, 2} are bounded, equicontinuous and V (T, z},(T)) =
g(z£(T)). Since the solution to (3.6) is unique by our assumptions,
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we deduce that z,ic converge uniformly to z for ¢ = 1,2. Taking sub-
sequences and keeping the same notations, we may assume that pi
converge uniformly to the unique solution p to the system

P = =5 (2(0,p(0), p(T) = ~Vg(=(T)

Thus, p; = p(to) =p2. O

Theorem 3.3.8 We posit all hypothezis of Theorem 3.3.6 and we
assume that g is continuously differentiable. Then V (to,-) is differ-
entiable at xy with the derivative different from zero if and only if
there ezists a unique optimal solution z to problem (5.6) satisfying

Vg(=(T)) # 0.

Proof — Assume that %‘;—(to,xo) # 0. Let z be optimal for prob-
lem (3.6). By Theorem 3.3.2, Vg(2(T)) # 0. By Proposition 3.3.3,
every optimal state/co-state pair solves Hamiltonian system (3.36)
with py = —%(to,.To). This and Theorem 3.3.6 yield uniqueness of
optimal solution.

Conversely, assume that (3.6) has a unique optimal solution z
and Vg(z(T)) # 0. By Theorem 3.3.7, V (g, -) is differentiable at xy.
Theorem 3.3.2 implies that 4 (tg,z0) #0. O

3.4 Semiconcavity of Value Function

We provide next a sufficient condition for semi-concavity of the value
function on [0,7] x R™. Throughout the whole section we assume
the following

Jw: Ry x Ry — R, such that (1.3) holds true and

Ve [0, 1], R >0, zg,z1 € Br(0), t € [O,T], u € U(t)
”Af(taaZOau) + (1 - )\)f(t,.’L‘l,’U,) - f(t,il))\,'U/)” (339)
< A1 = A flzy — zollw(R, [|z1 = zol)),

where ) = Azg + (1 — N)z;

L ¢9: R" ~ R is semiconcave
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Remark —  Assumptions (3.39) hold true in particular when
g is continuously differentiable and f is continuously differentiable
with respect to z uniformly in (¢,u). More precisely, if we assume
that there exists a function w : Ry x R4 — R satisfying (1.3) such
that

of 3
1Lt - L tam)| < ol — 2l
for all t € [0,T], w € U(t) and z1,z2 € Bg(0).

2) Vice versa, Proposition 1.1.13 implies that, if f satisfies (3.39),
then f is continuously differentiable with respect to z. O

Theorem 3.4.1 Assume (8.7), (3.8) and (3.39). Then there exists
@: Ry x Ry — Ry satisfying (1.8) such that for all t € [0,T], X €
[0,1], R>0
V.’L‘Q,ml € BR(O), )\V(t,xl) + (1 - )\)V(t,.’lio) — V(t, )\331 + (1 o /\)(120)
< AL =Mz = wollD(R, lz1 — oll)

Consequently for every t € [0,T], V(¢,-) is semiconcave.

Proof — For every ¢t € [0,T] and control u(s) € U(s) (admissible
control), we denote by y(-;t,z,u) the solution to the system

y'(s) = f(s,y(s),u(s), s € [t,T]
y@t) = z
By Theorem 3.1.1 for every R > 0 there exists Ly such that
YV € Br(0), Vse[t,T], |ly(s;t,z,u)|] < Lg (3.40)

Moreover, by the Gronwall lemma, for all ¢t € [0,T], s € [¢,T],
zg, 1 € R™ and all admissible control u(-), we have

ly(sit,m1,u) — yis;t,zo,u)l| < ele FO oy — zoll  (3.41)

Step 1. We claim that there exists wy : Ry xRy = R satisfying
(1.3) such that forall0 < ¢t < s < T, R > 0, zg,z1 € Bg(0), A € [0,1]
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and admissible control u(-), we have

[Ay(s;t, z1,u) + (1 — A)y(sit, 2o, u) — y(s; ¢, Azo + (1 — Nz1,u)]|

< AL =A) [lz1 = zoll wi (R, [|z1 — zoll)
Indeed set 2 = Azg + (1 — A)z; and define
ua(T) = My(7st, 2, u) + (1 — Ny(73t, 20, u) —y(73 8,25, u)

Then y)(t) = 0 and

yA(r) = AMf(ny(rit,z1,u), ulr)) +

+ (1 - )‘)f(Ta y(7—> t, zo, U,), U’(T)) - f(Ta y(T7 t,zy, U’)) U(T))

From assumptions (3.8), (3.39) we obtain

AN < EE) lya( Dl + M1 = 3 lly(7;t, 21,u) — (758, 2o, u)|| x

X w(LR, ”y(Ta t,iUl,U) - y(T7 tamOa U)H)

Our claim results from (3.41) and the Gronwall lemma.

Step 2. Fix € > 0 and a control u, such that
V(t,.’[')\) > g(y(T,t,.’L')\,U&-)) — €

Let w, denote a modulus of semiconcavity of g and Cg a Lipschitz
constant of g on the ball of radius Lgr. Then from (3.41) and Step 1,

AMV(t,z1) + =NV (t,zp) — V(t,zy) <

Ag(y(Tst, 1, ue)) + (1= Ng(y(Ts 8, mo,ue)) — g(y(Tit, xx,u)) + €
<ML =M y(Ts t, 21, ue) — y(T5t, w0, ue )| X

x wg(Lr, |y(T;t, 21, ue) — y(Tst, 20, ue)|)

+ CrlM(T;t,x1,ue) + (1 = Ny(Ts t,zo,ue) — y(Ti b, za, ue)|| + €

T T
S eft /C(S)dé’)\(l _ )\) Hxl _ CE[)“(Ug <LR7 eft k:(s)ds H$1 _ Io“)

+ CpA(1 = N [|lz1 — zo|| wi(R,||lz1 — zoll) + €
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Since ¢ > 0 is arbitrary the proof follows. O

If we impose some additional assumptions on f, then V is semi-
concave also with respect to .

Theorem 3.4.2 Assume (3.7), (3.8) and (3.39), that k and U are
time independent and for every R > 0, there exists kp > 0 such that
for all x € BR(0) and u € U, f(-,z,u) is kr-Lipschitz.

Further assume that for all R > 0, there exists cg > 0 such that

V (t,u) € [0,T) x U, Yz € Bg(0), ||ft,z,u)] < cr (3.42)
Then the value function is semi-concave on [0,T] x R™.

Proof — Consider 0 < t; < tp < T, R > 0 and let zg,z; €
Br(0), A €[0,1]. Define

Ty = Azy + (1 - )\).’Eo, ty = M1+ (1 — )\)to

and pick any € > 0. By (3.14) there exists an admissible control u,
such that
V(to, y(tosta, Tasue)) < V(tr,za) + €

Define

(3.43)

()__ /\S-I—(l—/\)to, if t1 < s <t
™= s otherwise

Since the value function is nondecreasing along solutions to our con-
trol system, we have

AVt 1) + (1= NV (to,20) — V(Er, zx) < (1= NV (t,z0) +
)‘V(t(b y(t07 t1,Z1, Us © T)) - V(tovy(t()a Txs T, U'E)) +e
Define L as in the proof of Theorem 3.4.1 and set
yi(s) = y(sit,z1,ue 07), yals) = y(sita, oa, ue)

Let Kp denote the Lipschitz constant of V on [0,T] x Lg B (which ex-
ists by Theorem 3.1.1.) From Theorem 3.4.1 and the latter inequality
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we obtain
AV(ty, 1) + (1 =XV (to,z0) — V(tr, )
< A1 = A) [lyi(to) — zol|W(Lr, ly1(to) — zoll) (3.44)
+ Kr [ Mnlto) + (1 =Xz — yalbo)ll +¢
On the other hand from assumption (3.42) it follows that
Vs e ti,tol, llya(s) —xoll < |z — zoll + Mr(to —t1)  (3.45)

where Mp = cr,,. Set

z(s) = Ay (7'_1(3)) + (1 =XNzo — yr(s)
and notice that
z(ty) = 0, 2(to) = Ayi(to) + (1 — AN)zo — yalto)

On the other hand, by assumptions of theorem there exists L > 0
such that for every ¢t € [0,7] and v € U, f(¢,-,u) is L-Lipschitz on
R"™. Hence, using (3.39), we obtain the following estimates

Hz | = Hf )syr1oT 1(8),11,5(3)) — f(s,yx(s Ue 5))”
< Crlr™Hs) —s|+ L|yro77(s) — yals)]
< Llz(s) + L =N lyrom7Y(s) — zof| + Cr 52(t0 — )

where Cp := kr,,. Therefore from the Gronwall inequality and (3.45)
we deduce that for some ¢ > 0 depending only on L and cgp

20l < e(1 = X) 2 (llyr 0 772 (s) = woll + 252) ds
(3.46)
< M1 = N)(to — t1) (o1 — zoll + (5 + MR)(to — 1))

Since € > 0 is arbitrary, inequalities (3.44), (3.45), (3.46) imply the
conclusion. O
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3.4.1 Differentiability along Optimal Solutions

In this section we provide further results concerning differentiability
of V along optimal solutions.

Theorem 3.4.3 Under all assumptions of Theorems 3.8.7 and 8.4.2,
suppose that problem (8.6) has a unique optimal solution z. Then V
is differentiable at (t,z(t)) for all t € [to, T).

The proof of this statement is left as an exercise.
Theorem 3.3.8 yields

Corollary 3.4.4 Under hypothezis of Theorems 3.3.6 and 3.4.2, as-
sume that g is continuously differentiable. Then V(-,-) is differen-
tiable at (tg, xo) with the partial derivative 63‘9§(15(),:E()) different from
zero if and only if there is a unique optimal solution z to problem
(8.6) satisfying Vg(z(T)) # 0.

Usually the value function is not everywhere differentiable. How-
ever this is always the case for “convex” problems, as we prove below.

Theorem 3.4.5 Assume (3.7), (3.8), (3.39), that g is convex and
V¢ € [0,T], Graph(f(¢,-,U(t))) is closed and convex  (3.47)

Then V (t,-) is convex and continuously differentiable on R™.
Moreover, if all assumptions of Theorem 3.4.2 are verified, then
V' is continuously differentiable on [0,T] x R™.

Proof — Assumptions (3.47) and (3.8) yield that for every (g, zo) €
[0, T] x R™ there exists a solution z to control system

' = f(t,ac(t),u(t)), ’U,(t) € U(t)7 .’E(t()) = Zo
satisfying V(to, o) = g(2(T)).
Fix ty € [0,T], zo,z1 € R™ X € [0,1] and consider solutions
z: [to,T] — R"™ and y : [to,T] — R” to (3.4) such that

Vito,z0) = g(z(T)), V(to,z1) = g(y(T))
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Define the map z : [to,T] — R"™ by 2(t) = lz(t) + (1 — N\)y(t).
From (3.47), we deduce that z is a solution to control system (3.4)
satisfying z(tg) = Az + (1 — A)z1. Thus, from convexity of g,

V(to, Azo + (1 = AN)z1) < g(2(T)) < AV(to,z0) + (1 — M)V (to, 21)

and therefore V (tg,-) is convex.

Next, as V(¢,-) is both convex and semiconcave for all ¢t € [0,T],
Proposition 1.1.13 yields that V (¢, -) is continuously differentiable on
R"™. The last statement follows from Proposition 1.1.12. O

3.4.2 Regularity of Optimal Feedback

One of the major issues of optimal control theory is to find an “equa-
tion” for optimal solutions. Theorem 3.1.3 provides an inclusion for-
mulation. However, in general, the set-valued map G is not regular
enough to make us able to approximate solutions to (3.18) using, say,
Euler’s scheme. This is one of the reasons why we have to investigate
regularity of the set-valued map G.

Theorem 3.4.6 Under all assumptions of Theorem 3.4.2, suppose
that the sets f(t,x,U) are closed. Then G has compact nonempty
images and is upper semicontinuous on [0, T[xR™.

Proof — From Theorems 3.4.2 and 1.1.11 we know that for ev-
ery (t,z) € [0,T[xR" and every v € R" the directional derivative
@(‘f’;—‘;)(t,w) exists. Define the set-valued map

~

Q: [0, T[xR" ~ R"

~

by: for every (¢,z) € [0, T[xR", Q(t,z) is equal to

, ‘b, @+ ho) — V(o
{veR"| lim inf VE+h o+ ) (t, )

' = z,h— 0+ h
=t t'>0

< 0}

o~

From Proposition 1.1.14 follows that Graph(Q) is closed in [0, T[xR™
xR™. By Proposition 3.1.2, for all v € @o(f(t,,U)), 3(<"%’v—)(t, z) > 0.
Thus

G(t,z) = Qt,z)N f(t,z,U)
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Consequently, Graph(G) is closed in [0, T[xR" x R™. From Propo-
sition 1.2.2 we deduce that G is upper semicontinuous on [0, T[xR™.
O

Corollary 3.4.7 Under all assumptions of Theorem 3.4.2 suppose
that the sets f(t,z,U) are closed. If G is single-valued on a subset
K C [0,T[xR", then the map K 3 (t,z) — G(t,x) is continuous.

Theorem 3.4.8 We posit all assumptions of Theorems 8.4.2, 8.4.5
and suppose that g is convex. Then G has conver compact images
and is upper semicontinuous. Furthermore, if for every (t,z) the set
f(t,z,U) is strictly convez®, then G is single valued and continuous
on the set

{to) € p.71xR" | o (1) # o}

Proof — By Theorem 3.4.5, we know that V is continuously
differentiable. This and convexity of f(t,z,U) yield that for all
(t,x) € [0,T[xR"

G(t,:l?) = f(t,.’L’, U) ﬂ{’l} €eR” | (VV(t,I),(l,’U)) = 0}

is convex. Theorem 3.4.6 ends the proof of the first statement. From
Proposition 3.1.2 it follows that for all (¢,z) € [0, T[xR"

v € G(t,z) —
CAS f(t7$7U) & SUPyecu <—%—‘;(t,x), f(t,.’B,U)> = <—%—‘;(t,ﬂ3), U>
This and strict convexity of f(¢,z,U) imply that G is single valued

on {(t,a:) € [0,T[xR™ | %—‘;(t,a:) # 0}. Corollary 3.4.7 completes the
proof. O

2A subset X C R™ is strictly convex, if for all zo,z: € K and 0 < A < 1 we
have Azo + (1 — A)x1 € Int(K) whenever zo # 1.
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Chapter 4

Hamilton-Jacobi-Bellman
Equation

Introduction

Consider the Hamilton-Jacobi-Bellman equation:

1% ov

o H{t,z,——(t =0, V(T,) = 3 (4.1

6o + H(ta=5ot0) = 0, VT = gx() (41)

associated to the Mayer problem with end point constraints:
minimize { g(z(T)) | z(T) € K }

over all solutions to control system

= f(t,z,u(t), ult)eU (4.2)

satistying the initial condition z(0) = &y, where K is a given subset
(called target) and gx denotes the restriction of g to K.
In the above equation (4.1), the Hamiltonian H is given by:

H(t,z,p) = sup(p, f(t,z,u))
uelU

The value function for the constrained Mayer problem is defined
by

V(to, zo) = inf{g(z(T)) | z solves (4.2), z(to) = zo, z(T) € K}

91
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In general V is merely lower semicontinuous and is equal to +oo at all
points from which it is impossible to reach the target K. In fact one
can even avoid using the target K in the definition of minimization
problem by setting g(z) = +00 whenever z ¢ K.

The value function is nondecreasing along solutions to (4.2) and
is constant along optimal solutions. These two properties and the
final value V(T,-) = g(-) characterize the value function.

There have been several concepts of “generalized” solutions to
Hamilton-Jacobi equation (4.1): wiscosity solutions, contingent solu-
tions, lower semicontinuous solutions. Under quite general assump-
tions we shall prove that all these concepts of solutions are equivalent
and that the value function is the unique solution.

The outline is as follows: In Section 1 we state several charac-
terizations of the value function, which are proved in the subsequent
sections. Section 2 is devoted to equivalence between contingent so-
lutions and semicontinuous solutions and to the monotone behavior
of contingent solutions. Then we show that the value function is the
only solution to (4.1). A comparison to continuous viscosity solutions
is provided in Section 3.

4.1 Solutions to Hamilton-Jacobi Equation

Consider T' > 0, a complete separable metric space U and a map
f:00,T] x R™ x U — R"™ We associate with it the control system

#'(t) = f(t,2(t),u(t)), ut) € U (4.3)

Let an extended function g : R" — RU{+o0} and {; € R" be given.
Consider the minimization problem (Mayer’s problem):

min {g(z(T)) | = is a solution to (4.3), z(0) = &} (4.4)

The value function V : [0,7] x R — R U {400} associated with it
is defined by: for all (t9,z¢) € [0,T] x R"

V (to, o) = inf{g(z(T)) | z is a solution to (4.3), z(ty) = zo}



4.1 Solutions to Hamilton-Jacobi-Bellman Equation 93

We impose the following assumptions

i) VY R>0,3cg € LY0,T) such that for almost all ¢
VYueU, f(t,-,u) is cg(t) — Lipschitz on Br(0)

i) 3k € LY(0,T) such that for almost all ¢ € [0, T,
Vz R, supyeyllf(t,z,ulll < k(@)1 + =)

iti) VY (t,z) € [0,T] x R", f(t,z,U) is convex, compact (4.5)

iv) f is continuous and for all (¢,z) € [0,T] x R™,
lirn(t’,av:’)—)(t,ac) Supyet ||f(t’$>u) - f(tlvxlau)” =0

| v) g is lower semicontinuous

By these assumptions the control system (4.3) may be replaced by
the differential inclusion

7'(t) € F(t,z(t)) almost everywhere (4.6)

where F(t,z) = f(t,z,U). Furthermore, F satisfies the following
conditions:

a) F is continuous and has nonempty convex compact
images

b) Ik e LY0,T) such that for almost all ¢t € [0, T, (47)
Vo eR", supyep(q vl < k()1 + z]) '

¢) Y R>0, 3cg € LY0,T) such that for a.e. t € [0,T]
F(t,-) is cgr(t)-Lipschitz on Bg(0)

Recall that Sy, 71(zo) denotes the set of absolutely continuous
solutions to (4.6) defined on [tg, T] and satisfying the initial condition
z(tg) = g

We show next that

V(to,zo) = min{ g(@(T)) | o € Sgry(wo) } (438



94 4- Hamilton-Jacobi-Bellman Equation

Theorem 4.1.1 Consider an extended lower semicontinuous func-
tion g : R® — R U {400} and assume (4.5).

Then V takes its values in RU {400} and is lower semicontinu-
ous.

This Theorem follows from

Theorem 4.1.2 Consider a set-valued map F : [0,T] x R" ~ R"
and an extended lower semicontinuous function g : R™ — RU{+o00}.
Assume (4.7) and define V : [0,T] x R™ — R U {xoo} by

V(to,z0) = inf{g(z(T)) | = solves (4.6), z(tp) = zo}

Then V is lower semicontinuous taking its values in R U {+o00} and
(4.8) holds true.

Proof — Fix (to,z0) € [0,T] x R™ Since the set of solutions
S(to,7](Z0) is compact and g is lower semicontinuous we deduce that
V(to,z0) > —oo and (4.8). To prove that V is lower semicontinuous
consider a sequence (tn,z§) — (to, o) such that ¢, € [0, T

lim inf V(t,z) = lim V(t,,zf)
(t;x)_)(tO,xO)a tG[O,T] n—roo

and let x,, € Sy, 7)(2f) be such that

o(an(T)) < Vitmaf) + +
For every n > 1 such that ¢, > tg consider a solution ¥, to inclusion
z'(s) € —F(t, —s,2(s)), z(0) = z{
defined on [0, t, — tg]. Set

] za(t) if t > t,
Zn(t) = { yn(tn, —t)  otherwise

Then 2, € Spyy,1)(yn(tn — to)). We also observe that (4.7) b) yields
that y,(t, — tg) converge to xg. By Fillipov’s theorem there exist
Zy, € Spyy,1)(0) such that z, — z, converge uniformly to zero. The set
Sito,71(z0) being compact in the space of continuous functions, there
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exists a subsequence z,, converging to some z € S[tO,T](xo). But then
also z,, converge to z. Since g is lower semicontinuous, g(z(T)) <
limy, 00 V(ts, 2§). On the other hand, V(, zo) < g(2(T)) and the
proof follows. 0O

The Hamiltonian associated to control system (4.3) is the func-
tion H : [0,T] x R" x R"™ — R defined by

uel

Congider the Hamilton-Jacobi equation

ov
Ot +H (45, -5 0)) =0, VT =g0)  (49)
ot Oz
In the result stated below we use notions of super/subdifferentials

and epi/hypoderivatives introduced in Chapter 1.

Definition 4.1.3 An extended lower semicontinuous function V :
[0,T] x R™ — R U {400} is called a lower semicontinuous solution
to (4.9) if it satisfies the following conditions:

V(T,-) = g(-) and for all (¢,z) €]0,T[xR",

V (p,ps) € 0-V(t,x), —pi+ H(t,z,—py) =0
V (pt,pz) € 0-V(0,z), —pt+ H(0,7,~ps) 20
Y (pt,pe) € 0-V(T,z), —pt+ H(T,z,—py) <0

Definition 4.1.4 An extended lower semicontinuous function V :
[0,T] x R" — RU{+00} is called a viscosity supersolution to (4.9)
if for all t €]0,T[ and z € R™ such that (t,z) € Dom(V) we have

V(ptapl‘) € B_V(t,IE), —Dt + H(t,.’L’, '~pa:) Z 0

An extended upper semicontinuous function V : [0,T] x R® - RU
{—0o0} is called a viscosity subsolution to (4.9) if for all0 <t < T
and © € R™ such that (t,z) € Dom(V) we have

V(ptapw) S 8+V(t,$), —pt + H(t,{IJ, _pl‘) S 0

Let V : [0,T] x R® = R be a continuous function. It is called a
viscosity solution to (4.9) if for all t €]0,T[ and z € R™

V(pf,,px) € 8—V(t’x)a —Dt + H(t,.’L‘, —Pa:)

>
v(pfap:l?) € 8+V(t,il?), —Dt + H(t7$7 —Px) S
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Theorem 4.1.5 Assume (4.7) and let V : [0, T} x R® — RU{+00}
be an extended lower semicontinuous function.
Then the following four statements are equivalent:

i) V is the value function given by (4.8)
it) 'V is a lower semicontinuous solution to (4.9)

i) 'V is a contingent solution to (4.9) in the sense that

V(T,:) = g(-) and for all (¢,z) € Dom(V),
0<t < T = infvep(t’x) DTV(t,JJ)(l,U) <0
0 <t <T = supyep(e D1Vt z)(—1,—v) <0

w) V(T,-) = g(-) and for all (t,z) €]0,T[xR",
v (ptapx) € 8_V(t,$), —pt + H(t,.’l}, _px) =0
VZ €R”, V(0,7) = liminfy o4, 105 V(£ 2)
VZ eR" ¢(Z)=lminf,,7_ .z V(¢ 2)

Finally, if V is continuous on [0,T] x R™ then the above statements
are equivalent to:
v) V is a viscosity solution to (4.9).

4.2 Lower Semicontinuous Solutions

4.2.1 Lower Semicontinuous & Contingent Solutions

The equivalence between statements i¢) and 4:i) of Theorem 4.1.5
follows from Theorems 4.2.1 and 4.2.2 proved below.

Let T > 0. Consider a set-valued map F : [0,T] x R” ~ R"
with nonempty bounded images and define the Hamiltonian H :
[0,T] x R" x R®" » R by

H(t,z,p) = sup <p,v> (4.10)
vEF(t,x)
Then H(t,z,-) is convex and positively homogeneous. Furthermore,
if F' is continuous, then so is H.

Theorem 4.2.1 Consider an extended lower semicontinuous func-
tion V : [0, T] x R" — RU{+o00}. Assume that F is upper semicon-
tinuous and has nonempty conver compact images on Dom(V).
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Then the following four statements are equivalent :
i) For all (t,z) € Dom(V) such that t <T and for every

(b1 922 0) € N2y (8,2, V (1,2))
—pt+ H(t,z,—pz) > 0 (4.11)
ii) For all (t,z) € Dom(V') such that t <T and all y > V (¢, 1)
({1} x F(t,z) x {0}) N Tepvy(t,z,y) # 0
i11) For all (t,z) € Dom(V) such thatt <T

inf DyV(¢,2)(1,v) <0
et D (t,z)(1,v) <

i) For all (t,z) € Dom(V') such that t <T
V(pe,pe) € 0-VI(t,z), —pr+ H(t,2,—pg) 20
Proof — Fix (t,z) € Dom(V) such that ¢t < T and observe that
Vy > V(t,x), Tepy(tz,V(t,z)) C Tepvy(t,z,y) (4.12)

Since the contingent cone to the epigraph is the epigraph of the
epiderivative, 1) is equivalent to i3).
Assume that #37) holds true. Fix (t,z) € Dom(V) such that
t < T and (p¢,ps,q) € [Tepv)(t,x, V(¢ z))]”. Consider v € F(t,x)
satisfying
D4V (t,z)(1,0) <0

or, equivalently, (1,v,0) € Tepv(t, 2, V(t,z)). Hence py+(pg,v) <0
and 1) follows.
Assume next that ) holds true. We claim that

({1} x F(t,2) x {0}) N (Tepvy (t,,)) # 0 (4.13)
for all (¢,z) € Dom(V') such that ¢ < T and y > V (¢, z).

By (4.12) it is enough to prove (4.13) with y = V(¢,z). Other-
wise, by the separation theorem, there exists

(ptapfvv Q) € ng(V) (t7$a V(ta ZL‘))
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such that
inf ,v) > 0
po+ nf (P2, v)

Consequently —p;+ H (t, z, —p, ) < 0, which contradicts ¢) and proves
(4.13).

Finally, since F' is upper semicontinuous and has convex compact
images, Proposition 1.3.12 and relation (4.13) imply 4i).

By Proposition 1.1.15, 1) yields iv).

Assume next that iv) is verified. Fix (¢,z) € Dom(V) such that
t <T and (pg,ps,q) € ng(V) (t,z,V(t,z)). Since

{0} x {0} x Ry C Tepvy(t,z, V(t,z))

we have ¢ < 0. If ¢ < 0, then

Pt P
<|—(}tTa ﬁa '—1> € ng(v)(t,x,V(t,.’E))

From Proposition 1.1.15 and iv) we deduce that

By H(t, z, —Iﬁ> >0
lq lq

Multiplying by |q| the above relations we derive (4.11).

It remains to consider the case ¢ = 0 and (py,pz) # 0. For
this aim it is enough to apply Lemma 1.1.16 and to use the same
arguments as above. O

Theorem 4.2.2 Consider an extended lower semicontinuous func-
tion V : [0,T] x R® = R U {+oo} and assume that F is lower
semicontinuous and has nonempty compact images on Dom(V).
Then the following four statements are equivalent :
i) For all (t,z) € Dom(V') such that t > 0 and for every

(ptvpza Q) € N{,Qp(v') (t7 z, V(t, IL’))
—Pt + H(t7$7 —Px) S 0
i) For all (t,z) € Dom(V') such that t > 0 and all y > V (¢, )

{_1} x (_F(t’$)) X {0} - Té'p(V)(t’l'ay)
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ii1) For all (t,z) € Dom(V') such thatt >0

sup DyV(t,z)(—1,—v) <0
vEF(t,x)

iv) For all (t,z) € Dom(V') such that t >0

V (pt,pe) € O_V(t,z), —ps+ H(t,z,—p;) <0

Proof — We deduce using (4.12) that 4z) is equivalent to 4ii).
Clearly, i7) yields 7). We next claim that i) implies that

(=1} X (=F(t,2) x {0} € @ (Teuy(tz)  (414)

for all (¢,z) € Dom(V') such that ¢t > 0 and y > V (¢, z).

Indeed, by (4.12) it is enough to consider the case y = V (¢, z).
If (4.14) is not satisfied then, by the separation theorem, there exist
v € F(t,z) and (pt,pe,q) € ng(v)(t,a:,V(t,:v)) such that —p; +
(=pz,v) > 0. Consequently —p;+H (¢, z, —p;) > 0, which contradicts
i) and so inclusion (4.14) follows.

Since F' is lower semicontinuous, (4.14) and Theorem 1.1.3 yield
that for all (¢,z) € Dom(V) such that ¢ > 0 and all y > V (¢, z),

{=1} x (=F(t,2)) x {0}

C Liminfy o sy (t,) €O (Téfp(V)(t/a ', y')) C Tepvy(t, 2, y)

Arguments similar to those of the proof of Theorem 4.2.1 yield that
i) is equivalent to iv).

4.2.2 Monotone Behavior of Contingent Solutions

Consider a set-valued map F : [0,7] x R"™ ~ R" and the differential
inclusion

z'(t) € F(t,z(t)) almost everywhere (4.15)

In this section we investigate a relationship between monotone
behavior of a function V' along solutions to (4.15) and contingent
inequalities #37) of Theorem 4.1.5.
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Theorem 4.2.3 Let V : [0,7] x R* = R U {+0o0} be an extended
lower semicontinuous function. Assume that F is upper semicontin-
uous, that F(t,z) is nonempty convex and compact for all (t,z) €
Dom(V) and that for some k € L*(0,T)

vV (t,z) € Dom(V), Sup )IIUH S KL+ )

Then the following two statements are equivalent

i) V (t,x) € Dom(V) with ¢t < T, D4V (t,z)(1,v) <0

inf
veF(t,z)

it) For every (to,z0) € [0,T] x R", there exists T € Sy, 1}(z0)
such that V (t,Z(t)) < V(to,zo) for all t € [to,T).

Proof — Assume that ¢) holds true and fix (t9,z¢) € Dom(V).
Define the upper semicontinuous set-valued map

F:RyxR"xR ~ RxR"xR
by
~ {1} x F(t,z) x {0} when ¢ < T
F(t,z,z) =
[0,1] x o (F(T,z) U{0}) x {0} when ¢t > T

and consider the viability problem

o~

(t,z,2) € Fltzz)
(t,iL',Z)(to) = (to,.’]?o,V(t(),iB())) (416)
(t,z,2z) € &Ep(V)

By Theorem 4.2.1, for all (t,z,2) € Ep(V) we have

~

F(t,:z,z) mTSp(V)(t7$vz) # 0

Since F' is upper semicontinuous and has convex compact nonempty
images and linear growth on the closed set Ep(V'), the Viability The-
orem 1.3.11 yields that problem (4.16) has a solution

[to,T] 3 t = (t,Z(2),2(t) € Ep(V)
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Thus V(t,Z(t)) < z(t) = V(to,zo) for all t € [ty,T] and %) follows.

Conversely, assume that i¢) is satisfied. Fix (tg,z¢) € Dom(V)
with tg < T and let T be as in #). Since F is bounded on a neighbor-
hood of (tg,xg), we deduce that Z(-) is Lipschitz at . Let h, — 0+
be such that [z(tg + hy) — z(t9)]/hn converge to some v. Theorem
1.3.8 yields that v € F(tg,zg). On the other hand

V(to + hn, :E(t() + hn)) — V(t(), SC())
hn

DV (to,20)(1,v) < hﬁgg&f <0 0O

Theorem 4.2.4 Let V : [0,T] x R® —» R U {400} be an extended
lower semicontinuous function. If F verifies (4.7), then the following
two statements are equivalent:

i) V(t,z) € Dom(V) with ¢ >0, sup DV (¢, z)(—-1,—v) <0
veF(t,z)

ii) For everyx € Spy, 11(20) and allt € [ty, T], V(to, z0) < V (2, 2(1)).

Proof — Assume that ¢) holds true. Since i) does not involve
T, it is enough to prove the inequality in ¢i) for ¢ = T. By Theo-
rem 4.2.2, for all0 < ¢ < T'and z € R" such that (T'—t, z) € Dom(V)
and for all z > V(T —t,z),

{=1} x (=F(T - t,x)) x {0} C Tegpy(T —t,2,2) (4.17)

Let U denote the closed unit ball in R™. From Theorem 1.4.4 there
exists a continuous function f : [0,7] x R" x U — R™ and a > 0
such that

VY (t,z) €[0,T] xR", F(t,z) = f(¢t,z,U)
VYueU, f(t-,u) is acgr(t)— Lipschitz on Bg(0) a.e. in [0, 7]
Y (¢,z) € [0,T) x R™ and for all u,v € U, we have
1t z,u) — (¢t 2, 0)|| < alsupyepq lyll) lu— vl

Fix (to,z0) € [0,T] x R™ and z € S, 9(0)- It is enough to consider
the case V(T,z(T)) < oo.
Consider a measurable map u : [tg, 7] — U such that

2'(t) = f(t (1), u(t))
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almost everywhere. Consider a sequence of continuous maps uy :
[to,T] — U converging to u in L'(ty,T;U) and let z; denote the
solution to

o (t) = [t ze(t),uk(®), t € [to,T], zx(T) = =(T)

The Gronwall lemma, implies that z; converge uniformly to z. On
the other hand, the map t — (T — ¢,z (T — t),V(T,z(T))) is the
only solution to

() = —1

" — _ —

(t) = 0

7(0) =

By (4.17) we know that

ISR )

y(0) = z(T), 2(0) = V(T,z(T))

v (’Yamvz) € ‘Sp(v)v (—17 _f(7a$auk(7))70) € Tﬁp(V)(77$az)
On the other hand the map
(t7$) ~ {_f(T—t7$v uk(T_t))}

being continuous, from Viability Theorem we deduce that problem
(4.18) has at least one solution

0,7 ~t] 2t = (v(t),y(t),2(t) € Ep(V)
Consequently,
VO <t <T—tg, (T—tax(T—1t),V(T,z(T))) € Ep(V)
and therefore
VO <t < T—tg, V(T,z(T)) > V(T — t,2x(T — t))

In particular, V(tg,zx(t0)) < V(T,z(T)). Taking the limit when
k — oo and using that V is lower semicontinuous, we deduce i) for
t="T.

Conversely, assume that ii) is verified. Let (¢9,z¢) € Dom(V)
be such that t; > 0. Fix v € F(tg,zo). Corollary 1.3.3 implies that
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for some h > 0 there exist 59 € R® and y € S[to—ﬁ to] (yo) such that
y(to) = zo and

i Yo=h) —z0
h—0+ h

On the other hand, by 1),
Vh e [0,h], V(to—h,ylto—h)) < V(to,zo)

Consequently D4V (o, z0)(—1, —v) < 0. Since v € F(tg,zo) is arbi-
trary ¢) follows.

4.2.3 Value Function & Contingent Solutions

We prove here equivalence of 7) and 4ii) of Theorem 4.1.5.
The Proposition below yields the implication i) == 7ii).

Proposition 4.2.5 Assume (4.7) and let V be defined by (4.8).
Then for all (tg,z¢) € Dom(V),

o < T = infveF(to,a:o) DTV(to,:Eo)(l,’U) <0
to > 0 = SuPyer(t,z0) D4V (tg, z0)(—=1,—v) < 0

Proof —  Fix (to, 7o) as above. Then, there exists z € Sy, 17(%0)
such that V (¢, z(t)) = g(z(T')). Theorem 4.2.3 ends the proof of the
first statement. The second one follows from Theorem 4.2.4. O

The implication 3i3) = 1) follows from

Theorem 4.2.6 Assume that (4.7) holds true. Then the function
V defined by (4.8) is the only lower semicontinuous function from
[0,T] x R™ into RU {+0o} satisfying

V(T,:) = g(-) and for all (¢,z) € Dom(V),
0 <t <T = infyepiq) D1V (tz)(1,v) <0 (4.19)
0 <t <T = supyeppqg) D1Vt z)(-1,—v) <0

Proof — Proposition 4.2.5 implies that V' verifies (4.19). Con-

versely, consider an extended lower semicontinuous W : [0, T] xR" —
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R U {400} satisfying (4.19). Fix (tg,z0) € Dom(W) with ¢, < T.
By Theorem 4.2.3, there exists T € S, 7(zo) such that

V(to,z0) < g(@(T)) = W(T,%(T)) < W(to, 2o)

Therefore W > V. To prove the opposite inequality, consider (g, z¢) €
Dom(V') and T € Sy, 11(wo) such that V(tg, zo) = g(Z(T)). Thus, by
Theorem 4.2.4,

W(to,z0) < W(T,Z(T)) = ¢(z(T)) = V(to, o)

Hence W < V and the proof is complete.

4.2.4 Regularity of Value Function at Boundary Points

We observe that i) yields jv). To prove that iv) yields i), by using
the equivalence proved in the preceeding section, it is enough to show
that iv) implies #47).

Consider a set-valued map F : [0,T] x R" ~ R".

Theorem 4.2.7 Assume (4.7). If an extended lower semicontinu-
ous function V : [0,T] x R" = R U {+0co} satisfies

V (¢,z) € 10, T[xR™,V (pg,pg) € O_V(t,x),—pt + H(t,x,—pz) =0
VEeR?, V(0,7) = liminfio4, o0z V(t, )

then for all (t,z) € Dom(V),

{ 0 <t ST = subyepe DiV(1o)(-1,—0) SO 5

)
0 <t < T = inf,cppq DVt 2)(L,v) <0

Proof — From the proofs of Theorems 4.2.1 and 4.2.2 we de-
duce that for all (¢,2) €Dom(V) with 0 < ¢t < T we have

inf D4V (t,z)(L,v) <0, sup D3V (t,z)(-1,-v) <0
vEF(t,x) veF(t,z)

This and Theorems 4.2.3 and 4.2.4 yield that for all 0 < ¢; <t < T

Ve € Sy p)(z1), V(t,z1) < Vi, z(t2)) (4.21)
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and

v (tlaxl)v Jz € S[tl,tz](xl)) V(tlaml) = V(tan(tQ)) (422)
Fix T € Dom(V(T,-)) and let t;, — T—, z; — T be such that

lim V(ti,.’Ei) = V(T, T)

1—00

Consider any zop € R" and z € Sjg 1)(z0) satisfying z(T) = 7. Then
we can find §; and y; € Sjo,7(7;) such that y;(t;) = x; and y; converge
to = uniformly on [0,T]. Then for all arbitrary, but fixed 0 < ¢t < T
and all ¢ large enough,

Vit yi(t)) < Viti, zi)
Since V is lower semicontinuous,
V(t,z(t)) <liminfV(t,y(¢) < lim V(t,7) = V(T,7)
11— 00 1—00

This, (4.21) and Theorem 4.2.4 yield the first inequality in (4.20).

To prove the second one fix (0,Z) € Dom(V') and consider t; —
0+, Z; — T such that

V(O,T) = lim V(ti,—.’L‘-i)

1—00

Let 7; € R"™ and z; € Sy, 77(¥;) be such that z;(¢;) = 7; and

1
Vi, <t<T- S we have V(t;,Z;) = V (¢, z;(t))

Taking a subsequence and keeping the same notations, we may as-
sume that z; converge uniformly to some x € Sjo1(T). Then for all
0<t<T,

V(0,Z) = lim V(¢t,z:(t)) > V(t,z(t))

1—00

This, (4.22) and Theorem 4.2.3 imply the second inequality in (4.20).
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4.3 Viscosity Solutions

In this Section we prove that statements i) and v) of Theorem 4.1.5
are equivalent, whenever V is continuous.

Let F : [0,T] x R™ ~ R"™ be a set-valued map with nonempty
compact images and H be defined by (4.10).

Consider the Hamilton-Jacobi-Bellman equation

1% ov

Clearly, any V satisfying 1) of Theorem 4.1.5 is a viscosity superso-
lution.

Theorem 4.3.1 Let V : [0,T] x R® — R U {+o0} be an extended
lower semicontinuous function. Assume that F is upper semicontin-
uous and has convex compact nonempty images.

Then the following two statements are equivalent:

i) V is a viscosity supersolution of (4.23)

it) For all0 <t < T and © € R™ such that V(t,x) # +o0, we
have

inf D;V(t,z)(1,v) <0 4.24
nf DiV(ta)(Lo) < (424)
Proof — This follows by the same arguments as in the proof of

Theorem 4.2.1. O

Notice next that

Tryp(p) (0, p(z0)) = Hyp (Dp(z0))

where Hyp denotes for the hypograph.
In particular, p € d1p(zo) if and only if

Vu € R", Dyp(zo)(u) < (p,u) (4.25)
Thus

p € dpp(wmo) <= (—p, +1) € Ny, () (@0,9(z0))  (4.26)
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Theorem 4.3.2 Let V : [0,T] x R® — R be continuous. Assume
that F satisfies (4.7).
Then the following two statements are equivalent

i) 'V is a viscosity subsolution of (4.23)
i) Forall 0 <t <T, z, supyep(rqz) DtV (¢t z)(-1,—v) < 0

Proof — Assume that 4z) holds true. Fix 0 < t; < T. By Theorem
4.2.4, for every to < 11 < T and every T € S}, 4,1(z0) the following
holds true:

Vte [to,tl], V(to,xo) < V(t,x(t))

Fix v € F(to,z0). By Corollary 1.3.3 there exist tg < t; < T and
T € Siyy.4,1(w0) such that z'(tg) = v. The above inequality yields that
0 < D;V(tg,z0)(1,v). Consequently,

V (pe,pe) € 04V (to,x0), 0 < pi+ (pz,v)

Since v € F(ty, zp) is arbitrary, V is a viscosity subsolution.
Assume 7). We claim that for all (¢, z) such that 0 < ¢t < T and
all z < V(t,z) we have

V(qtaqzaq) € N’;(')-Lyp (V)(tvxvz)a q: + H(ta$7qx) S 0 (427)

Indeed it is enough to consider the case z = V{(t,z). Fix such
(g¢, ¢, q). Clearly ¢ > 0. If ¢ > 0 then

<ﬂ, q_x’ +1> € N'glyp (V)(t,x,V(t,x))
q 9
Hence, by (4.26) and 1),
ﬁ-|—H<t,:1:,gﬂi> <0
q q

and therefore ¢; + H(t,z,q;) < 0. If ¢ = 0, applying Lemma 1.1.16
to the extended lower semicontinuous function (s,y) — —V(s,y), we
can find a sequence (t;,x;) — (¢,x) and a sequence

(qga q:iv qi) € N70-lyp (V)(t,x,V(t,fL‘))
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such that ¢* > 0 and (g}, ¢2) converge to (i, ¢z). This and continuity
of H yield (4.27).

We next deduce from (4.27) and the separation theorem that for
all (¢,z) such that 0 <t < T and all z < V(¢,x)

{1} x F(t,2) x {0} C @ (Do (v)(t,7,2))

This, Theorem 1.1.3 and lower semicontinuity of 7' imply that
for all (¢,z) satisfying 0 <t < T

{1} x F(t,z) x {0}
C Liminf (t/, .TI7 Z/) N (t,fl), V(t, .’L‘)) [4] (Tnyp (V) (t,, I/, zl))

(t',2',2") € Hyp (V)
C Tyyp (vt 2, V(t,z)) = Hyp (D, V(t,z))

Thus for all (¢,z) satisfying 0 < t < T,

inf D V(t 1 >0
L DVt a)(L) 2

Define W(t,z) = —V(T — t,z). Then for all (¢,z) such that
0<t<Tand for all v € F(T — t,z), we have

DyW (t,z)(—1,v) = —D, V(T — t,z)(1,v) < 0
Applying Theorem 4.2.4 to W and the set-valued map
F(t,z) = —F(T — t,2)
we deduce that for every solution y to the inclusion
y'(t) € F(t,y(t)) ae. in [to,t1]
where 0 < tg <t; < T we have

Vit € [to,t1), W(to,z0) < W(t,y(t))

Fix any v € F(tp, o) and consider a solution y(-) to the differential
inclusion

vy € F(t,y)

y(T —to) = o, Y (T —t0) = —v
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Then for all small s > 0,
W(T — to,xzg) < W(T —to+s,y(T —to + 3))
and therefore for a sequence v; — v we have
V(to — 8,70 — sv5) < V(to, o)

This yields that D4V (tg,20)(—1,—v) < 0. Since v € F(tg,zo) is
arbitrary, 1) follows. O

Let V : [0,T] x R® = R be a continuous wiscosity solution to
(4.23). Then, by Theorems 4.3.1, 4.3.2 and Proposition 1.1.15, V
verifies tv) of Theorem 4.1.5.

This completes the proof of Theorem 4.1.5.
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Chapter 5

Value Function of Bolza
Problem and Riccati
Equations

Introduction

This chapter is concerned with the characteristics of the Hamilton-
Jacobi equation

S H(6a-00) =0 VD) =90 G

S0 = Gr6eOp(0), off)=or
(5.2)
() = Sita0).0(), pT)= ~Volor)

In Chapter 3 such system arises as “extremal equations” in optimal
control, since the Pontryagin maximum principle states that if x :
[to,T] — R™ is optimal for the Mayer problem and Vg(z(T)) # 0,
then there exists p : [tg, 7] — R™ such that (z,p) solves (5.2) with
xr = z(T). This is not however a sufficient condition for optimality
because it may happen that to a given zo € R™ correspond two

111
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distinct solutions (x;,p;), 1 = 1,2 of (5.2) satisfying
xi(to) = Iy » (5.3)

and with one of z; being not optimal. If the solution of (5.2) is unique
for every 7 € R", then

p1(to) # pa2(to) (5.4)

Whenever (5.3) and (5.4) hold true for some solutions (z;,p;), i =
1,2 of (5.2), we say that the system (5.2) has a shock at time ;.

It was already observed in Chapter 3 that for the Mayer problem
the Hamiltonian H (¢, z, -) is not differentiable at zero. For this reason
the system (5.2) is not well defined. In this chapter we study the
Bolza problem:

minimize TL(t,:c(t),u(t))dt + g(z(T))

to

over solution-control pairs (z,u) of the control system
() = fltz(t),ult)), u(lE)elU
z(to) = o

The Hamiltonian for this problem is given by

H(t,z,p) = sup((p, f(t,z,u)) — L(t, z,u))
uclU

For a class of nonlinear control problems H (%, -,-) is everywhere dif-
ferentiable. We provide in Section 1 an example of such situation.

If shocks never occur on the time interval [0, 7], then the solution
of (5.1) can be constructed by simply setting

T
V(to, x(to)) = g(x(T)) + / L(t, z(t), u(t))dt

where z solves (5.2) for some p(-) and the control u(t) € U is so
that z'(t) = f(¢, z(t),u(t)) almost everywhere in [to,T]. Then V
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is the value function of the above Bolza optimal control problem.
Furthermore in this case V is continuously differentiable and
T (o) = —pl) & T(t,a(t)) = H(t,2(t),p(t)

It is well known that shocks do happen. This is the very rea-
son why the value function is not smooth and why one should not
expect smooth solutions to the Hamilton-Jacobi-Bellman equation
(5.1). Also it was shown in Chapter 4 that for the Mayer problem
the value function is not smooth at some point (¢g,zo), where the
co-state is nondegenerate, if and only if the optimal trajectory is not
unique. We shall show under what circumstances a similar statement
holds true everywhere for the Bolza problem.

If we could guarantee that on some time interval [¢g, T'] there is no
shocks, then the value function would be continuously differentiable
on [ty,T] x R™ solution of (5.1). In the same time we have the
uniqueness of optimal trajectories and obtain the optimal feedback
low G : [tg, T] x R™ ~» U by setting

66,2 = {ul Hit,z,~ G () = (=5 (6,2), T (,2,0) = Lt 2,0

Then the closed loop control system
a = f(t,{L',’U,(t,.’B)), u(t,a:) € G(tax)a :L'(t()) =To

has exactly one solution and it is optimal for the Bolza problem.

Actually, when the data is smooth, the shocks would not occure
till time tg if for every (z, p) solving (5.2) on [tg, T'] the matrix Riccati
equation

2 2
P4 o OpOP + P gt (0),p(0) +
2 2
+ P SR s 0p0P + 55 et pe) =0 O
| P(T) = 4" ((T)

has a solution on (¢, T.
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In Section 1 we show that the existence of global solutions to
Riccati equations (5.5) implies the absence of shocks. Section 2 is
devoted to comparison theorems for solutions of (5.5). In Section
3 we relate the nonexistence of shocks to smoothness of the value
function and uniqueness of optimal solutions and then apply the
above results to problems with concave-convex Hamiltonians.

5.1 Matrix Riccati Equations and Shocks

In this section we relate the absence of shocks of the Hamilton-Jacobi-
Bellman equation (5.1) with the existence of solutions to matrix Ric-
cati equations (5.2).

Consider H : [0,T] x R x R* — R and ¢ : R" — R"™. We
assume that H(¢,-,-) is differentiable and associate to this data the
Hamiltonian system

S0 = S a(0),ple), o(T) = o
(5.6)
) = 220,00, pT) = plar)

Definition 5.1.1 The system (5.6) has a shock at time to if there
exist two solutions (x;,p;)(-), ¢ = 1,2 of (5.6) such that

z1(to) = z2(to) & pi(to) # pa2(to)

Definition 5.1.2 The Hamiltonian system (5.6) is called complete
if for every xr, the solution of (5.6) is defined on [0,T] and depends
continuously on the “initial” state in the following sense:

Let (x;,p;) be solutions of (5.6) satisfying x;(t;) — o, pi(ti) —
po for some t; — ty, g € R™, pg € R™. Then (z;,p;) converge
uniformly to the solution (x,p) of (5.6) such that x(ty) = xo and
p(to) = po.

Remark —

a) If the Hamiltonian system (5.6) is complete, then for all t5 €
[0,T], zo € R™, pp € R™ it has at most one solution (z, p) satisfying

z(to) = zo, p(te) = po.
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b) The Hamiltonian system (5.6) is complete for instance if for all
r > 0 there exists k. € L'(0,7) such that the mapping %{p—)(t, )
is k,(t)-Lipschitz on B,(0) and has a linear growth: for some v €
LY(0,T)

OH

Vi, peR", || <t,x,p)|| <) (lall + ol + 1) ©
o(z,p)

Example — Consider

f:[0,T]xR" = R", ¢:[0,T|xR" = L(U,R™), | : [0, T]xR" —» R
where U is a finite dimensional space and let R(t) € L(U,U) be
self-adjoint and positive for every ¢ € [0,7]. Define

H(t.a,p) = (.S (t,2)) + sup (bt 2)u) = 5 (RO w) ) = 1(8,9)
uel

Then it is not difficult to check that
H(t,z,p) = (p, f(t,)) + (R(®)7'b(t, 2)"p, b(t,2)*p) — I(t,)

Thus an appropriate smoothness of f(¢,-), b(t,-) and [(¢,-) implies
differentiability of H (¢, -, -) and completeness of the associated Hamil-
tonian system. 0O

Theorem 5.1.3 Assume that v is locally Lipschitz, that H(t,-,-) is
twice continuously differentiable and that for every r > 0, there exists
k. € LY(0,T) satisfying

oH

77 _(t,-,+) is k.(t) — Lipschitz on B, (0
5o gy o) 18 Rell) ~Lip 0)

Further assume the Hamiltonian system (5.6) is complete and define
for every t € [0,T] the set

M = {(z(t),p(t)) | (z,p) solves (5.6) for some z7 € R"}

Then the following two statements are equivalent:

i) YVtel0,T), My is the graph of a locally Lipschitz function
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from an open set D(t) into R™

it) V (z,p) solving (5.6) on [0,T] and Pr € 9*y(z(T)), the
matriz Riccati equation

& o
P4 —(%—gg(t,x(t), p(t)P + P axi(t’x(t)’p(t)) +
2 2
+P aa_pl‘j’_[<1f',:z:(1t),p(t))1[’ + %ﬁ(t,xm,p(t)) =0 57
| P(T)=Pr

has a solution on [0,T).

Furthermore, if i) (or equivalently ii)) holds true, then
¥ is differentiable == M, is the graph of a differentiable function

P € C!' = M, is the graph of a C! — function

Corollary 5.1.4 Under all assumptions of Theorem 5.1.3, suppose
that for every (z,p) solving (5.6) on [0,T] and Pr € ¢ (z(T)),
the matriz Riccati equation (5.7) has a solution on [0,T]. Then the
Hamiltonian system (5.6) has no shocks on [0,T].

To prove the above theorem the following lemma is needed.

Lemma 5.1.5 Assume that the Hamiltonian system (5.6) is com-
plete and for every r > 0, there exists k. € L*(0,T) such that

OH
o(z,p)

Let K C R™ be a compact set. Consider a locally Lipschitz function
P R" — R™ and the subsets My(K), t € [0,T] defined by

(t,-,+) is k,(t) — Lipschitz on B,(0)

My(K) = {(z(t),p(t)) | (z,p) solves (5.6), zr € K}

Then there exists 6 > 0 such that for allt € [T — 4, T], My(K) is the
graph of a Lipschitz function.
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Proof — From the completeness of (5.6) we deduce that the subsets
M, (K) are compact and contained in the ball B,(0) for some r > 0.
Set k(t) = k.(t)

We proceed by a contradiction argument. Assume for a moment
that there exist ¢; — T'— such that My (K) is not the graph of a
Lipschitz function. Then for every ¢ we can find two distinct solutions
(’L;, pé), j = 1,2 of the Hamiltonian system (5.6) such that

— ||$§(tz') - $§(ti)||
o pd () — ph ()l

Since for every s € [t;,T] we have

— 0 as 1 = +00

i

1 (s) = ab(s)]| <

eillp (t:) — pa ()| + f K(T)([|23(7) — (D[] + [|pi (7) — pa(7)|)dr

the Gronwall lemma implies that for some C' > 0 independent from
i and for all s € [t;, T

|#1(s) = 23(s) | < Cleallpl () - ph(ta) | + / k()P (7) = ph(7) dr)
Hence for some C; > 0 and all 7 large enough and s € [t;, T},

I3 (s) = pa(s)]| <

I () = ph(t) || + f2 k()28 () — 25 ()] + i (7) = ph() [

< Cy P () — pa(8a) | + C [ k() |Iph(r) = ph(r)|| dr

From the Gronwall lemma we deduce that for some L > 0 indepen-
dent from ¢ and all s € [t;, T,

pi(t:) — ph(ts)

pi(s) = py(s)| < L
This implies that

_ 23 (s) = 24(s)]|
g; 1= sup - :
s€ft;,T) “P1(tz’) —Pz(ti)”

converge to zero (5.8)
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We next observe that for all s € [¢;, T,
[ (s) — p3(s)|] <
< |Ipi(T) = ph(D)| + T k() (|23 (r) = 2b(n)]| + |Ipi (7) = ps(7)|)dr
< IPT) = (D) + f7 k() (Iph(r) = ph ()| + & |} (t:) — ph(2a) ) dr

Applying again the Gronwall lemma and taking ¢ large enough we
get

pi(t) = ph(t:)|| < L1 |lp @ + —ph(t:)
for some L; independent from ¢. Hence for all large ¢
pi(t:) = ph(ts)| < 2Ly [pi(T) — p5(D)
and therefore, by (5.8),
@) =A@ _ [0 st ) =l
i@ =s @ ~ ol - @]~ @) = @]
Thus
l¥(21(T) — @I _ [IP1(T) — py(T)|]
] I ET T ey

which contradicts the Lipschitz continuity of ¢» on K. O

Proof of Theorem 5.1.3 —  Assume first that for all ¢ €
[0,T), M; is the graph of a locally Lipschitz function. Consider a
solution (z,p) of (5.6) and the linear system
( 0’H 0*’H

U = &Eap(t,x(t),p(t))U + a—ﬁ(t,x(t),p(t))V

2 2
S 6a0.p(O) + 5ot (0), PO

| U(T) = Id, V(T)=Pr



5.1 Matrix Riccati BEquations and Shocks 119

where U, V : [0,T] — L(R"™ R") are matrix functions and Pr €
*P(z(T)). Let (xn,pn) be solutions of (5.6) such that

lim z,(T) = z(T)

7—00

& nll)rglo Y (2,(T)) = Pr

By completeness of (5.6), (z,,p,) converge uniformly to (z,p).
The variational equation implies that for any (w(-),¢(-)) solving

2 2
"= %g—p(t,mn(t),pn(t))w + Ep—Q(t,xn(t),pn(t))q
2 2
—7 = a5’71;](’%%n(t),pn(t))w + gz%(t,wn(t),pn(t))q (59)
w(T) =wr, q(T) =4 (z.(T))wr

we have (w(t),q(t)) € Ta,(zn(t),pn(t)) (contingent cone to M; at
(2n(t), pn(t))). Because M; is the graph of a locally Lipschitz func-
tion, for some /; independent from n, {|g(t)]| <l lw(?)]|l.

Taking the limit in (5.9) we deduce that every solution (w,¢) of

2 2
W= el pOh + S (el o)
2 2
¢ = SO p0 + fote@p0)y
| w(T) = wr. o) = Prur

satisfies [|g(¢)]] < & [Jw(t)]l.
Thus, by uniqueness of solution to (5.10), if wy # 0, then w(-)
never vanishes. Since

wit)=U)wr & q(t)=V(wr

this implies that U(¢) is not singular for all ¢ € [0,7]. Setting
Pt)=V(t)U@)™!

we check that P satisfies (5.7).
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Conversely let (5.7) have a solution on [0, T] for all (z,p) solving
(5.6). For every r > 0, t € [0,T] consider the compact sets

Iy = {(z(t),p(t)) | (x,p) solves (5.6), z(T) € B,(0)}

We first claim that for every » > 0 and ¢y € [0,T], I, is the
graph of a Lipschitz function. Indeed fix r,ty as above and assume
for a moment that Il is not the graph of a Lipschitz function.

By Lemma 5.1.5 for all s near T, II,; is still the graph of a
Lipschitz function. Define

t = . i[?fT]{ Vse€lt,T), M, is the graph of a Lipschitz function}
€lto,

Then tg < ¢ < T and II; is not the graph of a Lipschitz function,
because otherwise, by Lemma 5.1.5, we could make # smaller which
would contradict its choice. Define the sets

Dy (s) = {a(s) | (z,p) solves (5.6, [lz(T)]| < r}

Observe that for all » > 0 and s €]t,T], D,(s) is open. Its
closure is equal to the set

D,(s) = {z(s) | (z,p) solves (5.6), z(T) € B,(0)}

by completeness of (5.6).
Define next the Lipschitz function &, : D,(s) — R™ by

Gra'ph(q)rs ) = Il

The Rademacher theorem yields @, is differentiable almost every-
where on D, (s).

Fix a sequence ¢, — t+ and observe that the family {®¢, },,5;
can not be equilipschitz, because otherwise, using that B

Hrf = Limy 0011,

we would deduce that II ; is the graph of a Lipschitz function. Thus
there exists a sequence Z,, € D,(t,) such that ®,, (Z,) — co. Hence

3 (un,vn) € R" xR" satisfying ®; (Tp)un = n, |lonll = 1, |[unll — 0
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Let (25, pn) be a solution of (5.6) such that x,(¢,) = T, and pp(t,) =
Q¢ (Tpn). Since @, is differentiable at T, using variational equa-
tion, we deduce that v is differentiable at z,(7'). Taking a subse-
quence and keeping the same notations, by completeness of (5.6), we
may assume that (x,,pn) converge uniformly to a solution (z,p) of
(5.6) and for some Pr € 0*¢(z(T))

vn = v, Y (zn(T)) = Pr

Consider next the solutions (wy, ¢,) of

2 2
W= e (tan(® e + S (6 a0, m(0)e
2 2
0 = Gl pa®)u + oot pa()g
w(tn) = un, qltn) =vp

The variational equation yields ¢, (T) = ' (2, (T))wn(T).
Since lim,_,__(up,vn) = (0,v), passing to the limit in the above
system, we deduce that (5.10) has a solution (w, q) satisfying

w(t) =0, ¢ #0, ¢T)=Prw(T)

In particular w(T') # 0 and U (#)w(T’) = 0. On the other hand, by the
previous arguments, P(t) = V (¢)U(t)~! solves (5.7) on J{,T]. If P is
well defined on [, T], then V(t) = P(t)U(t) and ¢(¢) = V(H)w(T) =
0, which leads to a contradiction and proves our claim.

Observe next that for every s € [0, T] the sequence of open subsets
{D,(s)}r>0 1s nondecreasing. Define the open set

D(s) = |J Dxl(s)
k>0
Then
D(s) = {z | I p such that (z,p) € M}

Since {II,s},>0 is a nondecreasing sequence of graphs of Lipschitz
functions, My = UJ,~q ;s is the graph of a function from D(s) into
R".
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We next show that M is the graph of a locally Lipschitz function.
Indeed fix T € D(s), r > 0 such that B,(T) C D(s). Since B,(T) is
compact and the family of open sets D, (s) is nondecreasing, for some
k > 0, B,(T) C Dg(s). But we already know that M, N Di(s) x R"
is the graph of a Lipschitz function.

The last two statements follow from the variational equation.

5.2 Matrix Riccati Equations
We investigate here matrix differential equations of the following type
P'+ At)*P + PA(t) + PE(t)P + D(t) =0, P(T)= Pr

5.2.1 Comparison Theorems

The aim of this section is to provide two comparison properties for
solutions of Riccati equations.

Theorem 5.2.1 Let A, E;, D; :[0,T] — L(R",R"), i =1, 2 be in-
tegrable. We assume that Ey(t) and Dy (t) are self-adjoint for almost
every t € [0,T] and
D1 (t) < Do(t), Ei(t) < Es(t) a.e. in [0,T) (5.11)
Consider self-adjoint operators P;r € L(R™, R™) such that
bPir < Por

and solutions Pi(-) : [to, T] — L(R™,R") to the matriz equations

P' + A(t)*P + PA(t) + PE;(t)P + D;(t) =0, P(T)= Pr (5.12)
fori=1,2. If Py is self-adjoint, then Py < Py on [ty, T)-

Proof — From uniqueness of solution to (5.12), using that E(¢)
and D;(t) are self-adjoint, it is not difficult to deduce that P is
self-adjoint. For all ¢t € [to, T, set

Z=PR-R, AW =AW®+ BP0 + Pa(t)
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Then

Ay Z(t) + Z(t)A(t) =

= At Z(t) + Z(H) A(t) — P& B (t) Py (t) + Po(t) By () Pa(t)
Therefore Z solves the Riccati equation
Z'+ At)*Z + ZA(t) + P (t)(Ex(t) — E1(t)) P2 (t) + Da(t) — Dy (t) = 0
Denote by X (-,¢) the solution to

X'=—-A(s)*X, X(t,t)=1d

A direct verification yields

Z(t) = X(t,T)(Por — Pi7)X(t,T)" +

T
+/t X(t,5)(D2(s) — D1(s) + Pa(s)(Ea(s) — Er(s)) Pa(s)) X (¢, 5)"ds

This and assumptions (5.11) imply Z > 0 on [tp,T]. O

Theorem 5.2.2 Let A, E;,D; : [0,T] = L(R™R"), i = 1,2 be
integrable. We assume that Eq(t), Di(t) are self-adjoint for almost
all t € [0,T) and

Di(t) < Da(t), 0< Ey(t) < Es(t) ae. in [0,7]

Consider self-adjoint operators Py € L(R™,R"™) such that Pip <
Pyr and solutions Py(+) : [t;, T] — L(R™,R") to the matriz equations

P+ A(t)*P + PA(t) + PE;(t)P + D;(t) =0, Pi(T)= P

where 1 = 1,2. If Py is self-adjoint, then the solution Py is defined
at least on [t2,T] and P, < Ps.

Proof — Consider the square root B(t) of F1(t), i.e. for almost
every t € [0,T], E1(t) = B(t)B(t)* and set

to = inf {P; is defined t, T
0 tel[%,T]{ , is defined on (¢, T}
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Thus either the solution P; exists on [0,7] or ||P(¢}|]| — oo when
t — to+. It is enough to show that if ¢5 < £g, then P; is bounded on
ta,T). So let us assume that to < tg. By Theorem 5.2.1 for every
to < t < T we have Pi(t) < P(t). Pick any z € R" of norm one.
Since P; = P; we get

(Bt Pi(t)z, B(t)*Pi(t)z) =
Therefore for every x € R™ of norm one and all {y <t < T

[ NB(s)*Pu(s)al|* ds <

< - I < P{(s)z,z > +2 [T A IPr(s)]| ds + | Dl ey

< (Pu(t)z, ) + | Porll + 2 1A | 1Pu(s)l ds + D1l ey

< 1Pl + 2 [ NAGHIPL() N ds + [ Purll + D1l ooy

<c+2 [ AN IP(s)] ds

for some ¢ independent from ¢, because P, is bounded on [t2, T
On the other hand for any y € R" of norm one

—(P{(t)z,y) = (A(t)B()B)*Pi(t)z,y) + (AR Pi(t)z,y) +

Integrating on [t,T] and using the latter inequality and the Holder
inequality, we obtain

(Pr(t)z,y) < (| Prrll + (1B*C)PL)al po ) 1B*C)PL (Yl L2y +

+2 [T IAGNIP(s) ds + | Dull e,y

2
< e+ 2T AP ds+ | (e 207 AN IR ds) "
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for some ¢; independent from ¢. Since this holds true for all  and
y € R"™ of norm one,

T
Vig <t <T, |A@)| < C+cl+4/t A Pr(s)ll ds

Applying the Gronwall lemma we deduce that || P;(%)|| is bounded on
Jt0,T] by a constant independent from ¢.

5.2.2 Existence of Solutions

We deduce from the previous section sufficient conditions for exis-
tence of solutions to the matrix Riccati equations.

Theorem 5.2.3 Let A,E,D :[0,T] - L(R™,R"™) be integrable. We
assume that E(t), D(t) are self-adjoint and E(t) > 0 for almost
every t € [0,T]. Consider a self-adjoint operator Pr € L(R™",R")
and assume that there exists an absolutely continuous P : [to,T] —
L(R™ R"™) such that for every t € [to,T), P(t) is self-adjoint and

P'(t)+ A(t)"P(t)+ P(t)A(t)+ P(t)E(t)P(t) + D(t) < 0 a.e. in [tg, T
and Pr < P(T). Then the solution P to the equation

P+ A#)*P+ PA(t) + PEt)P+D(t) =0, P(T)=Pr (5.13)
is defined at least on [ty, T] and P < P on [ty, T).
Proof — Set

[(t) = P'(t) + A@®)*P(t) + P(t)A(t) + P(t)E(t)P(t) + D(t)
Then I'(¢) < 0 and is self-adjoint and P solves the Riccati equation
P+ A@#)*P + PA(t) + PE(#)P+ D(t) —T'(t) =0

where D(t) — I'(t) > D(t). By Theorem 5.2.2, P is defined at least
on [tg,T) and P < P. O

Corollary 5.2.4 Under all assumptions on A, E, D of Theorem
5.2.8 consider a self-adjoint nonpositive Pr € L(R™ R"™). If for
almost all t € [0,T], D(t) < 0, then the solution P to the matriz
Riccati equation (5.13) is well defined on [0,T) and P < 0.

Proof — We apply Theorem 5.2.3 with P(:) =0. O
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5.3 Value Function of Bolza Problem

Consider the minimization problem

T
(P) minimize [ L(¢,z(¢),u(t))dt + g(z(T))

to

over solution-control pairs (z,u) of the control system

Z'(t) = f(tz(t),u(t)), u(lt)elU
(5.14)
(L’(to) = T

where ty € [0,T], zp € R™, U is a complete separable metric space,
g:R"—=R, L:[0,T|xR"xU~R, f:[0,T]xR"xU—~R"
The Hamiltonian H : [0,T] x R" x R™ — R is defined by

H(ta T,p) = sup ((pa f(t,z, u)) - L(t7 €, u))
uel
We denote by U the set of all measurable controls u : [0,7] — U
and by z(-;t9, o, u) the solution of (5.14) starting at time ¢ from
the initial condition zg and corresponding to the control u(-) € U.
Of course not to every u € U corresponds a solution x(-; tg, zg, u) of
(5.14).
For all (tg,zg,u) € [0,T] x R™ x U set
‘T
®(to, zo,u) = ) L(t, z(t; to, xo, u), u(t))dt + g(z(T'; o, To, u))
0
if this expression is well defined and ®(#g, z¢, u) = +00 otherwise.
The value function associated to the Bolza problem (P) is defined
by
V(to,z0) = infucy®(to, o, u)

when (g, z¢) range over [0,T] x R™.
Proposition 5.3.1 Assume that H(t,-,-) is differentiable. Then

%gu,x,p) = (f(t,0,0) | {py f (2, w) — L(t, 2, u) = H(t,2,p)}
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and

oH _(of , 0L
) = { s

<p7 f(tv Zz, ’U,)) - L(ta Z, U’) = H(ta xap)}
Proof — By Proposition 3.3.3 applied to the Hamiltonian

H(t,z,(p,q) = Zlég((f(t,a:,u), L(t,z,u)), (p,q))

at (p,q) = (p, —1) we get

oOH oH
5 (bop) = 50 (5 -1)

= {f(t,z,u) | {p, f(t,2,u)) — L(t,z,u) = H(t,z,p)}
and

OH OH
—a;(tvl7p) - %(taxa (p7"1)) -

{5t 2,u)p = S&(t,2,u) | (p, f(t,2,w)) — L(t,2,u) = H(t,2,p) }

0
Consider the Hamiltonian system
OH
#() = S (ta)p®), o) =2
P
(5.15)
@ = 2Lea.p0), pT) = Vo(ar)

Ox
Throughout the whole section we impose the following hypothe-
sis:
H,) f, L are continuous and Vr > 0, 3 k. € L}(0,T) such that
VueU, (f(t-,u),L(t, -,u)) is k,(t) — Lipschitz on B,(0)

H,) f(t,-,u), L(t,-,u) are differentiable and g € C!
H3) H and %g are continuous on [0,7] x R” x R"
H,) The Hamiltonian system (5.15) is complete
H;) For all (¢,2) € [0,T] x R, the set

)
{(f(t,z,u), L(t,z,u) + r)|u € U, r > 0} is closed and convex
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5.3.1 Maximum Principle

As in Chapter 3 to study differentiability of the value function we
shall use the maximum principle:

Theorem 5.3.2 Assume Hy), Hy) and let (Z,T) be an optimal solu-
tion-control pair of (P) for some (to,zo) € [0,T] x R™. If H(t,-,")
is differentiable, then there exists p : [to,T] — R"™ such that (Z,p)
solves the Hamiltonian system

S0 = Stal).p), () =
W) = La0p0), p1)=-vory 10
( plto) € —04Va(to, 7o)

where 04 Vy(to, zo) denotes the superdifferential of V (to,-) at zo.
Consequently for almost all t € [ty, T,

H(t,7(t),p(t)) = (p(t),7'(t)) — L(t,Z(¢), u(t))

Proof — Fix v € R™ and let hy — 0+, v — v be such that

t ho'y — V(# ,
D\ Vi(to, mo)(v) = limsup V (to, 2o + hv') — V(to, 20)
h—0+, v/ —v h

- 1 V(to, zo + hrvk) — V (to, 2o)
= m
k—o0 h

For all k£ large enough consider the solution x(-) of the system
() = [f(t=),u(t))
.’I?(to) = Xp+ hkvk

The variational equation implies that the sequence (zx — Z)/hy con-
verges to the solution w(-) of the linear system

=9

w'(¢) 50

&, z(®),u(®)w(t), wlt)="v
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Let X () denote the fundamental solution of

Then w(t) = X (t)v for all ¢t € [ty, T]. Thus
D,V (to, o) (v) <

JE(L(t, 2(8),T(t)) — L, T(), T(t)))dt + g(ax(T)) — g((F(T))

to

lim sup
k—o0 hk

|

Consider the solution p(-) to the adjoint system

T
| X0 S50, 56)dt + X(T)Va(@(T)), >

to oz

= P, w0 - 9 470, 70)
pIT) = V(D)

Then

1 T
plt) = ~X (&) (X(T)*Vg((f(T)H / X(s)*g—j@,f(s),ms»ds)

Comnsequently, for all v € R™,
D Vi (to, mo)(v) < {~p(to),v)

and so p(tg) € —94+Vy(to,z0). By the maximum principle for a.e.
t e [t(),T],

(p(t), f(t,z(2),u(t))) — L(t, Z(t),u(t)) = H(T(t),p(t))

Since H(t,-,-) is differentiable, we deduce from Proposition 5.3.1 that
(Z, p) solves the Hamiltonian system (5.16).
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5.3.2 Differentiability of Value Function and Unique-
ness of Optimal Solutions

We shall need the following consequence of the maximum principle.

Theorem 5.3.3 Assume Hy) — Hs), that V' is locally Lipschitz and
for every (to,zo) € [0,T] x R™ the problem (P) has an optimal solu-
tion. Then for every

o . 1%
P € 03V (to,zo) = Limsup,, .0 4 4 {%(tz,xl)}

there exists a solution (x,p) of (5.15) satisfying

z(to) =z0 & p(to) =D

and z is optimal for problem (P).

In particular if (P) has a unique optimal trajectory z(-), then the
set 05V (to, xo) 1s a singleton. Consequently, V(to,-) is differentiable
at zgp.

Remark — Various sufficient conditions for local Lipschitz conti-
nuity of the value function and for the existence of optimal controls
for (P) may be found in many books. They can also be deduced
from results of chapter 1. We shall not dwell on this question in this
chapter. O

Proof — Let 7 € 9;V(to,z0) and (t,zx) — (to,zo) be such
that

.oV _
Jim = (te, 2x) = P
Consider optimal solution-control pairs (z,ug) of (P) with (¢g,20)
replaced by (tx, ). From Theorem 5.3.2 it follows that there exist
absolutely continuous functions p; such that for all k, (2, px) solves
the following problem

PO = Gra®p), 2(t) =k p(t) = ~5(to)

P = T (ta(),p(0), p(T) = ~Vo(((T))
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We extend (z,px) on the time interval [0,¢] as the solution to the
Hamiltonian system

S0 = 6l plo), ol) =
B0 = (10l p(0), plte) = pete)

By completeness of (5.15), (zx, px) converge uniformly to the unique
solution (z,p) of the Hamiltonian system

PO = G e0,p0), 2(t) =20
B0 = S0.p(0), plis) =P

By Proposition 5.3.1 for all ¥ > 1 and almost all ¢ € [tg, T,

H{(t,z,(t), pi(t)) = (p(t), 2 (t)) — L(t, 25 (1), ug(t))

and from Hs) it follows that {2z} ()} is bounded in L*°(0,T).

We extend L(-, zx(-),ug(-)) on [0,tx[ by zero function and de-
duce from the above equality and H3) that {|L(-, zx(-), ur(-))|} x> 18
bounded in L*(0,T). -

Taking a subsequence and keeping the same notations we may
assume that

(2 (), L(-,2e(-),ux(-))) converges weakly in L(0,T) to (y(-),a(-))

Since for every t € [ty, T, zx(t) = zx + fttk 2, (s)ds, taking the limit,
we obtain 2(t) = xo + ftf y(s)ds. Consequently 2'(-) = y(-). On the
other hand,

Vteron) = g((z@) + | Lis, 24(s), u(s)ds

71
Hence, by continuity of V', passing to the limit, we obtain

T
‘wmww:gw@»+l a(s)ds
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By Mazur’s theorem and H,), Hs) for almost all ¢ € [tg, T7,
(y(t),e(t)) € {(f(t,2(¢),w), L(t, 2(t),u) + ) Ju € U, r > 0}

Hence, applying the measurable selection theorem, we can find @ € U
and a mesurable r(-) : [tg, T] = R4 such that for almost all ¢,

y(t) = f(t,2(8),u(t) & oft) = L(t, 2(¢), u(t) +r(t)

This implies that z corresponds to the control @ € U. Finally, since
r(t) = 0,
T
V(to, o) > 9(2(T)) + t L(s, z(s),u(s))ds
0
and therefore (z, %) is optimal for (P).

To prove the last statement fix p; € 93V ({0, 20), ¢ = 1,2 and let
(zi,pi), © = 1,2 be solutions of (5.15) such that p;(tp) = p;- From
the uniqueness of optimal trajectory z and the first claim of our
theorem, we deduce that z! = 2% = 2. Consequently, (z,p;) solve
the Hamiltonian system (5.15) with zp = z(T) for ¢ = 1,2. So, by
uniqueness, p;(to) = pa(to)-

5.3.3 Smoothness of the Value Function

Differentiablility of the value function is related to solutions of (5.15)
in the following way.

Theorem 5.3.4 Assume Hi) — Hs), that V' is locally Lipschitz and
for every (to,zo) € [0,T] x R™ the problem (P) has an optimal solu-
tion.

Then the following four statements are equivalent:

i) The value function V is continuously differentiable

i) For every to € [0,T], V(to,-) is continuously differentiable
i1i) ¥ (to, zo) € [0, T) x R™ the optimal trajectory of (P) is unique
iv) For the Hamiltonian system (5.15) the set

My := {(z(t),p(t)} | (z,p) solves (5.15) on [¢, T]}

1s the graph of a continuous function m : R” — R".
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Furthermore, 1v) yields that m(-) = —%—‘;(t, ') and every solution

(z,p) of (5.15) restricted to [to, T| satisfies: z is optimal for (P) with
o = z(to) and p(t) = —%—‘;(t,x(t)) for all t € [0,T).

Before proving the above theorem, we shall state few corollaries.

Corollary 5.3.5 Under all assumptions of Theorem 5.8.4, suppose
U is a finite dimensional space, that for some f : [0,T] x R™
R™ b:[0,T] x R® — L(U,R"™) we have

Y (t,z) € [0,T] x R", f(t,z,u) = f(t,z) + b(t,x)u

and for every (t,z), g—ﬁ(t,a:,-) is bijective. Then the (equivalent)
statements 1) — iv) of Theorem 5.8.4 are equivalent to

v) For every (ty,zo) € [0,T] x R"™ there exists a unique optimal
control u(-) solving the problem (P). Furthermore, if z denotes the
corresponding optimal trajectory, then for all t € [to, T,

w0 = (Gat50,9) (607 G 6)

The above corollary follows from #i) of Theorem 5.3.4 and the fact
that @ verifies

H{(t,2(t),p(t)) = (p(t), 2 (t)) — L(t, 2(t),@(t)) ae. in [to,T]
where p(-) is the co-state of the maximum principle (see Theorem
5.3.2).

Our next corollary links results of Section 1 and Theorem 5.3.4.

Corollary 5.3.6 Under all assumptions of Theorem 5.5.4, suppose
that Vg(-) is locally Lipschitz, H(t,-,-) is twice continuously differ-
entiable and

H
Vr >0, 3k € LY(0,T), —é—gv—p)—(t, -,+) is ky (¢) — Lipschitz on B,(0)

Then the following two statements are equivalent:

i) Vtel0,T], ‘g—‘;(t, -} 4s locally Lipschitz
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it) V (z,p) solving (5.15) on [0,T] and every Pr € 0*(Vg)(z(T)),

the matriz Riccati equation

0*H 0’H

!

P+ apax(taz(t)vp(t))P + P M(tax(t)ap(t)) +
o*H O?H

+Pa—p2(ta$(t)ap(t))P + W(tﬁ(t)’il?(t)) =0

has a solution on [0,T].

Furthermore, if i) (or equivalently ii)) holds true, then

Vg is differentiable — %g(t,-) is differentiable

and for every (z,p) solving (5.15), P(t) = —%QCCTV(t,x(t)). If moreover
g € C?, then V(t,-) € C?.

Proof — Let M; be defined as in Theorem 5.3.4. If 7) holds
true, then, by Theorem 5.3.4, M, is the graph of a locally Lip-
schitz function m;. By the maximum principle (Theorem 5.3.2),
m(-) = —%—‘;(t,'). Applying Theorem 5.1.3, we deduce ). Con-
versely, assume that i7) is verified. Thus, by Theorem 5.1.3, M; is
the graph of a locally Lipschitz function from an open set D(¢) C R"
into R™. By the maximum principle, M; = Graph(—%%(t, -)). Hence
i). The last statement follows from Theorem 5.1.3, because P(t)
describes the evolution of tangent space to My at (z(t),p(t)). D

To prove Theorem 5.3.4 we need the following lemma.
Lemma 5.3.7 Under all assumptions of Theorem 5.5.4 consider

(to,xo) €]0,T[ xR™ such that V is differentiable at (to,z0). Then

ov ov
‘T%—(to,xo) +H (to,fb‘o,"%(to,xo)) =0

i.e., V satisfies the Hamilton-Jacobi-Bellman equation almost every-
where in [0,T] x R™.
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Proof — Fix any u € U and consider a solution z to

(t) = f(t,=z0)

z(to) = o
Observe that for all small h > 0 it is defined on [to,¢o + k] and, by
the very definition of the value function,

to+h
V(to + h,z(to + h)) + L(s,z(s),u)ds — V(tg,z9) > 0
to

Dividing by & > 0 and taking the limit we prove

ov
Ve, St w0) + (G (to,0),  (t0,20,1) ) + Llto, 0,1 2 0

Consider next an optimal solution-control pair (z,%) of the Bolza
problem (P). Then
to+h
V(to + h,z(tg + h)) + L(s,z(s),u)ds — V(to,z¢) =0 (5.17)

to

By Theorem 5.3.2, 2(-) solves the Hamiltonian system (5.15) with
xr = 2(T). Hence, by Hs), z(-) € C* (2(to + h) — 2(¢0))/h converge
to some v when A — 0+. By (5.17), for some o € R,

lim 1 t0+hL(s,z(s),ﬂ(s))ds =0
h—0+ h Sy,
By Hs)
(v,0) € {(f(to, o, v), L(to, z0,u) + ) |u €U, r > 0}
Thus for some ug € U and rg > 0
(v,0) = (f(to, Zo, uo), L(to, zo, uo) + ro)
Dividing (5.17) by h and taking the limit yields

oV av .
—8;(%,330) + <a—x(to,xo),f(t0,$o7uo)> + L(to, zo,up) + 710 =0
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So we proved the existence of ug € U such that

oV ov
—87(750,1130) + <—a_x(t07$0)7f(t07$01u0)> + L(to, zo,u0) <0

The two inequalities derived above imply the result. O

Proof of Theorem 5.3.4 — Clearly i) = 7i). Assume next
that 47) holds true. Fix 0 <ty < T, 2o € R™ and let Z be an optimal
solution to problem (P). Then, by Theorem 5.3.2, there exists p(-)
such that (Z,p) solves the system

PO = Grat,p), 2l = 2o
W) = G (4,208, plto) = 5 (10,0

Since the solution to such system is unique, we deduce #i7).

Conversely assume that 4i7) holds true. Fix (to,z0) € [0,T] x R™.
Then, by Lemma 5.3.3, 95V (to, zo) is a singleton. We claim that the
set

a*V(th $0) = Limsup(t,:c)—)( ){VV(t, x)}

to,xo

is a singleton.

Indeed let (py,py) € 0*V (o, zo) and (¢;,x;) — (to,x0) be such
that VV(t;,2;) = (pt,px). Then {p;} = 9;V (to,z0) and, by Lemma
5.3.7, V satisfies at (¢;,z;) the Hamilton-Jacobi-Bellman equation

ov

ov
—E(tz‘,l‘i) +H (tiamia—%‘(tia%)) =0

Taking the limit we get

p = H(t,z,—pe)
So p, is uniquely defined and, thus, 3*V (tg, z¢) is a singleton implying
that V is differentiable at (tg,zo). Since (fo,z9) € [0,T] x R" is

arbitrary, we deduce that V is continuously differentiable on [0, T] x
R"™. Hence we proved #i1) == 1).
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Assume next that ¢v) holds true. Fix ty € [0,T] and 29 € R™.
By Lemma 5.3.3,

(g, O3V (t0,20)) C Graph(my,)

Thus 03V (tg, o) is a singleton. In particular

. ov . .
Limsup,_,,, {5—;(150, 1)} is a singleton
and therefore, 47) is verified.

It remains to show that i7) yields ¢v). For this aim fix ¢y € [0, 7]
and define the continuous mapping ¥ : R™ — R" in the following
way:

For all zy € R™ consider the solution (z,p) to the system

S0 = Gt alt)plo), olte) =z
D0 = G (6w0),pl0), plto) =~ (t0,70)

and set ¥(zg) = z(T"). By the maximum principle (Theorem 5.3.2)
we know that p(T) = —Vg(z(T)). Thus (z(T),p(T)) € Graph(—Vg).
In particular this yields W is one-one. By the Invariance of Domain
Theorem, ¥(R™) is open. Thus the set

{(¥(zg), =V g(¥(x0))) |20 € R"} is open and closed in Graph(—Vyg)

So it coincides with Graph(—Vg). Hence, by uniqueness of solution
to the Hamiltonian system (5.15), M; = Graph(—%(tg,-)). The
proof is complete.

5.3.4 Problems with Concave-Convex Hamiltonians

Observe that in general one has

0*°H
sz_ (t7$(t)7p(t)) > 0
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for every solution (z,p) of the Hamiltonian system

20 = Gotalt)p), oF) =or
(5.18)
2O = 2 ,0(0).0(0), p(T) = ~Vo(er)

and that whenever in addition H(t, -, p(t)) is concave for all ¢ € [0, T,
then

2
O (La(0),p(0) < 0

If g is convex, then every matrix from the generalized Jacobian
0*g(z(T)) is nonnegative. From Corollary 5.2.4 we deduce that for
every Pr € 9*(Vg)(x(T)), the solution P(:) of the matrix Riccati
equation

r 2 2
P4 o (4al0), pOIP + P o (1,5(0,5(0) +
2 2
+P S talp )P + G tawp) =0 1Y
P(T) = —Pp

exists on [0,7]. By Theorem 5.1.3, no shocks of (5.18) can occur
backward in time. Hence we deduce from Theorem 5.3.4 and Corol-
lary 5.3.6 the following results.

Theorem 5.3.8 Assume H,) — Hs), that V is locally Lipschitz and
for every (to,zo) € [0,T] x R™ the problem (P) has an optimal solu-
tion.

Further assume that Vg(-) is locally Lipschitz, H(t,-,) is twice
continuously differentiable and

OH
o(x,p)

If for every solution (x,p) of (5.18), H(t,-,p(t)) is concave and
g is convez, then V € C! and %—Z(t, -) s locally Lipschitz.

Vr>0,3k. € LY(0,T), (,-,-) is kr(t) — Lipschitz on B,(0)
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Moreover, every solution (x,p) of (5.18) is an optimal trajectory-
co-state pair. If in addition g € C?, then V(t,-) € C? and, in this
case, P(t) = —gz?‘./(t,a:(t)) solves the matriz Riccati equation (5.19)
with Pr = —¢" (z(T)).
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Chapter 6

Hamilton-Jacobi-Bellman
Equation for Problems
under State-Constraints

Introduction
Consider the optimal control problem

Minimize g(z(1))
over x € WhHi([0,1]);R™) satisfying

(P) z'(t) € F(t,z(t)) ae. te€]0,1],
z(t)e K Vtelo,1],
z(0) = zo,

the data for which comprise: a function g : R® — R U {+0}, a set-
valued map F : [0,1] x R" ~ R", a closed set K C R" and a vector
zo € R™. Solutions of the above differential inclusion satisfying the

constraints of (P), are called feasible arcs (for (P)).

Note that, since g is extended valued, (P) incorporates the end-

point constraint:
z(l) e C

where C := domg.

Denote by V : [0,1] x K — RU{+o0} the value function for (P):
for each (t,z) € [0,1] x K, V(t,x) is defined to be the infimum cost

141
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for the problem

Minimize g(y(1))

over y € Whi([t, 1]; R™) satisfying
(Pra) y'(s) € F(s,y(s)) ae s€lt1],

y(s) e K Vseltl],

y(t) =z

Thus
V(t, iE) = inf(Pt,x).

(If (P;4) has no feasible arcs, we set V (¢,2) = +00.)
In this chapter we explore the relationship between the value
function and the Hamilton-Jacobi Equation:

+ H(t,z,—
(H"E){V(l z) = g(x)

To get uniqueness of solutions to the above PDE in the con-
strained case we are lead to impose some kind of constraint quali-
fication on the dynamic constraint at boundary points of the state
constraint set.

In [9], Capuzzo-Dolcetta and Lions showed that the value func-
tion is continuous and is the unique viscosity solution to (HJE) under
hypotheses which include the “inward-pointing” constraint qualifica-
tion:

Py = 0 for (t,2) € (0,1) x intK
for z € K.

min ny-v<0 VzebdyK
veF(t,x)

where n, denotes the unit outward normal vector at the point z €
bdy K. Hypotheses of this nature were introduced by Soner [40] to
ensure continuity of the value function and to provide a character-
ization of the value function in terms of viscosity solutions of the
relevant Hamilton-Jacobi equation, for an infinite horizon problem.

When the “inward pointing” constraint qualification fails, or when
the terminal cost function g is chosen to take account of an endpoint
constraint, we can expect that the value function will be discontinu-
ous.

We restrict attention to a special class of state constraints sets,
namely a finite intersection of smooth manifolds. (Nonetheless, this
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is a framework which allows state constraints sets with nonsmooth
boundaries, and covers state constraints encountered in most engi-
neering applications.) A key element is an extension of Filippov’s
theorem to the constrained case.

6.1 Constrained Hamilton-Jacobi-Bellman Equa-
tion

The following theorem provides two characterizations of the value

function for optimal control problems with endpoint and state con-

straints, in terms of lower semicontinuous solutions of the Hamilton-

Jacobi equation and one in terms of epiderivative solutions.
It is assumed that the state constraint set K is expressible as

K = mi_{z:hi(z) <0}

for a finite family of C1! functions {h; : R* = R}’_,. (CY' denotes
the class of C! functions with locally Lipschitz continuous gradients.)
The “active set” of index values I(x), at a point z € bdy K, is

Iz) = {je(1,...,r): hj(z) =0}

Recall the notations a V b = max{a, b} and a A b = min{a, b} for all
real numbers a,b. We write

ht(z) := <j:r{12a}.<”rhj(x)> V0.

Wbl([a,b]; R") denotes the space of absolutely continuous n-vector
valued functions on [a, b], with norm

b
el = ()] + / 2! ()| dt.

Theorem 6.1.1 Take a function V : [0,1] x K - RU {+oc0}. As-
sume that the following hypotheses are satisfied:

(H1) F is a continuous set-valued map, which takes values in the
space of non-empty, closed, convez sets,
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(H2) There exists ¢ > 0 such that

F(t,z) C (1 +||z])B ¥ (t,z) € [0,1] x R",

(H3) There exists k € L' such that

F(t,z) C F(t,z1))+k(t)||lz—z:1||B Vte€][0,1], z,z; € R"xR",

(H4) g is lower semicontinuous.
Assume furthermore that

(CQ) For all z € K and t € [0,1] there exists v € F(t,z) such that
Vj€I(z), Vhj(z) -v>0.
Then assertions (a)-(c) below are equivalent:
(a) V is the value function for (P).
(b) V is lower semicontinuous and
(i) ¥ (t,z) € ([0,1[xK) Ndom V'

inf DiV(t,z)(1,0) < 0
petd D1 (t,z)(L,v) <

(11) ¥ (t,z) €]0,1] x int K) N dom V'

sup D4V (t,z)(—1,-v) < 0
vEF(t,x)

(iii) Yz € K
lim inf V{t,2)=V(l,z) =
{(t’,x’)—)(l}gt}gl,x’eintK} ( ,’L’) ( ,:E) g(x)
(c) V is lower semicontinuous and

(i) ¥ (t,z) € (J0,1[xint K) NdomV, (pt,psz) € O_V (¢, x)

—Dt + H(ta z, _pz) =0.



6.2.  Neighbouring Feasible Trajectories Theorem 145

(1) ¥ (t,z) € (J0,1[xbdy K) Ndom V', (pt,p;) € 0_V (¢, z)

—pt+ H(t,.’l], ‘pz) Z 0
(iii) V z € K,

lim inf V(t',z)=V(0,x)
{(¢' &')—=(0,x):t' >0}

and

lim inf ") = = .
{(tf,z/)—>(1,lmr§}t}r<11,x'eim K} Vit,a') = V(l,z) = g(2)

Example Consider

Minimize g(z(1))
z'(t) € F(t,z(t))
z(t) e K

{E(O) = Zo,

in whichn =1, g(z) =z, F(t,z) ={1}, K ={z:2 <0}, 2o = 0.
By inspection

) 40 ife>—-(1-1t)
V(t,:z:)—{ z+(1—-t) ifz<—(1-1)

The hypotheses for application of Thm. 6.1.1 are satisfied, includ-
ing the outward-pointing constraint qualification (CQ). Thm. 6.1.1
therefore tells us that V is the unique solution of (HJE) (in the sense
specified).

Notice that V(t,z) = 400 at some points in [0, 1] x K, despite
the fact that g is everywhere finite valued (no endpoint constraints).

6.2 A Neighbouring Feasible Trajectories The-
orem

A key role in the proof of the Main Theorem is played by an es-
timate governing the distance of the set of trajectories satisfying
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a given state constraint from a given trajectory which violates the
constraint. This estimate is provided by the following Existence of
Feasible Neighbouring Trajectories (EFNT) Theorem, which can be
regarded as a kind of refined viability theorem, in which the informa-
tion that a ‘viable’ solution exists whenever viability condition holds
true is supplemented by information about where it is located, in
relation to a given solution when a ‘strict’ viability condition holds
true.

As before, we limit attention to state constraint sets K associated
with a family of functional inequalities;

K =nj_{z: hj(z) <0},
in which the h,’s are given Cb! functions.

Theorem 6.2.1 Fiz g > 0. Assume that for some ¢ > 0, a > 0
and k(-) € L', the following hypotheses are satisfied:

(i) F takes values in the space of non-empty, closed sets and F(-,x)
18 measurable for each x € R™.

(i) F(t,z) Cc(l+|z||)B V(tz)€[0,1] x R™.
(i) F(t,z) C F(t,z")) + k(t)|lz —2'|B Vtel0,1], z,z’ € R™
Assume furthermore that there exists some o > 0 such that

(CQ)/ minvep(t’x) maX;er(z) th (.’II) o<l -,
z € B(0,e(rg +¢)) Nbdy K, t € [0,1].

Then there exists a constant 9 (which depends onrg, ¢, o and k € L)
with the following property: given any ty € [0,1] and any & € Slto,1]
such that £(tg) € B(0,70)NK, an z € Sjy, 11(2(t0)) can be found such
that

z(t) e K Vte [t 1]

and

||z — fIA}HWU([tO,l];Rn) <4 tg[lt%f(l] h"‘(:f:(t)).
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The need to introduce into (CQ) ' the positive parameter « a rised
because it is not hypothesized that F' is a continuous multifunction.
In the case F' is continuous, then (CQ) ' is implied by the condition

i Vhi(z)-v <0 Vaze B0, Nbdy K, t € [0,1].
,Jain | max j(@)-v z € B(0,e(ro+c))Nbdy K, ¢ € [0, 1]

Proof. Set R = e(rg + ¢) and ¢g = ¢(1 + R). Let k;, be a common
Lipschitz constant for the h;’s on B(0, R) and let k¥ be a common
Lipschitz constant for the Vh;’s on B(0, R).

Note that for any [t,¢"] C [0,1] and any solution y : [/, "] — R"™
to our differential inclusion such that y(t') € B(0,r), we have y(t) €
B(0, R). This follows from Gronwall’s lemma.

Let w: R* — R™ be a modulus of continuity for ¢t — [; k(s)ds,
l.e. w is monotone increasing, lim, o w(o) =0, and

w(t —t) > fmgm v [t,¢] C [0,1].

Define
Ig(§) = {j €{L,...,r}: 0> h;(§) > - f}.
Under the hypotheses, there exists 8 > 0 and a > 0 such that

vé € KN B(0,R),t € [0,1] vgi(?g)jg}%) Vhi(§) v < —a.

Fix o/ € (0,a). Choose nn € (0,1) such that N := 5! is an integer
and the following conditions are satisfied:

n < (a—d)(gr)™ (6.1)
a—-ao
1 1 2
w(n) < log( Seokr T ) (6.2)
n(knco +) < B, (6.3)
and )
66—(),&6“(")7]4—62(—:@(6‘”(") —1)2¢93/a’ < 1. (6.4)
o o
Set

6 ! 6
19/ -=— max {g exp(/(; ,{}(S)ds)7 %CO} . (6.5)
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Step 1: We show that, for every £ € K and 7 € (0,1 — 7] there
exists a solution % : [7,7 + ] — R such that Z(7) = £ and

hi(Z(t)) < —=d'(t—7) Vg, Vtelr,7+n.
Fix £ € K and 7 € (0,1 — n]. Consider a measurable function
v 1,7 +n] = R" such that v(t) € F(t,£) a.e. t € [1,7 + 7] and
J € Ig(&) implies Vh;(§) -v(t) < —a forae. t € [r,7 +7].
Set z(t) = & + [/ v(s)ds. We have, for all j € I3(¢) and t € [r, 7 + 7],

t
hi((®) = b€+ [ hi(a(s) - (s)ds

IA

t
0+/T Vh;(z(s)) - v(s)ds

IA

[ 9m©) o)ds + [ 19 (=(6) = Thy@) - (s s
—a(t —7) + ki (t — 7)%/2

< ea+m~dwmu—ﬂs—(“;“)a—ﬂ.

IN

(We have used (6.1).)

Fix j € Ig(¢). By Filippov’s Theorem, applied to the reference
trajectory z, there exists a solution Z : 7,7 + ] — R"™ such that
Z(r) =€ and, for all t € [, 7 + 7],

/Tt dr(s,(5)) (2 (5))exp ( /s t k(a)da) ds

colt = 7) / (s)exp ( / t k(a)da) ds
colt — ) (exp (/Tt k(s)ds)) ~1)
(e < s
(We have used (6.2). But then, for all ¢ € [, + 1,

hi(2(t) < kallZ(t) — 2(D)I + R;(2(2))
< (a—a a4+ o

R )(t—r)g—a’(t—r).

1E() — 2(t)]]

IA

IA

IA

(t—7).
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On the other hand, if h;(§) < —f, then, for all t € [, 7 + 7],
hi(E() < B+ (t—rkaco < —an < —o/(t = 7).

We see that, in this case too, the inequality is satisfied. Step 1 is
complete.

Step 2: Take any 7 € [0,1 — ] and any solution z; : [0,1] - R"
such that z1(¢) € K for all ¢ € [0, 7]. We shall show that there exists
an solution zs : [0,1] — R" such that z2(t) = z;(¢t) for all t € [0, 7],

zo(t) € K Vte[|r,m+1n)

and
+
llz1 — z2llwra (o, gmny < 9 tfen[gf]h (z1(2))-

Set

A = Rt (z1(t)).

max (z1(t))

Suppose that A > o'n/3. By Step 1, there exists a solution z; :
[0,7+n] — R™ such that zo(t) = z1(¢) for all ¢t € [0, 7] and z2(¢) € K
for t € [0, 7 + n]. We have

/
l|:L‘1 - ZCQHWI,I([OJ];Rn) < 200 < ’19/ <Ol_3’f]_> < 19/A,

by (6.5), as required. We can therefore assume that
A < d'n/s.

Set
n =3A/d.

Notice that n' < n and 7 +1n' < 1. By the results of Step 1, there
exists a solution z : [0,7 + n'] = R™ such that z(t) = z1(¢) for all
t€[0,7],

2(t) e K Vte[0,7+7]

and
hj(z(T + 7)) < —a'n’' = -3A V.
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By Filippov’s Theorem, there exists a solution y : [t +7/,1] - R"
such that y(7 +1') = z(t + 1) and, for all t € [T + 7/, 1],

ly®) =@l < exp ([ ks)ds) o(r +0) = aa(r + 1)
T4

< exp (./r:-n’ k(s)ds) 2¢con’, (6.6)

/@)=l < Kexp ([ K&)ds) a(r +0) = ar(r 4]
t

< k(t)exp (/T-H;’ k(s)ds> 2con’. (6.7)

Now concatenate z : [0,7+7'] = R" and y : [t +7',1] = R to form
the solution x5 : [0,1] — R™
Since 1(0) = z5(0),

21— zallwin = ||z] — 25l 1o, pme) + 1121 = 23] L1 (frgr 1R

2con’ + 2con’ (exp </T1 (k(s)ds) -1)

IN

+7’

1
2con’exp (/ k(s)ds)
T+

= (6co/c)exp </T:n, k(s)ds) A <YA.

(We have used (6.7).) It remains to show that
z2(t) € K for all t € [0,7 + n).

The condition is clearly satisfied for any ¢ € [0,7 4+ 7/]. On the other
hand, for any ¢ € [t + 7,7 + 1] and j, we have from (6.6) and (6.7)

beat) = e+ [ Tl wd
= yloalr )+ [ Thylan(e) - eh(s)ds
4 [ (Thy(ea(s)) = Tyl o)) 24 (5))ds
T+7

b [ Vhilaa(s) - whs) — 4 (5))ds
T+
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< —3A+2A + (6c2k/a )ne M A + &y, (ew(") - 1) 2c0(3/a’) A
< (—1 + (6c3r/a )ne?™ + kh(e“’(el)_l)ﬁcO/a') A < 0.

(We have used (6.4).) Step 2 is complete.

Take any solution Z : [0,1] — R" such that #(0) € B(0,7y). Recall
that N = n~! is an integer.

Set xp = #. Use the results of Step 2 recursively to generate a
finite sequence of solutions zg,...,zx on [0,1] with the properties

zi(t) € K Vte[0,i/N]

and

llzi — zicallwraoire) < ﬁ'tfen[gf] h* (zi-1(t)).

Now set z = zp. Clearly

z(t) e K VYte|[o,1].
It is a routine exercise to show, using the results of Step 2 and the
triangle inequality, that

2z = 2w, r) < ﬁtg[lt%ﬁ] h*(2(1)), (6.8)

in which ¢t = 0 and
9 = k(1 + Epd)N ~ 1]
A special case of the theorem has been proved, in which g = 0.

Take any ty € [0,1) . Suppose that Z : [tg, 1] = R” is a solution
such that Z(t9) € K N B(0,7p). Define

_ [ Ft,) t>¢
Ft,z) = { F(to,z) U {0} t<t§.

and

i) = {a}(t) t >t

T (to) t <ty
Now apply the earlier construction to F' and ¢ to obtain a solution
zo: [0,1] = R to ¢ € F(t,y). It is a a simple matter to check that
the solution z obtained by restricting g to [to, 1] satisfies z(ty) =
Z(to), xz(t) € K for all t € [to,1] and also inequality (6.8) (with the
same constant ¢). The theorem is proved.
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6.3 Proof of the Main Theorem

We isolate in the following lemma the steps in the proof of Thm.
6.1.1 requiring the constraint qualification (CQ).

Lemma 6.3.1 (i) Take any point z1 € K. Then there exists § €
10,1[ and a solution y : [1 —4,1] — R™ such that y(1) = x; and

y(t) e it K Vie[l—41][
(ii) Take any to € [0,1] and any solution z : [ty,1] — K. Take
also a sequence of points {(74,&)} in [to, 1[{xint K such that

(1:,&) = (L,z(1)). Then there exists a sequence of solutions
{z; : [to, 7i] = R"} such that z;(1;) =&

zi(t) eIt K Vte [to,Ti],i =1,2,...

and
H.’I:l - .’E”Loo([to’n];Rn) — 0 as 1 — 0.

Proof. According to (CQ), there exists v € F(1,27) and a > 0
such that
Vhj(z1)-v>a Vjel(zx).

For some § €]0,1 —¢y], whose magnitude will be set presently, define
zt) =z —(1—t)v fortell—41].

By Filippov’s Theorem, there exists a solution z : [1 — §,1] — R”
such that z(1) = z; and

1 1
lo(t) = (0 < exp{ [ k()dt} [ drguo(@)ds

for all t € [1—4,1]. We deduce from the continuity of (¢,z) ~ F(t, )
and the continuous differentiability of the h;’s that there exists a
function n : R — R™ such that n(#) | 0 as 6 | 0,

lz(1 —s) — (z1 — sv)|| < n(s)s for s €[0,]
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and
hy(a(1 = 8)) < hy(21) + Vhy(a1) - (01 = 5) = 21) +(s)s

for all s € [0,0] and j € I(x). But then, since h;(x1) = 0 for all
j € I{z1), there exists M (M does not depend on s) such that

hi(x(1 —s)) < ~sVhj(z1) - v+ Mn(s)s
for all j € I(z,). Hence
s hi(z(l —5)) < —a+ Mn(s) Vs€[0,8, € I(zy).
It follows that, if we now choose ¢ such that Mn(d) < «, then
hj(z(t)) < 0 for all j € I(xy). Since hj(zy) <0 for all j ¢ I(zy), we

can arrange, by a further reduction in the size of 4, that

max _h;(z(t)) <0 Vte[l-41[
Jje{l,...,r}

(ii) Define the sequence of positive numbers

Vi = <— Iax hj(fi)) AGETH fori=1,2,...
j=1,..,7

Since {&} C int K and (CQ) holds true, it follows that ; > 0 for all
i. Clearly -; 1 0. For each i define

Hi(@) o= hy(z) + %
Apply Filippov’s Theorem to 2/ € F(t,z), taking as reference trajec-

tory z restricted to [tg,7;]. This yields a solution y; : [to, ;] — R”
satisfying y; (1) = & and

1
|y — @l|poo ((to,miR?) < GXP{/O k@t)dt}llz () — &ll-
Since (z(r;) — &) — 0 as i = 0o, we can conclude that

Hyi — xHLOO([to,Ti]) —0 as?— oo (69)
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By the comments following the statement of Theorem 6.2.1, (CQ)
yields (CQ) ’. So we deduce from Thm.6.2.1 applied to the set-
valued map —F that there exists J > 0 and a sequence of solutions
{z; : [to, 7:) = R"} such that z;(r;) = &; and

_l’_
1y = Zill oo (to, gy < ¥ | e maxhy(y(2)) +
t€lto, ] J

hi(zi(t)) +v <0 Vi€ to,n], j € I(zi(t), i =1,2,...

This means that
zi(t) €int K Vi€ to,r],1=1,2,...
Since hj(z(t)) <0 for all t € [0, 1], we deduce from (6.9) that
||#; — %[ oo ((tg,7s)) = O as i — 0.

In the next lemma, reference is made to the J-tube about Z :
[to, tl] — R"™:

T5(z) = {(t,z) € [to, 1] x R" : ||lz — Z(t)|| < 0}

Lemma 6.3.2 Take [to,t1] C [0,1] such that to < t1, a solution
Z : [to,t1] = R™, 6 > 0 and a lower semicontinuous function V :
[to,t1] x R™ = RU{+o00} such that for all (t,x) € T5(Z) with t < t1,

v (ptapft) € 8_V(t,.'17), —Pt + H(t,ZE, _p:c) S 0 (610)
Then, for any to < t' <t' < ty,

V(i zt)) < V(" z2(t").

Proof. We deduce in the same way as in Chapter 4, proofs of The-
orems 4.2.2 and 4.2.4 that

VIt z(t)) < V(" z(t")).
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The fact that ¢’ < #; (strict inequality) is important here, since no
regularity hypotheses have been imposed on t — V(¢,-) at t = #;.

Proof of Thm. 6.1.1

(a) = (b). The value function V' is lower semicontinuous by the same
arguments as those used in Chapter 4.

Under the hypotheses, (¢t,2) € domV implies that (P;,) has
a solution. It is a straightforward matter to show that, if y is a
minimizer for (P¢z), then s — V{(s,y(s)) is constant on [¢,1]; b(i)
can be deduced from this property.

It can also be shown that, if y : [¢,1] — R™ is a solution satisfying
the constraints of (P;;), then s — V{(s,y(s)) is non-decreasing on
[t,1]; b(ii) can be deduced from this latter property.

Since V is lower semicontinuous, it remains only to verify

lim inf V(t,2)<V(l,z) VzeK.
{(t'2")—=(1,z):t' <l,z'€int K}

Lemma 6.3.1 tells us that there exists § €]0,1[ and a solution y :
[1 —4,1] - R™ such that y(1) = z and

y(t) eint K Vte[l-41]

But V(¢,y(t)) < V(1,z), a basic monotonicity property of the value
function. Since ¥ is continuous,

lim inf V(' z') <l Vit,y(t)) <V(1,z).
{(t/,x’)a(l}gt}gl,x’eintK} (#2) < 1nt1Tslup (ty(®) < V(1,2)

as required.

(b) = (c¢). This implication is a consequence duality relationships
between 0_V and DV.

(¢} = (a). Assume that V satisfies (c). Take any zyp € K and
to € [0,1].

Step 1: We show that

V(t07$0) 2 inf(Pto,xo)‘ (611)
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This inequality is automatically satisfied if V(¢g,z9) = +00. So
we assume that V(tg, zg) < +00.
Notice that, since dom V C K, conditions c¢(i) and c(ii) imply

V(t,z) €]0,1[xR", (pt,pz) € 0-V (¢, 2)
—Dt + H(t’ z, _pi) S 0

and

liminf  V(¢,2')=V(0,z) VzeR"
{(#,2")—(0,z):t' >0}

(We here regard V' as a function on [0,1] x R™ which takes value
+00 at points (¢,z) ¢ [0,1] x K.) But then we deduce by applying
the same arguments as in Chapter 4 the existence of a solution x :
[to, 1] — R" such that z(to) = z¢ and

V(te,z0) > V(t,z(t)) Vi€ lto,1].

This inequality implies that V (¢, z(t)) < +oo for all t € [tg,1].
Since domV C K, we conclude that z(-) satisfies the state constraint.
It also implies that

Vito, z0) 2 V(L,z(1)) = g(z(1)) 2 inf(Py ).
This is the required inequality.
Step 2: We show that
V(to,zo) < inf(Pi,z,)- (6.12)

This will complete the proof, since (6.12) combines with (6.11) to
give V(to,zo) = inf(Py 4, )-

(6.12) is automatically satisfied if inf(Py, z,) = +00. So we as-
sume that it is finite. In this case, inf(Py, 4, ) is the infimum of g(z(1))
over all feasible arcs of (Py; z,). It therefore suffices to show that

V(t0>$0) < g(f;(l))a

where 7 € Wh!([tg, 1]; R™) is an arbitrary feasible arc of (Pyg 4, )-
By hypothesis,

£(1)) = lim inf V{(r,§).
g(:l:( )) {(T,{)—)(l,il(%l)}?<1,f€intI(} (T §)
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There exists, therefore, a sequence {(7;,&;)} in [tp,1) X int K such
that & — Z(1) and

Vi(7i, &) — g(2(1)). (6.13)

Lemma 6.3.1(ii) asserts the existence of a sequence of solutions z; :
[to, 7i] = R"™ such that zi(m) = &,

zi(t) €int K VYt € [to,n]

and

HZCZ — i'“Loo([tO’Ti};Rn) —0 as?— oo. (6.14)

Filippov’s Theorem tells us that z; can be extended to all of [¢p, 1] (we
write the extension also z;) as a solution to our differential inclusion.
Choose o; €]7;,1[ and €; > 0 such that

.’I?z(t) +BCint K Vie [to,o‘i].

Now apply Lemma 6.3.2 with 0; = ¢; and £ = z; to conclude
that

Vto, zi(to)) < V (7, &)

It follows from (6.13), (6.14) and the lower semicontinuity of V' that

V(to, 7o) = V(to, Z(t0)) < limiinf V(to, z;(to)) < lilmV(Tiafi) = g(2(1))

as required.

Exercises.

We impose all the assumptions of Theorem 6.2.1.

1. Assume that ¢ is continuous on K. Show that the value
function of the problem

Minimize g(y(1))

over y € WHi([t, 1]; R") satisfying
y'(s) € F(s,y(s)) ae. sé€|t, 1],
y(s) e K Vseltl],

y(t) ==
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coincides with the value function of the relaxed problem

Minimize g(y(1))
over y € WHi([t, 1]; R") satisfying
y'(s) € @0F(s,y(s)) a.e. s € [t 1],
y(s) e K Vseltl],
y(t) = z.
and that V' is continuous on [0, 1] x K.
2. Assuming that g is locally Lipschitz on K, show that in this
case V is locally Lipschitz on [0,1] x K.

3. Show that if ¢ is continuous on K, then the value function V
satisfies the following properties

(1) V (t,z) € (]0, I[xint K) Ndom V, (p¢,pz) € 04V (t,x)

(i) ¥ (t,z) € (J0,1[{xK) ndom V, (ps,pz) € O_V (¢, )

—Dt + H(t,%, —pa:) Z 0

4. Show that if W is continuous on {0, 1] X K, satisfies the bound-
ary condition W (1,-) = g and the above properties (i), (ii), then W
is the value function.

5. State and prove a relaxation theorem under state constraints.
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