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1 Feedback linearization: an introduction

The aim of this preliminary chapter is to introduce the concept of feedback lin-

earization and a fundamental geometric tool of nonlinear control theory, which is

the Lie bracket. Feedback linearization is a procedure of transforming a nonlinear

system into the simplest possible form, that is, into a linear system. Necessary and

sufficient conditions for this to be possible will be expressed using the notion of Lie

bracket, which is omnipresent in very many nonlinear control problems.

The problem of feedback linearization is to transform the nonlinear control sys-

tem

x = f(x,u)

into a linear system of the form

x = Ax + Bu

via a diffeomorhism

(5, fi) =

called feedback transformation. We will start with an introductory example.

Example 1.1 Consider a nonlinear pendulum (rigid one-link manipulator) consist-

ing of a mass m with control torque u.

The evolution of the pendulum is described by the Euler -Lagrange equation

with external force

ml2 9 + mgl sin 9 = u .

We rewrite it as
9 = u

* = -l^e + ^'
Denote x\ — 9 and x<± — u and consider the evolution of the pendulum on the

state space R2, that is x = (xi,X2)T G M2. We get the system E

x2 = - f si

Replace the control u by

u = ml2u + mlg sin



which can be interpreted as a transformation in the control space U depending on

the state x € X. We get the linear control system

X\ = X2

X2 — U.

Using a simple transformation in the control space we thus brought the system into

the simplest possible form: a linear one. Notice that the families of all trajectories of

both systems coincide although they are parametrized (with respect to the control

parameters u and u, respectively) in two different ways.

Now fix an angle 00. The goal is to stabilize the system around x0 = (xi0, x20)
T,

where X\Q = #o &nd x2o — 0. Introduce new coordinates

x2 = x2.

and apply the control

u = k\X\ +

where fei, k2 are real parameters to be chosen. We get a closed loop system described

by the system of linear differential equations

X\ — X2

x2 — kiXi + k2x2.

whose characteristic polynomial is given by

Let Ai, A2 G C be any pair of conjugated complex numbers. Take

k\ = A1A2

k2 = Ai + A2j

then the eigenvalues of the closed loop system are Ai and \2. In particular, by

choosing Ai and A2 in the left half plane we stabilize exponentially the pendulum

around an arbitrarily chosen angle #o &nd a stabilizing control can be chosen as

u — kiml2(xi — xio + k2ml2x2 + ugl sin x\.



Now fix an initial point x0 = (^io?^2o)T £ M2 and a terminal point xT =

{XIT,X2T)T £ ^ 2 and consider the problem of finding a control TZ(£), 0 < t < T,

which generates a trajectory x(t) such that x(0) = ^o and #(T) = rr^. This is

the controllability problem, called also motion planning problem. Due to the above

described linearization we get the following simple solution of the problem. Choose

an arbitrary C2-function <p(£), 0 < t < T, such that

<p(0) =

= Z2T-

and apply to the system the control

u{t) = tp"(t)

or, equivalently,
u(t) = ml2(p"(t) + mlg sin x\(t).

Clearly, the proposed control solves the motion planning problem producing a tra-

jectory that joins XQ and XT- •

Now consider a single-input linear control system of the form

A : x = Ax + bu,

where x G l n , u E l and assume that A is controllable, that is

rank (6, Ab,..., An-lb) = n.

Chose a linear function h = ex, where c is a row vector, such that

cb = cAb = • • • = cAn-2b = 0

and

whose existence follows immediately from the controllability assumption. Introduce

linear coordinates
x\ — ex

x2 = cAx

Xfi ~~ ^— C/x X,



We have

x\ — ex — cAx + cbu = X2

x2 = cAx = cA2x + cAbu = x3

/Y* —— /̂ > /^ '̂ y* - . . . . •> / j ' u /y* _ I •> / I '<

By introducing a new control variable

n

U —

which can be viewed at as a state depending transformation in the control space U,

we bring any single-input controllable linear system into the n-fold integrator

Xi = X2, X2 = X3, . . . , Xn_i = Xn, Xn = S.

We will consider the problem of whether and when such a transformation is

possible in the nonlinear case. Consider a single-input control affine system of the

form

S : x = f(x) +g(x)u,

where x G X, an open subset of Rn, and / and g are C^-smooth vector fields on

X.

Recall that Lvcp denotes the derivative of a function cp with respect to a vector

field v, that is

Lvip(x) = ^2^-'(x}vi(x).

Fix a point x0 G X and assume that there exist a C°°-smooth function cp on X such

that (compare the linear case)

Lg(p = LpL/<p = • • • = LgL
nf2Lp = 0

and

LgL
nfl(p(x) = d{x),



where d(x) is a smooth function such that d(x0) ^ 0. If around the point x0, the

functions cp, Lf(p, . . . ,£ /~V a r e independent (in the sense that their differentials

are linearly independent at x0), then in a neighborhood V of xQ the map

xi = <p . .

x2 = Lf(p

xn = Ln
f~

l(p

defines a local diffeomorphism, or, in other words, a local coordinate system. In the

local coordinates (5 i , . . . , xn)
T we have

n_i - <dLn~2f,x> = bn

'xn = < dLn~2f, x > = Ln
f(p + uLgL

nflip = Ln
fip + ud{x).

By introducing a new control variable

u = L^cp + uLgL
n

f~
l(p,

which can be viewed at as a transformation in the control space [/, depending

nonlinearly on the state x, we bring our single-input nonlinear system into the 71-

fold integrator

X\ = £ 2 , £ 2 = % • • • , Xn-i- •= Xm Xn = U.

The proposed method works under two assumptions. Firstly, we assumed the

existence of a function cp such that Lgcp = LgLf(p = • • • = LgL^~2(p = 0. Secondly,

we assumed that the functions </?, L/y?, . . . , Lnrl(p are independent in a neighbor-

hood of x0. The former is a system of n — 1 first order partial differential equations.

In order to see it, let us consider the two first equations Lg(p — 0 and LgLf<p — 0,

which imply that

LfLg(p — LgLf(p — 0.

Although the expression on the left hand side involves a priori partial derivatives

of order two, it depends on partial derivatives of cp of order one only and a direct

calculation shows that we can represent it as

LfLg(p - LgLf(p =



where the vector field [/, g] is given by

[f,g](x) = Dg{x)f(x)-Df(x)g(x),

where Dg(x) (resp. Df(x)) stands for the derivative at x, i.e. the Jacobi matrix, of

the map g : X —> W1 (resp. / : X —> W1). We will call [f,g] the Lie bracket of

the vector fields / and g. We would like to emphasize two important aspects of the

nature of Lie bracket. Firstly, it is a vector field, because if we change coordinates

then the Lie bracket is multiplied on the left by the Jacobi matrix of the derivative of

the coordinate change. This shows its vector, i.e., contravariant, nature. Secondly,

a Lie bracket [/,</] acts on a function cp by the formula L^jy?, that is, acts as a

first order differential operator. Notice that, as we have already said, the expression

LfLgip — LgLfip involves, a priori, second order derivatives of cp but all of them are

mixed partials that mutually cancel due to Schwarz lemma.

Introduce the notation

= [f,g] ;

and inductively

adj
}
+lg = [/, ad)g\

for any integer j > 1. Put ad^g = g. It follows easily by an induction argument

that the existence of a function cp such that Lg(p — LgLftp = • • • = LgL
nr~2(p = 0 is

equivalent to the solvability of the following system of first order partial differential

equations
Lgif = 0

Ladfg<P = 0

which in coordinates is expressed as

——(adJ
fg)i = 0, for 0 < j < n — 2,

where {ad3jg)i denotes the i-th component, in the coordinates (xi,... ,£n)T? of the

vector field adig.



It can be shown that the requirement that the differentials dLfa, for 0 < j <

n — 1, are linearly independent at x0 is equivalent to the linear independence ofad^g

at £o, for 0 < j < n — 1.

We will show that a necessary condition for the above system of first order

PDE's to admit a nontrivial solution is that for any 0 < ij < n — 2 the Lie bracket

[ad^g, adj
fg](x) belongs to the linear space generated by {adq

fg(x), 0 < q < n — 2}.

In view of the linear independence of the ad^g's this is equivalent to the existence

of smooth functions al
q

j such that

n-2

[ad^g, ad^g] = j ^ a^ad^g.
q=0

To prove it, assume that there exists a vector field v of the form v = [ad^g^ adig],

for some 0 < i , j < n — 2 and a point x G X, such that v{x) ^ span {adlgfa), 0 <

q < n — 2}. We have

T T T T T J- r\

The n vector fields v and ad%g, for 0 < q < n — 2, are linearly independent in a

neighborhood of x G X and therefore the only solutions of the system of n first

order PDE's
Lvcp = 0

Ladjgcp = 0, f o r O < j < n - 2 ,

are <p ^constant.

It turns out that the two above necessary conditions are also sufficient for the

solvability of the problem. Indeed, we have the following result.

Theorem 1.2 There exist a local change of coordinates x = (j){x) and a feedback

of the form u = a(x) + fi(x)u, where the matrix (3(x) is invertible, transforming,

locally around x$ G X, the nonlinear system

E : x = f(x)+ug(x)

into a linear controllable system of the form

A : x = Ax + bu

8



if and only if the system E satisfies in a neighborhood of Xo

(Cl) g(x), adfg(x),..., ad7l~1g(x) are linearly independent;

(C2) for any 0 < z, j < n — 2; i/iere exi^ smooth functions alj such that

n-2

[ad)g, ad3
fg) = ^ al

q
Jadq

fg.
q=0

The condition (C2), called involutivity, will be discussed in the general context

in the Section devoted to Frobenius theorem and in the context of feedback lin-

earization in Section 3. It has a clear geometric interpretation. If the above defined

system of PDE's Lgcp — • • • = Ladn-2 cp — 0 admits a nontrivial solution then for

any constant c G R the equation cp — c defines a hypersurface in X, The vec-

tors g(x), adfg(x),..., adrj~2g(x) form at any x G {<p(x) = c} the tangent space to

that hypersurface. In general, such a hypersurface need not exist; the involutivity

condition (C2) guarantees its existence.

Especially simple is the planar case, that is, n = 2, in which the involutivity

follows automatically from the linear independence condition.

Corollary 1.3 A control affine planar system

where x e M2, is locally feedback linearizable at XQ if and only if g and ad/# are

independent at XQ.

Example 1.4 (Example 1.1 cont.) We have / = 2̂̂ f~ and g = ^ gf-. Thus the

vector fields g and adjg = —^p-^ are independent and hence, by Corollary 1.3,

we can conclude feedback linearization of the pendulum, a property which we have

established by a direct calculation in Example 1.1. •

2 Equivalence of control systems

The question of feedback linearization discussed in Section 1 is a subproblem of a

more general problem of feedback equivalence. In this section we study equivalence

of control systems. We start with state space equivalence in Section 2.1 and then



we define feedback equivalence in Section 2.2. Various aspects of the problem of

feedback linearization will be discussed in Section 3.

2.1 State space equivalence

Two systems are state-space equivalent if they are related by a diffeomorphism (and

then also their trajectories, corresponding to the same controls, are related by that

diffeomorphism). A question of particular interest is that of when a nonlinear system

is equivalent to a linear one. If this is the case the nonlinearities of the considered

system are not intrinsic, they appear because of a "wrong" choice of coordinates,

and the nonlinear system shares all properties of its linear equivalent.

Consider a smooth nonlinear control system of the form

E : x = f(x,u),

where x G X, an open subset of Rn (or an n-dimensional manifold) and u G U, an

open subset of Mm (or an ra-dimensional manifold). The class of admissible controls

U is fixed and VC C U C M, where VC denotes the class of piece-wise constant

controls with values in U and M the class of measurable controls with values in U.

Consider another control system of the same form with the same control space

U and the same class of admissible controls U

S : x = f(x,u),

where x G X, an open subset of Rn (or an n-dimensional manifold and u G U.

Analogously to the transformation &*g of a vector field g(-) by a diffeomorphism <J>,

we define the transformation of /(• , u) by $. Put

We say that control systems E and E are state space equivalent (respectively,

locally state space equivalent at points p and p) if there exists a diffeomorphism

$ : X —> X (respectively, a local diffeomorphism $ : Xo —> X, $(p) = j3, where Xo

is a neighborhood of p) such that

* • / = / •
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Recall

T={fu\ueU} and T = {fu \ u G U} ,

where /w = f(-,u) and /w = f(-,u). (Local) state space equivalence of E and E

means simply that

®*fu = A for any u e U,

i.e., that $ establishes correspondence between vector fields defined by constant

controls.

Assume dim£(p) = dim C(p) = n , i.e. E and E are accessible from p and p,

respectively.

The following observation shows that (local) state space equivalence is very nat-

ural.

Proposition 2.1 £ andY, are (locally) state space equivalent if and only if there ex-

ists a (local) diffeomorphism $ which (locally, in neighborhoods ofp andp) preserves

trajectories corresponding to the same controls u(-) G U, i.e.

for any u(-) G U and any t for which both sides exist, where 7^(p) (resp. 7

denotes the trajectory o /S (resp. E) corresponding to the control function u(-) G U

and passing by p (resp. by p) for t = 0.

Introduce the following notation for left iterated Lie brackets

uk] ~ l/wi? l/u25 • • • ? l/ufc-u JnfcJ • • • JJ

and analogous for the tilded family. In particular f[Ul] = fUl.

The following result was established by Krener [K2] (see also Sussmann [S2]).

Theorem 2.2 Assume that the systems S and S are analytic and that dim £(p) =

n , dim C(p) = n.

(i) S and S are locally equivalent at p and p if and only if there exists a linear

isomorphism of the tangent spaces F : TPX —> TpX such that

Ff[UlU2...uk)(p) = /[uiU2....ufc](p), (2.1)

for any k > 1 and any u\,... u^ G C/.

11



(ii) Assume moreover that X and X are simply connected and that the Lie algebras

C and CofYj and S, respectively, consist of complete vector fields and satisfy

Lie rank condition everywhere. If there exist points p G X and p G X and a

linear isomorphism F : TPX —> TpX satisfying (2.1) then E and E are state

space equivalent.

This theorem shows that all information concerning (local) behavior is contained

in the values at the initial condition of Lie brackets from C. In a sense (iterative)

Lie brackets form invariant (higher order) derivatives of the dynamics of the system

and in the analytic case they completely determine its local properties as (higher

order) derivatives do for analytic functions.

Put go — f- Using this theorem one obtains the following linearization result

(compare [Rl], [S2]).

Proposition 2.3 Consider a control affine analytic system E.

(i) The system S is locally state space equivalent dip G X to a linear controllable

system of the form

m

Ac : x = Ax + c + Bu = Ax + c + ^ ufa , x G Rn , u eRm

at x0 G Rn if and only if

(El) \gil,\Si2,...\gik_1,gik]...](p)=0
for any k > 2 and any 0 < ij < m, 1 < j < k, provided that at least two ij 's

are different from zero and

(E2) dim span {ad^(p) | 1 < i < m , 0 < j <n — l}(p) = n.
(ii) The system S is locally state space equivalent at p G X to a linear controllable

system of the form

A : x = Ax + Bu = Ax + ^ utbi ' x eRn , ueRm

2 = 1

at 0 G Rn if and only i / S satisfies (El), (E2) and f(p) = 0.

(iii) The system E is globally state space equivalent to a controllable linear system

A with the state space Rn if and only if it satisfies (El), (E2), there exists

p G X such that f(p) — 0; X is simply connected, and moreover

(E3) the vector fields f and gi,...,gm
 are complete.

12



Recall that a vector field / is complete if its flow 7/(2?) is defined for any (£,p) G
RxX.

2.2 Feedback equivalence

The role of the concept of feedback in control can not be overestimated and is very
well understood, both in the linear and nonlinear cases. We would like to consider
it as a way to transform nonlinear systems in order to achieve desired properties.
When considering state-space equivalence the controls remain unchanged. The idea
of feedback equivalence is to enlarge state-space transformations by allowing to
transform controls as well and to transform them in a way which depends on the
state: thus feeding the state back to the system.

Consider two general control systems S and S given respectively by x = f(x, u),
x G X, u G U and x = f(x,u), x G X, u G U. Assume that U (respectively U) is
an open subset of Rm (Rm). We say that E and S are feedback equivalent if there
exists a diffeomorphism x : XxU-^XxUof the form

which transforms the first system into the second, i.e.,

D$(x)f(x,u) = f($(x)\i&(x,u)).

Observe that $ plays the role of a coordinate change in X and ^, called feedback
transformation, changes coordinates in the control space in a way which is state
dependent.

When studying dynamical control systems with parameters and their bifurca-
tions, the situation is opposite: coordinate changes in the parameters space are
state-independent, while coordinate changes in the state space may depend on the
parameters.

For control affine case, i.e., for systems of the form
m

~ (~.\ -P(~\ i (~*\~'n* I nr i — T i nr \ —r— ni ir i?/
t«-7 0 \ / J \ / ' J \ / '

where g — (^i,..., gm) and u — (ni, . . . , um)T, in order to preserve the control affine
form of the system, we will restrict feedback transformations to control affine ones

u = ^(x, u) = a(x) + /3(x)u,

13



where J3(x) is an invertible mxm matrix. Denote the inverse feedback transforma-

tion by u = a(x) + f3(x)u. Then feedback equivalence means that

f = ^(f + ga) and g = ^(g(3).

For control linear systems of the form x = g(x)u = YlT=i 9i(x)ui> (local) feedback

equivalence coincides with (local) equivalence of distributions Q spanned by the

vector fields g^s.

3 Feedback linearization

Since feedback transformations change dynamical behavior of a system they are

used to achieve a priori required properties of the system. In Sections 5.2 and 5.3

we will show how feedback transformations are used to synthesize controls with

decoupling properties. In this Section we will study the problem of when a non-

linear system can be transformed to a linear form via feedback. A particular case

of feedback linearization of single-input control affine systems has been discussed

in Section 1. The interest in feedback linearization is two-fold. Firstly, if one is

able to compensate nonlinearities by feedback then the modified system possesses

all control properties of its linear equivalent and linear control theory can be used

in order to study it and/or to achieve the desired control properties. This shows

possible engineering applications of feedback linearization, compare Example 1.1.

From mathematical (or system theory) viewpoint, if one would like to classify non-

linear systems under feedback transformations (which define a group action on the

space of all systems) then one of the most natural problems is to characterize those

nonlinear systems which are feedback equivalent to linear ones. In Section 3.1 we

will study feedback linearization of multi-input and general nonlinear systems. In

Section 3.2 we will consider linearization using feedback which changes the drift

vector field only. Finally, in Section 3.3 we will study the problem of finding the

largest possible linearizable subsystem of the given system.

14



3.1 Static feedback linearization

A general nonlinear control system S is (locally) feedback linearizable if it is (locally)
feedback equivalent to a controllable linear system Ac of the form

Ac : x = Ax + c + Bu.

Recall the notation
F={fu | ueRm}.

For any u G U define the following distributions on X which will play the
fundamental role in solving the feedback linearization problem.

Ai(x,u) = im—(x,u)

A2(x, u) = span [JF, Ai] (a;, u) = span {[/u, g] (x, u) \ fu G T, g <E A J

and, inductively,

Aj(x, u) — span [J7, Aj_i] (re, w).

Remark 3.1 For linear system Ac we have

Ai = imB Aj- = im (B, . . . ,A j"1S) , j > 0.

The feedback linearization problem was solved by Jakubczyk and Respondek [JR],
and independently by Hunt and Su [HS].

Theorem 3.2 E is locally feedback linearizable at (rro?^o) if and only if it satisfies

in a neighborhood of (XQ^UQ) the following conditions

(A0) Ai does not depend on u,

(AI) dim Aj(x,u) =const, j = 1, ...,n;

(A2) Aj are involutive, j — 1, ...,n,

(A3) dimAn(x0,n0) = n.

Remark 3.3 One can show that if Ai is involutive, of constant rank, and does not
depend on u then the successive distributions Aj, j > 2, do not depend on u either.
Thus we can check the involutivity condition (A2) for them for a single value u only
(for example for u0).

15



In applications one is usually interested in points of equilibria. Denote by A a

linear system of the form

A : x = Ax + Bu,

i.e., the system Ac with c = 0.

Corollary 3.4 E is locally feedback equivalent at Xo,uo to a controllable system

A at 0 if and only if it satisfies the conditions (AO),(A1),(A2),(A3) and moreover

f(x0,uo) e A

Consider feedback equivalence of linear controllable multi-input systems A of the

form x — Ax + Bu (in this case diffeomorphism $(x) and feedback \P(a;, u) are taken

to be linear with respect to the state and control). As shown by Brunovsky [Br]

the only feedback invariants are the dimensions rrij of Im MJ where the map M-7

is defined as [JB, AB, . . . , Aj~1B]. Put n0 = 0 and rij = rrij — rrij-i, j = 1, . . . n.

Define

Kj — max{n^ | n* > jf}. (3.1)

Observe that ACI > • • • > Km and YMLI
 Ki — n- The integers /^, called control-

lability (or Brunovsky) indices, form another set of complete invariants of feedback

equivalence of linear controllable systems.

Every controllable system A with indices /^, for 1 < i < m, is feedback equivalent

to the system (canonical form)

J — -Lj • • • j K>i ~ I?

which consists of m independent series of /^ integrators.

Very often we deal with control-affine systems. To state a feedback linearization

result for them we define the following distributions

V1(x) = span{^(x), 1 < i < m}

Vj(x) = spanlad^"1^^), 1 < q<j, 1 < i < m},

i - 2 , 3 . . . .

If the dimensions dj(x) of V^ are constant (see (Al)' and (Bl) below) we denote them

by dj and we define indices pj as follows. Define do = 0 and put rj = dj — G^-I, j =

16



1 , . . . , n. Then (compare (3.1))

| n > j}. (3.3)

Distributions A^ defined earlier in this Section are feedback invariant. If, more-

over, they are involutive, then in the control-affine case Aj = X>J, j > 1 and, in

particular, p^'s are feedback invariant. In this case the indices pj coincide with K^

the controllability indices of the linear equivalent of E.

The following result describes linearizable control-affine systems.

Theorem 3.5 The following conditions are equivalent.

(i) S is locally feedback linearizable at Xo G W1.

(ii) S satisfies in a neighborhood of XQ

(Al)' dim Vj(x) = const, j = 1, ...,n;

(A2)' Vi are involutive, j = 1, ...,n ;

(A3)' dimVn{x0)=n.

(iii) S satisfies in a neighborhood of XQ

(Bl) dim T>i(x) —const, j = 1, ...,n ;

(B2) VPj~l are involutive, j — l,...,ra ;

(B3) dim Vpk(x0) = n, where pk is the largest controllability index.

In the single-input case m = 1, as a Corollary of Theorem 3.5, we rediscover

Theorem 1.2.

Corollary 3.6 A scalar input system S is feedback linearizable if and only if it

satisfies

(Cl) g(xo),..., adj~1^(xo) are independent,

(C2) Vn-1 is involutive.

Example 3.7 Consider the following rigid two-link robot manipulator (double pen-

dulum); compare e.g. [Ca] or [NS].

x1 = x2

x2 = -

17



where x1 = (#i,#2), %2 = (^1^2)5 u — (^1^2)5 and the positive definite symmetric

matrix M(xl) is given by

l + 777,2/? + ^2^2 + 2777-2/1/2 cos #2 777,2/2 + m2hh cos

777-2/2 + ™>2hh COS 02

The term k(9) represents the gravitational force and the term C(6,0) reflects the
centripetal and Coriolis force.

We have that V1 = span {-£5} = span {^-, ^ -} is involutive and dim V2(xl,x2) -
4. Hence the double pendulum is feedback linearizable. A linearizing feedback is
given, e.g., by u — C(x1,x2) + k(x1) + M(x1)u. •

Example 3.8 Consider the following model of a permanent magnet stepper mo-
tor [ZC]

— K4X3 + K§sin{AK$x±) — rL/J

where x\,x2 denote currents, x3 denotes the rotor speed and rr4 its position, J is the
rotor inertia, and TL is the load torque. We see that if x±o i=- 0 the distributions V1 =
span{^ , ^ } and V2 — span{-^, ^ , ^ } are involutive and that dimX)3(x) = 4
and thus the system is feedback linearizable. •

Example 3.9 The goal of this example is to show how to solve nonlinear problems
by transforming the system to an equivalent linear system and solving the linear
version of the problem for the linear system. Consider the following system

x = y + xz
y = z
z — u + sinx,

where (x,y,z) G M3. We want to stabilize it exponentially globally on R3. Firstly,
observe that the system is feedback linearizable. We have g = (0,0,1)T, ad/# =
-(x, l,0)T, and [#,ad/#] = 0. Thus the distributions V1 = span{£} and V2 =
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+ §-->-§{\ are involutive. We seek for a function cp whose differential

anihilates V2 which means to find a solution of the following system of 1-st order

partial differential equations (compare Section 1)

dz — u

dip , d$_ _ n
Xdx + dy - U '

We conclude that y> can be an arbitrary function of xe~y and we choose tp — xe~y.

Therefore we put, see Section 1, x = xe~y, y — y,z — z and, finally, u = u — smx.

This yields the following linear system

x = y

y = z

z — uy

which we stabilize on E3 globally and exponentially via a linear feedback of the form

u = kx + ly + mz, where the matrix

is Hurwitz. Therefore the nonlinear feedback

u — kxe~y + ly + mz — sin x

stabilizes globally and asymptotically on M3 the original system. •

Example 3.10 Consider the following model of the rigid body whose gas jets con-

trol the rotations around the two first principal axes.

CJl = CL1U2UJ3 + U\

CJS = CL3CU1UJ2.

We have / = (aiCJ2C0s,a2ujiUJs,asUJiUJ2)T, g\ = (1 ,0 ,0) T and #2(0, l , 0 ) T . We

calculate ad/^i = — (0,0,a3o;2)T and ad/^2 = —(0,0, a3o;i)T. We thus see that the
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distribution V1 = span {#1,(72} = span{^ - , -£j-} is always involutive and of rank

two everwhere while V2 = span{0!,02,a<i/0i,a<i/02} is of rank three if and only

if as ^ 0 and either u)\ ^ 0 or u2 ^ 0. In the first case we put tii = a$uo\uj2^

^ l f ) , and u2 — — 0,200100$ + u2 and we get the

linear system

oo2 = u2 .

In the second case we we put ti2 — a$u\uj2 and define u\ and u2 in an anologous

way. •

Example 3.11 Consider the following model of unicycle

±1 = u\ cos 6

x2 = u2 sin 9

6 = u2 ,

where (xi,x2,6>) G R2 x 51 . We have

gx = (cos^s in^0) T , g2 = (0,0, l ) T

thus [01,02] = (sin0, — cos^, 0)T and hence V1 is not involutive: the unicycle is not

static feedback linearizable. •

3.2 Restricted feedback linearization

Consider a control-affine system S and a feedback transformation u = a(x) + (3(x)u

which can be interpreted as an (affine) change of coordinates, depending on the

state, in the input space. The term j3 allows to choose generators of the distribution

J)1 = span {01 , . . . , gm} whereas the term a changes the drift / . Restricted feedback

allows to transform the drift / only and keeps the 0 '̂s unchanged. More precisely,

two control affine systems S and E are restricted feedback equivalent if there exist a

diffeomorphism $ between their state spaces and a restricted feedback of the form

u = a(x) + u such that

/ = $ * ( / + go) and & = $&, z = l , . . . , m . (3.4)
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We will be interested in equivalence to liner systems under such feedback and

we will call it restricted feedback linearization.

The three main reasons to discuss restricted feedback linearization are as follows.

Firstly, it was Brockett's restricted feedback linearization result [B] which begun an

increasing interest in various kinds of feedback linearization problems for nonlinear

systems. Secondly, there is a nice stochastic interpretation of the restricted feedback

linearization [B]. Thirdly, it is relatively easy, as we will show it, to proceed from

local results to global ones.

Consider scalar input systems of the form

E : x = f(x) + g(x)u , x G X , u E l ,

and study their equivalence with linear scalar input systems of the form

Ac : 'x = Ax + c + bu , x G Rn u G R.

We have the following result [B].

Theorem 3.12 E is locally restricted feedback linearizable at x0 if and only if it

satisfies in a neighborhood of xo the following conditions

(RC1) g{xo),..., 31d
1J~1g(xo) are independent.

(RC1) [ad^p,&dr
fg] C Vn~2 for any 0 < q,r <n - 1 ,

Remark 3.13 Like in the case of feedback linearization (compare Corollary 3.4),

S is restricted feedback equivalent at XQ to Ac, with c = 0, at 0 if and only if

f(x0) e v\xQ).

In the single-input case all linearizable systems are equivalent to the canonical

form (compare (3.2))

ii = xw ,z = 1,. . . , n - 1 ,
(3.5)

xn = u .

If E is (locally) feedback linearizable, then there are many pairs (a, /3) and many

(local) diffeomorphisms which transform S into its canonical form. However, if we

allow for restricted feedback only, then a transforming S into the canonical form is

unique and is given by

a = (-l)n-lLnfl
ln , (3.6)

21



where Lf stands for the Lie derivative along / and the smooth function j n is uniquely

defined by / = X ÎLi T^d}"1*?- This observation is crucial for establishing the fol-

lowing result on restricted feedback linearization [DBE], [R2].

Theorem 3.14 E is restricted feedback globally linearizable if and only if it satisfies

the conditions (RC1),(RC2) and, moreover,

(RC3) the vector fields f and g are complete, where f = f + ga and a is defined

by (3.6),

(RC4) the state space X is simply connected.

Example 3.15 (Continuation of Examples 1.1 and 1.4). We have / = uo-^ —

| sin#-|j and 9 — ̂ p-§^- Therefore [ad/#, g] = 0 and since g and ad/# are indepen-

dent everywhere then the system is restricted feedback linearizable. Indeed, it is

immediate to see that the feedback u = mgl sin 9 + u brings the system to a linear

form (no action of diffeomorphism is needed). •

The nonlinear pendulum defined on S1 x R1 is globally equivalent to a linear system

evolving on S1 xR 1 . If we enlarge the class of linear systems to include systems of

the form x = Ax -+- Bu, where every component Xi of x is either a global coordinate

on E1 or a global coordinate (angle) on 51 , then Theorem 3.12 remains true if we

drop the assumption (RC4). This includes many mechanical control systems.

3-3 Partial linearization

The linearizability conditions are restrictive (except for the scalar input affine sys-

tems on the plane, compare Corollary 1.3). Given a nonlinearizable system it is

therefore natural to ask what is its largest linearizable subsystem. Consider a par-

tially linear system Apart of the form

x = P{x\x2) + }2i=iUigi{

with x1, x2 being possibly vectors. Recall the notion of the Lie ideal £Q of the

system which is defined as £0 = Lie {adj^ | 1 < i < m, j > 0}. With the help of

Co we define another Lie ideal by putting

C — [£Oj£o]-
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Denote by 8 the distribution spanned by £2. It is C2 which contains all intrinsic

nonlinearities not removable by action of diffeomorphisms [R2].

Theorem 3.16 Consider a control affine system E.

(i) / / £ is locally state space equivalent at x0 to partially linear Apart then dim S(x) <

n in a neighborhood of XQ.

(ii) Assume that £ satisfies dim CQ(XQ) — ^ and that dim S(x) = e=const. in a

neighborhood O/XQ. Then E is locally state space equivalent to a partially linear

system Avart, such that dim x1 — n — e and the linear subsystem is controllable.

Corollary 3.17 Let an analytic system E satisfies dim £0(^0) = n- It is locally

state space equivalent at Xo to a partially linear Apart if and only if

dim £(xo) < n.

Moreover, there exists Apart, with (n — e)-dimensional linear controllable subsystem,

which is state space equivalent to S.

Now we consider the problem of transforming a nonlinear system to a partially linear

one via feedback. This problem has been studied arid solved in the scalar-input case

in [KIR] and in the multi-input case in [M] and [R3]. Recall that for a smooth

distribution V we denote by V its involutive closure it is the smallest distribution

containing V and closed under the Lie bracket.

Theorem 3.18 Consider a scalar input system S.

(i) / / S is locally feedback equivalent at xQ to a partially linear Apart with p-

dimensional linear controllable subsystem then E satisfies the following con-

ditions

(PCI) dim Vp~l(x) < n in a neighborhood of x0,

(PC2) g(xo), • • • ? a d j " 1 ^ ) are independent,

(ii) Assume that there exists p such that dimV^1 (x) =const. and that (PC1); (PC2), (PC3)

are satisfied. Then S is locally feedback equivalent to a partially linear system

Apart with p-dimensional linear controllable subsystem. Moreover, the largest p

satisfying the above conditions gives the largest dimension of linear subsystem

among all possible partial linearizations.
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Example 3.19 Consider a symmetric rigid body (two inertia momenta are equal)

with one pair of jets

UJI = CLLU20O3 +

u2 = — auiOJs + e2u

uj3 = e3u.

Compute g = (eu e2, e3)T , ad/p = a(e2a;3+e3a;2, -eiCJ3-e3u;i, 0 ) r and

2ae3(e2, — ei, 0) G P 2 = span{#, ad/p} if and only if ex — e2 = 0, i.e., the symmetric

spacecraft is controlled in a symmetric way: the angular momentum of the jet is

parallel to the third principal axis. In all remaining cases the system is not lineariz-

able (V2 is not involutive) but it contains a 2-dimensional linear subsystem for an

open and dense set of initial conditions. •

4 Observability

In this chapter we consider briefly the concept of nonlinear observability. We start

with geometric approach to the observability problem and in Section 4.1 we state

a sufficient condition, called observability rank condition, based on successive Lie

derivatives of the output along the dynamics. In Section 4.2 we discuss (local)

decompositions into observable and completely unobservable parts which generalize

the classical Kalman decomposition. Then in Section 4.3 we consider the problem

of uniform observability, which means that we can observe the system for any input.

In Section 4.4 we give a necessary and sufficient condition for local observability.

Finally, in Section 4.5 we discuss generic properties: we give normal forms for generic

systems and recall results concerning genericity of observability.

4.1 Nonlinear observability

Consider the class of nonlinear systems with outputs (measurements) of the form

x = f(x,u),
V = h{x),

where x G X,u eU,y eY. Here X, U, and Y are open subsets of Rn, Rm, and W,

respectively (or differentiate manifolds of dimensions n, m, and p, respectively).
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The map h : X —>• Y represents the vector of p measurements (observations), where

hi G C°°(X), for 1 < i < p, and h— (ft1}..., /ip)T. Throughout this section, E will

denote the above described nonlinear system with output.

The class of admissible controls U is fixed and VC C U C M, where VC de-

notes the class of piece-wise constant controls with values in U and Ai the class of

measurable controls with values in U.

For the system E we define the response map, called also input-output map,

ife : X x U —> y,

which to any initial condition q £ X and any admissible control u(-) G W attaches

the output of the system

yq,u{t) = y(t, q, u(-)) = h(x(t, q, u(-))),

where x(t, q, u) denotes the solution of x = f(x, u), for u(-) G U passing through g,

that is x(0,q,u) = g. The control u(-) being defined on an interval Iu C R, such

that 0 G /w, we consider the output y(-) on the maximal interval Iy C Iu C K on

which it exists.

Roughly speaking, the problem of observability is that of the injectivity, with

respect to the initial condition, of the response map.

We say that two states #1,92 G X are indistinguishable, and we write q\Iq2>> if

for any W ( - ) G W and any t for which both sides exist.

Definition 4.1 We call the system E observable if for any two states g i , g 2 G l

have

qjq2 => <7i = q2

that is, if there exists an admissible control u(-) G U and a time t > 0 such that

meaning that the states q\ and #2 are distinguishable.

Definition 4.2 E is called locally observable at q £ X if there is a neighborhood V

of ^ such that for any q € V, the states q and <? are distinguishable.
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Given a system E and an open set V C X, by the restriction E|y we will mean

a control system with the state space V, defined by the restrictions of / and h to

V x U and V, respectively.

Definition 4.3 E is called strongly locally observable at a point q G X if there

exists a neighborhood V of q such that the restricted system S|y is observable.

We would like to emphasize some features of the introduced concepts of observ-

ability. Strong local observability is a local concept in two aspects. Firstly, strong

local observability means that, in general, we are able to distinguish neighboring

points only. Secondly, we are able to do so considering trajectories which stay close

to the initial condition. Of course, observability implies strong local observability

at any point (we can take V — X), which, in turn, implies local observability at any

point (for each point we take the neighborhood V existing due to the strong local

observability). In general, the reversed implications do not hold, see Examples 4.6

and 4.7 below.

Example 4.4 Consider a mechanical system evolving according to Newton's law

X\ = X2

x2 = u,

where x\ denotes the position, x2 the velocity, and u is the control force. We observe

the position

y = x!.

This system is clearly observable. Indeed, let yq,u(t) and yq,u(t) be the outputs of

the system initialized, respectively, at q = (xio,x2O)T and at q = (xi,x2o)T and

governed by a control u(-). Assume that y9jU(t) = Vq,u(t) for any t. Then comparing

at t = 0 both sides of the above equality as well as derivatives at t = 0 of both sides,

we get XIQ = £10 a n d x2o = x2o, which proves the observability.

Now assume that, for the same control system, we observe the velocity

The system is not observable. Indeed, the initial conditions q = (^io,^2o)T and

q = (5io,X2o)T, such that Xio ^ £io but x2o = x2o, produce the same output
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y(t) = fQ u(s)ds+x20' Mechanically, this is obvious: we cannot estimate the position

if we observe the velocity only. •

Example 4.5 Consider the linear oscillator (linear pendulum) given by

X\ = X2

%2 = -xi,

where x\ denotes the position and x2 the velocity. Assume that we observe the

position

V = xi.

Then the system is observable and, given the output function ?/(•), we can deduce

the initial condition (xio,x2O)T by taking the output and its first derivative with

respect to time at t = 0.

Now assume that we observe the velocity

This system is also observable and once again we can deduce the initial condition

by looking at the values at t = 0 of the output and its first time derivative. The

reason for which observing the velocity renders the system observable is that the

evolution of the velocity x2 depends on the positional,, which is not the case of the

system of Example 4.4. •

Example 4.6 Consider the unicycle

X\ = Uicos#, yi = X\

x2 — U\ sin #, y2 = x2

0 = u2,

where (xi, x2)
T G l x l i s the position of the center of the mass of the unicycle and

0 € S1 is the angle between the horizontal and the axis of the unicycle. We observe

the position of the center of the mass.

The unicycle is observable. To see it, consider the outputs yq,u(t)
 a n d yq,u(t)

of the system controlled by u(t) = (ui(t),u2(t))
T, such that u\(t) = 1, passing

for t = 0 by q = (xiO,^2o^o)T and q = (£io,£2Or#o)T
5 respectively. Assume that
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Vq,u(t) — Vq,u(t). Thus Xi0 = £10, 2̂0 = 2̂O5 and moreover sm0(t) = sin#(£) and

cos0(£) = cos#(t). Hence we conclude that #o — #o? where #o> #o £ S1.

Now consider the unicycle, with the same observations yx = #1 and y2 = x2,

evolving on R3, that is, we consider 0 G R. We will show that the system is not

observable. In fact, we will show that the outputs yq,u(t) and y^u{t) of the system

coincide for q — (xio^o? #o)T a n d q = (^IOJ^2OJ $O)T such that 6*0 — #o + 2/CTT. We

have 9(t) = /0* ?i2(5)rf5 + 0o and £(<) = /0*u2(s)ds + 90 and hence 9(t) = 9(t) + 2kn.

Thus sin#(i) = sin 0(t) and cos 0(t) — cos9(t) implying that yq,u(t) — yq,u(t), for any

control u(-) G W and the initial conditions as above. In other words, the points q =

(^io?^2o5^o)r and (z = (xiOjX2o,9o)T such that 0̂ = 0̂ + 2A;TT are indistinguishable.

Of course, the system is strongly locally observable at any q G M3. •

Example 4.7 Consider the system

x = 0 , y = x 2 , -

where a; G R and y G R . The system is not observable because the initial condi-

tions Xo and — XQ give the same output trajectories. This system is strongly locally

observable at any xo ^ 0. Notice that it is locally observable at any point, in par-

ticular at 0 G R2, although in any neighborhood of 0 there are indistinguishable

states. This shows that local observability is indeed a weaker property than strong

local observability. •

We will give now a sufficient condition for strong local observability. To this end,

we will introduce the following concepts.

Definition 4.8 The observation space of E is defined as

H = span M {LUk • • • Lfuihi \ 1 < i < p , k > 0, uu...,uke U},

where fUi{') = /(*> ui) an<i Lg<p stands for the Lie derivative of a smooth function <p

with respect to a smooth vector field p, i.e.,

Lg<p(x) = d(p{x)-g{x).
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Observe that H is the smallest linear subspace of C°°(X) containing the obser-

vations / i i , . . . , hp and closed with respect to Lie differentiation by all elements of

T — {/(•, u),u G [/}, i.e., all vector fields corresponding to constant controls. Using

functions from H we define the following codistribution

% = span {d(j> : (j) G %}

Notice that, in general, % is not of constant rank.

In the case of control affine systems of the form

aff y = Kx) >
we have

% = span \dLQJk • • • L9hh{ : 1 < i < p, 0 < jt < raj ,

where g0 = f.

The following result of Hermann and Krener [HK] gives a fundamental criterion

for nonlinear observability.

Theorem 4.9 Assume that the system S satisfies

dim H(q) = n. (4.1)

Then S is strongly locally observable at q.

The condition (4.1) will be called observability rank condition. It can be consid-

ered as a counterpart of the accessibility and strong accessibility rank conditions,

although the duality is not perfect, as we will see in the sequel.

Example 4.10 The converse of Theorem 4.9 does not hold (even in the analytic

case) as the following simple example shows. Consider

x = 0 , y = x3 ,

where x G R, y G R. Of course, the system is strongly locally observable at any

x G R (even observable on R) but it does not satisfy the rank condition at 0 G R,

since we have T~L = span{x2dx}. This shows also that the rank of % need not be

constant. This is to be compared with the accessibility rank condition, which, in

the analytic case, is necessary and sufficient for the accessibility. •
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Example 4.11 Consider a linear control system with outputs of the form

x = Ax..+ Bu,
V = Cx ,

where re G Rn, u G Rm, y G W. We have / = Ax, gk = bk, for 1 < k < TO, and
/&i = CiX, for 1 < i < p, where C{ denotes the i-the row of the matrix C. We
calculate

Li hi = CiA^x and LgkLihi = CiA^bk.

Thus dim %(#) = rankO, where O is the Kalman observability matrix

C \

0 = ^

Therefore a linear system satisfies the observability rank condition if and only if it
satisfies Kalman observability condition rank O — n. In this case, as it follows from
Theorem 4.9, the system is strongly locally observable. Moreover, we know from
the linear control theory, see e.g. [Ka], that the system is observable. Indeed, the
response map R^ is given by

y(t) = Cx(t) = CeAtx0 + / CeA{t~s)Bu(s)ds,
Jo

associating to an initial condition XQ the output trajectory, is affine with respect to
the initial condition x0 &nd thus local injectivity implies global injectivity. Notice
that observability properties of a linear system do not depend on the chosen control;
indeed, they depend only on the injectivity of the map

3?o ' ^ O 6 XQ .

In the next Example 4.12 we will show that this no longer true in the nonlinear
case. .,.,..•....- •

Example 4.12 The aim of this example is to show that, contrary to the linear
case, controls play an important role in the nonlinear observability. In general, there
may exist controls which do not distinguish points nevertheless the system can be
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observable if other controls distinguish. To illustrate that phenomenon, consider the

bilinear system

x\ = x2 — x2u , y — xi

X2 = 0 ,

where (^i,x2)T G M2. This system is observable, because if we put u(t) = 0 we get

an observable linear system. Notice, however, that the control u(t) = 1 does not

distinguish xo and XQ such that x\o = XIQ and x2o / 52o. Of course, we can deduce

strong local observability at any point from the rank condition. Indeed, we have

h — #i, / = x2-£^, and Ljh = rr2. Hence % = span {dxi, dx2}. D

Example 4.13 Consider the unicycle, see Example, 4.6, for which we observe y\ —

xi and y2 = x2. We have hi = xi, /i2 = ^2, 51 = cos^^ + sin^^-, and g2 — ^ .

Hence L^/ii = cos(9 and L9lh2 = sin#. Thus ?/ = span{dxi,dx2,dsin^,dcos^}

implying that dim H(q) — 3, for any gGR 2 x S1. Therefore the unicycle satisfies

the observability rank condition at any point of its configuration space. •

4.2 Local decompositions

Let us start with linear systems of the form

x = Ax + Bu,

y = Cx ,

where x G Rn, ix G Mm, j /Gff . Denote by W, the kernel of the linear map defined

by the Kalman observability matrix O (see Example 4,11). If A is not observable

then we can find new coordinates (a;1,a;2), with xl and x2 being possibly vectors

and dim x1 = fc, where dim W = n — &, such that x G W if and only if a; = (0, x2).

Then A reads

x1 = A V + + S 1 ^ , y = C1^1 ,

x2 = A 2 V + A 2 V + 52ix,

where the pair (C1,^1) is observable.

As a consequence, any two initial states whose difference is not in W are dis-

tinguishable from each other, in particular, by means of the output produced by
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the zero input. Contrary, if their difference is in W then they indistinguishable.

The factor system A//, where / is the indistinguishability equivalence relation, is

observable and is given by

A1 : x1=A1x1 + B1u, y = C1x1.

Geometrically, A1 is obtained by factoring the system through the subspace W and

the factor system is well defined since W is invariant under A. A natural question

is whether we can proceed similarly for the nonlinear system E?

Theorem 4.14 Consider the nonlinear system £. Assume that the distribution %

is of constant rank equal to k locally around q. Then we have.

(i) The codistribution % is integrable and there exist local coordinates (xl,x2)T

defined in a neighborhood V of q, with xl, x2 possibly being vectors, such that

(ii) In the local coordinates (xl,x2)T, the system. £ takes the form

x1 =

x2 = f2(x1,x2,u).

(iii) Two pints q,q eV are indistinguishable for E\y if and only ifq G Sq. where Sq

is the integral leaf passing through q, of the codistribution % restricted to V.

(iv) In V, factoring the systemthroygh the foliation of the integrable codistribution

% produces the strongly observable system E1 which, in (xl,x2)T- coordinates,

is given by

E1 : x1 = f\x\u), y

This result says that locally and under the constant rank assumption, the leaves

of the foliation of the integrable codistribution % consist of indistinguishable points

and that, on the other hand, we can distinguish the leaves.

From Theorem 4.14 we immediately get the two following corollaries.

Corollary 4.15 IfU is of constant rank in a neighborhood of q then the following

conditions are equivalent.

(i) S is locally observable at q.

(ii) S is strongly locally observable at q.
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(iii) dim H(q) = n.

Corollary 4.16 / / S is locally observable at any point of X then dim %{q) — n for

q G X1, an open and dense subset of X.

An important case when the observability rank is constant is given by the following.

Proposition 4.17 Assume that tan analytic control system S satisfies the acces-

sibility Lie rank condition everywhere on X. Then % is of constant rank on X.

In particular, the system is locally observable at q (or, equivalently, strongly locally

observable at q) if and only i/dim H(q) = n.

To illustrate results of this section we consider the following example.

Example 4.18 Consider the unicycle, see Example 4.6, for which we measure the

angle 6 only, that is h — 0. We have L9lh — L92h = 0. Thus H — span {d9} defines

the foliation

\Q = const.}

whose leaves consist of indistinguishable points. Indeed, if 6Q = #o then the points

q = (xio,X2O)6o)T and q = (5io,X2o,^o)T are indistinguishable. The obvious reason

for that is that the evolution of the observed variable y(i) = 6{t) is independent of

that of X\{t) and ^ ( t ) . •

4.3 Uniform observability

In Example 4.12 we pointed out that for observable nonlinear systems there may

exist controls that render the system unobservable. In this section we describe a

class of systems, for which all controls distinguish points.

Definition 4.19 The system E is called uniformly observable, with respect to the

inputs, if for any two states #i, q2 G X, such that q\ ^ q2, and any control u(-) GW

E is uniformly locally observable at #o> if there exists a neighborhood V of q0, such

that E restricted to V is uniformly observable.

33



Example 4.20 Example 4.12 illustrates the existence of nonlinear systems that are

not uniformly observable. Another example is the unicycle, see Example 4.6, for

which we observe yx — x2 and y2 = x2. The system is observable, nevertheless, for

the control Ui(t) = 0, any two points q = (#10, x2Q, #o)T and q — (xi0, x20, 00)
T, such

that xio = £io and £20 = £20 are indistinguishable. D

Of course, linear observable systems are uniformly observable. We will describe

now a class of nonlinear uniformly observable systems. Consider a single-input

single-output control affine system of the form

s m x = f(x)+g(x)u
y — h(x\

where a; G I , w G 1, | /GK and / , g are smooth vector fields on X.

The following result is due to Gauthier and Bornard [GB].

Theorem 4.21 For the system £ a / / we have:

(i) / / £ a / / is uniformly locally observable at any q G X, then around any point

of on an open and dense submanifold X' of X there exist local coordinates

(x i , . . . , xn)
T in which the system admits the following normal form

ii = x2 + )

x2 = x3 + ug2(xux2)

(UO)

xn-i = xn + ugn_i(xi,..., xn_i)

Xn = Jny^l') • • • j %n) ~r ^/nV^l) • • • ) %n)-

(ii) / / £ a / / admits, locally at q, the form (UO) then it is uniformly locally observ-

able at q.

(iii) A necessary and sufficient condition for S o / / to admit locally at q the normal

form (UO) is that dim span {d/i , . . . , dL^"1^}^) = n and that in a neighbor-

hood of q

[Dj,g]cDj,

for any 1 < j> < n, where Dj = ker {dh,..., dLV^/i}.
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4.4 Local observability: a necessary and sufficient condition

Recall that the Hermann-Krener observability rank condition gives only a sufficient

condition for (strong) local observability (compare Example 4.10). Following Bar-

tosiewicz [B] we will provide in this section a necessary and sufficient condition for

local observability.

Consider a nonlinear system E and assume that it is analytic, that is, X is an

analytic manifold, the vector fields fu are analytic and h is an analytic map.

We start with the following simple observation.

Proposition 4.22 The points q± and q2 are indistinguishable if and only if for any

(j) G % we have (f)(qi) = fe)

Introduce now the observation algebra of E. It is the smallest subalgebra over R

of CU(X), the algebra of analytic functions on X, which contains hi and is closed

under Lie derivatives with respect to /M, u G U. We denote it by HA- Observe that

HA consists of all elements of H and of all constant functions.

For x G X, by Ox we denote the algebra over R of germs of analytic functions

at x. Denote by mx the unique maximal ideal of Ox. It consists of all germs that

vanish at x. For x G X we define Ix to be the ideal in Ox generated by germs of

those functions from HA which vanish at x. Of course, Ix C mx. The real radical of

an ideal / in a commutative ring R is

= {a G R | a2m + b\ + • • • b\ G / for some m > 0, k > 0, &i,..., bk G R}.

Clearly, the real radical is an ideal.

Theorem 4.23 The system S is locally observable at x if and only if

Example 4.24 We can easily see that for the system x = 0 , y = x3 (compare

Example 4.10), which is clearly locally observable at any x G R, we have v ^ = mx

for any x G R, in particular, for x = 0. •
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4.5 Generic observability properties

In this section we discuss the problem of what observability properties are shared by

generic control systems. We consider Whitney topology for smooth systems (in the

case of compact state space it is just the topology of uniform convergence together

with derivatives). We start by presenting results of Jakubczyk and Tchon [JT] who

classified uncontrolled observed dynamics of the form

s u x = f(x) ,
V = Kx) ,

where x G X and j / G 1, / is a smooth vector field and h is a smooth R-valued

function. Let S denote the family of all systems E of the above form equipped with

the Whitney topology.

Theorem 4.25 There exists an open and dense subset 5 O C S such that any S G So

is locally equivalent at any q G X to one of the following normal forms.

(i) If f(q) ^ 0 then S is equivalent to

h(x) = x^1 +x2x[~l + - •• + xrxi +rj(x2,.. .,xn), (4.2)

f{x) = fi{x1,...,xn) — r (4.3)

where 0 < r < n, and f\ and r] are C°°-functions of the indicated arguments

such that /i(0) > 0.

(ii) If f(q) = 0 then S is locally equivalent to

h(x) = xi + c , (4.4)

f{x) = XidT1
 + -''+Xnd^r1

+fn{xl---Xn)d^' ( 4 5 )

where c is a constant and fn is a C°°-function such that /n(0) = 0.

In the item (i) above, if r = 1 we can always take h = xj + rj while for r = 0 we

take h — x\ + c

Observe that in the case (i), for the "time-rescaled" system ^ = j^\f(x), where

dr = fi(x(t))dt, we have x^(r)=constant, for 2 < i < n, and thus in the new time

scale

y{r) = h(x(r)) = r r + 1 + x2t
r~1 + --xrr + c,
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where X2 — C2,..., xn — cn and c are constants. It follows that, firstly, responses are

polynomial with respect to the new time r, with at most r different local extreme

points. Secondly, there are always initial conditions, close to g, producing y(r) with

r different local extrema.

For systems which are not generic but satisfy the observability rank condition,

an analogous normal form can be established.

Theorem 4.26 / / S satisfies the observability rank condition at q then it is locally

equivalent either to the form (4.4)-(4.5) if /(?) = 0 or, otherwise, to one of the

following normal forms

h(x) = x[+1 + (t)r-ix\~l + • • • + faxi + 0o + c, (4.6)

f(x) = f1(xu...Jxn) — , (4.7)

where r > 0, and fa, are C°°-functions of x<i,.... ,xn, for 0 < i < r — 1, satisfying

fa(0) = 0; and / i is a C°°-function such that / i > 0.

If r = 1 we can always take h = x\ + fa, while for r = 0 we take h — X\ + c.

We end up this chapter by stating some results of Gauthier and Kupka devoted

to the genericity of uniform observability. Consider an observed smooth control

system of the form
x = f(x,u)
y = h(x,u)

where x G X, u G (7, and y G Y.

Recall that for the system E we define the response map, called also input-output

map

which to any initial condition xo E X and any admissible control u(-) G cU attaches

the output of the system

The control u(-) being defined on an interval 0 G Iu C R, we consider the output

y(-) on the maximal interval Iy C Iu C R on which it exists.
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Throughout this section, we will assume that the state space X is a compact

manifold and U = Jm , where J is some compact interval of R. We denote by S

the class of such systems equipped with the topology of C°° uniform convergence

on X x Im.

For any C^-function w(t) of time we will denote wk(t) = (w(t),wf(t),..., w^{t)).

For the system S, for any integer k and for a C^-differentiable input u(t), we define

the ^-prolongation of the response map as

that is, as the vector formed by the output and its k first derivatives with respect

to time t.

For an open subset W ofW (or a differential manifold), and for a C^-differentiable

function w of / C R into W, such that 0 G / , we denote by j^w the A;-jet at 0 G R

of w. We will denote by JkW the space of fc-jets at 0 G R of maps from / into W.

Now we consider the fc-jet

jkRz :XxJkU—> JkY

of the map R% defined by

JkRx(xoJku)=jky,

where jky = yk(0) and yk(t) = Rj,(xo,uk(t)) and u is any C^-control such jku =

uk(0).

The following fundamental result has been proved by Gauthier and Kupka [GK1],

[GK2].

Theorem 4.27 Assume p > m, that is, the number of outputs is greater than that

of inputs. Fix a sufficiently large positive integer k.

(i) The set of systems S such that jkR^(^jku) is an immersion of X into (

for all jku G JkU', contains an open dense subset ofE.

(ii) The set of systems S such that jkR%(-,jku) is an embedding of X into

for all jku G JkU', is a residual subset ofE.

(iii) For any compact subset C of JkU', the set of systems such that jkR^(-,jku) is

an embedding, for all jku G C, is open dense in S.
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The above result implies that, in the case p > m, the set of systems that are

observable for all Ck inputs is residual, that is, it is a countable intersection of open

dense sets. If a bound on the derivatives of the controls is given a-priori, that is

| u^(t) |< M, for some constant M and any 0 < i < k, then this set is open dense.

If the number of outputs is not greater than that of controls all statements of the

above theorem are false.

5 Decoupling

In this Section we show how static feedback allows to transform the dynamics of a

nonlinear system in order to achieve desired decoupling properties. In Section 5.1 we

will introduce a crucial concept of invariant distributions. In Section 5.2 we consider

disturbance decoupling while in Section 5.3 we deal with input-output decoupling.

5.1 Invariant distributions

Consider a smooth nonlinear control system of the form

E: x = go(x) + Y^Liui9i(x) = 9o{^) + g(x)u,

where x G X, u G Mm, g — (p i , . . . , gm) and u — (wi, . . . , um)T. Notice that for

simplicity we denote the drift of the system by / = g0

A distribution V is called invariant for S if

[gi,V]cV, i = 0 , . . . , m .

If a distribution is not invariant for S it may become invariant under a suitable

feedback modification. A distribution V is called controlled invariant if there exists

an invertible feedback of the form

u = a(x) + j3(x)u, /?(•) — invertible,

such that V is invariant under the feedback modified dynamics x = JO

i.e.,

[guV] CV , i = 0 , . . . , m ,

where

9o = go + ga, 9 = gp-
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Example 5.1 In the case of a linear system of the form

A: x =

a subspace V C W1 is said to be invariant for A if AV C V. We say that V

is controlled invariant (or (A, i?)-invariant) if there exists a linear feedback of the

form u = Fx + Gu such that

(A + BF)V CV.

Observe that in the linear case (A, jB)-invariance does not depend on G so one can

take G = Id or G-noninvertible.

One can check by a direct calculation that (A, JB)-invariance is equivalent to

AV GV + lmB. (5.1)

We refer to [W] for an extensive treatment of the concept of invariance in the linear

case.

Put Q — span{gi,... ,gm}. In the nonlinear case, controlled invariance of a

distribution V implies the following property of local controlled invariance (com-

pare (5.1))

\g»V]cV + g , z = 0 , . . . ,m.

For involutive distributions the converse holds locally under regularity assumptions

(see [H], [IKGM], [N]).

Proposition 5.2 Assume that the distributions V, Q, and V n Q are of constant

rank. IfV is involutive and locally controlled invariant then it is controlled invariant,

locally at any point x G X.

5.2 Disturbance decoupling

In this Section we apply the concept of controlled invariant distributions to solve the

nonlinear disturbance decoupling problem. Consider the following nonlinear system

with output affected by disturbances d — (di , . . . ,dk)T (which are assumed to be

bounded measurable Rk -valued functions of time)
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x = go(x) + J2i=i ui9i{x) + Z)»=i diftfaO = 9o(x) + g{x)u + q(x)d
dist ' ur \

V = h{x) ,

where a : E l , w G R m , j G Mp, and deR f c . All data are smooth, i.e., / , 5 i , . . . , j m 6

T/°°(X) , ^ G C°°(X) , where /i = (hu...,hp)T, and gi , . . . ,g* G F°°(X). We

denote q — (gi, ...,<&) and call them disturbance vector fields.

We say that the disturbance decoupling problem, shortly DDP, is solvable, if there

exists an invertible feedback of the form u — a(x) + /3(x)u such that the output

y(t) = h(x(t)) of the feedback modified system

i=l t = l

does not depend on the disturbances d(t). By the latter we mean that

, q, u(-), d(-))

for any initial condition g e X, any control w(-) G W, and any disturbances d(-) and

JO.
Put Q = span{gi,...,gib}. The following result has been proved by Isidori et

al[IKGM].

Theorem 5.3 If DDP is solvable then there exists an involutive controlled invariant

distribution V such that

Q C V Ckevdh.

This result suggests the following approach to DDP. Look for the maximal con-

trolled invariant distribution in ker dh and check whether it contains Q. However,

in general, such a maximal distribution may not exist. Moreover, even if it ex-

ists and contains disturbance vector fields it is not necessarily true that DDP is

solvable. On the other hand there always exists V*, the maximal locally controlled

invariant distribution in ker h, which leads to the following solution of DDP (see [H]

and [IKGM]).
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Theorem 5.4 Assume that the distributions V*, V*-f\Q, and Q are of constant rank.

If
Q c V*,

then DDP is solvable, locally, around any point of X.

The structure of the decoupled system can be described as follows. Let (a, /?) be

an invertible feedback which locally renders the distribution V* invariant (it always

exists under the regularity assumptions of Theorem 5.4, see Proposition 5.2 ). Let

x — (xl,x2) be local coordinates, with x1, x2 being possibly vectors, such that

V* = s p a n l ^ - } . Then the feedback modified system reads as

x1 = gl{xl) + ~g\xl)u
Zdist: x2 = g2(x\x2)+g2(x\x2)u + q2(x\x2)d

V = h\xl) ,

where / = / + ga and g = g/3. Now it is clear, compare Section 4.2, that the output

y(t) of the system does not depend on d(t) since the latter affects the x2-part of the

system only which, in turn, is not observed by the output y.

Example 5.5 Consider the linear system with disturbances

x = Ax + Bx + Ed

y = Cx,

where x G Rn, u G Rm, i / G P , d G R*, and d denotes the disturbances. DDP

is solvable if and only if im E C V*, where V* is the largest controlled invariant

subspace in ker C (compare [W]). D

Example 5.6 Consider a particle of unit mass moving on the surface of a cylinder

according to a potential force given by the potential function V (see [NS])

<?i = Pi 92 — :P'2

where (gi,<Z2jPi?P2) £ T(S1 x R). Let the output be given as y = q\. We can see

that V* = s p a n { ^ , ^ } . Moreover, the disturbance vector field ^ G V* and

hence DDP is solvable by the feedback u = § (̂<Zi, 92) +u. D
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5.3 Input-output decoupling

Consider a smooth nonlinear control affine system with outputs of the form

y = h(x),

where x G l , « E Mm, and y <E # p .

We say that the input-output decoupling problem (called also the noninteracting
problem) is solvable for S if there exists an invertible feedback of the form u —
a{x) + /3(x)u such that the feedback modified system x — f(x) + Y^Li ^i9i(x) with
y — h(x), where / = / + ga, g — g(3, satisfies

i/l*° = fi<, i = l , . . . , p ( 5 . 2 )

for suitable nonnegative integers ki. Observe that we assume that the input-output
map of the modified system is linear. Therefore there is no loose of generality in
assuming the form (5.2) because if the transfer matrix of the input-output response
is diagonal (which is the usual definition of noninteracting) we can always achieve
(5.2) by applying suitable linear feedback.

Fix an initial condition x0 € X. For each output channel we define its rela-
tive degree (characteristic number) pi to be the smallest integer such that for any
neighborhood VXo of XQ

L^Lf-'hiix)^

for some 1 < j < m and for some x G VXo. By Lp,h we will mean the vector of p
smooth functions whose z-entry is Lpjhi.

Define the (p x m) decoupling matrix -D(x), denoted also by By LgL
Prh whose

(i,j)-entry is
LyLf^hiix).

Theorem 5.7 Consider a control affine system E.
(i) The system E is input-output decouplable at XQ via an invertible feedback of

the form u = a(x) + /3(x)u if and only if
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(ii) Moreover, for he square system, i.e., m — p, the feedback

u = -{LgL
pflh)-lLp

fh + (LgL
p
f-

lh)-lu. (DF)

yields yfl) = ui9 where hi = pi , i = 1,... ,p.

Remark 5.8 Inverting the formula (DF) we get the following expression for the
new controls

m

Ui = Lp/hi + ^ Lg.L^hiUj.

3=1

Example 5.9 Consider the following rigid two-link robot manipulator double pen-
dulum (see [NS], compare also Example 3.7)

x1 = x2

x2 = -M(xl)-\C(x\x2) + k(xl)) + M(xl)-lu,

where x1 = 9 = (9U92)
T , x2 = 9 = (#i,#2)

T V u = (uuu2)
T, The term k(9)

represents the gravitational force and the term C(9r0) reflects the centripetal and
Coriolis forces, and the positive definite symmetric matrix M(xl) is given by

\ + 777,2/1 + m2^2 + 27712/1/2 cos #2 ^ 2 / 2 + m2hh cos #2

7712/2 + 777,2/1/2 cos #2 777,2/2

As the outputs we take the cartesian coordinates of the endpoint

2/2 = h2(9u92) =

By a direct computation we get pi = p2 = 2 and rankD(x) = 2 if and only if
/i/2sin#2 7̂  0. Thus the system is input-output decouplable if 92 ̂  kir ( a physical
interpretation of the points which we have to exclude is clear). •

Example 5.10 Consider the unicycle (compare Examples 3.11 and 4.6) and assume
that we observe the Xi-cartesian coordinate and the angle 9

X\ — u\ cos 9 y\ — X\

x2 = u\ sin 9

9 = u2 y2 = 9.
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The control u2 has a direct impact on the second component y2 of the output

as well as, trough cos#, on the first component. Thus the system is not input-

output decoupled but it can be decoupled via a static feedback. We obviously have

px — p2 = l and the decoupling matrix is

Therefore the system is input-output decouplable at all points such that 6 / | + kir.

D

Example 5.11 Consider the same dynamics of the unicycle and suppose that this

time we observe x\ and x2

x\ — u\ cos 9 yi = xi

x2 = U\ sin 9 y2 — x2

9 = u2.

Obviously, we have pi — p2 = 1 but this time the decoupling matrix

is of rank one everywhere and thus the system is not 1-0 decouplable. •

If the system is 1-0 decouplable then it is straightforward to calculate V*, the

maximal locally controlled invariant distribution in ker dh (compare Section 5.2 and,

consequently, solve the DDP problem.

Theorem 5.12 Consider the system S^5i. Assume that the undisturbed system,

i.e., when d{ — 0; i — 1 , . . . , k, is input-output decouplable. Then

(i) V* = V±, where V = span {dlJfhh i = 1 , . . . ,p, j = 0 , . . . , p{ - 1}.

(ii) If, moreover, Q C VL then the DDP problem is solvable and the feedback (DF)

simultaneously decouples the disturbances and renders the system input-output

decoupled and input-output linear.

Example 5.13 To illustrate this result let us consider the following model of the

unicycle. We suppose that the dynamics is affected by a disturbing rotation (of un
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unknown varying strength d(t)) and that we measure the angle and the square of

the distance from the origin:

xx = U\ cos 9 + x2d yx = xl + x\

x2 = m sin# — x\d

9 = u2 2/2 = 0.

The decoupling matrix is

/ 2^i cos 9 + 2x2sin9 0

and is of rank two at any point away from N — {(xi^x2,9) \x\ cos 9 + x2sin9 = 0}.

Notice that iV consists of points where the direction of the unicycle is colinear

with the ray from the origin passing through the center of the unicycle. At points

of (M2 x S1) \ TV, the system is input-output decouplable and, moreover, V =

span{dxi + d£25d#}. Obviously, q = x2-^ — Xi-£^ is annihilated by V and thus

the feedback u\ = (2xi cos^ + 2x2sin^)"1/ui and u2 = u2 decouples the disturbances

from the output yielding an 1-0 decoupled and I-O-linear system expressed, in

(£i, x2, ^)-coordinates, where x\ = x\ + x\ by X\ — U\. and x2 — u2. D
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