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0. INTRODUCTION

§0.1. Basic question of control theory

A departure point of control theory is the differential equation

xeRn, (0.1)

with the right hand side depending on a parameter u from a set U C Mm.
The set U is called the set of control parameters. Differential equations
depending on a parameter have been objects of the theory of differential
equations for a long time. In particular an important question of continuous
dependence of the solutions on parameters has been asked and answered
under appropriate conditions. Problems studied in mathematical control
theory are, however, of different nature, and a basic role in their formulation
is played by the concept of control. One distinguishes controls of two types:
open and closed loop. An open loop control can be basically an arbitrary
function u{ •): [0, -foo) —> [/, for which the equation

y(t) = f(y(t))Mt)), t>0,y(0) = x , (0.2)

has a well defined solution.
A closed loop control can be identified with a mapping k: Wn —>• [/, which
may depend on t > 0, such that the equation

1/(0 =/(! / (*) .%( ' ))) . * > 0, 2/(0) = x, (0.3)

has a well defined solution. The mapping k( •) is called feedback. Controls
are called also strategies or inputs, and the corresponding solutions of (0.2)
or (0.3) are outputs of the system.
One of the main aims of control theory is to find a strategy such that the
corresponding output has desired properties. Depending on the properties
involved one gets more specific questions.
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Controllability. One says that a state z £ Mn is reachable from x in time
T, if there exists an open loop control u( •) such that, for the output y{ •),
y(0) = a;, y(T) = z. If an arbitrary state z is reachable from an arbitrary
state x in a time T, then the system (0.1) is said to be controllable. In several
situations one requires a weaker property of transfering an arbitrary state
into a given one, in particular into the origin. A formulation of effective
characterizations of controllable systems is an important task of control
theory only partially solved.

Stabilizability. An equally important issue is that of stabilizability. As-
sume that for some x £ Rn and u £ [/, /(#, u) — 0. A function k: Rn —> [/,
such that k(x) — u, is called a stabilizing feedback if x is a stable equilibrium
for the system

3/(0 = f(y(t),k(y(t))), t > 0, t/(0) = x. (0.4)

In the theory of differential equations there exist several methods to deter-
mine whether a given equilibrium state is a stable one. The question of
whether, in the class of all equations of the form (0.4), there exists one for
which x is a stable equilibrium is of a new qualitative type.

Observability. In many situations of practical interest one observes not
the state y(t) but its function h(y(t)), t > 0. It is therefore often necessary
to investigate the pair of equations

) , y(0) = x, (0.5)

w = h(y). (0.6)

Relation (0.6) is called an observation equation. The system (0.5)-(0.6) is
said to be observable if, knowing a control u{ •) and an observation w{ •), on
a given interval [0,T], one can determine uniquely the initial condition x.

Stabilizability of partially observable systems. The constraint that
one can use only a partial observation w complicates considerably the sta-
bilizability problem. Stabilizing feedback should be a function of the obser-
vation only, and therefore it should be "factorized" by the function h( •).
This way one is led to a closed loop system of the form

' y = f(y,k(h(y))), y(0) = x. (0.7)

There exists no satisfactory theory which allows one to determine when
there exists a function k( •) such that a given x is a stable equilibrium for
(0.7).

Realization. In connection with the full system (0.5) - (0.6) one poses the
problem of realization.
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For a given initial condition x E Mn, system (0.5)-(0.6) defines a map-
ping which transforms open loop controls u( •) onto outputs given by (0.6):
w(t) - h(y(t))> t e [0,T]. Denote this transformation by U. What are
its properties? What conditions should a transformation 1Z satisfy to be
given by a system of the type (0.5)-(0.6)? How, among all the possible
"realizations" (0.5)-(0.6) of a transformation 7£, do we find the simplest
one? The transformation 1Z is called an input-output map of the system
(0.5)-(0.6).

Optimality. Besides the above problems of structural character, in control
theory, with at least the same intensity, one asks optimality questions. In
the so-called time-optimal problem one is looking for a control which not
only transfers a state x onto z but does it in the minimal time T. In other
situations the time T > 0 is fixed and one is looking for a control u(-)
which minimizes the integral

L
T

g(y(t),u(t))dt

in which g and G are given functions.

Systems on manifolds. Difficulties of a different nature arise if the state
space is not M.n or an open subset of Mn but a differential manifold. This is
particularly so if one is interested in the global properties of a control sys-
tem. The language and methods of differential geometry in control theory
are starting to play a role similar to the one they used to play in classical
mechanics.

Infinite dimensional systems. The problems mentioned above do not
lose their meanings if, instead of ordinary differential equations, one takes,
as a description of a model, a partial differential equation of parabolic or
hyperbolic type. The methods of solutions, however become, much more
complicated.

§0.2. Examples

The aim of the examples introduced in this paragraph is to show that the
models and problems discussed in control theory have an immediate real
meaning.
Example 1 Electrically heated oven. Let us consider a simple model of
an electrically heated oven, which consists of a jacket with a coil directly
heating the jacket and of an interior part. Let To denote the outside tem-
perature. We make a simplifying assumption, that at an arbitrary moment
t > 0, temperatures in the jacket and in the interior part are uniformly
distributed and equal to T\(t),T2(t). We assume also that the flow of heat
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through a surface is proportional to the area of the surface and to the differ-
ence of temperature between the separated media. Let u(t) be the intensity
of the heat input produced by the coil at moment t > 0. Let moreover ci\, a 2
denote the area of exterior and interior surfaces of the jacket, ci, C2 denote
heat capacities of the jacket and the interior of the oven and n , r^ denote
radiation coefficients of the exterior and interior surfaces of the jacket. An
increase of heat in the jacket is equal to the amount of heat produced by the
coil reduced by the amount of heat which entered the interior and exterior
of the oven. Therefore, for the interval [t,t + At], we have the following
balance:

Similarly, an increase of heat in the interior of the oven is equal to the
amount of heat radiated by the jacket:

c2(T2(t + At) - T2(t)) = (T^t) - T2(t))air2At.

Dividing the obtained identities by At and taking the limit, as At I 0, we
obtain

ci -± = u - (Ti - T2)airi - (Tx - T0)a2r2,at

c2 = (T1

Let us remark that, according to the physical interpretation, u(t) > 0 for
t > 0. Introducing new variables x\ — T\ — To and X2 — T2 — TQ, we have

d
Jt \ x 2

-f ^2«2
- l

x2\ ' I 0+ 'Cl

It is natural to limit the considerations to the case when a?i(0) > 0 and
#2(0) > 0. It is physically obvious that if u(t) > 0 for t > 0, then also
x\(t) > 0, X2(t) > 0, t > 0. One can prove this mathematically; see § 1.4.2.
Let us assume that we want to obtain, in the interior part of the oven, a
temperature T and keep it at this level infinitely long. Is this possible?
Does the answer depend on initial temperatures T\ > To, T2 > To?
Example 2 Soft landing. Let us consider a spacecraft of total mass M
moving vertically with the gas thruster directed toward the landing surface.
Let h be the height of the spacecraft above the surface, u the thrust of
its engine produced by the expulsion of gas from the jet. The gas is a
product of the combustion of the fuel. The combustion decreases the total
mass of the spacecraft, and the thrust u is proportional to the speed with
which the mass decreases. Assuming that there is no atmosphere above the
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surface and that g is gravitational acceleration, one arrives at the following
equations [26]:

Mh = -gM + u, (0.8)

M = -ku, (0.9)

with the initial conditions M(0) = Mo, /i(0) = /io, /i(0) = h\; k a, positive
constant. One imposes additional constraints on the control parameter of
the type 0 < u < a and M > m, where m is the mass of the spacecraft
without fuel. Let us fix T > 0. The soft landing problem consists of finding
a control u( •) such that for the solutions M( •), h(-) of equation (0.8)

M(t)>m, h(t)>0, * G [ 0 , T ] , and h{T) = h{T) = 0.

The problem of the existence of such a control is equivalent to the control-
lability of the system (0.8)- (0.9).
A natural optimization question arises when the moment T is not fixed and
one is minimizing the landing time. The latter problem can be formulated
equivalently as the minimum fuel problem. In fact, let v — h denote the
velocity of the spacecraft, and let M(t) > 0 for t G [0,T]. Then

-gk, te[0,T\.

Therefore, after integration,

M(T) = e

Thus a soft landing is taking place at a moment T > 0 (v(T) — 0) if and
only if

M(T) = e-gkTev^kM(0).

Consequently, the minimization of the landing time T is equivalent to the
minimization of the amount of fuel M(0) — M(T) needed for landing.
Example 3 Optimal consumption. The capital y(t) > 0 of an economy at
any moment t is divided into two parts: u(t)y(t) and (1 — u(t))y(t), where
u(t) is a number from the interval [0, 1]. The first part goes for investments
and contributes to the increase in capital according to the formula

y = in/, t/(0) = x > 0.

The remaining part is for consumption evaluated by the satisfaction
rp

J T ( x . , u ( - ) ) = f ( ( l - u ( t ) ) y ( t ) ) a

Jo
dt + aya{T). (0.10)

In definition (0.10), the number a is nonnegative and a G (0, 1). In the
described situation one is trying to divide the capital to maximize the
satisfaction.
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1. Controllability

§1.1. Preliminaries

The basic object of classical control theory is a linear system described by
a differential equation

dt - ~ , v . , , - . , - ) , y(o) = xem\ (i.i)

and an observation relation

w(t) = Cy{t), t>0. (1.2)

Linear transformations A: Rn —y R7\ B:Rm —y Mn, C:Rm —y Rk in
(1.1) and (1.2) will be identified with representing matrices and elements of
Mn, ]Rm, Mk with one column matrices. The set of all matrices with n rows
and m columns will be denoted by M(n, m) and the identity transformation
as well as the identity matrix by / . The scalar product (#, y) and the norm
a? |, of elements x) y G Mn with coordinates £i, . . . ,£n and 771, . . ., r/n, are

defined by
1/2

The adjoint transformation of a linear transformation A as well as the
transpose matrix of A are denoted by A*. A matrix A £ M(n, n) is called
symmetric if A = A* . The set of all symmetric matrices is partially ordered
by the relation A\ > A2 if (Aix,x) > (A2x,x) for arbitrary x G Mn. If
A > 0 then one says that matrix A is nonnegative definite and if, in addition,
(Ax,x) > 0 for x ^ 0 that A is positive definite. Treating x E Mn as an
element of M(n, 1) we have x* G M( l ,n ) . In particular we can write
(a:, y) = x*y and |x|2 = x*x. The inverse transformation of A and the
inverse matrix of A will be denoted by A~l.
If F(t) = [fij{t); i= l , . . . , n , i = l , . . . ,m] G M(n,m), i G [0,T], then,
by definition,

/ F{t)dt= [ fij{t)dt, i= l , . . . , n ; j = l , . . . , n
Jo Jo

(1.3)

under the condition that elements of F( •) are integrable.
Derivatives of the 1st and 2nd order of a function y(t), t G M, are denoted

by -#, -^- or by y, y and the nth order derivative, by d, {J.
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We will need some basic results on linear equations

(1.4)

on a fixed interval [0,T]; t0 G [0,T], where A(t) G M ( n , n ) , A(*) = [a,-i7-(<);
i= l , . . . , n , j = l , . . . , m ] , a ( * ) G l " , a(*) = (a,-(*); i = l , . . . , n ) , J G [0,T].

T h e o r e m 1.1. Assume £/ia£ elements of the function A(-) are locally
integrable. Then there exists exactly one function S{t)) t £ [0,T] with
values in M ( n , n) and with absolutely continuous elements such that

4-5(0 = A{t)S{t) for almost all t E [0,T], (1.5)
at

5(0) = / . (1.6)

/n addition, a matrix S(t) is invertible for an arbitrary t G [0,T], and the
unique solution of the equation (1.4) is of the form

q(t) = S{t)S~1(to)qo+ / S(t)S~1{s)a(s)dsi t G [0,T]. (1.7)

Here is a sketch a proof of the theorem.

Proof. Equation (1.4) is equivalent to the integral equation

q(t) = a0 + / A(s)q(s) ds + / a{s) ds, t G [0,
•/to «/t0
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The formula

Cy(t) = a0 + / a(s) ds + f A(s)y{s) ds, t G [0, T],
Jto Jto

defines a continuous transformation from the space of continuous functions
C[0, T; Mn] into itself, such that for arbitrary y( •), y( •) G C[0, T; Mn]

sup |£y(/) — Cy(t)\ < ( / |A(.s)|ds ] sup
te[o,T]

If j 0 |A(s)|ds < 1, then by Theorem A.I (the contraction mapping prin-
ciple) the equation q = Cq has exactly one solution in C[0,T; Mn] which
is the solution of the integral equation. The case Jo \A(s)\ ds > 1 can be
reduced to the previous one by considering the equation on appropriately
shorter intervals. In particular we obtain the existence and uniqueness of a
matrix valued function satifying (1.5) and (1.6).
To prove the second part of the theorem let us denote by V;(0> ^ ^ [O^L
the matrix solution of

= I,t€ [0,T],

Assume that, for some t G [0,T], det S(t) = 0. Let To = min{t G [0,T];
detS(<) = 0}. Then To > 0, and for t G [0,T0)

o = j t (

Thus

and consequently

S{t) = S

so S-l(t) = ^(t), t€[0,To).

Since the function det %j)(t), t G [0,T], is continuous and

therefore there exists a finite lim det V;(̂ )- This way det S'(Xb) = lim S(t) ^

0, a contradiction. The validity of (1.6) follows now by elementary calcula-
tion. •
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The function S(t), t G [0,T] will be called the fundamental solution of
equation (1.4). It follows from the proof that the fundamental solution of
the "adjoint" equation

is(S*(t))"\ te[Q,T\.

Exercise 1.1. Show that for A G M(n,7i) the series

An

is uniformly convergent, with all derivatives, on an arbitrary finite interval.
The sum of the series from Exercise 1.1 is often denoted by exp(tA) or etA,
t E M. We check easily that

in particular

Therefore the solution of (1.1) has the form

y{t)=etAx+ e^-s^ABu{s)ds (1.8)
Jo

= 5(t)ar + / 5f(* - s)Bu(s) ds, t G [0,T],
Jo

where 5(t) = exp^A, t > 0.
The majority of the concepts and results discussed for systems (1.1)- (1-2)
can be extended to time dependent matrices A(t) G M(n,7i), B(t) G
M(n, n), C(t) G M(fc, 7i),te [0, T], and therefore for systems

J = A(t)y(t) + 5(0ii(0, 2/(0) = ar G Mn, (1.9)

(t) = C(t)y(t), te[0,T\. (1.10)
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§ 1.2. The controllability matrix

An arbitrary function u(-) defined on [0, +oo) locally integrable and with
values in Mm will be called a control, strategy or input of the system (1.1)-
(1.2). The corresponding solution of equation (1.1) will be denoted by
yx'u('), to underline the dependence on the initial condition x and the
input u(-). Relationship (1.2) can be written in the following way:

w(t) = Cxf'u(t), t€[0,T\-

The function w( •) is the output of the controlled system.
We will assume now that C = I or equivalently that w(t) = if'u{i), t > 0.
We say that a control u transfers a state a to a state b at the time T > 0 if

ya>u(T) = b. (1.11)

We then also say that the state a can be steered to 6 at time T or that the
state b is reachable or attainable from a at time T.
The proposition below gives a formula for a control transferring a to 6. In
this formula the matrix QT, called the controllability matrix or controlla-
bility Gramian, appears:

QT = f S{r)BB*S*{r)dr, T > 0.
Jo

We check easily that QT is symmetric and nonnegative definite.

Proposition 1.1. Assume that for some T > 0 the matrix QT is nonsin-
gular. Then
(i) for arbitrary a, 6 E Kn the control

u(s) = -B*S*(T-.,)Q^{S(T)a - b), s € [0,T], (1.12)

transfers a to b at tune T;
(ii) among all controls u( •) steering a to b at timeT the control u minimizes
the integral Jo \u[s)\2 ds. Moreover,

Jo
a - 6 ) , S{T)a-b). (1.13)

Proof. It follows from (1.12) that the control u is smooth or even analytic.
From (1.8) and (1.12) we obtain that

ya,u (r) = s(T)a _ / J S{T _ s)BB* £, (r _ s) A

= S(T)a - QT(Q^{S{T)a - b)) = b.
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This shows (i). To prove (ii) let us remark that the formula (1.13) is a
consequence of the following simple calculations:

/ \u{s)\2ds = f \B*S*{T-s)QTl{S(T)a-b)\2ds =
Jo J6

= ([ S(T- S)BB*S*(T - s)(Q^(S(T)a - b)) ds, Q^{S{T)a - b))
Jo

= (QTQi\S{T)a - 6), Qrl(S(T)a - b))

= {Q^(S(T)a-b),S(T)a-b).

Now let u(-) be an arbitrary control transferring a to 6 at time T. We can
assume that u(-) is square integrable on [0,T]. Then

f (u(s),u(.s))ds = - [ (u(s),B*S*(T-s)Q-l(S(T)b-a))d.s
Jo Jo

= -( / S{T - s)Bu{s) ds, Q-[(S{T)a - b)}
Jo

= (S{T)a-b,Qr1(S(T)a-b)).

Hence

•f (u(s),u(s))ds= f (u(S),u(s))ds.
Jo Jo

From this we obtain that

/ \ u ( s ) \ 2 d s = f \ u { s ) \ 2 d s + [ \u(s) - u(s)\2 ds
Jo Jo Jo

and consequently the desired minimality property. •

Exercise 1.2. Write equation

as a first order system. Prove that for the new system, the matrix QT is

nonsingular, T > 0. Find the control u transferring the state } to

at time T > 0 and minimizing the functional Jo |^(-s)|2 ds. Determine the
minimal value m of the functional. Consider £i = 1, & — 0.
Answer. The required control is of the form

!£>_«), .6lon
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and the minimal value m of the fuctional is equal to

In particular, when ^ = 1, £2 = 0,

We say that a state b is attainable or reachable from a G Mn if it is attainable
or reachable at some time T > 0.
System (1.1) is called controllable if an arbitrary state b G Mn is attain-
able from any state a G Kn at some time T > 0. Instead of saying that
system (1.1) is controllable we will frequently say that the pair (A, B) is
controllable.
If for arbitrary a, 6 GM" the attainablity takes place at a given time T > 0,
we say that the system is controllable at time T. Proposition 1.1 gives a
sufficient condition for the system (1.1) to be controllable. It turns out that
this condition is also a necessary one.
The following result holds.

Proposition 1.2. / / an arbitrary state 6 G Mn is attainable from 0, then
the matrix QT is nonsingular for an arbitrary T > 0.
Proof. Let, for a control u and T > 0,

CTu= [ S{r)Bu(T-r)dr. (1.14)
Jo

The formula (1.14) defines a linear operator from UT — Ll[Q,T; Mm] into
Mn. Let us remark that

CTu = y°>u(T). ( 1 .15 )

Let ET = CT{UT)> T > 0. It follows from (1.14) that the family of the
linear spaces ET is nondecreasing in T > 0. Since (J ET = Mn, taking

T>0

into account the dimensions of ET, we have that E1^ = Mn for some T. Let
us remark that, for arbitrary T > 0, t; G Mn and t/ G f/r,

(1.16)

(CTuiv}= f <ti(r),B*,S*(T- (1.17)
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From identities (1.16) and (1.17) we obtain QTV = 0 for some v E Mn if
the space ET is orthogonal to v or if the function B*S* (• )v is identically
equal to zero on [0,T]. It follows from the analiticity of this function that
it is equal to zero everywhere. Therefore if QTV — 0 for some T > 0 then
Qj-v = 0 for all T > 0 and in particular Q~v — 0. Since E~ — Wn we have
that v = 0, and the nonsingularity of QT follows. D

A sufficient condition for controllability is that the rank of B is equal to n.
This follows from the next exercise.

Exercise 1.3. Assume rank B = n and let B+ be a matrix such that
BB+ = / . Check that the control

ti(5)

transfers a to 6 at time T > 0.

§1.3. Rank condition

We now formulate an algebraic condition equivalent to controllability.
For matrices A E M(n,n) , B E M(n,m) denote by [A\B] the matrix
[B,AB, . . ., An~lB] E M(n,nm) which consists of consecutively written
columns of matrices B, AB,..., An~lB.

Theorem 1.2. The following conditions are equivalent.
(i) An arbitrary state 6 E Mn is attainable from 0.

(ii) System (1.1) z's controllable.
(iii) System (1.1) is controllable at a given time T > 0.
(iv) Matrix Q T is nonsmgular for some T > 0.
(v) Matrix QT is nonsingular for an arbitrary T > 0.

(vi) ran*; [A|£] = n.
Condition (vi) is called the Kalman rank condition, or the rank condition
for short.
The proof will use the (Jayley-Hamilton theorem. Let us recall that a
characteristic polynomial p{ •) of a matrix A E M(?i, ?i) is defined by

p{\) = d e t ( A / - A), A E C . (1.18)

Let
p(A) = A n + a 1 A n - 1 + . . . + «n , A E C . (1.19)

The Cayley-Hamilton theorem has the following formulation (see [3, 358 -
359]):

Theorem 1.3. For arbitrary A E M(n,n) ; with the characteristic polyno-
mial (1.19),

An + a1A
n-1 + . . . + a n / = 0.



§ 1.3. Rank condition 15

Symbolically, p(A) = 0.

Proof of Theorem 1.2. Equivalences (i) - (v) follow from the proofs of
Propositions 1.1 and 1.2 and the identity

To show the equivalences to condition (vi) it is convenient to introduce a
linear mapping ln from the Cartesian product of n copies Mm into Mn:

n - l

3=0

We prove first the following lemma.

L e m m a 1.1. The transformation CT, T > 0, has the same image as ln.
In particular CT IS onto if and only if ln is onto.

Proof. For arbitrary ^ M n , « G Ll[Q,T; Mm], uj e Mm, j = 0, . . ., n - 1:

(CTu, v) = [ (u{s),B*S*(T - s)v) ds,
Jo

(ln{u0,..., t/n-i), «> = (tio, ^*^) + . • • + {un_uB*{A*)n-lv).

Suppose that (/n(wo,. . . ,wn-i))^) = 0 for arbitrary u$, . . ., n n - i ^ K,m-
Then £**; = 0, . . ., ^ (A*)" - 1 ? ; = 0. From Theorem 1.3, applied to matrix
A*, it follows that for some constants CQ, . . ., cn_i

Thus, by induction, for abitrary / = 0, 1, . . . there exist constants
Q n _i such that *

Therefore B*(A*)kv = 0 for fc = 0, 1,. . . . Taking into account that

k = 0

we deduce that for arbitrary T > 0 and t E [0, T]

B*S*{t)v = 0,
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so (CTu,v) = 0 for arbitrary u E Ll[Q,T\ Mm].
Assume, conversely, that for arbitrary u £ Ll[0, T; Mn], (CTU, V) — 0. Then
B*S*(t)v = 0 for t e [0,T]. Differentiating the identity

0 , 1 , . . . , (n — 1)-times and inserting each time t = 0, we obtain that
B*(A*)kv =0 for k = 0 , 1 , . . . , n- 1. And therefore

(ln(uo,.. ., t / n - i ) , v) = 0 for arbitrary w0, . . ., u n - i G Mm.

This implies the lemma. D

Assume that the system (1.1) is controllable. Then the transformation JCT
is onto Mn for arbitrary T > 0 and, by the above lemma, the matrix [A\B]
has rank n. Conversely, if the rank of [A\B] is n then the mapping ln is
onto W1 and also, therefore, the transformation CT is onto W1 and the
controllability of (1.1) follows. D

If the rank condition is satisfied then the control u( •) given by (1.12) trans-
fers a to b at time T. We now give a different, more explicit, formula for
the transfer control involving the matrix [A\B] instead of the controllability
matrix QT-
Note that if rank [A\B] — n then there exists a matrix K E M(??m, n)
such that [A|5]/i = / G M(n,n) or equivalently there exist matrices
K\, /\2, • • •, Kn G M(m, n) such that

BK1 + ABK2 + ... + An-lBKn = I. (1.20)

Let, in addition, (p be a function of class Cn~1 from [0,T] into R such that

= 0, i = 0 , l , . . . , n - 1 , (1.21)

(p{s)ds= 1 (1.22)

Proposition 1.3. Assume that rank [A\B] = n and (1.20)-(1.22) hold.
Then the control .

u(s) = K\ib(s) + Ko-r-(s) 4- . . . + Kn r(s), s G [0, T]
" ds dsn~[

where
i/>{s) = 5(5 - T)(6 - S{T)a)<p{s), s G [0, T] (1.23)
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transfers a to b at time T > 0.

Proof. Taking into account (1.21) and integrating by parts (j — 1) times,
we have

f ^ j Wl £-^(«) ds/ S(T - s)BKj -f-^
Jo '̂S 0

T

10

= / S(T - s)A3~{BKjip(s) ds,
Jo

Consequently

S(t-s)[A\B]KiJ>{s)ds
o Jo

T
S(T-s)rl>(s)ds.

o

By the definition of ip and by (1.22) we finally have

y**(T) = S(T)a + / S(T - s)(S(s -T)(b- S(T)a))tp(s)ds

I

= S(T)a+{b-S(T)a) f <p(s)ds
Jo
f

o
= 6.

•
Remark. Note that Proposition 1.3 is a generalization of Exercise 1.3.

Exercise 1.4. Assuming that U = M prove that the system describing the
electrically heated oven from Example 0.1 is controllable.

Exercise 1.5. Let Lo be a linear subspace dense in L![0, T\ Mm]. If system
(1.1) is controllable then for arbitrary a, 6 £ Mn there exists u{ •) £ Lo
transferring a to 6 at time T.

Hint. Use the fact that the image of the closure of a set under a linear
continuous mapping is contained in the closure of the image of the set.

Exercise 1.6. If system (1.1) is controllable then for arbitrary T > 0 and
arbitrary a, 6 £ Mn there exists a control u( •) of class C°° transferring a to
6 at time T and such that
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Exercise 1.7. Assuming that the pair (A, B) is controllable, show that
the system

y = Ay + Bv

v = u,

with the state space ]Rn+m and the set of control parameters Mm, is also
controllable. Deduce that for arbitrary a, 6 £ Mn, uo,ui £ Mm and T > 0
there exists a control u( •) of class CfrxJ transferring a to b at time T and
such that u(0) = i«o, ^(^) — ^i-
Hint. Use Exercise 1.6 and the K aim an rank condition.

Exercise 1.8. Suppose that A £ M(n,7i), B £ M(?i,??i). Prove that the
system

Bu, y(0) G Mn, ^ (

is controllable in M2n if and only if the pair (A, B) is controllable.

Exercise 1.9. Consider system (1.9) on [0,T] with integrable matrix-
valued functions A(t), B(t), t £ [0,T]. Let 5(^), * E [0,T] be the funda-
mental solution of the equation q = Aq. Assume that the matrix

-l(s)B(s)B*(s)(S-1f S(T)S-l(s)B(s)B*(s)(S-1(s)yS*(T)ds
Jo

is positive definite. Show that the control

u(s) = B*{S-1(s))*S*{T)Q^(b-S(T)a), s € [0,T],

transfers a to 6 at t ime T minimizing the functional u —> f0 \u(s)\2 ds.

§ 1.4. A classification of control systems

Let y(t), t > 0, be a solution of the equation (1.1) corresponding to a
control u(£), t > 0, and let P £ M(n, n) and S £ M(m, m) be nonsingular
matrices. Define

y{t) = Py{t), u(t) = Su{t), t>0.

Then

= PAP-ly(t) + PBS-lu{t)

= Ay{t) + Bu(t), t> 0,

where
A=PAP~\ B = PBS~[. (1.24)
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The control systems described by (A, B) and (A, B) are called equivalent
if there exist nonsingular matrices P £ M(n,n) , S E M(m,m), such that
(1.24) holds. Let us remark that P~~l and 5 " 1 can be regarded as tran-
sition matrices from old to new bases in IRn and Mm respectively. The
introduced concept is an equivalence relation. It is clear that a pair (A, B)
is controllable if and only if (A, B) is controllable.
We now give a complete description of equivalent classes of the introduced
relation in the case when m — 1.
Let us first consider a system

<*(")
rZ + Cli- -z + . . . + anz — u, (1.25)

with initial conditions

*(0) = 6 ,
dz

Let ;*(*), ^ f ( t ) , . . . , ^ ( J l ) (0> * > 0, be coordinates of a function y(0, * > 0,
and <Ji, . . ., £n coordinates of a vector &\ Then

y-Ay^-Bu, y(0) = a: G Mn, (1-27)

where matrices A and B are of the form

0
0

0
flfl

1
0

0

. 0

. 0

. 0

— a 2

0
0

1
- a i

B = (1.28)

We easily check that on the main diagonal of the matrix [A\B] there are
only ones and above the diagonal only zeros. Therefore rank [A\B] — n and,
by Theorem 1.2, the pair {A,B) is controllable. Interpreting this result in
terms of the initial system (1.21)- (1.22) we can say that for two arbitrary
sequences of n numbers £i, . . •, £n

 a n ( l i)\, . . ., r;n and for an arbitrary pos-
itive number T there exists an analytic function u(t), t G [0,T], such that
for the corresponding solution z(t), t G [0,T], of the equation (1.25)- (1.26)

Theorem 1.4 states that an arbitrary controllable system with the one di-
mensional space of control parameters is equivalent to a system of the form
(1.25)-(1.26).
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T h e o r e m 1.4. If A G M(7i,n), b G M(n, 1) a/if/ Me system

y = Ay + bu, y(0) = x G l n (1.29)

is controllable then it is equivalent to exactly one system of the form (1.28).
Moreover the numbers a\, . . ., an in the representation (1.24) are identical
to the coefficients-of the characteristic polynomial of the matrix A:

p(X) = de t [A/ - A] = A n + , A G C. (1.30)

Proof. By the Cayley-Hamilton theorem, An + aiAn~[ 4- . . . + anl = 0.
In particular

,4 n 6 = -aiA
n~lb- ...-anb.

Since rank [A|6] = n, therefore vectors ei = An~lb,
independent and form a basis in Mn. Let £i(£), . • •,
the vector y(t) in this basis, t > 0. Then

., en = b are linearly
(0 be coordinates of

i
0

0
0

0
1

0
0

. . . 0

. . . 0

. . . 0

. . . 0

0"
0

1
0_

"0
0

0
1

(1.31)

Therefore an arbitrary controllable system (1.29) is equivalent to (1.31) and
the numbers a\, . . ., an are the coefficients of the characteristic polynomial
of A. On the other hand, direct calculation of the determinant of [XI — A]
gives

det(A/ -A) = \n + ai A""1 + . .. + an = p(A), A G C.

Therefore the pair (A/B) is equivalent to the system (1.31) and conse-
quently also to the pair (A, 6). D

Remark. The problem of an exact description of the equivalence classes
in the case of arbitrary m is much more complicated; see [39] and [67].

1.5. Kalman decomposition

Theorem 1.2 gives several characterizations of controllable systems. Here
we deal with uncontrollable ones.

Theorem 1.5. Assume that

rank [41£] = / < n.

There exists a nonsingular matrix P G M(n,n) such that

PAP"1 =
Au Av>

0 A22
PB =
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where An 6M(I , I ) , A22 G M(n - /, n - Z), £1 GM(/ ,m) . /n addition the
pair

(Aii .Bi)

25 controllable.

The theorem states that there exists a basis in Mn such that system (1.1)
written with respect to that basis has a representation

6 = Anh + A126 + Biw, 6(0) G M',

6 = ^226, 6(0) e l " " 1 ,

in which ( A n , 5 i ) is a controllable pair. The first equation describes the
so-called controllable part and the second the completely uncontrollable part
of the system.

Proof. It follows from Lemma 1.1 that the subspace Eo = CT(Ll [0, T; Mm])
is identical with the image of the transformation ln. Therefore it consists of
all elements of the form Bui+ABu\ + . . . + An~1Bun, u\, . - ., r/n G Mm and
is of dimension Z. In addition it contains the image of B and by the Cay ley-
Hamilton theorem, it is invariant with respect to the transformation A. Let
Ei be any linear subspace of W1 complementing Eo and let ei, . . ., e/ and
e/_|_i, . . ., en be bases in Eo and E\ and P the transition matrix from the
new to the old basis. Let A = PAP'K B = PB,

I [6
[

I [61 _ Un6+A126] 5_
[6J ~ [^216+^226] '

M n - / , u G l m . Since the space Eo is invariant with respect
to A, therefore

[6] _ \Anti
0

Taking into account that £(Mm) C E0)

= 0 dla u

Consequently the elements of the matrices A22 and B2 are zero. This
finishes the proof of the first part of the theorem. To prove the final part,
let us remark that for the nonsingular matrix P

rank [A \ B] = rank [P[A\B]) = rank [A\B].

Since

[ 0 ... 0
so

/ = rank[A|S] = rank[An|Bi].

Taking into account that An G M(Z,Z), one gets the required property. D
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R e m a r k . Note that the subspace EQ consists of all points attainable from
0. It follows from the proof of Theorem 1.5 that EQ is the smallest subspace
of Rn invariant with respect to A and containing the image of B, and it is
identical to the image of the transformation represented by [v4|i?].

Exercise 1.10. Give a complete classification of controllable systems when
m — 1 and the dimension of EQ is / < n.

Bibliographical notes

Basic concepts of the chapter are due to R. K aim an [33]. He is also the
author of Theorems 1.2, 1.5 . Exercise 1.3 as well as Proposition 1.3 are
due to R. Triggiani [56]. A generalisation of Theorem 1.4 to arbitrary m
leads to the so-called controllability indices discussed in [59] and [61].



2. Stability and stabilizability

§2.1. Stable linear systems

In this chapter stable linear systems are characterized in terms of associ-
ated characteristic polynomials. A formulation of the Routh theorem on
stable polynomials is given as well as a complete description of completely
stabilizable systems.

Let A £ M(n, n) and consider linear systems

z = Az, z(0)=xeRn. (2.1)

Solutions of equation (2.1) will be denoted by zx(t), t > 0. In accordance
with earlier notations we have that

zx(t) = S{t)x = {exptA)x, t > 0.

The system (2.1) is called stable if for arbitrary x G t n

Instead of saying that (2.1) is stable we will often say that the matrix A is
stable. Let us remark that the concept of stability does not depend on the
choice of the basis in Mn. Therefore if P is a nonsingular matrix and A is
a stable one, then matrix PAP'1 is stable.

In what follows we will need the Jordan theorem [4] on canonical repre-
sentation of matrices. Denote by M(7i, m; C) the set of all matrices with
n rows and m columns and with complex elements. Let us recall that a
number A 6 C is called an eigenvalue of a matrix A £ M(n, n; C) if there
exists a vector a £ Cn, a ^ 0, such that Aa = Xa. The set of all eigenvalues
of a matrix A will be denoted by cr(A). Since A £ <r{A) if and only if the
matrix XI — A is singular, therefore A £ v(A) if and only if p(X) — 0, where
p is a characteristic polynomial of A: p(X) — det[A7 — A], A £ (C. The set
<T(A) consists of at most n elements and is nonempty.
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Theorem 2.1. For an arbitrary matrix A £ M(n,n; C) there exists a
nonsingular matrix P £ M(n, n; C) sue/

where J2,

0

0
_ 0

PAP

. . . , J r

l k •

0 .
0 .

1

are tht

. . 0

. . 0

. . 0

-Jx 0
0 J 2

0 0
. 0 0

so-called

0 ~
0

lk

A*J

0
0

. . . Jr_i
0

0 "
0

0
Jr .

Jordan blocks

7k ^ 0 or J* =

= A, (2.2)

/n /̂ie representation (2.2) â  /ea,ŝ  one Jordan block corresponds to an eigen-
value \k £ 0"(̂ 4). Selecting matrix P properly one can obtain a representa-
tion with numbers 7/. £̂ 0 given in advance.
For matrices with real elements the representation theorem has the follow-
ing form:

Theorem 2.2. For an arbitrary matrix A £ M(7i, 71) there exists a non-
singular matrix P £ M(7i,7i) such that (2.2) holds with "real" blocks 1^.
Blocks Ik, k = 1, . . ., r, corresponding to real eigenvalues A& = otk £ M are

o/ f̂te form

[ak] or

[c*k
0

0
. 0

l k •

ak .

0 .
0 .

. . 0

. . 0

• • Oik

. . 0

0
0

lk
at

and corresponding to complex eingenvalues \k = ak-\~ipk, lh ^ 0,

[Kk

0

0
. 0

Kk ..

0 ..
0 ..

compare [4].
We now prove

. 0

. 0

. 0

0 "
0

Lk

Kk-

the following

where Kk =

theorem.

-Pk ot k

j lk 0

0 7/5
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(i)

(ii)

(iii)

(iv)

Theorem 2.3. Assume that A G M(n,n) . The following conditions are
equivalent:

zx(t) —y 0 as t t +oo ; for arbitrary x G Mn.

zx(t) —> 0 exponentially as t ^ +oo, for arbitrary x G Mn.

CJ(A) = sup {Re A; A G cr(A)} < 0.

/0
+°° |zx(t) |2 dt < +oo for arbitrary x G Rn .

For the proof we will need the following lemma.

L e m m a 2 .1 . Let LJ > OJ(A). For arbitrary norm || • || on ]Rn £/zere exist
constants M such that

\\zx(t)\\ < Me^WxW for t > 0 and x G Mn.

Proof. Let us consider equation (2.1) with the matrix A in the Jordan
form (2.2)

x = Aw, w(0) =x G Cn .

For a = a\ + i«2, where a\^a^ G Mn set | |a|| = | |a i | | + \\a2\\- Let us
decompose vector tf (t), t > 0 and the initial state x into sequences of vectors
i u i ( £ ) , . . . , i tV(£),£> 0 and x\). . ., xr according to the decomposition (2.2).
Then

wk — JkWk, itffc(O) = Xk, k = 1, r.

Let j i , . . ., j r denote the dimensions of the matrices J\, . . ., Jr, ji + 22 +
. . .-f j r — n.
If j k = 1 then

i ^ ^ ) = eXktxk, t>0.

So \\wk{t)\\ = e(ReX^\\xk\\, t > 0.

If j k > 1, then

1 = 0

0
0

0
0

Ik •

0 .

0 .
0 .

. . 0

. . 0

. . 0

.. 0

0 "
0

Ik
0

Xkn

So

where is the norm of the transformation represented by

"0 7* . . . 0 0
0 0 . . . 0 0

0 0
0 0

0 j k

0 0
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Setting LOQ — w(A) we get

k=l k=l

where q is a polynomial of order at most max(j7& — 1), k — 1, . . ., r . If

to > CJQ and

M o =

then Mo < +oo and

Therefore for a new constant Mi

Finally

| | ^ (0 | | = \\Pw(t)p-l\\ < M i e
wt | |P| | IIP-^I ||x||, i > 0,

and this is enough to define M = Mi| |P | | HP"1!!- •

Proof of the theorem. Assume LOQ > 0. There exist A = a + i/3, Re A =
a > 0 and a vector a ^ 0, a = a\ -f z'a2, ci\, «2 G Mn such that

A(ai + ia2) = (a + i/i)(ai + ia2).

The function

z(t) = ^ ( 0 + iz2(0 = e^+^^a, < > 0,

as well as its real and imaginary parts, is a solution of (2.1). Since a ^ 0,
either a\ ^ 0 or a2 / 0- Let us assume, for instance, that ci\ ^ 0 and /3 ^ 0.
Then

^(f) = eat(cos/?^)ai - (sin/it)a2, * > 0.

Inserting t = 2TTA;//3, we have

and, taking k j " +00 , we obtain z\(t) -/» 0.
Now let CJQ < 0 and a G (0, —u>o). Then by the lemma
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\zx(t)\ < Me-at\x\ for t > 0 and x G Mn.

This implies (ii) and therefore also (i).

It remains to consider (iv). It is clear that it follows from (ii) and thus
also from (iii). Let us assume that condition (iv) holds and ĉ o > 0. Then
\zi(t)\ - e a t | a i | , t > 0, and therefore

Joo

a contradiction. The proof is complete. D

Exercise 2.1. The matrix

0 1
A~ ' - 2 - 2

corresponds to the equation z + 2z-\-2z — 0. Calculate w(A). For to > u){A)
find the smallest constant M — M(u>) such that

\S{t)\ < M^\ t > 0.

Hint. Prove that |S(*)| = (p{t)e~\ where

<p(t) = i (2 + 5sin2< + (20sin2^ + 2 5 s i n 4 0 1 / 2 ) 1 , t > 0.

§2.2. Stable polynomials

Theorem 2.3 reduces the problem of determining whether a matrix A is
stable to the question of finding out whether all roots of the characteristic
polynomial of A have negative real parts. Polynomials with this property
will be called stable. Because of its importance, several efforts have been
made to find necessary and sufficient conditions for the stability of an ar-
bitrary polynomial

p(\) = \n + a ^ - 1 + .. . + an, A e C, (2.3)

with real coefficients, in term of the coefficients ai, . . ., an. Since there is
no general formula for roots of polynomials of order greater than 4, the
existence of such conditions is not obvious. Therefore their formulation
in the nineteenth century by Routh was a kind of a sensation. Before
formulating and proving a version of the Routh theorem we will characterize
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stable polynomials of degree smaller than or equal to 4 using only the fun-
damental theorem" of algebra. We deduce also a useful necessary condition
for stability.

Theorem 2.4. (1) Polynomials with real coefficients:

(i) A + a,
(ii) A2 + a\ 4 6,

(iii) A3 + aA2 + 6A-hc,
(iv) A4 + aA3-h6A2 + cA + (i

are stable if and only if, respectively

(i)* a > 0,
(ii)* a > 0, 6 > 0,

(iii)* a > 0, 6 > 0, c > 0 and ab > c,
(iv)* a > 0, 6 > 0, c > 0, d > 0 and abc > c2 4 a2rf.

(2) If polynomial (2.3) is stable then all its coefficients a i , . . . , an are posz-

Proof. (1) Equivalence (i)<=>(i)* is obvious.
To prove (ii)<=>(ii)* assume that the roots of the polynomial are of the
form Ai = -a 4 i/3, \2 - -a - i/3, 0 ^ 0. Then p{\) = A2 4 2aA + /j^2,
A E C and therefore the stability conditions are a > 0 and 6 > 0. If the
roots Ai, A2 of the polynomial p are real then a = — (Ai -f- A2), b = A1A2.
Therefore they are negative if only if a > 0, 6 > 0.
To show that (iii) <=>(iii)* let us remark that the fundamental theorem
of algebra implies the following decomposition of the polynomial, with real
coefficients a, /?, 7:

p(\) = A3 + aA2 + 6A + c = (A + a)(A2 + j3\ + 7), A e C.

It therefore follows from (i) and (ii) that the polynomial p is stable if only
if a > 0, j3 > 0 and 7 > 0. Comparing the coefficients gives

a = a + /3, 6 = 7 + a/3, c = aj,

and therefore ab - c = /i(a2 + 7 + a/3) - 0(a2 + 6).

Assume that a > 0 , 6 > 0 , c > 0 and ab — c > 0. It follows from b > 0
and ab — c > 0 that /? > 0. Since c = c*7, a and 7 are either positive or
negative. They cannot, however, be negative because then 6 = 7 + a/3 < 0.
Thus a > 0 and 7 > 0 and consequently a > 0, 8 > 0, 7 > 0. It is clear
from the above formulae that the positivity of a, /?, 7 implies inequalities
(iii)*. To prove (iv)<=>(iv)* we again apply the fundamental theorem of
algebra to obtain the representation

A4 + «A3 4 6A2 4 cA 4 d = (A2 4 aA 4 /?)(A2 4 7A 4 S)

and the stability condition a > 0 , / i > 0 , 7 > 0 , £ > 0 .
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From the decomposition

a = a + 7, b = ay + /? + J, c = c*<J + /?7, f/ = /W,

we check directly that

abc — c2 — a2d — ay ((/? - £)2 -f ac) .

It is therefore clear that a > 0, /? > 0, 7 > 0 and J > 0, and then (iv)*
holds. Assume now that the inequalities (iv)* are true. Then ay > 0,
and, since a = a + 7 > 0, therefore a > 0 and S > 0. Since, in addition,
d = pS > 0 and c = a£ + /?7 > 0, so /? > 0, J > 0. Finally a > 0, (5 > 0,
7 > 0, £ > 0, and the polynomial p is stable.

(2) By the fundamental theorem of algebra, the polynomial p is a product
of polynomials of degrees at most 2 which, by (1), have positive coefficients.
This implies the result. D

Exercise 2.2. Find necessary and sufficient conditions for the polynomial

A2 + aX + b

with complex coefficients a and b to have both roots with negative real
parts.

Hint. Consider the polynomial (A2+aA+6)(A2-faA+6) and apply Theorem
2.4.

Exercise 2.3. Equation

L2Ci + RLCz + 2Lz + Rz = Q, R > 0, L > 0, C > 0,

describes the action of the electrical filter from Example 0.4. Check that
the associated characteristic polynomial is stable.

§2.3. The Routh theorem

We now formulate a theorem which allows us to check, in a finite number
of steps, that a given polynomial p(X) = An -f ci\\n~l -f . . . + an, A G C,
with real coefficients is stable. As we already know, a stable polynomial
has all coefficients positive, but this condition is not sufficient for stability
if n > 3. Let U and V be polynomials with real coefficients given by

U(x) + iV{x) =p(ix), x G i

Let us remark that deg U = n, deg V — n — 1 if n is an even number and
deg U — n — 1, deg V — n, if n is an odd number. Denote f\ — U^ f2 — V \i
deg U — n, deg V ~ n — 1 and fi = V, /o = U if deg V = n, deg U = n — 1.
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Let fs, /4, .. ., fm be polynomials obtained from / i , f^ by an application of
the Euclid algorithm. Thus deg/k+i < deg //., k = 2, . . ., m — 1 and there
exist polynomials « i , . . . ,K m such that

/ /c_l = AC/c//c — //c + l , / m - l = Kmfm.

Moreover the polynomial fm is equal to the largest comrnun divisor of f\, fi
multiplied by a constant.
The following theorem is due to F.J. Routh [51].

Theorem 2.5. A polynomial p is stable if and only if m = n + 1 and the
signs of the leading coefficients of the polynomials / i , . . ., / n +i alternate.

Let us apply the above theorem to polynomials of degree 4,

p(X) = A4 + a\3 + 6A2 + cA + rf, A G C.

In this case
U(x) =x4-bx2 + d = f1{x),

V{x) = -ax3 + ex = f2(x), x E M.

Performing appropriate divisions we obtain

/3(a:) = (6 - - ) x2 - d,
\ aJ

The leading coefficients of the polynomials / i , /2, • • •, /s are

, - - ) , _ ( c _ a r f [ 6 _ £ y ) , d.

We obtain therefore the following necessary and sufficient conditions for
the stability of the polynomial p:

a > 0, b - - > 0, c - ad (b - -) > 0, d > 0,
a V a/

equivalent to those stated in Theorem 2.4.

We leave as an exercise the proof that the Routh theorem leads to an
explicit stability algorithm. To formulate it we have to define the so-called
Routh array.
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For arbitrary sequences (a/e), (/?&), the Routh sequence (7^) is defined by

H , *=1,2,...
i Pk+1 J

If a i , . . ., an are coefficients of a polynomial p, we set additionaly a/- = 0
for k > n = degp. The Routh array is a matrix with infinite rows obtained
from the first two rows:

1, (I2, «4, «6i • • • 1

by consequtive calculations of the Routh sequences from the two preceding
rows. The calculations stop if 0 appears in the first column. The Routh
algorithm can be now stated as the theorem

Theorem 2.6. A polynomial p of degree n is stable if and only if the n-\- 1
first elements of the first columns of the Routh array are positive.

Exercise 2.4. Show that, for an arbitrary polynomialp(A) = An+aiAn~1-b
. . . + an, A G C, with complex coefficients a\, . .., an, the polynomial (An +
a\\n~l + . . . + fln)(An + a\\n~l -[-. . . + dn) has real coefficients. Formulate
necessary and sufficient conditions for the polynomial p to have all roots
with negative real parts.

§2.5. Stabilizability and controllability

We say that the system

y = Ay + Bu, y(0) = i G l n , (2.12)

is stabilizable or that the pair (A, B) is stabilizable if there exists a matrix
K G M(ra, n) such that the matrix A -f BK is stable. So if the pair (A B)
is stabilizable and a control u(-) is given in the feedback form

u(t) = Ky(t), t > 0,

then all solutions of the equation

y{t) = Ay(t) + BKy(t) = (A + BK)y(t), 2/(0) = x, t > 0, (2.13)

tend to zero as t t +00.
We say that system (2.12) is completely stabilizable if and only if for arbi-
trary to > 0 there exist a matrix K and a constant M > 0 such that for an
arbitrary solution yx(t), t > 0, of (2.13)

\if ( t ) \ < M e . - ^ l x l , t > 0 . (2.14)
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By PK we will denote the characteristic polynomial of the matrix A + BK.
One of the most important results in the linear control theory is given by

Theorem 2.7. The following conditions are equivalent:

(i) System (2.12) is completely stabilizable.
(ii) System (2.12) is controllable.

(iii) For arbitrary polynomial p(X) — Xn 4- a\\n~l 4- • • • 4- an, X E C, with real
coefficients, there exists a matrix K such that

p{X)=pK(X) for XeC.

Proof. We start with the implication (ii)=^(iii) and prove it in three
steps.
Step 1. The dimension of the space of control parameters m — 1. It follows
from § 1.4 that we can limit our considerations to systems of the form

In this case, however, (iii) is obvious: It is enough to define the control u
in the feedback form,

u(t) = [a1 - (an - an)z(t), t > 0,

and use the result (see § 1.4) that the characteristic polynomial of the equa-
tion

-j-

or, equivalently, of the matrix

0 0
-an -a n _i

is exactly
P(X) = Xn +

0 1
-a2 - a

+ . . . + anA, A G C

Step 2. The following lemma allows us to reduce the general case to m = 1.
Note that in its formulation and proof its vectors from Mn are treated as
one-column matrices.
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Lemma 2.4. / / a pair (A, B) is controllable then there exist a matrix
L G M(m,n) and a vector v G Mm such that the pair (A -f BL,Bv) is
controllable.

Proof of the l emma. It follows from the controllability of (A, B) that
there exists v G Mm such that Bv ^ 0. We show first that there exist vectors
u\) . . ., un-\ in Mm such that the sequence ei, . . ., en defined inductively

d = Bv, e/+i = Aei + Bui for / = 1, 2, . . ., n - 1 (2.15)

is a basis in Wn. Assume that such a sequence does not exist. Then for
some k > 0 vectors e\, . . ., e/., corresponding to some t/], . . ., u^ are linearly
independent, and for arbitrary u G Mm the vector Atk + £̂ w belongs to the
linear space EQ spanned by ei, . . ., e^. Taking u = 0 we obtain Ae.k G EQ.
Thus Bu G EQ for arbitrary u G M7U and consequently Ae^ G £̂ o for j =
1, . . . , k. This way we see that the space EQ is invariant for A and contains
the image of B. Controllability of (A, B) implies now that EQ — Mn, and
compare the remark following Theorem 1.5. Consequently k — n and the
required sequences e i , . . ., en and u\,. . ., un_i exist. Let un be an arbitrary
vector from Rm.

We define the linear transformation L setting Lei — ui, for / = l , . . . , n .
We have from (2.15)

= Aei 4- BLet = (A +

Since

the pair (A 4- BL, Bv) is controllable. D

Step S. Let a polynomial p be given and let L and v be the matrix and
vector constructed in the Step 2. The system

in which u(-) is a scalar control function, is controllable. It follows from
Step 1 that there exists k G Mn such that the characteristic polynomial of
(A + BL) + {Bv)k* =A + B(L + vJfe*) is identical with p.
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The required feedback K can be defined as

K = L + vk*.

We proceed to the proofs of the remaining implications. To show that (iii)
= > (ii) assume that (A, B) is not controllable, that rank [A\B] — I < n
and that K is a linear feedback. Let P G M(n, n) be a nonsingular matrix
from Theorem 1.5. Then

PK(\) =
= det[A/ - {PAP'1 + PBKP-1)}

0 (A/-A2 2)

= det[A/- {Au + #i A'i)] det[A/ - A22], A e C,

where Â i G M(m, n). Therefore for arbitrary K G M(m, n) the polynomial
px has a nonconstant divisor, equal to the characteristic polynomial of .422,
and therefore px can not be arbitrary. This way the implication (iii) = >
(ii) holds true.

Assume now that condition (i) holds but that the system is not controllable.
By the above argument we have for arbitrary K G M(m, n) that c(A22) C
CT{A + BK). So if for some M > 0, to > 0 condition (2.14) holds then

< - s u p {ReA;

which contradicts complete stabilizability. Hence (i) = > (ii). Assume now
that (ii) and therefore (iii) hold. Let p(X) = An + ajA'1"1 -f . . . + an, A G C
be a polynomial with all roots having real parts smaller than — to (e.g.,
p[X) ~ (A + CJ +e)n, e > 0). We have from (iii) that there exists a matrix A'
such that PK{ •) = p( •). Consequently all eigenvalues of A + Z?A' have real
parts smaller than —LJ. By Theorem 2.3, condition (i) holds. The proof of
Theorem 2.7 is complete. D
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Bibliographical notes

For the proof of the Routh theorem we recommend basically follow Gant-
rnacher [28]. There exist proofs which do not use analytic function theory.
In particular, in [43] the proof is based on a Liapunov function argument.
For numerous modifications of the Routh algorithm we refer to [61]. The
proof of Theorem 2.7 is due to M. Wonham [60].



3. Linear quadratic problem

§3.1. Introductory comments

This chapter starts from a derivation of the dynamic programming equa-
tions called Bellman's equations. They are used to solve the linear regulator
problem on a finite time interval. A fundamental role is played here by the
Riccati-type matrix differential equations. The stabilization problem is re-
duced to an analysis of an algebraic Riccati equation.

Our considerations will be devoted mainly to control systems

y = f(y,u), y(0) = x, (3.1)

and to criteria, called also cost functionals,

JT(X,U(-))= [ g(y(t),u(t))dt + G(y(T)), (3.2)
Jo

when T < +00. If the control interval is [0, +00], then the cost functional

J(x,u(-))= / g(y(t),u(t))dt. (3.3)
JO

O u r a i m will be to find a cont ro l u(-) such t h a t for all admiss ib le con t ro l s

J T { x , u { - ) ) < J T { X , U { - ) ) (3.4)

or

There are basically two methods for finding controls minimizing cost func-
tionals (3.2) or (3.3).
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One of them embeds a given minimization problem into a parametrized
family of similar problems. The embedding should be such that the minimal
value, as a function of the parameter, satisfies an analytic relation. If the
selected parameter is the initial state and the length of the control interval,
then the minimal value of the cost functional is called the value function
and the analytical relation, Bellman's equation. Knowing the solutions to
the Bellman equation one can find the optimal strategy in the form of a
closed loop control.
The other method leads to necessary conditions on the optimal, open-loop,
strategy formulated in the form of the so-called maximum principle dis-
covered by L. Pontriagin and his collaborators. They can be obtained (in
the simplest case) by considering a parametrized family of controls and the
corresponding values of the cost functional (3.2) and by an application of
classical calculus.

§3.2. Bellman's equation and the value function

Assume that the s.tate space E of a control system is an open subset of Mn

and let the set U of control parameters be included in Mm. We assume that
the functions / , g and G are continuous on E x U and E respectively and
that g is nonnegative.

Theorem 3.1. Assume that a real function W(-, •), defined and continuous
on [0,T] x E} is of class C1 on (0,T) x E and satisfies the equation

dW
— (t,x)= mUg(x,u) + (Wx(t,x)J(x,u))), (t, x) e (0, T) x E, (3.6)

with the boundary condition

W(0,x) = G(x), xeE. (3.7)

(i) Ifu(-) is a control and y(-) the corresponding absolutely continuous,
E-valued, solution of (3.1) then

JT{x,u(-))>W{T,x). (3.8)

(ii) Assume that for a certain function v: [0,T] x E —>• U:

g{x, v{t, x)) + (Ws{t, x)J{x, v{t, x))) (3.9)

<g{x,u) + (Wx{t,x),f{x,u)), t E ( 0 , T ) , x G E, ueU,
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and that y is an absolutely continuous, E-valued solution of the equation

, te[O.T], (3.10)

2/(0) = X.

Then, for the control u(t) = v(T-t,y(t)), t G [Q,T\,

JT(x,u(-)) = M/(x%T).

Proof, (i) Let w{t) - W(T-t,y(t)), t £ [0,T]. Then w( •) is an absolutely
continuous function on an arbitrary interval [aji\ C (0,T) and

TT(')> (3-n)

dW

for almost all t G [0,T]. Hence, from (3.(5) and (3.7)

dW

> - /

Letting a and /? tend to 0 and T respectively we obtain

G(y(T)) - W(T,x) > - I g{y(t),u(t))dt.

This proves (i).

(ii) In a similar way, taking into account (3.9), for the control u and the
output y,

dW

T

= / g{y{t),u(t))dt.
Jo

Therefore

G(y(T))+ f g{y(s),u(s))ds=W(T,x)i
Jo

the required identity. D
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Remark . Equation (3.6) is called Bellman's equation. It follows from
Theorem 3.1 that, under appropriate conditions, W(T,x) is the minimal
value of the functional Jri^r)- Hence W is the value function for the
problem of minimizing (3.2).
Let [/(£, x) be the set of all control parameters u G U for which the infimum
on the right hand side of (3.6) is attained. The function v(:, •) from part
(ii) of the theorem is a selector of the multivalued function £/(•,•) in the
sense that

v { t i x ) e U { t , x ) , ( t , x ) G [ 0 , T ] x E .

Therefore, for the conditions of the theorem to be fulfilled, such a selector
not only should exist, but the closed loop equation (3.10) should have a
well defined, absolutely continuous, solution.

Remark . A similar result holds for a more general cost functional

JT(x,u(-))= f e-atg(
Jo

g(y(t),u(t))dt + eaTG(y(T)). (3.12)

In this direction we propose to solve the following exercise.
Exercise 3.1. Taking into account a solution W(-, •) of the equation

dW
— (*, x) = mf {g(Xi u) - aW(t, x) + (Wx(t, x)J{x, tz)»,

and a selector v of the multivalued function

(Wx(t,x)J(x,u)))

generalize Theorem 3.1 to the functional (3.12).

We will now describe an intuitive derivation of equation (3.6). Similar
reasoning often helps to guess the proper form of the Bellman equation in
situations different from the one covered by Theorem 3.1.
Let W{tyx) be the minimal value of the functional J t(x, •). For arbitrary
h > 0 and arbitrary parameter v G U denote by uv (•) a control which is
constant and equal v on [0, h) and is identical with the optimal strategy for
the minimization problem on [h,t + h]. Let zx>v(t), t > 0, be the solution
of the equation i = f(z,v), z(0) = x. Then

Jt+h(x, «"(
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and, approximately,

,x)& M Jt+h(x, uv{-))& inf / g(zs-v(8),v)ds+W(t,zx*(h)).

Subtracting W(t, x) we obtain that

inf zx>v(s),v)ds+ -{W{t,zx>v(h)) - W{t,x))

Assuming that the function W is differentiate and taking the limits as
/z | 0 we arrive at (3.6). D

Exercise 3.2. Show that the solution of the Bellman equation correspond-
ing to the optimal consumption model of Example 3, with a G (0, 1), is of
the form

W{t,x) =p(t)xa, t > 0, x > 0,

where the function p{ •) is the unique solution of the following differential
equation:

1, for p< 1,

P = / . \ / 0 « )
-a) I M , for p> 1,

p(0)=a.
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Find the optimal strategy.

Hint. First prove the following lemma.

L e m m a 3 . 1 . Let ^p(u) = aup + (1 - u)a, p>0,uE [0, 1]. The maximal
value m(p) of the function ipp( •) is attained at

[0,1].

Moreover

ifp>l,

i/pG [0,1].

§3.3. The linear regulator problem
and the Riccati equation

We now consider a special case of Problems (3.1) and (3.4) when the system
equation is linear

. y^Ay + Bu, j/(0) = x ' 6 l n , (3.16)

A G M(n, n), B G M(n, m), the state space E1 = JRn and the set of control
parameters U = Mm. We assume that the cost functional is of the form

(3.17)

where Q G M(n,n), i? G M(m,m), Po G M(7i,n) are symmetric, non-
negative matrices and the matrix R is positive definite. The problem of
minimizing (3.17) for a linear system (3.16) is called the linear regulator
problem or the linear-quadratic problem.

The form of an optimal solution to (3.16) and (3.17) is strongly connected
with the following matrix Riccati equation:

P = Q + PA + A*P- PBR-lB*T\ P(0) = Po, (3.18)

in which P{s)) s G [0,T], is the unknown function with values in M(n, n).
The following theorem takes place.

Theorem 3.3. Equation (3.18) has a unique global solution P(s)} s > 0.
For arbitrary s > 0 the matrix P(s) is symmetric and nonnegative definite.
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The minimal value of the functional (3.17) is equal to (P(T)x,x) and the
optimal control is of the form

u{t) = -R-lB*P{T-t)y(t), t£[0,T], (3.19)

where

y{t) = {A- BRTlB*P{T-t))y{t), t G [0,T], y(0) = x. (3.20)

Proof. The proof will be given in several steps.

Step 1. For an arbitrary symmetric matrix Po equation (3.18) has exactly
one local solution and the values of the solution are symmetric matrices.
Equation (3.18) is equivalent to a system of n2 differential equations for
elements Pij(-), i,j = 1, 2, . . . , n of the matrix P( •). The right hand sides
of these equations are polynomials of order 2, and therefore the system has
a unique local solution being a smooth function of its argument. Let us
remark that the same equation is also satisfied by P*( •). This is because
matrices Q, R and Po are symmetric. Since the solution is unique, P( •) —
P*( •), and the values of P( •) are symmetric matrices.
Step 2. Let P(s), s G [0, To), be a symmetric solution of (3.18) and let T <
To. The function W{s,x) = (P(s)x,x), s G [0,T], x G l n , is a solution of
the Bellman equation (3.6) - (3.7) associated with the linear regular problem
(3.16)-(3.17).

The condition (3.7) follows directly from the definitions. Moreover, for
arbitrary x G Mn and t G [0, T]

inf ((Qx, x) + (Ru, u) + 2(P{t)x, Ax + Bu)) (3.21)

= (Qx,x)+((A*P(t)+P(t)A)x,x)+ inf ((Ru, u) -f (w, 2B*P{t)x)) .
ueMm

We need now the following lemma, the proof of which is left as an exercise.

L e m m a 3.2. If a matrix R G M(ra, m) is positive definite and a G Mm
;

then for arbitrary u G Mm

{Ru,u) + {a,u) > --(R-^i^a).

Moreover, the equality holds if and only if

u = -^R-la.

It follows from the lemma that the expression (3.21) is equal to

(Q + A*P{t) + P(t)A* - P{t)BR~1B*P(A)xi x)
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and that the innmum in formula (3.21) is attained at exactly one point
given by

-R~lB*P(t)x, * G [ 0 , T ] .

Since P{t)} t G [0,T0), satisfies the equation (3.18), the function W is a
solution to the problem (3.6) - (3.7).

Step 3. The control u given by (3.19) on [0,T], T < To, is optimal with
respect to the functional Jri^r)-
This fact is a direct consequence of Theorem 3.1.

Step 4. For arbitrary t E [0,T], T < To, the matrix P(t) is nonnegative
definite and

(P(t)x,x)< / (Qyx{s),yx{x))ds + (Poy
x(t),yx(t)}, (3.22)

Jo

where yx ( •) is the solution to the equation

y •=. Ay, y(0) = x.

Applying Theorem 3.1 to the function Jt{x, •) we see that its minimal value
is equal to (P(t)x, x). For arbitrary control i/( -) , Jt(x,u) > 0, the matrix
P(t) is nonnegative definite. In addition, estimate (3.22) holds because its
right hand side is the value of the functional Jt(x, •) for the control u(s) = 0,
s e [0,*].

Step 5. For arbitrary t E [0,T0) and x- E Mn

0 < (P(t)x, x) < (( / S* (7*)QS(r) dr + S* (t)PoS(t) j ^ , x ) ,

where £(r) = eA r , r > 0.

This result is an immediate consequence of the estimate (3.22).
Exercise 3.3. Show that if, for some symmetric matrices P = (pij) E
M(n, n) and 5 = {s^) E M(n, n),

then

--(.Su + ;S j j) < pij < Sij -f -(*u + «jj), 2, j = 1, . . . , 71.

It follows from Step 5 and Exercise 3.3 that solutions of (3.18) are bounded
in M ( n , n ) and therefore an arbitrary maximal solution P(-) in M ( n , n)
exists for a l l / > 0.
The proof of the theorem is complete. D
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Exercise 3.4. Solve the linear regulator problem with a more general cost
functional

((Q(y(t) - a),y(t) - a) + (Ru(t),u(t))) dt + (Poy(T), y(T)),
0

where a E Mn is a given vector.
Answer. Let P(t), q(t), r(t), t > 0, be solutions of the following matrix,
vector and scalar equations respectively,

P = Q + A*P + PA- PBR~lB*P, P(0) = Po,

q = A*q - PBR~lq - 2Qa, g(0) = 0,

r = --(R~1qiq)-\-{Qa,a), r(0) = 0.

The minimal value of the functional is equal

r(T) + {q(T),x) + (P(T)x,x),

and the optimal, feedback strategy is of the form

u(t) = —R^qiT-t) - R-lB*P(T-t)y(t), t E [0,T].

§3.4. The linear regulator and stabilization

The obtained solution of the linear regulator problem suggests an important
way to stabilize linear systems. It is related to the algebraic Riccati equation

in which the unknown is a nonnegative definite matrix P. If PJs a solution
to (3.23) and P < P for all the other solutions P, then P is called a
minimal solution of (3.23). For arbitrary control u( •) defined on [0,+oo)
we introduce the notation

/> + O

J{x)U) = /
Jo

ds. (3.24)

Theorem 3.4. If there exists a nonnegative solution P of equation (3.23)
then there also exists a unique minimal solution P o/(3.23), and the control
u given in the feedback form

u(t) = -R~lB*Py(t), t > 0,
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minimizes functional (3.24). Moreover the minimal value of the cost func-
tional is equal to

(Px,x).

Proof. Let us first remark that if P\{i), P 2 ( 0 J ^ ^ ®-> a r e solutions of (3.18)
and Pi(0) < P2(0) then Px{t) < P2{t) for all t > 0. This is because the
minimal value of the functional

J}(x,u) = J ((Qy(s),y(s))+(Ru(.s),u(s))) d.s + (Pl(Q)y(t),y(t))

is not greater than the minimal value of the functional

J?{x,u)= / ((Qy{s)iy{8)) + (Ru(8),u(8)))ds^(P2{0)y(t)iy(t)),
Jo

and by Theorem 3.3 the minimal values are (Pi(0#,#) and (P2(t)x,x)
respectively.
If, in particular, P^O) = 0 and P2(0) = P then P2{t) = P and therefore
Pi (0 < P f° r alH > 0. It also follows from Theorem 3.3 that the function
Pi( - ) is nondecreasing with respect to the natural order existing in the
space of symmetric matrices. This easily implies that for arbitrary i,j =
1, 2, . . . , n there exist finite limits pij — lim Pij(t), where (pij(t)) = Pi(0?

t > 0. Taking into account equation (3.18) we see that there exist finite
limits

These limits have to be equal to zero, for if jij > 0 or jij < 0 then
lim pij(t) — +oo. But lim pij(t) = —oo, a contradiction. Hence the

matrix P = (pij) satisfies equation (3.23). It is clear that P < P.
Now let y( •) be the output corresponding to the input u(-). By Theorem
3.3, for arbitrary T > 0 and x G Mn,

~ fT ~
{Px,x)= / {(Qy{t), V{t)) + (Ru(t), u(t))) dt + (Py(T),y(T)), (3.25)

Jo

and

-(flti(O,ti(O)) r// < (Pxrx).

Letting T tend to +oo we obtain

J{x)u) < (Px,x).
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On the other hand, for arbitrary T > 0 and x £ Mm

consequently, (Pa?, a?) < J(x)u) and finally

J{x,u) = (Px,x).

The proof is complete. D

Exercise 3.5. For the control system

y = u,

find the strategy which minimizes the functional

r+oo

/
Jo/o

and the minimal value of this functional.

Answer. The solution of equation (3.23) in which A = n L B =

I R — [1]} is matrix P = , /^ • The optimal strategy
J L J

is of the form u — —y — y/2(y) and the minimal value of the functional is

For stabilizability the following result is essential. We need a new concept
of detect ability. A pair of matrices (A,C) is detectable if there exists a
matrix L of proper dimension such that the matrix A + LC, is stable.

Theorem 3.5. (i) If the pair (A, B) is stabilizable then equation (3.23) has
at least one solution.
(ii) If Q = C*C and the pair [A, C) is detectable then equation (3.23) has at
most one solution, and if P is the solution then the matrix A — BR~l B*P
is stable.

Proof, (i) Let K be a matrix such that the matrix A + BK is stable.
Consider a feedback control u(t) = Ky(t), t > 0. It follows from the
stability of A + BK that y(t) —y 0, and therefore u(t) —> 0 exponentially
as 11 +oo. Thus for arbitrary x G Mn,

J{x,u{-))= [ {(Qy(t)}y{t)) + (Ru(t),u(t))) dt

Since
(Pi{T)x,x) < J(x,u{-)) < +oo, T > 0,
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for the solution Pi(t), t > 0, of (3.18) with the initial condition Pi(0) = 0,
there exists lim P\(T) = P which satisfies (3.23). (Compare the proof of

Tf+oo
the previous theorem.)
(ii) We prove first the following lemma.
Lemma 3.3. (i) Assume that for some matrices M > 0 and K of appro-
priate dimensions,

M(A-BK) + (A - BK)*M + C*C + K* RK = 0. (3.26)

If the pair (A,C) is detectable, then the matrix A — BK is stable.

(ii) //, in addition, P is a solution to (3.23), then P < M.

Proof, (i) Let S\{t) - ei
A-BK^, $2(t) = e(

A-LC)\ where L is a matrix

such that A — LC is stable and let y(t) = S\(t)x, t > 0. Since

A - BK = {A- LC) + (LC - BK),

therefore

y(t) = S2(t)x + / S2(t - s)(LC - BK)y(s) ds. (3.27)
Jo

We show now that

/ \Cy(s)\'2 ds < +00 and / |A'y(*)|2 ds < +00. (3.28)
Jo Jo

Let us remark that, for t > 0,

y{t) = (A- BK)y(t) and ^-(My(t),y(t)) = 2(My{t),y{t)).
dt

It therefore follows from (3.26) that

jt(My{t),y{t)) + (Cy(t),Cy(t)) + (RKy(t),Ky(t)) = 0.

Hence, for t > 0,

(My{t),y{t))+ f \Cy{s)\2ds+ f (RKy(s), Ky(s)) ds = (Mx,x). (3.29)
Jo Jo

Since the matr ix R is positive definite, (3.29) follows from (3.28). By (3.29),

\y(t)\ < \S2(t)x\ + N j \S2(t - s)\{\Cy(s)\ + \Ky(s)\) ds,
Jo
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where N = max(|L|, |5 | ) , t > 0. We need now the following classical result
on convolutions of functions due to Young.
Assume that p, q, r, are positive numbers such that 1/p-h l/q = 1 + 1/r . / /
functions f\g, belong respectively to Lp and Lq, then the convolution f * g
belongs to U and

\\f*9\\r<\\f\\P\\9\ll-

By Young's Theorem and by (3.28),

/ \y(s)\2 ds <N / \S2(s)\ds / (\Cy(s)\ + \Ky(s)\f ds
Jo Jo \Jo

It follows from Theorem 2.3(iv) that y(t) -> 0 as / -> oo. This proves the
required result. Let us also remark that

Sl{s)(C*C + K*RK)Sx(s) ds. (3.30)

(ii) Define Ko = R~lB*P then RK0 = -B*P, PB = -K?}R.

Consequently,

P{A - BK) + {A - BK)*P+ K*RK = -C*C + {K - Ko)*R{K - Ko)

and
M{A - BK) -f {A - BK)*M + K* RK = -C*C.

Hence if V = M - P then

V(A - BK) + (A- BK)*V + (K - Ko)*R{K - Ko) = 0.

Since the matrix A — BK is stable the above equation has only one solution
given by the formula,

r+oo
V = / Si(s){K - K0)*R{K - K0)S1(s) ds > 0,

Jo

and therefore M > P. The proof of the lemma is complete. D

To prove part (ii) of Theorem 3.5 assume that matrices P > 0, P\ > 0 are
solutions of (3.23). Define K - R~lB* P. Then

P(A - BK) + (A-BK)*P + C*C + K*RK (3.31)

= PA + A*P + C*C- PBR~1B*P = 0.

Therefore, by Lemma 3.3(ii), P\ < P. In the same way F\ > P. Hence
Pi = P. Identity (3.31) and Lemma 3.3(i) imply the stability of A - BK.

D
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As a corollary from Theorem 3.5 we obtain

Theorem 3.6. If the pair (A, B) is controllable, Q — C*C and the pair
(A,C) is observable, then equation (3.23) has exactly one solution, and if
P is this unique solution, then the matrix A — BR~lB*P is stable.

Theorem 3.6 indicates an effective way of stabilizing linear system (3.16).
Controllability and observability tests in the form of the corresponding rank
conditions are effective, and equation (3.23) can be solved numerically using
methods similar to those for solving polynomial equations. The uniqueness
of the solution of (3.23) is essential for numerical algorithms.
The following examples show that equation (3.23) does not always have a
solution and that in some cases it may have many solutions.

Example 3.1. If, in (3.23), i? = 0, then we arrive at the Liapunov equation

PA + A*P = Q, P>0 . (3.32)

If Q is positive definite, then equation (3.32) has at most one solution, and
if, in addition, matrix A is not stable, then it does not have any solutions;
see § 1.2.4.

Exercise 3.6. If Q is a singular matrix then equation (3.23) may have
many solutions. For if P is a solution to (3.23) and

then, for an arbitrary nonnegative matrix Ft E M(Ar — n, k — ?i), matrix

[ O P

satisfies the equation _ _
PA + A*P =

Bibliographical notes

Dynamic programming ideas are presented in the monograph by R. Bell-
mann [5].
The results of the linear regulator problem are classic. Theorem 3.5 is due
to W.M. Wonham [61]. In the proof of Lemma 3.3(i) we follow [65].
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