)

1]

united nations
educational, scientific
and cuitural
organization

&

international atomic
energy agency

the
abdus salam
international centre for theoretical physics

SMR1327/8

Summer School on Mathematical Control Theory
(3 - 28 September 2001)

Notes on Subriemannian Geometry
from 'A tour of subriemannian geometry’

Richard Montgomery

Department of Mathematics
University of California at Santa Cruz
Santa Cruz, CA 95064
US.A.

These are preliminary lecture notes, intended only for distribution to participants

strada costiera, { | - 34014 trieste italy - tel. +39 04022401 | | fax +39 04(‘)"224I6_3‘- sci_info@ictp.trieste.it - www.ictp.trieste.it






/\/0 L6§ O - g%lp/:@w\.q_é\v\;q,ﬁ é‘edw\()(,7

Q[\@&M\ \A- ’h)u-J‘ S«—Lb‘r.‘?mahm(‘as
J

9[0%‘1\’7 ~ lo./ R_ Maw"(bomef‘//

Chapter 1

Dido Meets Heisenberg

We begin with the isoperimetric problem and Dido’s problem, or more precisely,
the duals of these problems. What is the shortest curve enclosing a given area?
By adding an extra variable corresponding to this area we rephrase the problem
as that of finding geodesics for a certain nonriemannian geometry on R®. This
geometry is the simplest example of a subriemannian geometry. It is called the
Heisenberg group, and it leads us into the basic definition of a subriemannian
geometry, in section 1.4. In section 1.5 we formulate a system of subriemannian
geodesic equations, which are ODEs for curves on the cotangent bundle of the
underlying manifold. What might be called the main result of the chapter,
Theorem 1.5.7 asserts that sufficiently short solutions to these equations project
down to minimizing subriemannian geodesics. These geodesics form the “main
class” of geodesics, the normal ones. There is another less-understood class
of geodesics, the singular ones. The singular geodesics are not present in the
Heisenberg group. By combining this fact with Theorem 1.5.7, and writing
down and solving the geodesics equations for the Heisenberg group, we find that
the solutions to the (dual) to Dido’s problem and the isoperimetric problem are
indeed what we have known for thousands of years: arcs of circles. In section 1.5
we present an overview of some of the basic results in subriemannian geodesy
and geometry, along with Theorem 1.5.7. In section 1.9 we prove Theorem 1.5.7
using the Hamilton-Jacobi method. In section 1.10 we present a number of
examples of subriemannian geometries, ending with my favorite, the spherical
version of the Heisenberg group, which is a geometry on the three-sphere.

1.1 Dido’s problem

Dido’s problem is a variant of the isoperimetric problem. It was formulated in
the Aeneid, Virgil’s epic poem glorifying the beginnings of Rome.

Queen Dido had to flee across the Mediterranean in a ship with friends and
servants. She had what we would nowadays call a dysfunctional family. Her
brother, Pygmalion, had just murdered her husband and taken most of her
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Figure 1.1: Dido’s problem.

possessions. Dido landed, nearly penniless, on a part of the African coast ruled
by King Jarbas. After dickering and begging, Dido persuaded Jarbas to give
her as much land as she could enclose with an ox hide. Dido told her servants
to cut an ox hide into a single long, narrow strip. They turned the ox hide into
a single leather string.

Dido had in this way reformulated her difficult situation into the following
geometric problem. Given a string of fixed length ¢ and a fixed line L (the
Mediterranean coastline), place the ends of the string on L and determine the
shape of the curve ¢ for which the figure enclosed by c together with L has the
maximum possible area. This is Dido’s problem. It is also sometimes referred
to as the problem of Pappus. Dido found the solution — a half-circle — and thus
founded the semicircular city of Carthage.

1.2 A vector potential

Introduce the one-form
(zdy — ydx)

NI

O =

which satisfies
do =dx N dy

and
ar =0 for any ray L through the origin.

According to Stokes’ theorem, the area ® enclosed by a closed planar curve
cis

o(c) = /Ca. (1.1)

Because of the second property, if ¢ is a non-closed curve beginning at the origin,
®(c) represents the area enclosed by the closed curve obtained by traversing ¢
and then returning to the origin along the ray that connects the endpoint of ¢
to the origin.

The length € of ¢ = (z(t),y(t)) is

0(c) = / ds, (1.2)
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where ds = /dz? + dy? = ||¢/|d¢t is the usual element of arc length. In this
manner Dido’s problem, and the (dual) isoperimetric problem, becomes the
following constrained variational problem:

Problem 1.2.1 Minimize the length £(c) of a closed rectifiable curve ¢, subject
to the constraint that the signed area ®(c) of the curve be a fized constant.

The introduction of & lets us extend the problem to non-closed curves. The
ray used to close up ¢ corresponds to the coastline L in Dido’s problem.

1.3 Heisenberg geometry

We construct the three-dimensional geometry whose geodesics correspond to the
solutions to the isoperimetric problem. Add a third direction z whose motion
is linked to that of z and y according to

.1 . .
z= 5(—ya:+:cy). (1.3)

In this way we associate a family of curves () = (x(¢), y(t), z(¢)) to a single
planar curve c{t) = (z(t),y(t)), the family being parameterized by the initial
value zg of the height z. We will call any one of these paths a horizontal lift of
¢, and more generally, any path v in R® that satisfies the differential constraint
1.3 a horizontal path.

Set

ds = /dx? + dy?
and define the length of any horizontal path in R3 to be [ ds. In other words,

~
we have defined the length of v to be equal to the usual length of its planar
projection c.

Problem 1.3.1 Minimize the length f», ds over all horizontal paths vy that join
two fized points in three-space.

To see that this is a reformulation of the dual to Dido’s problem, or the
isoperimetric problem, observe that

2(1) ~ 2(0) = / ~ (ady ~ yd)

where ¢(t) = (z(¢),y(t)) is the projection of the curve y(t) = (x(t), y(¢), z(t))

to the plane. Observe that, according to Stokes’ theorem, if ¢ joins the origin

to (z1,v1) and if we take z(0) = 0, then the endpoints of v are (0,0,0) and

(x1,71,®(c)), where ®(c) denotes the signed area defined by the closed curve

given by traversing ¢ and then returning to the origin along a line segment.
Define the differential one-form © = dz — 1 (zdy — ydz) and write

Hiay = {0(z,y,2) =0}

1 )
{(vl,v27v3) tug — 5(1’02 —yvy) = 0} c R



22 CHAPTER 1. DIDO MEETS HEISENBERG

projection

=

area

Figure 1.2: Heisenberg geometry. The height increases at a rate proportional
to the area swept out.

This H is a field of two-planes in three-space, or what we call a distribution:
a linear subbundle of the tangent bundle. The restriction of ds? to these two-
planes defines a smoothly varying family of inner products (-,-) on the planes
H. Thus if v,w € H(z y ) then (v,w) = viw) + vaws.

Definition 1.3.2 R® endowed with the structure of this distribution H and this
family of inner products ds* on H is called the Heisenberg group.

The reason for the name Heisenberg will be explained shortly. This group is the
first nontrivial example of subriemannian geometry.

1.4 The definition of a subriemannian geometry

Definition 1.4.1 A subriemannian geometry on a manifold () consists of a
distribution, which is to say a vector subbundle H C TQ of the tangent bundle
of Q, together with a fiber inner-product (-,-) on this subbundle.

We will call H the horizontal distribution. An object such as a vector field or
a curve on Q is called horizontal if it is tangent to H. We define the length
¢ = ¢(~y) of a smooth horizontal curve v as in Riemannian geometry:

oy) = / 4z,

where ||¥]| = v/ (¥(t),¥(t)) is computed using the inner product on the horizontal
spaces H (), and the integral is over the domain of the curve. We use the length
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to define the subriemannian distance d(A, B) between two points A and B, just
as in Riemannian geometry:

d(A, B) = inf £(7)

where the infimum is taken over all smooth horizontal curves that connect A
and B. This distance is infinite if there is no such curve joining A to B.

In order to understand and analyze this distance function, we will need
to expand the domain of the length functional to the largest possible class of
curves, namely the absolutely continuous horizontal curves. A curve v: 1 —
on a manifold is absolutely continuous if it has a derivative for almost all ¢, and
if in any coordinate system the components of this derivative are measurable
functions for which the fundamental theorem of calculus applies: the curve
itself can be recovered by integration from an initial point and the derivative.
(See [Royden 1968] for details in Euclidean space.) If these conditions on «y
hold in one collection of coordinate systems covering -+, then they hold in any
such collection, since the coordinate transition maps are themselves absolutely
continuous. We say that an absolutely continuous curve is horizontal if its
derivative lies in H wherever it exists. The length of an absolutely continuous
horizontal curve is always defined, although it may be infinite. The distance
d(A, B) defined above remains the same if we replace the smooth curves in the
infimum by the larger class of absolutely continuous horizontal curves.

Definition 1.4.2 An absolutely continuous horizontal path that realizes the dis-
tance between two points is called e minimizing geodesic or simply o geodesic.

The study of minimizing subriemannian geodesics forms one of the main currents
of the book. However, the following fundamental question remains open: Are
all minimazing geodesics smooth?

Minimizing energy instead of length. The energy of a horizontal curve is
1.
B() = [ 31l
v

As in Riemannian geometry it is analytically more convenient to minimize E as
opposed to £, and this is how we will proceed. To see that minimizing F and ¢
yield the same curves we use the Cauchy-Schwartz inequality:

e

with equality if and only if f = cg for some constant ¢. We apply this inequality
to f = ||¥]l and the constant function g = 1. Fix the time T of the path
v:[0,T] — Q. We obtain

Ms/wWEWWM‘
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with equality if and only if v is a constant-speed curve, meaning ||¥|| = ¢ =
constant. This proves the following proposition.

Proposition 1.4.3 The horizontal curve v minimizes the energy E among all
curves joining qo to g1 in time T if and only if it minimizes the length £ among
all curves joining qo to q1 and is parameterized to have constant speed ¢ =
d(qo,q1)/T.

Example: The Heisenberg geodesics. We have seen seen that the geodes-
ics in the Heisenberg group correspond to solutions to the isoperimetric problem,
or to Dido’s problem. The solutions to the isoperimetric problem are well known
to be circles. For some beautiful elementary proofs of this nontrivial fact see
[Howards et al. 1999]. For our version of Dido’s problem, with fixed nonequal
endpoints in the plane, these minimizers are arcs of circles in the plane, includ-
ing line segments as degenerate cases. (Line segments through the origin have
®(c) =0.)

It follows that the Heisenberg geodesics are precisely the horizontal lifts of
arcs of circles in the plane.

Proposition 1.4.4 The geodesics for the Heisenberg group are exactly the hor-
1zontal lifts of arcs of circles, including line segments as a degenerate case.

This proposition is an immediate corollary of the theorem on normal geodesics
(Theorem 1.5.7 below), together with the computations of section 1.7.

1.5 Geodesic equations

The cometric. A Riemannian metric is defined by a covariant two-tensor,
which is to say a section of the bundle S?(T*Q). There is no such object in
subriemannian geometry. Instead, a subriemannian metric can be encoded as
a contravariant symmetric two-tensor, which is a section of S2(TQ). This two-
tensor has rank k& < n, where k is the rank of the distribution, so it cannot be
inverted to obtain a Riemannian metric. We call this contravariant tensor the
cometric.

Definition 1.5.1 A cometric is a section of the bundle S*(TQ) C TQ@TQ of
symmetric bilinear forms on the cotangent bundle of a manifold.

Since TQ and T*Q are dual, any cometric defines a fiber-bilinear form ((-,-)) :
T*Q @ T*Q — R, i.e. a kind of “inner product” on covectors. This form in
turn defines a symmetric bundle map 8 : T*Q — TQ by p(8,(1)) = ((p, #))q
for p,p € T;Q and g € Q. Thus B,4(p) € T,Q. The adjective symmetric means
that B equals its adjoint 8* : T%Q — T**Q = TQ.

The cometric for a subriemannian geometry 3 is uniquely defined by the
following conditions:

1. im(By) = Hg;
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2. p(v) = (B,4(p),v) for v € Hy, p € T;Q, where (B3,(p), v)q is the subrieman-
nian inner product on H,.

Conversely, any cometric of constant rank defines a subriemannian geometry
whose underlying distribution has that rank.

Definition 1.5.2 The fiber-quadratic function H(q,p) = %(p,p)q, where (-, )q
is the cometric on the fiber T;Q, is called the subriemannian Hamiltonian, or
the kinetic energy.

The Hamiltonian H is related to length and energy as follows. Suppose that ~y
is a horizontal curve. Then 4(t) = B,(;){(p) for some covector p € 17 Q, and

SI41P = H(g.p).

H uniquely determines 8 by polarization, and $ uniquely determines the
subriemannian structure. This proves the following proposition:

Proposition 1.5.3 The subriemannian structure is uniquely determined by its
Hamiltonian. Conversely, any non-negative fiber-quadratic Hamiltonian of con-
stant fiber rank k gives rise to a subriemannian structure whose underlying
distribution has rank k.

To compute the subriemannian Hamiltonian we can start with a local frame
{X.}k_, of vector fields for H. Think of the X, as fiber-linear functions on the
cotangent bundle. In so doing, we will rename them P,. Thus

Pu(a,p) = p(Xal9)), 9€Q,peTyQ.

Definition 1.5.4 Let X be a vector field on the manifold Q. The fiber-linear
function on the cotangent bundle Px : T*Q — R defined by Px(q,p) = p(X(q))
is called the momentum function for X.

Thus the P, = Px, are the momentum functions for our horizontal frame.

If X, =3 X}(x)(8/0z") is the expression for X, relative to coordinates ¢,
then Px,(z,p) = Y, Xi(z)p;, where p; = Pp/g,: are the momentum functions
for the coordinate vector fields. The z* and p; together form a coordinate system
on T*Q@Q. They are called canonical coordinates.

Let gap(q) = (Xa(q),Xs(q))q be the matrix of inner products defined by
our horizontal frame. Let g%°(g) be its inverse matrix. Then g% is a k x k
matrix-valued function defined in some open set of Q.

Proposition 1.5.5 Let P, and g** be the functions on T*Q that are induced
by a local horizontal frame {X,} as just described. Then

H(a.p) = 5 3 0" (@Pa(0,7)Pla,p). (1)

We leave the proof, which is pure linear algebra, to the reader. Note, in particu-
lar, that if the X, are an orthonormal frame for H relative to the subriemannian

inner product, then
1 Z 2
H = 5 Pa .
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Normal geodesics. Like any smooth function (“Hamiltonian”} on the cotan-
gent bundle, our function H generates a system of Hamiltonian differential
equations. (See Appendix A.) In terms of canonical coordinates (z¢,p;) these
differential equations are

ii_ﬁ '.___8H (1.5)
B Pi= "o ’

Definition 1.5.6 The Hamiltonian differential equations (1.5) are called the
normal geodesic equations.

Riemannian geometry can be viewed as a special case of subriemannian ge-
ometry, one in which the distribution is the entire tangent bundle. The comet-
ric is the usual inverse metric, written ¢* in coordinates. The normal geodesic
equations in the Riemannian case are simply the standard geodesic equations,
rewritten on the cotangent bundle. (See [Abraham and Marsden 1978; Arnol’d
1989]. For those unfamiliar with Hamiltonian formalism, we briefly review it in
section 1.7 and provide more details in Appendix A.)

Theorem 1.5.7 (on normal geodesics) Let {(t) = (v(t),p(t)) be a solution
to Hamilton’s differential equations on T*Q for the subriemannian Hamiltonian
H and let v(t) be its projection to Q. Then every sufficiently short arc of ~
18 a manimizing subriemannian geodesic. Moreover vy is the unique minimizing
geodesic joining its endpoints.

The theorem will be proved in section 1.9.

Definition 1.5.8 We call the projected curves v(t) of Theorem 1.5.7 the nor-
mal subriemannian geodesics.

Singular geodesics. Not all subriemannian geodesics are normal. There are
subriemannian geometries which admit minimizing geodesics that do not solve
the geodesic equations as defined by H. The first example is presented in
chapter 3. This example is not pathological; perturbations cannot destroy it.

We call these peculiar geodesics singular geodesics. Their existence makes
subriemannian geodesy very different from the study of Riemannian geodesics.
In Riemannian geometry all geodesics are normal: they come from the geodesic
equations.

The existence of singular geodesics can be ruled out for contact distributions.
(See chapters 5 and 8.) The Heisenberg group has a contact distribution, so we
need not worry about the singular geodesics. The theorems and phenomena of
singular geodesics are the subject of chapters 3 and 5.

1.6 Chow’s theorem and geodesic existence

We have been discussing the structure of geodesics. How do we know they
exist? In other words, given points A and B, is there a subriemannian geodesic
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that joins them. Even more fundamentally, is there a horizontal curve that
joins them? This last question is addressed by Chow’s theorem, also called
the Chow-Rashevskii theorem, which is the first and most basic theorem in the
business.

When H is involutive we cannot horizontally connect arbitrary points A
and B. (Recall that a distribution is called involutive if whenever X and Y
are horizontal vector fields, their Lie bracket [X,Y] is also horizontal.) The
Frobenius theorem asserts that when H is involutive, the set of horizontal paths
through a fixed point A sweeps out a smooth immersed submanifold, called the
leaf through A, whose dimension equals &, the rank of the distribution. So if H
is involutive and B does not lie on the leaf through A, we cannot horizontally
connect A and B.

At the opposite end from the involutive distributions stand the bracket-
generating distributions. Given a collection {X,} of vector fields, form its Lie
hull, the collection of all vector fields { X, [Xb, X¢], [Xa, [Xs, Xc]], . . .} generated
by Lie brackets of the X,. We say that the collection {X,} is bracket generating
if this Lie hull spans the whole tangent bundle.

Definition 1.6.1 A distribution H C T'Q is called bracket generating if any
local horizontal frame {X,} for the distribution is bracket generating (over its
domain).

We remark that if {X,} is bracket generating, and if {Y,} is defined by Y,, =
> B:X. with BS a smooth invertible matrix-valued function, then {Y,} is also
bracket generating. Consequently, to check the bracket-generating condition
near a point ¢ we need only check it for a single horizontal frame defined in a
neighborhood of q.

Theorem 1.6.2 (Chow) If a distribution H C TQ 1is bracket generating then
the set of points that can be connected to A € @ by a horizontal path is the
component of @ containing A.

In other words, bracket-generating plus connected implies horizontally path-
connected. This theorem, and its proof, are the subject of the next chapter.

With Chow’s theorem in mind, we address the problem of existence of geo-
desics.

Theorem 1.6.3 (Local existence) If @ is a manifold with a bracket-gener-
ating distribution then any point A of Q) is contained in a neighborhood U such
that every B € U can be connected to A by a minimizing geodesic.

In other words, on a bracket-generating subriemannian manifold any two suffi-
ciently close points can be joined by a minimizing geodesic.

Theorem 1.6.4 (Global existence) Suppose that Q) is a connected manifold
with a bracket-generating distribution and that Q is complete relative to the
subriemannian distance function. Then any two points of Q@ can be joined by a
minimizing geodesic.

The proofs of these last two theorems appear in Appendix E.
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1.7 Geodesic equations on the Heisenberg group

We return to the Heisenberg group. The vector fields

o 1 0 8 1 0
.X - - — =Y Y = — —_ —
ar 2782 3y + 2782
form an orthonormal frame for the Heisenberg geometry. This means that they
frame the two-plane field H and that they are orthonormal with respect to
the inner product ds? = (dx? + dy?)|3 on that distribution. According to the
discussion above, the subriemannian Hamiltonian is

1
H=2 (P%+P}), (16)
where Px, Py are the momentum functions of the vector fields X,Y. Thus

1 1
Px =p, — sups Py =py+ 5%z
where p;, py,p. are the fiber coordinates on the cotangent bundle of R3 corre-
sponding to the Cartesian coordinates z,y,z on R3. Again, these fiber coordi-
nates are defined by writing a covector as p = pdx + p,dy + p.dz. Together,
(x,Y, 2, Pz, Py, P) are global coordinates on the cotangent bundle T*R® = R* @
R3.
Hamilton’s equations can be written

Yoy, reo>@q a7

which holds for any smooth function f. The function H defines a vector field
Xp, called the Hamiltonian vector field, which has a flow &, : T*Q — T*Q. Let
f: T*R® = T*Q — R be any smooth function on the cotangent bundle. Form
the time-dependent function f; = & f by pulling f back via the flow. Thus
fe(z,Y, 2,02, Py, P2) = [(P:(2,9, 2, Pz, Py, Pz))- In other words, df /dt = Xg[fi],
which gives meaning to the left-hand side of Hamilton's equations.

To define the right-hand side, which is to say the vector field Xy, we will
need the Poisson bracket. The Poisson bracket on the cotangent bundle T*Q
of a manifold @ is a canonical Lie algebra structure defined on the vector space
C>(T*Q) of smooth functions on T*Q. (For details, see Appendix A.) The
Poisson bracket is denoted {-,-} : C® x 0% — C, where C™ = C™(T*Q),
and can be defined by the coordinate formula

of 89 99 8f

Voo = 2 5ep ~ Ba o

This formula is valid in any canonical coordinate system, and can be shown to
be coordinate independent. The Poisson bracket satisfies the Leibniz identity

{f,gh} = g{f. A} + h{f, g}
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which means that the operation {-, H} defines a vector field Xy, called the
Hamiltonian vector field.
By letting the functions f vary over the collection of coordinate functions z*
and p; we get the more common form of Hamilton’s equations:
, OH . OH

==, pi=-——.

8})1 ox?

(These equations are in turn equivalent to our formulation 1.7.) It is more
convenient to use the formulation 1.7, because the momentum function X — Px
is a Lie algebra anti-homomorphism from the Lie algebra of all smooth vector
fields on @ to C=(T™*Q) with its Poisson bracket:

{Px,Pr}=-Pxy) (1.8)

For the Heisenberg group, with our choice of X and Y as a frame for H, we
compute

0
(X, Y]=2Z:= e (X,Z]=[Y,Z] =0.
Thus

{Px,Py}=—p, =Pz, {Px,Pz}={Py,Pz}=0.

These relations can also easily be computed by hand, from our formulae for
Px, Py and the bracket in terms of z,vy,2,p.,py,p,. By letting f vary over
the collection of functions {z,y, z, Px, Py, Pz}, using the bracket relations and
equation 1.8, we find that Hamilton’s equations are equivalent to the system

= Py
- P
2 = —ény—}-%mPy
Px = —PgzPy
Py = +PzPx
P; = 0.

The last equation asserts that Pz = p, is constant. The variable z appears
nowhere in the right-hand sides of these equations. It follows that the variables
x.y. Px, Py evolve independently of z, and so we can view the system as defin-
ing a one-parameter family of dynamical systems on R* parameterized by the
constant value of Pz. Combine z and y into a single complex variable w = x+1y.
Note that the first two equations say that dw/dt = Px +iPy. The fourth and
fifth equations say that the time derivative of Py + iPy is ip,(Px + ¢Py). All
together, then, we have 8%w/0t? = ip,w, p, = constant. These are the famed
Lorentz equations for the motion of a particle in a constant magnetic field. To
convert to electromagnetic notation, we set the parameter p, = Be/m, where
e is the particle’s charge, B is the magnetic field strength, and m is the mass
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Figure 1.3: The Heisenberg sphere.

of the particle. Finally note that the third of our Hamilton’s equations, the z
equation, is just the differential constraint 1.3.

One integration of the Lorentz equations yields the evolution of the planar
velocity: Py +iPy = P(0)exp(ip,t), where the complex vector P(0) = Px(0)+
iPy (0} describes the initial velocity vector. A second integration yields the
general form of the geodesics on the Heisenberg group:

P(0)

Pz

z(t) +iy(t) = [exp(ip-t) — 1] + (z(0) + iy(0)) == w(?),

z(t) = z(0) + %/0 Im(wdw).

Based on these formulae we draw a picture of the Heisenberg sphere of radius
a (Figure 1.3). It is a surface of revolution in our Cartesian coordinates (z,y, z)
obtained by rotating this parametric curve about the z-axis:

r(Xa) = §2sin<g)
z(Aa) = %(;)2[/\—sin()\)].

Conjugate points. The Heisenberg spheres are singular where they intersect
the z-axis. The points along the z-axis correspond to conjugate points for the
exponential map. Take a circle passing through the origin in the plane, and
rotate it about the origin. In this way we get a circle’s worth of circles, all of
the same area A, all of the same length, and all passing through the origin.
The horizontal lifts through the origin of this family of circles forms a one-
parameter family of subriemannian geodesics of the same length connecting 0 to
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(0,0, A). Thus the entire z-axis consists of conjugate points to the origin (where
“conjugate point” has the same definition as in Riemannian geometry). Note
that unlike in Riemannian geometry, the set of conjugate points to the origin
passes through the origin! This is a general phenomenon in subriemannian
geometry: The conjugate and cut loci of a point pass through the point.

1.8 Why call it the Heisenberg group?

The three-dimensional Heisenberg algebra is the Lie algebra with basis X,Y,Z
and bracket relations [X,Y] = Z;[X,Z] = [Y,Z] = 0. These are the bracket
relations generated by our frame {X,Y} for the Heisenberg distribution.

Heisenberg wrote down these bracket relations in his foundational works on
quantum mechanics. In Heisenberg’s work XY, Z are self-adjoint operators on
a Hilbert space, with X corresponding to measuring position, ¥ to measuring
momentum, and Z to a multiple of the identity. (See chapter 13 for a little bit
on the foundations of quantum mechanics.)

The Heisenberg Lie algebra is a nilpotent Lie algebra. This means there
is an integer r, called the depth or step of the algebra, such that any iterated
bracket involving more that r elements is zero. The step of the Heisenberg al-
gebra is 2. Thus, for example [[X,Y],Y] = 0. Every nilpotent Lie algebra has
a unique simply connected Lie group, called a nilpotent group. For a nilpotent
Lie algebra, the exponential map is a diffeomorphism between the algebra and
its simply connected group. The exponential map thus provides global coordi-
nates for the group, and in these coordinates the group multiplication law is a
polynomial of degree r. We can thus think of a nilpotent group as a vector space
with a polynomial group law. (See section 1.10 for more on nilpotent groups
with subriemannian structures.)

The group for the Heisenberg algebra is called the Heisenberg group. Its
group law is the quadratic operation on R? given by

1
(1,91, 21) - (T2, Y2, 20) = <$1 +x2,y1 + Y2, 21 + 22+ §($1y2 - I2Z/1)> .

The one-parameter subgroups through the identity for this group structure are
easily checked to be the standard Euclidean lines:

Yu(t) = exp(t(vi, v2,v3)) = (tvy, tue, tvs).

If we let ¢ = (z,y, z) be a variable point and compute the derivative of ¢ - v,(?)
we find that

A1 (g 3(0) = X () + Y (0) + 00 200),
t=0

where X,Y, Z is the frame for our distribution. In other words, X,Y, Z form a
basis for the space of left-invariant vector fields on the group.
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The distribution H, which is the span of {X,Y}, is now seen to be left-
nvariant with respect to Heisenberg multiplication. Thus our subriemannian
structure is a left-invariant subriemannian structure on the Heisenberg group:
the action of the group on itself by left multiplication is an action by subrie-
mannian isometries. As with any group, left multiplication acts transitively on
the group. So we can transform any point to any other, and this transforma-
tion takes geodesics to geodesics. In this manner we transform the problem of
joining A to B by a subriemannian geodesic to the problem of joining the origin
0 =(0,0,0) to A"!B.

1.9 Proof of the theorem on normal geodesics

1.9.1 Heuristics via taming

First recall how to express the Riemannian geodesic flow for a Riemannian
metric g. Let X, p = 1,...,n = dim(Q), be a local orthonormal frame for
the metric. Write P, = Py, for the associated momentum functions. The
Hamiltonian H = %Z Pﬁ generates the Riemannian geodesic flow for g.

Definition 1.9.1 A Riemannian metric g is said to tame a subriemannian
metric (H, (-,-)) f the restriction of g to the horizontal space H equals the sub-
riemannian inner product (-,-). In this case, we also say that g and {-,-) are
compatible.

It is easy to find many Riemannian metrics taming a given subriemannian
one. Let us choose one, say g = ¢g1. Let V denote the orthogonal complement
to H with respect to this metric. Then we can write

g=9gn D gy

where g = (,-,-) is the given subriemannian metric and gy is a fiber inner
product on V. Now form the family of Riemannian metrics

P =gnu®Ngy, A— oo
taming our subriemannian metric. By letting A tend to infinity we are severely

punishing motion in the vertical (V) direction.

Heuristic proof of Theorem 1.5.7. Let X,, X; be an adapted orthonormal
frame for ¢ = ¢, so that the X, are orthonormal on H and the X; are an
orthonormal frame for V. Then X,, (1/A)X; is an orthonormal frame for g,. It

follows that . .
_ 2 o, L 2
Hy=3 <2Pa + 33 Zpi)

is the Hamiltonian generating the geodesics for gx. As A — oo, H) tends to the
Hamiltonian H governing the normal geodesics, so the v, converge to normal
geodesics.
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The fault in this alleged proof is the last sentence. The limit A — oo is
singular, and the v, may not converge to solutions v for H. They may instead
converge to something else: the singular geodesics discussed in section 1.5. This
phenomenon does indeed occur (see chapter 3).

1.9.2 Calibrations

We will give a complete proof that the normal geodesics are indeed locally
minimizing geodesics. The proof is by the Hamilton-Jacobi method, put in
modern dress.

Definition 1.9.2 A calibration © on a subriemannian manifold is a closed one-
form on Q with the property that |©(v)| < ds(v) := \/(v,v) for all horizontal
vectors v. A horizontal curve 7y is said to be calibrated by the calibration © if
equality holds: ©(%) = ds(%).

The term calibration is usually associated to higher-dimensional gadgets. Thus,
in the theory of minimal d-dimensional surfaces it is a d-form satisfying an
analogous inequality involving d-area instead of arc length. For example, on a
Kahler manifold, the powers of the Kahler form define a calibration which can
be used to show that any complex submanifold of a Kahler manifold is locally
area-minimizing. See for example [Harvey 1990, esp. ch. 7}.

Lemma 1.9.3 If~ is a calibrated horizontal curve, then every sufficiently short
subarc of v is a minimizing geodesic.

Proof: Let v be any horizontal curve with the same endpoints as « that is
homologous to v. Then f~,2 6 = f7 O by Stokes’ formula. But fw ds > fw C]

and [ ds = fw@ by the definition of calibrations. Therefore ¢(v2) > £(7).
This s%ows that v minimizes length among all homologous curves sharing its
endpoints.

Fix a point P on v. Fix any Riemannian metric taming the subriemannian
structure, and a radius r small enough that the Riemannian ball of radius r
about P is homeomorphic to the standard Euclidean ball. We claim that any
segment ¢ C vy starting at P whose length is less than or equal to r is a globalty
minimizing subriemannian geodesic. For suppose 7, is another horizontal arc
that shares its endpoints with such an arc. If 4o leaves B then its length is
greater than r. If not, then it is homotopic to ¢, within B. So, by the result of
the previous paragraph, it is at least as long as .

QED

1.9.3 Hamilton-Jacobi theory

Hamilton-Jacobi theory provides a method for constructing calibrations. The
Hamilton-Jacobi equation we need is

H(4,d5(0)) = 5,
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viewed as a partial differential equation for S.

Lemma 1.9.4 If S is a solution to the Hamilton-Jacobi equation above, then
© = dS is a calibration.

Proof: Clearly dS is closed. We check that it satisfies the calibration in-
equality. Let X, be a local orthonormal frame for the horizontal distribution.
Expand v € H in terms of the frame: v = Y v,X,. Then ds(v)? = > 2 and
dS(v) = Y v,dS(X,), so by the Cauchy-Schwartz inequality we have

[dS(v)| < ds(v)y/ > dS(Xa)2.

But H(q,dS) = £ 5 dS(X.)? so that

VD dS(Xa)? =1,

since S satisfies our Hamilton-Jacobi equation.

QED

Example. If Q is a Riemannian manifold then our Hamilton-Jacobi equation
is ||[VS)|2 = 1. For any fixed go € Q the function S(q) = dr(qo,q) provides a
smooth solution to this equation away from g = gp and the cut and conjugate
loci of ¢p.

Lemma 1.9.5 In a neighborhood of any sufficiently short solution arc ~y to
Hamilton’s equation for the subriemannian Hamiltonian H we can consiruct a
local solution ¢ — S(q) to the Hamilton-Jacobi equation which calibrates this
arc-y.

Proof. The construction is the method of (bi-)characteristics. We may
suppose that this normal geodesic is parameterized by arc length, which is the
same as supposing that it is the projection of a solution for which H = %
We obtain S by the standard method of characteristics for constructing local
solutions to the Hamilton-Jacobi equation.

Step 1. Let zp = (go,po) € T*Q be the initial condition for the solution
to Hamilton’s equation that projects to our normal geodesic v(t). We suppose
that v is nonconstant, so that the Hamiltonian vector field X g (20) is nonzero.
We will work microlocally, i.e. in the cotangent bundle, near zg. Choose a local
(n — 1)-dimensional manifold ¥ C T*Q which passes through zp and which
enjoys the following properties:

1. ¥ is isotropic, meaning that wjg = 0, where w is the canonical symplectic
form on T*X.

2. Hjz =L

3. Xu(z0) ®T.,% is projected linearly isomorphically onto T,,@Q by the dif-
ferential of the projection T*Q — Q.
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To see that this is possible is an exercise in local symplectic linear algebra
(Appendix A). Indeed, because dH(zp) # 0 we can choose canonical coordinates
{gi,p'} centered at zp so that H = —p; + % and so that the tangent space to the
fiber Ty @, which is the kernel of the differential of the projection, is spanned by
the 3/0p;. Then Xy (z0) = 0/0¢q1. Take L ={¢1 =0,p1 =0,p2 =0,...,p, =
0}.

Step 2. Apply the flow ¢; of Xp to &, for —¢ < t < ¢, sweeping out an n-
manifold ¥. By elementary symplectic geometry this n-manifold is Lagrangian
(Appendix A). For € small it remains transverse to the fibers of T*Q — @, so
it is the graph of a local one-form Q — T*Q.

Step 3. A basic result in symplectic geometry asserts that, in a cotangent
bundle, any Lagrangian submanifold that is transverse to the fibers is locally
the graph of a closed one-form. Since we are speaking locally, we may take
this one-form to be exact. Thus ¥ is the graph of a one-form © = dS for some
function S defined near go. (In the local coordinates of step 1, we have S = ¢,/2,
which we check by noting that % is the graph of the one-form dg; /2.)

Step 4. We check that S satisfies the Hamilton-Jacobi equation. Observe
that any (q,p) € & can be represented two different ways, either as p = dS(q)
or as (q,p) = ¢:(z) for some z € X. It follows that H(q,dS(q)) = H(é:(2)) =
H(z) = § where the second equality follows from the fact that the flow of Xp
preserves the values of the energy H.

We have succeeded in constructing a local solution S. It remains to show
that dS calibrates our normal geodesic . First, observe that if (¢(¢), p(¢)) is any
solution to the subriemannian geodesic equations, then we have ¢ = > v, X,
with the components v, given by v, = p(X,) := P,(¢(¢), p(t)).

By construction the curve (y(t),dS(v(t))) is a solution to the subriemannian
Hamilton’s equations. Applying the formula above with p = dS we find that
the velocity components of ¥ are v, = dS(X,). This implies that equality
holds in the Cauchy-Schwartz argument in the proof of Lemma 1.9.4, so that
dS(¥) = ds(¥), and dS does indeed calibrate ~.

QED

The previous two lemmas combine to prove all of Theorem 1.5.7 except for
its final uniqueness statement.

1.9.4 Uniqueness of the minimum

The final uniqueness statement of Theorem 1.5.7 follows immediately from this
lemma:

Lemma 1.9.6 Let v be a normael geodesic of unit speed which is short enough
that it admits a calibration dS as in Lemma 1.9.5. Then any minimizing geo-
desic of unit speed that shares v’s endpoints is equal to ~y.

Proof. Let v be another horizontal curve sharing +’s endpoints. According
to the calibration argument (the proof of Lemma 1.9.4), the length of v equals
that of v if and only if |dS|,,| = ds|,, almost everywhere (a.e.). Let v,(t) be the
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components of y2’s velocity relative to the orthonormal frame X,. Recall that
the calibration inequality relied on the Cauchy-Schwartz inequality applied to
> v,dS(X,). We have equality if and only if there is a time-dependent constant
c(t) such that va(t) = c(t)dS(y2(t))(Xa(v2(2))) a.e. After reparameterizing o
we may assume that ¢(¢f) = 1 a.e. This is equivalent to assuming that -, is
parameterized by arc length a.e. So Y2 = 35" v, X,(q) with

vg = dS(72) (1.9)

along ~o.

Set p(t) = dS(v2(t)) and form the curve z(t) = (y2(t),p(t)). Uniqueness
follows immediately from the uniqueness of solutions to ODEs, together with
the following two claims:

Claim 1. We have z(0) = (0) where ¢ is the solution to Hamilton’s equations
that projects to the normal geodesic () in T*Q.

Claim 2. The curve z(t) satisfies Hamilton’s equations for the subriemannian
Hamiltonian.

Proof of Claim 1. By construction of S (see step 3), we have that ((0) =
dS(v(0)). But v(0) = ¥2(0) so that z(0) = dS(~(0)) also.

Proof of Claim 2. We will assume that v, is differentiable. We leave it to
the reader to fill in the functional analytic details necessary to massage our
proof into an integrated form that will cover the possibility that o is merely
absolutely continuous.

Hamilton’s equations are

§=>" P.Xa(q(t)), (1.10)
p‘i:—zpaipa- (111)
oq
Moreover, in these local coordinates
Pu(g,p) = Y piXi(a). (1.12)

We make the choice of covector p; corresponding to dS(g) so that we are taking
P, = dS(v(t))(Xa(~(¢))) along our curve. According to equation 1.9, these are
the requisite components

Vg = Pa
along our curve, so that the first of Hamilton’s equations (1.10) is satisfied. We
must check equation 1.11. This follows from what is essentially the lynchpin of

the Hamilton-Jacobi theory, applied to our situation.
Claim 3. Suppose that a horizontal curve ¢(¢) has components

va(t) = dS(q(t))(Xa(q(1)))

for some smooth function S. Then z(t) = (g(t),dS(q(t))) satisfies Hamilton’s
equations if and only if S satisfies the Hamilton-Jacobi equation H(g,dS(q)) =
constant.
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Proof of Claim 3. We have already seen that 1.10 is necessarily satisfied:
¢t = S v X! with v, = dS(q)(Xa(g)). We check 1.11. In coordinates we have
pi = 85/8¢q" so that

From P, = 3" p; X} (q) we get

aP, 856X}
dgt Z 8¢y 8q "’

J
so that Hamilton’s equations 1.11 read

. 8S X3
pi = —zva@ ag

Comparing the two equations we see that Hamilton’s equations are satisfied if

and only if
88 axJ 9%s .
'_a— J =
Zva <6‘qj 8¢t + quaina> 0.

But since v, = dS(X,) this is simply the derivative 8/8¢* of the equation

5 32 dS(e)(X()? = H(g,dS(a)) = 5.

This proves claim 3, and hence the lemma is proved.

QED

1.10 Examples

Penalty Metrics. Penalty metrics were used in the heuristic proof in section
1.9.1. Suppose that the tangent bundle of a manifold Q admits a splitting
TQ = H @V that is orthogonal for a family of metrics g., € > 0. If gc|y =
(-, ) + O(e) and if lim,_g g(v,v) = 400 for v € V, v # 0, then the distance
functions d. for g, converge to the subriemannian distance function for the
subriemannian structure (H,{-,-)»). Also the Riemannian Hamiltonians H,
converge to the subriemannian Hamiltonian. A simple example of such a family
i ge = () + (v /€.

* Examples of this type also arise in the phenomenon of rigidity of locally
symmetric spaces. Here @ C T M is the collection of unit-length tangent vectors
of a manifold M whose universal cover is a Riemannian symmetric space of
non-positive curvature and H is the negative, or contracting, sub-bundle of the
tangent bundle of ). See [Pansu 1989; Mostow 1973].
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Lie groups. Let G be a Lie group and V C g a linear subspace of its Lie
algebra. We can view the Lie algebra as the space of left-invariant vector fields
on the group, in which case V corresponds to a left-invariant distribution. The
bracket-generating condition is that V Lie-generates g. The restriction to V of
an inner product on g yields a subriemannian metric for which the action of G
by left translation is an action by isometries.

Carnot Groups. This is a subexample of the previous example. Take G to
be a graded nilpotent Lie group. This means that the Lie algebra of G has the
formg=VeaeV,e...®&V, where V=V, and [V;,V}] = Viy;, and V, = 0
for s > r. Thus all s-fold brackets are zero for s > r, which is to say that g
is nilpotent of step r. Assume further that V' Lie-generates. Then using V we
obtain a special version of the previous example. Any such G is called a Carnot
group. An inner product on V endows G with a subriemannian structure.

Carnot groups enjoy the property of admitting dilations. A dilation 6,
t > 0, on a metric space (Q,d) is a mapping such that d(6:z, 8:y) = td(z,y)
for all z,y € Q. To construct the Carnot dilation, consider the family of linear
operators 8 : g — g which act by scalar multiplication by #* on V;. These
operators are Lie algebra automorphisms which preserve V, and act on V by
scaling by t. Consequently, assuming as we will now, that G is simply connected,
the 6, extend to group automorphisms to which we give the same name, 6, : G —
G. These are the Carnot dilations. Carnot groups arise as the “tangent cones”
— the closest objects there are to the Riemannian tangent space — for a general
subriemannian manifold (see chapter 8). Many of the papers in subriemannian
geometry, and in particular in subriemannian geometric analysis, are devoted
to Carnot groups.

The Heisenberg group of this chapter is the simplest noneuclidean Carnot
group; it has step 2.

Bundles. Let 7 : Q@ — M be a Riemannian submersion, that is, @ and M
are endowed with Riemannian metrics such that the restriction of dmy to the
orthogonal complement to the fiber through ¢ is an isometry of inner-product
spaces. These orthogonal complements, ker(dm,)*, form the horizontal spaces
for what is known as an Ehresmann connection, and these will form the dis-
tribution H for a subriemannian structure on Q. The metric is obtained by
restricting the Riemannian one to . We call such a metric a subriemannian
structure of bundle type.

Principal Bundles. Apply the construction above to the special case where
@ — M is a principal G-bundle. The submersion is Riemannian if and only
if G acts on @ by isometries. In this way we get subriemannian structures on
principal bundles for which G acts by subriemannian isometries. The underlying
distribution for such a subriemannian structure is that of a connection on the
bundle. Many physical problems can be put into this framework. Some of them
are discussed in Part II of the book.
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Suppose that in any local trivialization ¢y : U x G — 7w~} (U) the pull-back
¢fjd52Q of the Riemannian metric on @ has the property that its restriction to
the group factor G C U x G is a fixed bi-invariant metric on the Lie group G.
In this case we say that the metric is of constant bi-invariant type. The main
theorem of chapter 11 is the following:

Theorem 1.10.1 (on projected geodesics) If(Q) is a principal bundle with a
subriemannian structure of bundle type whose corresponding Riemannian struc-
ture is of comstant bi-invariant type, then the normal subriemannian geodesics
on @ are precisely the horizontal lifts of the projections of the Riemannian geo-
desics on Q.

Homogeneous Bundles. We further specialize to the case where @@ = G is
itself a Lie group and M is a homogeneous space for this group. Then Q@ — M
is the quotient projection G — G/K where K C G is the isotropy subgroup of
the action of G on M. This defines on G the structure of a principal K-bundle.
A G-invariant connection for this bundle is defined by choosing a subspace
H. C g that is complementary to the Lie algebra of K. In this way we get a
subriemannian structure of bundle type on a Lie group.

If G admits a bi-invariant Riemannian metric, we can use it to define the
complement H, and hence the subriemannian structure on G. The theorem on
projected geodesics now implies that the normal subriemannian geodesics on G
are precisely the horizontal lifts of the orbits of its one-parameter subgroups
exp(t€) acting on M = G/K.

Contact distributions. A contact distribution on a manifold @ is a distribu-
tion £ C T'Q defined by the vanishing of a single one-form 6 with the property
that the restriction df|., is symplectic on each distribution plane &,, ¢ € Q.
We recall that “symplectic” means “non-degenerate”. In other words, if X € £
and if d(X,v) = 0 for all v € £ then in fact X = 0. This condition of being
symplectic implies that the distribution has even rank. Put a metric on the
contact planes £, and we have a subriemannian metric of contact type. These
have been studied in great detail in dimension 3. (See [Agrachev et al. 1996]
and references therein.)

Contact distributions are the most studied of the non-integrable distribu-
tions. They arise in complex analysis, where they are closely related to the
notion of a CR manifold. They arise in the study of quantization. A symplec-
tic manifold (see Appendix A for the definition) can be “pre-quantized”. The
result is a contact manifold of bundle type which forms a circle bundle over the
original symplectic manifold. Due largely to the stability of contact manifolds,
the field of contact topology is the subject of very active research.

Heisenberg group revisited. This example fits within the confines of every
category of example so far discussed. The Heisenberg group G is a Lie group
with a left-invariant subriemannian structure. The center H of this group is the
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Figure 1.4: Spherical Heisenberg geometry.

real line generated by Z. The quotient G — G/H is, in our exponential coor-
dinates, the projection R® — R? which we have been using. Any Riemannian
metric on G for which XY, Z are orthogonal has the property that this pro-
jection is a Riemannian submersion, relative to the usual Euclidean structure
on the plane. Thus the subriemannian metric is of homogeneous bundle type.
Since every translation-invariant metric on R is bi-invariant, Theorem 1.10.1
on projected geodesics applies and could be used to obtain the subriemannian
geodesics.

Higher Heisenberg groups. Let V be a symplectic vector space with sym-
plectic form w and with dimension 24. Set g = V@R and define a bracket on g by
((v, s}, (w,8)] = (0,w(v, w)). Thisis a 2-step graded nilpotent Lie algebra. It has
a basis {X;,Y;, Z,7 = 1,2,...£}, with nontrivial bracket [X;,Y;] = 6,;Z. The
corresponding simply connected Lie group is the (2¢ + 1)-dimensional Heisen-
berg group. All the properties of the three-dimensional Heisenberg group carry
over to this general case.

Spherical Heisenberg and the Hopf fibration. This is my favorite ex-
ample. Start with the Heisenberg group. Replace the base space, which is the
Euclidean plan, by the round two-sphere. Replace the z variable by a circular
variable € that evolves according to spherical area swept out. Scale the size of
the sphere so that its total area is 2w. This scaling is consistent with 6 taking
values in the unit circle. The resulting global subriemannian geometry is that
induced from the Hopf fibration

St — 8% 5%

Here $2 is the round three-sphere, the Hopf fibration is a Riemannian sub-
mersion onto a round two-sphere, and the subriemannian geometry is the one
induced from this Riemannian submersion.

S§3 with its standard “round” Riemannian metric is isometric to the Lie
group SU(2) = Sp(1) endowed with a bi-invariant metric. So the subriemannian
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structure for S? is of homogeneous bundle type as described above.

The geodesics on the sphere are of course great circles. Their projections to
5?2 form the “small circles” — the geometric circles on S2. As in the Heisenberg
case, these circles are precisely the curves of constant curvature. Using the
theorem on projected geodesics (Theorem 1.10.1), we see that the horizontal
lifts of these small circles to S* exhaust the supply of subriemannian geodesics
on S3.

The geometry of the Hopf fibration is fundamental to algebraic topology
[Bott and Tu 1995], Riemannian geometry, quantum mechanics (see [Feynman
and Vernon 1957; Shapere and Wilczek 1989}, or our chapter 13), and is im-
portant in celestial mechanics ([Stiefel and Scheifele 1971; Chenciner and Mont-
gomery 2000]).

The (22 + 1)-dimensional version of the spherical Heisenberg group is not
a group; it is a subriemannian homogeneous space structure on the (2¢ + 1)-
dimensional sphere, and is associated with the Hopf fibration in that dimension.
(See section 11.3.2.)
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Chapter 2

Chow’s Theorem: Getting
from A to B

Chow’s theorem, also known as the Chow-Rashevskii theorem, is the first the-
orem in subriemannian geometry [Chow 1939; Rashevskii 1938]. It asserts that
any two points in a connected manifold endowed with a bracket-generating
distribution can be connected by a horizontal path — a path tangent to the dis-
tribution. In other words, such a subriemannian manifold is “horizontally path
connected”. The definition of bracket generating and the theorem are found
here in section 2.1, and were already presented in section 1.6.

In section 2.1 we also state various allied theorems and a counterexam-
ple. Theorem 2.1.3 asserts that on a subriemannian manifold endowed with
a bracket-generating distribution the topology defined by the subriemannian
distance function agrees with the usual manifold topology. We introduce the
endpoint map, which plays a crucial role throughout the book. Theorem 2.1.5
asserts that the endpoint map is an open mapping. In section 2.1 we also present
a counterexample to the converse to Chow’s theorem. In section 2.2 we give a
heuristic proof of Chow’s theorem, following Hermann [1962], which provides
more insight into the theorem than the standard proof.

In section 2.3 we define the growth vector and canonical flag associated to
a distribution. These are used in section 2.4 where we state the ball-box theo-
rem (Theorem 2.4.2), and prove half of it. The ball-box theorem is a stronger,
quantitative version of Chow’s theorem. Our proof of the ball-box theorem is
standard; it is based on the implicit function theorem applied to “flow coordi-
nates” defined via a frame for the entire tangent bundle built out of a frame for
the distribution. In section 2.5 we prove the theorem on topologies (Theorem
2.1.3). In sections 2.6 and 2.7 we prove the other half of the ball-box theorem,
following the exposition of Bellaiche [1996] and his definition and use of privi-
leged coordinates. Finally, in section 2.8 we apply the ball-box theorem to prove
Mitchell’s theorem concerning the Hausdorff dimension and Hausdorff measure
of a subriemannian manifold.

43
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2.1 Bracket-generating distributions

Bracket-generating distributions stand at the opposite extreme from involutive
distributions.

Definition 2.1.1 A distribution H C TQ s called bracket generating if any
local frame X; for M, together with all of its iterated Lie brackets [X;, X;],
[Xi, [ X5, Xill, ..., spans the tangent bundle TQ. Bracket-generating distribu-
tions are sometimes also called completely nonholonomic or distributions sat-
isfying Hormander’s condition.

Remarks. If a frame is bracket generating in a neighborhood of a point, then
so is any other frame. For any distribution H, a slight perturbation of H in a
generic direction is also bracket generating. Said in the language of jets, the
germs of distributions that are bracket generating form an open dense subset
of the space of distribution germs. (For some discussion in this direction see
chapter 6.)

Theorem 2.1.2 (Chow’s theorem) [IfH is a bracket-generating distribution
on a connected manifold Q) then any two points of Q can be joined by a horizontal
path.

The theorem is proved in section 2.4.

Example: The Heisenberg group. For the Heisenberg group, X and Y
frame H, and with their bracket [X,Y] = Z = 8/9z, they span the whole
tangent space. Chow’s theorem guarantees that we can connect any point to
any other by a horizontal path.

Example: The Martinet distribution. The distribution on R® defined by
the vanishing of the form dz — y?dz is called the Martinet distribution. It is
spanned by vector fields X = 8/8r = y?8/0z and Y = 8/0y. We compute
that [X,Y] = —2y8/0z and [[X,Y],Y] = —20/0z. The surface y = 0 is called
the Martinet surface. Off of this surface one bracket suffices to span the entire
tangent bundle. On the surface we need two brackets to span. But the distri-
bution is bracket generating everywhere, so any two points can be connected by
a horizontal path.

We now present two other theorems, which are essentially equivalent to the
formulation of Chow’s theorem in Theorem 2.1.2 and which provide additional
insight into the theorem.

Theorem 2.1.3 (Topological theorem) If H is a bracket-generating distri-
bution on @ then the topology on Q induced by the subriemannian distance
function is the usual manifold topology.

This theorem is proved in section 2.5.
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Definition 2.1.4 The endpoint map associated to a distribution H on Q and
based at the point A € @ is the map that takes each horizontal curve beginning
at A to its endpoint.

We will prove in Appendix E that the endpoint map is a smooth map from an
infinite dimensional manifold to our finite dimensional manifold Q.

Theorem 2.1.5 (Open mapping version of Chow) If H is bracket gener-
ating then the endpoint map is an open mapping.

This theorem is a consequence of the ball-box theorem of section 2.4.

Definition 2.1.6 If H is a (not necessarily bracket-generating) distribution on
Q and A € Q, then the accessible set associated to H and A, denoted Acc(A),
ts the image of the endpoint map based at A.

In other words, the accessible set is the locus swept out by all horizontal paths
that pass through A. The terminology “accessible set” is borrowed from control
theory. Chow’s theorem asserts that if H is bracket generating on a connected
manifold then the accessible set of any point is the entire manifold.

The converse to Chow fails. The converse to Chow is valid for analytic dis-
tributions, but false in general. We now give a class of counterexamples. These
are distributions on R® which are not bracket generating but are horizontally
path-connected.

Consider the one-form © = dz — o («, y)dx — ca(z, y)dy on R® with a;(z, y)
smooth functions on the plane. Our distribution will be H = {© = 0} on R%.
Write B = Jay/dz — 8ay /Oy for the “magnetic field”. Then doo = Bdz A dy
and © A d© = —Bdzdydz.

If B # 0 at some point, then only one Lie bracket is needed to generate all of
R? at that point. The distribution is contact there. So suppose that the vanish-
ing locus Z = {(z,y) : B = 0} of the magnetic field is non-empty. If Z is not the
entire plane, then the distribution provides horizontal connectivity. To see this,
observe, as in section 1.3, that any horizontal curve ~(t) = (z(t),y(t), 2(t)) for
H can be characterized by its planar projection c(t) = (z(t), y(t)) and starting
height z(0) according to the rule

z(t) = z(0) + /([0 0 .

The planar curve ¢ can be any absolutely continuous curve in the plane. Thus,
for example to connect two points gy and ¢; lying over Z by a horizontal curve,
draw the line segment ¢ between their planar projections 7(go) and 7(q1) and
take the horizontal lift v of this segment, starting from go. Unless we are very
lucky, we will not have hit ¢;. The z coordinate of the endpoint ¢; of this lift will
be wrong. To fix it, leave the zero locus Z, exiting into the open set {B # 0}
along the horizontal lift of any curve, say another line segment. Fiddle around
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in this open set, by traveling along the horizontal lifts of small circles in order
to climb or descend to the required z-height, and then return to w(q1). The
concatenation of the original v with this new horizontal “fiddling” will connect
qo to q1.

If Z is a non-empty planar domain then the bracket-generating condition
fails in the domain. Indeed, the distribution is integrable over this domain. Yet
any two points can still be connected by a horizontal path.

If the magnetic field vanishes to infinite order at a single point then Z consists
of that single point. Horizontal connectivity holds easily for the distribution,
but the distribution fails to be bracket generating at the vanishing point.

2.2 A heuristic proof of Chow’s theorem

We follow Hermann’s proof of Chow [Hermann 1962]. This proof is flawed be-
cause it assumes that the accessible set Acc(A) from the point 4 is an embedded
submanifold.

For a vector field X write t — exp(¢tX) for its local flow. If X is horizontal,
we will call its flow a horizontal flow. Applying a horizontal flow to any point
yields a horizontal curve t — exp(tX)q. If we stop such a curve at ¢; and then
begin again with a different horizontal flow we obtain a horizontal curve ¢ —
exp(tY) exp(t1.X)g. Continuing in this manner, we see that if ¢ € Acc(A) then
so is exp(t1 X1)exp(t2Xa) - -exp(taXa)q, for any list X;,..., X4 of horizontal
vector fields, and any list ¢y, ..., ¢; of stopping times small enough so that the
flows make sense.

Now let f be a smooth function that is constant on Acc(A). The previous
observation implies that for ¢ € Acc(A),

f(q) = flexp(t1 X1)exp(taXz) - - - exp(taXa)q).

Differentiating this equality with respect to ¢y, with the rest of the t;, = 0, we
have df (X;) = 0 for any horizontal vector field X;. Differentiating with respect
to to, and then ¢; with the rest of the t; = 0, we find X;X5[f] = 0 for any
two horizontal vector fields. Here the X; are thought of as first-order partial
differential operators so that X;[f] = df(X;), and X3 X5 is a second-order partial
differential operator. Continuing in this manner we find that X; ... X4[f] =0
for any list of horizontal vector fields.

But [Xl,XQ] = X1X2~*X2X1 so that df([Xl,XQ]) = 0. And [Xl, [XQ, X3]] =
X1(X2 X5 — X3X3) — (X2X3 — X3X2)X; is the sum of products of third-order
horizontal operators, so that df ([X1,[X2, X3]}) = 0. Continuing in this manner
we find df (Y) = 0 for any Y that is an iterated Lie bracket of horizontal vector
fields. But such vector fields Y span the entire tangent space. Hence df = 0
and f is constant as claimed.

The problem with this proof is our starting assumption. In fact, the acces-
sible set is generally not an embedded submanifold. For example, an irrational
line field on a two-torus has for its accessible sets the leaves, which are immersed
dense submanifolds.
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The assumption can be altered to make it true. By the e-accessible set, for
a positive number ¢, we will mean the image of the endpoint map restricted
to horizontal curves of length less than e. Sussmann [1973] has proved that
the e-accessible sets are embedded submanifolds for sufficiently small €. (See
Appendix D.) This result allows us to turn Hermann’s proof into a rigorous
one. But Sussmann’s proof is significantly harder than the rigorous proof of
Chow that we give next, so we do not follow this approach.

2.3 The growth vector and canonical flag

We have been using H to denote the distribution H C T'Q. We will now also
use the same symbol to denote the sheaf of smooth vector fields tangent to
‘H. Sheaves provide a convenient and necessary language for discussing local
properties of systems of vector fields. They are necessary because they allow
the rank of the subspaces spanned by the fields to jump, without requiring the
fields themselves to be globally defined. (See for example Warner [1971] for the
definition of sheaf; a detailed understanding of the definition is not required
here.)

Thought of as a sheaf, H assigns to each open set U C Q the collection
Hy of all smooth horizontal vector fields defined on U. H is a subsheaf of the
tangent sheaf T'Q of all smooth vector fields on Q.

The Lie brackets of vector fields in H generate a flag of subsheaves

HcH?’cCc---cH c---CTQ,

with

H2=H+[H,H, HT'=H +[H,H)
where

[H,Hk] = span {[X,Y] X eHY e Hk}
with the span taken over the smooth functions on Q. In other words, H? is
generated by vector fields in H and their two-fold brackets [X, Y], H® adds the
three-fold brackets, and so on. The assumption that H is bracket generating is
equivalent, at least in the case of @ compact, to the assumption that there is
an 7 such that H™ = TQ. Henceforth we will make this assumption.

At a point g € Q, the flag of subsheaves gives a flag of subspaces of T,Q (the

“stalks” of the sheaves):

Hy CHZCHy C--- CHy =ToQ. (2.1)

Definition 2.3.1 Set n;(q) = dimH},. The integer list (n1(q),n2(q), ..., nr(q))
of dimensions s called the growth vector of H at q. The smallest integer r =
7(q) such that Hy = T,Q tis called the step or degree of nonholonomy of the
distribution at q.

The dimensions n;(q) may vary from point to point, which is to say that H’
need not correspond to an actual distribution. In that case H* is a sheaf of
vector fields which does not arise as the sheaf of sections of a distribution.
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Definition 2.3.2 A distribution H on a manifold Q is called regular at a point
q € Q if the growth vector is constant in a neighborhood of g.

Note that n; = k is the rank of the distribution and n, = n is the dimension of
the manifold. The growth vector is the most basic numerical invariant associated
with a distribution.

We give three examples now. The first two were described in section 2.1.

Example: The Heisenberg distribution. The Heisenberg distribution on
R3 is spanned by the vector fields 8/8y and 8/8z + y8/9z and is annihilated
by the one-form dz — ydx. Its growth vector is (2, 3). To say that a distribution
on a three-manifold has this growth is equivalent to saying that it is contact.

Example: The Martinet distribution. The Martinet distribution on R3
is spanned by the vector fields 8/8y and 8/0z + (y*/2)8/8z and is annihilated
by the one-form dz — (y?/2)dz. Its growth vector is (2,3) away from the plane
y = 0 and is (2,2,3) at points of this plane. This example plays a central role
in chapter 4.

Example. The distribution on R® annihilated by dz — y"da has step r, with
growth vector (2,2,...,2,3) along the plane y = 0, and is of contact type off
that plane.

2.4 Chow and the ball-box theorem

We now give a complete, albeit standard, proof of Chow’s theorem. It is based
on the inverse function theorem and a frame for the whole tangent bundle of
the manifold that is built out of a frame for the distribution. It yields a result
somewhat stronger than Chow’s theorem, which is called the ball-box theorem.

The proof boils down to the idea that commutators of flows of horizontal
vector fields allow us to move transversally to the horizontal. Let X; and Xo
be smooth vector fields, with (local) flows ®;(¢) = exp(tX;). We recall that for
small t,

B1(t) 0 @a(t) 0 &1()" 0 Ba(t) ™ (g) = g + £2[X1, Xa)(q)
in any coordinate system. For brevity we will write
[B1(2), B2(1)] = Ba(t) " 0 B1(t) ™ 0 Ba(t) 0 &1 (1)
for this commutator of flows. We will also use the fact that
O;(t) 7! = d;(-t).

Fix a base point qo € @ and choose a local orthonormal frame X;, ¢ =
1,...,%, for our distribution H. Let ®; be the corresponding local flows. We
use them to move easily in the horizontal directions,

®;(t)(q) = ¢ +tXi(q) + O(t?),
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for t small. Let us call the curves ¢t — ®;(¢)(q) simple horizontal curves. Note
that the length of a simple horizontal curve with 0 < t < ¢ is simply e. By
applying ®x(tr) o -+ o Pa(ta) o ®1(t1) to go and letting the ¢; vary over the
k-cube |t;| < € we sweep out a k-dimensional curvilinear cube tangent to H, at
t = 0 with k-dimensional volume approximately {2¢)*. Each point in this cube
is the endpoint of a concatenation of k or fewer simple curves: first travel along
®1(t)(go) from O to t1, set g1 = P1(¢1), then travel along $2(t)(q1) from ¢t =0
until ¢ = ¢, and so on. Each of these simple horizontal curves has length less
than €, so the cube sits in the subriemannian ball of radius ke.

We may move in the H?/H directions along horizontal paths by applying the
commutators $;;(t) = [®;(t), ®;(t)] to go. Now ®4;(t)(q0) = go + t2[ X, X;](q0),
so if we restrict to || < e we will move by a Fuclidean amount ¢? in the H?/H
direction.

We continue the process of taking commutators and brackets until we have
exhausted the tangent space. The implementation of this idea is mostly a matter
of notation. For multi-indices I = (i1,%2,...,%m), 1 < i; < k, define vector
fields X inductively by X; = [X,,, X ], where J = (ia,i3,...,%y,). We'll write
11J = I and denote the length of a multi-index I by |I|, so |J| = m—1. Similarly
define flows ®; by ®;(t) = [®,,(¢), Ps(t)]. Observe that

dr(t) =1+ t™ X + 0™ ).

By the bracket-generating assumption we can select a local frame for the
entire tangent bundle from amongst the X;. We choose such a frame and relabel
it Y;, i =1,...,n, to respect the canonical filtration: {¥; = X1,...,Yx = Xi}
span H near go; {Y1,...,Y,,} span H? near qo; {Y1,-. ., Yooy - - Yo, } span H3;
and so on, where (k,n2,ns,...,n,) is the growth vector of the distribution at
q0-

Weighting. For each chosen Y; of the form X, let w; be the length |I]. Thus
w; = mif and only if Y; € H™ and Y; ¢ H™ ™. The assignment i +— w; is called
the weighting associated to the growth vector.

Similarly, we relabel the flows ®; as ®;, 7 = 1,...,n, for those multi-indices
arising in the construction of our frame Y;. Now each point ®;(t)(g0) = ®1(¢)(g0)
is the endpoint of a horizontal path consisting of the concatenation of w; simple
horizontal paths, each one of length t. So if we restrict ¢ to || < e then ®;(¢)(g0)
lies in the ball of radius w;e about go. On the other hand, since

B,(t)(q0) = g0 + ' Yi(q0) + O(t* *1),

this point lies in the Euclidean box whose dimensions are of the order €*: in the
‘H™: directions. This suggests that the subriemannian ball of radius € contains
a Euclidean coordinate box whose sides are of order ¢ in the i-th coordinate
direction. This result, called the ball-box theorem, will be proved after the
following definition.

Definition 2.4.1 Coordinates y1,...,yn are said to be linearly adapted to the
distribution H at qo if H'(qo) is annihilated by the differentials dyn, 41, - ., dyn
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The z-axis is a horizontal curve for H. Consider a finite arc o of this
axis from the origin to a point (z¢,0,0), parameterized in the standard way:
vo(t) = (£,0,0), 0 <t < zg. Let v(t) = (x(t),y(t), z(¢)), 0 <t < 7, be any other
horizontal curve with the same endpoints. Integrating the differential constraint
O = 0 yields

0=2(r)—2(0) = %/dez,

where the line integral is over the projection of the curve to the zy-plane. Now
suppose that dzr/dt > 0 along . Then the integrand y2dz = y2idt is positive
unless y is identically zero. If y is identically zero then the curve is simply a
reparameterization of our segment o of the z-axis. This proves that there is
a Cl-neighborhood of our original curve 7o such that every horizontal curve in
this neighborhood that shares endpoints with ~g is a reparameterization of 7o.
Curves 7o with this property will be called C'-rigid, following Bryant and Hsu
[1993].

3.2 Martinet’s genericity result

We put the example of a rigid curve in its general context. Let £ be a two-plane
field on a three-manifold. Let 6 be any nonvanishing one-form that annihilates
£. Then the contact condition is 6§ A df # 0.

Suppose instead that @ A df(p) = 0 at some point p. Choose a volume
form d3z in a neighborhood of p, and use it to define a function f according
to @ Adf = fd®z. Then we have f(p) = 0. Let us make the nondegeneracy
assumption df A 0(p) # 0. This implies in particular that df(p) # 0 so that
the set £ := {f = 0} is a smooth surface near p, by the implicit function
theorem. The nondegeneracy assumption asserts that the plane &, is transverse
to the tangent space to ¥ at p, and consequently the planes &, for nearby ¢ € ¥
remain transverse. Their intersections with T, % define a line field on ¥ near p.

Definition 3.2.1 We call & o Martinet form, the distribution {# = 0} a Mar-
tinet distribution, and the surface ¥ = {f = 0} the Martinet surface. The
integral curves of the line field obtained by intersecting the tangent planes to
this surface with the distribution planes are called the Martinet curves.

Martinet [1970] proved the following theorem.

Theorem 3.2.2 (Martinet normal form) Let 8 be a Martinet form near p.
Then there exist coordinates (x,y, z) centered at p and a positive function g such
that

1
99 =dz -~ §y2dac.

In the normal form coordinates, the Martinet surface is given by y = 0 and
the Martinet curves are parallels to the x-axis which lie in this surface. By
the analysis of section 3.1, these Martinet curves are C!-rigid, at least in any
neighborhood in which Martinet’s normal form theorem holds.
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3.3 The minimality theorem

Being C'-isolated curves, the Martinet curves -y, are automatically local minima
in the C-topology for any functional. Hence our main theorem may not be a
surprise.

Theorem 3.3.1 (Minimality theorem) Let g be a subriemannian structure
whose underlying distribution is a Martinet distribution, and let p be any point
on the Martinet surface. Then there is an x. > 0 (depending on g and p) such
that the arc vo of the Martinet curve starting at p and of length x. is the unique
minimizing geodesic joining p to its endpoint.

The proof of this minimization theorem is surprisingly difficult. The problem
is that we are obliged to consider all curves joining the given endpoints and
for which the length makes sense, and there is no reason to restrict ourselves, a
priori, to some C'-neighborhood of a given candidate minimizer. In other words,
the C'-topology is not the correct topology for the calculus of variations.

Theorem 3.3.2 For a generic metric g on the Martinet distribution, the mini-
mizing curve of Theorem 3.3.1 is not the projection of any solution to Hamilton’s
equations for the subriemannian Hamiltonian.

Theorems 3.3.1 and 3.3.2 say that there are geodesics that do not satisfy the
geodesic equations.

Definition 3.3.3 A minimizing subriemannian geodesic that is not the projec-
tion of an integral curve for the subriemannian Hamiltonian is called a singular
minimizer.

By Martinet’s normal form theorem, his distribution is topologically stable:
small perturbations of it are still Martinet and hence locally diffeomorphic to
its normal form. Thus the singular minimizers of the theorem are topologically
stable. In other words, they persist under perturbations of the subriemannian
structure.

3.4 The minimality proof of Liu and Sussmann

We prove Theorem 3.3.1 following Lin and Sussmann [1995]. Consider any
subriemannian metric g on a Martinet distribution. Choose a g-orthonormal
horizontal frame X,Y, with X tangent to the Martinet curves. Then Y is
orthogonal and, in particular, transverse to the Martinet surface X. Given
any surface ¥ in a three-manifold, and any transverse vector field Y, we can
alway find local coordinates (z,y, z) such that ¥ = {y = 0} and Y = 9/0y in
a neighborhood of any point of ¥. These can be constructed using flow-box
coordinates, with the box chosen to have sides parallel to X.

The defining property of the coordinates is unchanged under coordinate
changes T = Z(z,z), § = y, Z = Z(x, z) independent of the y variable. We
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can use such a coordinate change to “rectify” X along %, so that X|s = 0/0x
and 9 9 9
X=( +y2[11)5; +y¢2a—y +y¢35

for some smooth functions ;. Now [Y, X]|s = ¢10/0x+1128/0y+138/9z, from
which it follows that the Martinet surface is also defined by 3 = 0. Therefore
W3 = y¢ for some smooth function ¢. The Martinet nondegeneracy condition is
di3(Y) # 0, hence ¢ # 0. Finally, a scaling z — Az, with X a (possibly negative)
constant, insures that ¢(0) = 1. This is the partial normal form that we will use
to prove the minimality theorem. Note that in these coordinates the z-axis is
still the Martinet curve passing through the origin, and it is parameterized by
arc length. The minimality theorem is now restated as the optimality lemma:

Lemma 3.4.1 (Optimality lemma) There is a positive constant x, depend-
ing only on the Y¥; and ¢ of the normal form such that for all positive x; < x,
the arc of the z-axis from (0,0,0) to (x1,0,0) is the unique minimizing geodesic
joining its endpoints.

Proof. Let v(t) = (z(t),y(t), 2(t)), 0 < t < 7, be an a.e. horizontal curve
leaving the origin (i.e. a possible competitor). Without loss of generality, we
may assume that its subriemannian speed is 1 a.e. Thus, ¥ = u; X +usY, with
u% + u% =1 a.e., and the length of v is 7.

In our normal coordinates, the derivative % is

= (1+ybwm
yius + ug (3.1)
: = you

fl

We will sometimes refer to the u; as the controls of our curve v. Integrating,
and using the condition that v(0) = 0, we find

t
/ (1 +yib1)uy

8
—

o~
=

t
y(t) = /Zﬂl’lm + ug

a0 = [ vou

where we have used the shorthand [* f for fot flx(t),y(t), z(t))dt. We will use
this shorthand throughout the rest of the section.

Choose some relatively compact neighborhood K of the origin that is con-
tained in our coordinate chart, for example a small subriemannian ball, and set
k = d(0,0K), the subriemannian distance from the origin to the boundary of
K. Fix positive constants C;, Cy, Cs such that for all points ¢ of K we have

[ (9)] < Cy,
lyruy +ug| < Cp when uf +ul <1,
I —o(g)] < es.
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We may assume that ez < 1, by shrinking K if necessary, because 1;{0) = 1.
Note that the second inequality bounds g. At the end of the proof the constant
xz, will be determined in terms of the C; and e3. It will also be taken to be less
than k so that all competing curves v may be taken to lie within K. (If they
left K they would be longer than k and hence than vo.)

Impose the endpoint conditions y(7) = 0 and z(7) = 0 on our competing
curve. (Remember that we assume z, < k and so we may assume that ¢(y) < k
and hence that all the estimates above involving the C; hold on ~.)

Claim 0: z(7) < 7 provided 7 < x,.

Establishing this claim will complete the proof because £(y) = 7, but for our
singular curve vy we have 1 = ¢; = £(vo), so the endpoint condition z(7) = =,

yields £(vo) < £(7).
h(t) =/ Ui,

Set
where u; is the first control for our competing curve, and set o = 7 — h(7).
Note that « > 0 since |u;] < 1. Also set

B = sup |y(t)|,
yel

where I = [0, 7] is the domain of our competing curve.
Claim 1: z(7) £ 7 —a+ C187.
Proof of Claim 1:

()]

t
/ uy +/y¢1ul

t
< h(t)+‘ / o
1
< h(t) +8C, / |
< h(t) + BCyt

where the last inequality results from the fact that |u;] < 1. Now evaluate at
t = 7 and use the definition of a.

Looking at Claim 1, we see that to prove Claim 0, and hence the lemma, it
suffices to show that —a + C} 87 is negative, i.e. that C1 07 < a. Now if 7 < z,
we certainly have Cy87 < CiBz.. Thus it suffices to prove that C8r. < a.
Multiplying both sides by 32 yields Claim 2:

Claim 2: C,z,8% < fa.

This claim will be proved by comparing both sides with fT 2.
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Claim 3: . »
k_B® < / v’ < kpfla,

with
2 1

ki =—, ki= .
3C;’ + 1 —e3

Claim 0 and the lemma then follow by setting Ciz, = k_/ky, le. 2z, =
(1 —€3)/(C1C3).

Proof of the upper bound in Claim 3: We will use the z endpoint condition

[ y2us = 0. Then
/TyQ /Ty2(1-u1)+/7y2ul
[ a—u+ [ - )
g [ a-wy+ [ vl
Now fT(l —uy) = h(T) = a and |1 — ¢}ju;| < e3. Thus

/ y2§ﬂ2a+63/ Y

(1- 63)/Ty2 < B

which is the desired upper bound.

I

IA

or

Proof of the lower bound in Claim 3: Since y(¢) is continuous thereisa tg € 1
such that |y(to)| = 8. For simplicity, assume y(to) = 8. (The argument is nearly
identical in case y(tp) = —B. The sign and direction of the “tent function” f
below needs to be reversed.) Since y3 < C3 we have that y(¢) > f(t) where f(¢)
is the piecewise linear “tent function” whose maximum is at 3 and is increasing
with slope C3 up to t = {p and decreasing with slope —Cj afterwards. (See
Figure 3.1.) The zeros of f(t) are ty = tg £ 3/C3. These must be inside our
interval [ = [0, 7] because y > f and y(0) = y(r) = 0. Write J = J_ U J, =

[t_,t()] U [to,t+]. Then
2 2
[2= [

/JfQ - 2/L f :2/05/@(030%: %,

yielding the desired result:
233 T
— < y2.
3C3 —

But

QED
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Figure 3.1: The Martinet sphere.

3.5 Failure of geodesic equations

Recall from the previous section that we have coordinates x,y, z such that our
horizontal vector field X, tangent to the Martinet surface, has z-component
(14 y11) with 1y vanishing at the origin. Theorem 3.3.2 can be restated as the
following lemma.

Lemma 3.5.1 If ¢1(0) # 0, then the minimal geodesic of Theorem 3.3.1 —
a small arc of the xz-axis — is not the projection of a solution to Hamilton’s
equations.

Proof. We prove that if the z-axis is the projection of a solution to Hamilton’s
equations for Hy then 17 must be identically zero along this axis.

By construction, the axis is parameterized by arc length. It satisfies the
equations £ = 1 and § = 0. On the other hand, if it is a solution then we have
i = {z,Ho} and y = {y, Ho}, where Hy = (P% + P2)/2 is the subriemannian
Hamiltonian.

Now Px = ps + y(¥1pz + opy + yop.) so Px = p; and Py = p, along the
Martinet surface y = 0. It follows from the z and y equations that Py = 1 and
Py = 0 along the z-axis. For solutions parameterized by arc length, like our
z-axis, we have Hy = % and so we can write Px = cos(¢) and Py = sin(g),
thus defining the angle ¢. Geometrically, ¢ is the angle between the projected
solution curve v and the vector field X. One computes

d d
%Px ={Px,H}=—-PzPy, 51:'}/ = {Py,H} = Pz Px,

where Pz is the momentum function for the vector field Z = [X,Y]. It follows
from these equations that ¢ = —Py.
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The z-axis, being an integral curve of X, satisfies ¢ = 0. So, for the axis
to be the projection of a solution we must have that Pz = 0. However, on the
Martinet surface we have Z = —(¥10/0x + 28/8y + y$d/dz), so along the
r-axis we have Pz = —(¢1p,) = —t1. This proves that we must have ¢ =0
along the axis in order for the axis to be the projection of a solution.

QED

3.6 Singular curves in higher dimensions

The Martinet curves generalize in higher dimensions.

Theorem 3.6.1 (Lin-Sussmann, Bryant-Hsu) Let H be a rank two distri-
bution on an n-manifold. Suppose that H # H? as sheaves. Then there ex-
ist singular minimizers that are Cl-rigid. Passing through points at which the
growth vector is either (2,3,4,...) or (2,3,5,...) there is an (n — 4)-parameter
family of C-rigid singular minimizers.

Liu and Sussmann [1995] proved the minimality statement in this theorem. In
fact, the proof of Theorem 3.3.1 given in section 3.4 is their proof of Theorem
3.6.1 simplified to three dimensions. Hsu [1991] established the existence of the
(n —4)-parameter family of rigid curves. More details concerning this theorem,
and in particular the n — 4 parameters, are discussed in section 5.4.

3.7 There are no H'-rigid curves
Theorem 3.7.1 A bracket-generating distribution admits no H*-rigid curves.

Proof. According to Theorem E.0.1 in Appendix E, the endpoint map is an
open mapping from the space of H'-curves to the manifold.

Given a curve v, pick an intermediate point along the curve, say P = ~(t2).
Divide v into two arcs, v; going from the initial point to P, and vs from P
to v(1). Apply the open mapping result separately to v, and 72_1. We get
open neighborhoods of curves, N; containing v, and N; containing vy, ! whose
endpoints fill up a small neighborhood of the midpoint P. Take curves ~§ in NV
and (7§)~! in N, that are e-close in the H! norm to their respective arcs, and
that both end at the same point P., very close to P. Then the concatenation
75 * ¢ is a curve that is O(e)-close to + in the H! topology, and that does not
coincide with it.

QED

Question. Is this theorem true for any distribution, bracket generating or not?
I believe so. Here is why. First, take the case of an involutive distribution. We
may as well work on the leaf containing the curve in question, and the theorem
is true there. Second, the theorem holds for general analytic distributions. To
see this, apply Sussmann’s theorem (Theorem D.1.4 of Appendix D), which
asserts that the accessible set is a nice immersed submanifold. Any horizontal
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curve lies in the accessible set of its starting point. Restrict attention to this
accessible submanifold. In the analytic case the restricted distribution is bracket
generating within this submanifold. Apply Theorem 3.7.1.

3.8 Towards a conceptual proof?

Various proofs of minimality of the Martinet curves exist, but to my mind
none of them are satisfactory. They do not explain the reason behind the
phenomenon.

The most satisfactory “proof” is not a proof at all: The Martinet curve is
isolated in the C! topology (C!-rigidity). Consequently, it is a local minimum,
relative to this topology, for any functional, and in particular for the length
functional.

The problem with this “proof” is that the Cl-topology is not the correct
topology for the calculus of variations. We are interested in all horizontal curves
joining two given endpoints, not just those C'l-close to some given curve. The
correct topology is the H! topology, in which two curves starting from the same
point are close if their derivatives (with respect to a horizontal frame) are L2-
close. There are no H!-isolated horizontal curves, and in particular the Martinet
curve is not H!-isolated.

A satisfactory proof might proceed as follows. Consider the variety of all
horizontal curves that share endpoints with the Martinet curve, endowed with
the H! topology. The Martinet curve is a singular point of this variety. What
does the singularity look like? Can we show that it is a very “sharp” singular-
ity, with this “sharpness” increasing as we take shorter initial segments of the
Martinet curve? Imagine a very sharp cone. Then almost any linear function
will have a minimum (or maximum) at the cone point (see Figure 3.2). A proof
along these lines should add much understanding.

3.9 Notes

False theorems asserting that every subriemannian minimizer is normal ap-
peared in the literature between 1967 and 1990, and almost certainly earlier
(see for example [Rayner 1967; Hamenstadt 1990; Strichartz 1986, 1989; Taylor
1989; Bar 1998]). My counterexample to this assertion, the singular minimizer
described in this chapter, was discovered in 1991. It did not appear in print
for several years [Montgomery 1994a]. My construction was based on intuition
about the motion of a particle in a magnetic field. Soon after, Liu and Sussmann
[1995] published a much simpler proof and more general results, which we have
presented here.

Strong hints of the existence of singular minimizers appeared much earlier.
Carathéodory and Hilbert were quite familiar with the rigidity phenomenon
(see [Young 1980}). Bismut [1984] clearly points out the existence of singular
minimizers. Baillieul [1978] and Brockett [1984] left the question of existence
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constraint surface

level set of function

Figure 3.2: The singularity in path space.

open. Gaveau [1977] claimed to have found a singular minimizer, but his work
was later shown to be in error by Brockett [1984].

The mistake made by most of those who claimed to have proved that all
subriemannian minimizers are normal was a mis-application of the maximum
principle of Pontryagin et al. [1962]. This principle, when stated as a theorem,
becomes quite complicated and typically takes a full page of text. In essence
the principle is a version of the method of Lagrange multipliers for finding
constrained minimizers. The mistake boils down to a misuse of that method.
Suppose we want to minimize I subject to a constraint G = 0. We tell our
calculus students to find the critical points of F' + AG, where A is the Lagrange
multiplier. This is the wrong approach because it can miss the minimizer.
Instead we should look for the critical points of the function AgF' + AG, where
the multipliers Ag and X are not both zero. The possibility of a critical point with
Ao = 0 allows for minimizers to be singular points of the constraint hypersurface,
i.e. singular minimizers.

The affair of Gaveau is interesting. Gaveau [1977] claimed that the free
two-step Carnot group over R* admits singular geodesics. This Carnot group
is a subriemannian geometry of bundle type on R* & /\2 R4, Gaveau’s “proof”
that there is a singular minimizer was based on his faulty assertion that no
normal geodesic can be found to connect (0,0) € R* & A’ R* to an element
of the form (0, z); consequently the minimizer between these two points must
be a singular one. Afterward, though, Brockett [1984] exhibited an explicit
normal extremal connecting these points (see chapter 12). Decades later Golé
and Karidi [1995} proved that in a two-step Carnot group every subriemannian
geodesic is normal, and then constructed the first example of a Carnot group
with a singular minimizer. The Golé-Karidi example is a three-step Carnot
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geometry in the fibers of H+. In section 5.6 we discuss a class of distributions,
the fat distributions, for which there are no singular curves.

5.1 The space of horizontal paths

The endpoint map takes a horizontal rectifiable curve to its endpoint (see section
2.1). A singular curve is a critical point for the endpoint map. For this definition
to make sense, we need to know that the endpoint map is differentiable with
respect to curves. In particular, the space € of curves, which is the domain of
the endpoint map, must be endowed with a differentiable structure. We describe
this structure.

Denote the underlying manifold with distribution by (Q,H). Fix an interval
I = [a,b] and a beginning point go € Q. Write Q = Q(I, go; H) for the space of
all curves that start at go and whose derivative is square integrable. In other
words, acurve v : I — Q isin Qif y(a) = qo, if the curve is absolutely continuous
and if its derivative (guaranteed to exist a.e.) is square integrable with respect
to some (and hence any) subriemannian metric on Q. (Recall that a continuous
curve is absolutely continuous if it has a derivative almost everywhere and it
can be reconstructed, in any coordinate chart, by integrating the curve of its
derivatives. See for example [Royden 1968].) The endpoint map is then the map
end : ([a, b], 90; H) — Q defined by end(y) = v(b).

To describe the differentiable structure on © we suppose for the moment
that {Xi,..., Xx} form a global orthonormal frame for H and that the X, are
complete vector fields, meaning that their flows are defined for all time. Expand
the derivative of a curve v in terms of this frame: ¥ =3 u®X, =u- X. The u
are the coordinates of our curve. If 4 is square integrable, then u = (u!, ..., u*)
is in L2(I,R*).

To insure that the u are good coordinates we need to show that the map
~ — u is invertible. This is done in Appendix E, where we prove that the initial
value problem

y=u-X(7), (a)=q (5.1)

is well posed. This means that for each v and go there is a unique solution
v = ¥(u; go) that depends smoothly on » and go. Moreover, for each fixed t € I
the map L2(I,R*) xQ — @ : (u,q0) — v(u; q0)(t) is smooth. Note that the map
(u, go,t) — v(u,qo)(t) cannot be smooth, since the vector field v - X need only
be L? in the time variable t. Freezing gp and solving the corresponding initial
value problem defines the endpoint map relative to these X-based coordinates
u for 2. The result is the coordinate version

LX(I,R*) — Q : u s ~(b)

of the endpoint map.

We need to surmount various technical difficulties to insure that this idea
yields a manifold structure for the horizontal paths on a general manifold with a
general distribution. For example, H need not admit a global frame. Even if it
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did, the vector fields in the frame need not be complete. All of these difficulties
are overcome in Appendix E. ’

Different choices of frame yield different charts for Q. Two different charts
are related by a smooth change of variables, regardless of whether or not the
frames are orthonormal.

Definition 5.1.1 A singular curve is a critical point for the endpoint map. A
regular curve is a is a regular point for the endpoint map.

At first glance, this definition may seem to depend on the choice of metric on
the distribution planes, since we need an inner product on these planes to define
square-integrability in the definition of Q. However, a different subriemannian
metric on the same H yields the same set 2 of curves. This is because any
two metrics along a fixed curve are Lipschitz related. Therefor, the concept of
singular curve depends only on the distribution of k-planes and not on the inner
product put on these planes. .

In Riemannian geometry, H = TQ and there are no singular curves. On
the other hand, “most” subriemannian geometries have singular curves. The
Martinet curves of chapter 3 are perfect examples of singular curves. We saw
that they are minimizing geodesics regardless of how we measure length within
the distribution planes. That is, they are geodesics by virtue of their singular
nature alone. The existence of such singular minimizers is one of the chief
differences between Riemannian and subriemannian geometry. Because of their
existence the following two problems are open in subriemannian geometry. Are
all minimizing geodesics smooth? Are all sufficiently small subriemannian balls
homeomorphic to the usual Fuclidean ball? For more about these problems, see
chapter 10.

5.2 A microlocal characterization

5.2.1 Characteristics

We will need a computational method for finding singular curves. Hsu [1991]
developed such a tool, the method of characteristics, in his thesis. One finds
the same tool, in a less intrinsic form, in the work of Rayner [1967, app.] and
Pontryagin et al. [1962].

The method of characteristics requires the subbundle H+ € T*Q of all one-
forms that annihilate H. H* is a linear subbundle of rank n — k. A typical
element of H+ will be written ), or (g, A) when we want to emphasize the base
point g € @ of X € ’H(J{. Recall that T*Q admits a canonical symplectic form,
written > dp; A dg* in canonical coordinates (see Definition A.4.2 in Appendix
A). Let w denote the restriction of this form to H*. This restriction need not
be symplectic, and hence it might admit characteristics.

Definition 5.2.1 A characteristic for H' is an absolutely continuous curve
A(t) € H* that never intersects the zero section of HY and that satisfies iyw =

0 on TwHL at every point t for which the derivative A(t) ezists.
Y P
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Our computational tool is the following theorem of Hsu [1991] and Pontrya-
gin et al. [1962].

Theorem 5.2.2 A curve v € Q is singular if and only if it is the projection of
a characteristic A for HL with square-integrable derivative.

The square-integrable conditions on €2 and on the characteristics are imposed
for applications to the study of geodesics. We could just as easily talk about
curves and characteristics with derivative in LP.

Let us see what the proposition says in computational terms. Fix a local
frame 8 = (6',...,6°) for H* defined in some neighborhood U of Q. Any
X € Ht lying over U can be expanded uniquely as

A=A (5.2)

This equation defines fiber coordinates A,, a = 1,...,s, on Ht.

On the other hand, we can think of the 8% as one-forms on H* by pulling
them back from @ by the projection 7 : Ht — @. Then equation 5.2 is the
expression for the restriction © of the canonical one-form 3~ p;dq* on T*Q to H*.
Indeed, let us complete the 6% to a frame for all of 7*Q by adding k independent
one-forms 7', i = 1,..., k. Then © = 3" X.8% + 3" \in* where (A4, \;) are the
fiber coordinates on T*Q defined by the full frame. The restriction of © to
‘H+ is obtained by setting all the A; to zero. Since w is the differential of the
restriction of this one-form, we have

w=df = d\, N0 + \adb°. (5.3)
Now, re-expand the df® in terms of our frame,

d® =S+ S et + S 506, (5.4)

a

A . e a
thus defining the structure functions cj,, i, ¢, -

Let X,, X, be the frame for T'Q that is dual to our frame 6%,n*. Thus the
X, frame H. Then X,, X,,,0/0), form a basis for the vectors on HL, so that
given any curve A(t), differentiable at ¢, we may expand

At) = Aag‘z— + 4% X + 44X, (5.5)

Lemma 5.2.3 An absolutely continuous curve A\ with square-integrable deriva-
tive is a characteristic if and only if, in the notation of equations 5.2, 5.4, and
5.5, the following equations hold a.e.:

4% =0 (5.6)
Ao+ D Apch, it = (5.7)

> Nl =0 (5.8)
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Proof. Expand the one-form i;w in terms of the frame dX,, 8%, n* of covectors
for Ht, using equations 5.3 and 5.5. The coefficient of d\, is —%%, yielding
equation 5.6. The coefficient of §¢ is the left-hand side of equation 5.7, and the
coefficient of 1” is the left-hand side of equation 5.8.

QED

The equations in Lemma 5.2.3 form a mixed algebraic-differential system
of equations, called the characteristic equations. Equation 5.6 asserts that the
projection v of a characteristic is indeed horizontal. Write X for the derivative
of the characteristic curve at A € H+. We call it a characteristic direction at
A. Equation 5.7 says that this direction is completely determined by A, and by
the derivative 4 € H of the projected curve. Finally, equation 5.8 says that this
projected derivative lies in the kernel of w(A), where w(\) is the dual curvature
map w : HY — A®H* evaluated at A (see section 4.2). Relative to our coframe,

wA) = Aaclk 00" |3

To see this, recall that A stands for the covector A,0% € HL. View X\ as a
one-form (a section of H1). Then

dA = Aadf®mod =) Aacl nn”.

But, as we saw in section 4.2, w(A) = d|y.
The preceding discussion proves this lemma:

Lemma 5.2.4 Let A € qu and let wg 'H;]L — /\2 H; be the dual curvature at q.
Then the set of all characteristic directions at A projects linearly isomorphically
to the subspace ker(wq(\)) of Hq under the projection dmy : TYHY — T,Q.

Example: Contact manifolds. A contact manifold has no characteristics.
Indeed, any contact distribution H is defined, at least locally, by the vanishing
of a contact form, a one-form with the property that df|y; is symplectic. The
rank of H* is one. The typical element of H* is then A0, where A € R is the
fiber coordinate. Consequently w(A) = Adf|y and this dual curvature form at
A is also symplectic for A # 0. Since, by definition, symplectic forms have no
kernels, there are no characteristic directions, and hence no characteristics on a
contact manifold.

Example: The Martinet distribution. A Martinet distribution is a type
of degenerate contact distribution on a three-manifold (see section 3.2). The
normal form is the distribution annihilated by 6 = dz — %de:c. The contact
condition degenerates along the surface y = 0, where the growth vector is (2, 2, 3)
instead of (2,3). Again w(Ag) = Adf mod §. By dimensional considerations,
w(A@) is either 0 or symplectic on H,. It is zero exactly along the Martinet
surface y = 0. By Lemma 5.2.4, a characteristic can pass through ¢ if and only
if ¢ is on the Martinet surface. On this surface the characteristic equations (5.6,
5.7, 5.8) become dz = 0 and dX = 0, showing that the characteristics are the
lines lying on the Martinet surface and parallel to the z-axis.



86 CHAPTER 5. SINGULAR CURVES AND GEODESICS

5.2.2 The derivative of the endpoint map

To prove Theorem 5.2.2 on the equality of singular curves and characteristics,
we will need formulae for the differential of the endpoint map and its transpose.

Recall that we are using v € L?(I,R¥) as coordinates for the space Q of
horizontal curves passing through ¢o. These coordinates are found by solving
the initial value problem 5.1 for the time-dependent vector field w(f) - X. Let
®; = ®;(u) denote the flow of this time-dependent vector field, which maps an
open subset of @ to an open subset. ®;(u)(q) depends smoothly on v and ¢, and
continuously on ¢. (This is shown in Appendix E.) We suppose, without loss of
generality, that the domain I of the paths in 2 is the unit interval [0,1]. We
suppose that the curve v issuing from gp corresponds to the particular choice of
control u € L2. Then ®,(u)(g0) = 7(t) and end(y) = ®;(u)(go). Thus

_ 0P (u + ev)(go0)

d(end), (v) -

=0

Proposition 5.2.5 The derivative of the endpoint map is given by

1
d(end),(v) = d<1>1(qo)/0 d®,(q0) ™ (v - X)(t)dt. (5.9)

Proof. Write v(t) = ®;(u + ev)(go) for the curves corresponding to u + ev.
We then derive a linear differential equation for 6v(t) := 8v,/0¢, taken at € = 0.
The curve v, satisfies Ov./0t = (u(t) 4 ev(t)) - X(ve(t)). As usual, d/0¢ and
8/06t commute. Thus

d
L63(0) = (0) Xl + u(t) - 25901 (5.10)
(To define 0.X /0x we must work in a fixed but arbitrary coordinate system. The
choice of this coordinate system will wash out at the end of the computation.)
Equation 5.10 is an inhomogeneous linear differential equation for W (t) = §v(t).
We solve it by the method of variation of parameters, which we now recall.
Suppose the vector quantity W satisfies the inhomogeneous equation dW/dt =
J(t) + A(t)W(t). Suppose also that we know the fundamental matrix solution
U(t) of the associated homogeneous equation d¥/dt = A(t)¥(t), ¥(0) = Id.
Using the standard variation of parameters method, we make the guess W (t) =
d(t)w(t) for the original inhomogeneous equation. From this guess we derive
U (t)dw(t)/dt = j(t), an equation for w(t) that can be solved by quadrature.
The result is the solution

wiey=weo) ([ t ¥ (6)ds )

to the original inhomogeneous equation with initial value W(0) = 0.
The associated homogeneous linear equation is

Dty =ty Zxy(r). (5.11)
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We now show that ¥(t) = d®;(go) is the fundamental solution. Recall that
&, is defined by the differential equation d®,(x)/dt = u(t) - X (¢, ®¢(x)), with
initial condition ®¢(x) = x. Set = = go + ey(0) and differentiate this differential
equation with respect to ¢ at ¢ = 0. Switch the order of the ¢ and ¢ derivatives.
The result is the differential equation

%d(bt((IO)(yO) =u(t) - %d@t(%)(yo)~

Since this homogeneous differential equation is the same as equation 5.11 sat-
isfied by ¥,, and since d®y = Id, we must have that ¥(¢) = d®;(g0). Putting
these results together yields the formula for the differential.

QED

5.2.3 The transpose of the differential

Let A1 € T Q be a covector at the endpoint ¢; = (1) = end(y) of the horizontal
curve v, and let Ag = d®;(go)* (). Then

1
ey (o) = (o [ adutan) o X010 )
0
where (-,-) denotes the pairing between dual vectors and vectors. Writing

A(t) := d®:(g0) " (Xo),
we see that
1
(M, dend), (v)) = /0 ), (v - X)()dt,

where the pairing inside the integral is between dual vector and vector at the
point «(t) on the curve. Note that A(0) = Ao and A(1) = A;. A basic compu-
tation in mechanics, presented in Appendix A, shows that the curve (y(t), A(t))
is the solution curve for the Hamiltonian system with initial condition (go, Ao)
and with Hamiltonian H, equal to the momentum function for the vector field
u- X . (See section A.3 for the definition of the momentum function of a vector
field.) That is,

Hu(q,p,t) = Y _u()Pa(,P),  Pala,p) = (, Xa(@)) == p(Xalg)). (5.12)

There is a technical problem here not found in the usual mechanics. The
u, need not be smooth, rather only L. This lack of smoothness requires some
reworking of existence-uniqueness theory for solutions to Hamilton’s equations
for time-dependent Hamiltonians that are only L? in the time variable ¢ (see
Appendix E).

Now

D), (v- X)) = Y v (OB (Xalg(t)) = D v® (1) Pala(t), A(D))-
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This shows that ‘
d(end);A = (P(t),..., P(t)), (5.13)

where by a slight abuse of notation we have written P,(t) for the power functions
P,(gq,p) evaluated at the moving point (¢g,p) = (y(t), A(t)) € T*Q. Note that
this expression defines a linear map T, Q — L*(I,RF) = L*(I,RF)*, as it
should.

Now suppose that the curve + is singular. Then the image of d(end)}, is a
proper subspace of Ty, Q. Consequently there is a nonzero covector A € Ty Q
that annihilates this subspace: A(d(end),(v)) = 0 for all v € Lo(I,R¥). Since
v is arbitrary, we must have that P,(v(t), A(t)) =0, a =1,..., k. But the X,
frame H, and P,(y(t), A(t)) = AMt)(Xa(v(t))) so that the vanishing of the P, is
equivalent to the assertion that A(t) annihilates H.

This proves the following proposition.

Proposition 5.2.6 Let the curve v € Q(qo,[0,1]) correspond to the controls
u(t) € L*([0,1], R*) via the frame X for H. Then v is singular if and only if
there is a solution (q(t), A(t)) to the Hamiltonian system with time-dependent
Hamiltonian H, = > u*(t)p(Xa(q), with initial condition ¢(0) = go, M(0) = Ag,
Ao € Ty Q, Ao # 0, which in addition satisfies A(t) € HL for all t.

In the classical control theory literature the curves (g(t), A(¢)) that satisfy
the conditions of this proposition are called abnormal extremals (see for example
[Pontryagin et al. 1962]). The proposition asserts that the singular curves are
precisely the projections of the abnormal extremals.

5.2.4 Proof that singular equals characteristic

We prove Theorem 5.2.2. We have just seen that ~ is a singular curve if and only
if there is a solution ((t) = (v(¢), A(t)), A(t) # 0, to the Hamiltonian equations
with Hamiltonian H, such that ¢ satisfies the additional constraint A(t) € H#(t).
We now show that these solution curves are precisely the characteristics for HL.
Recall that the k conditions P, =0, a = 1,...,k, locally define HL. Also recall
the definition of the Hamiltonian vector field Xy for a Hamiltonian H, namely
1x,§ = dH where Q is the symplectic form on all of T*Q (see section A.4).
Apply this definition, and remember that we do not differentiate with respect
to time, but only with respect to ¢ and p, in forming dH. (Indeed, H, need not
be differentiable in t.) We find that

i =" ua(t)dPalc()

characterizes the solutions to the Hamiltonian H,, for a given w. Now if Y is
tangent to H' then dP,(Y) = 0, a = 1,...,k. Consequently if ¢ is such a
Hamiltonian solution then it is a characteristic: Q((, Y) = 0 for all Y tangent
to HL1. This logic reverses, showing that a characteristic { over the curve v
which is generated by controls u (i.e. has components u relative to our frame)
is a solution to the Hamilton equation for H,,.
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The L2 condition on the derivative of A follows from the linear relation 5.7
between singular directions v and characteristic directions ).\,'and the condition
that 4 be square integrable.

QED

5.3 Singularity and regularity

A regular curve is by definition a horizontal curve that is not singular. Thus
geodesics fall into two classes: regular and singular. In section 1.5 we defined a
normal geodesic to be one which “satisfies the geodesic equations”, meaning that
it is the projection of a solution ¢ C T*Q to Hamilton’s equations for the normal
Hamiltonian H. We proved that any sufficiently short arc of such a solution
curve is a minimizing geodesic (Theorem 1.5.7). On the other hand, in chapter
3 we gave an example of a singular minimizing geodesic that is not normal.
What are the relations between singular curves and minimizing geodesics? We
will prove that every regular minimizing geodesic is normal. But first let us let
us look at the dichotomy between regular and singular from the point of view
of the method of Lagrange multipliers.

5.3.1 Lagrange multipliers

In looking for minimizing geodesics joining ¢o to g; we are solving this con-
strained minimization problem: Minimize

E() = 3 [ il

subject to the constraint

F(v)=q,
where F is the endpoint map based at gp (see section 1.3). According to the
method of Lagrange multipliers, we are to form the associated functional

MEA) + (A1, F(y)),

where the parameters (Ao, A1) # (0,0) are the Lagrange multipliers. Any mini-
mizer v must be a critical point for this functional, for some nonzero choice of
the parameters. The parameter Aqg is real, but A; runs over the space dual to
the range of F' if that range is a linear space. In our nonlinear situation, this
domain is the manifold @ and we have A\ € T} Q.

Often we only teach our calculus students this rule in the case Ao # 0, for
which we may as well take Ao = 1, by scaling. This restriction is equivalent to
the assumption that « is a regular point for F, which means that v is a regular
curve. Minimizers that arise with Ay = 0 correspond to singular minimizers.
To see this, note that when Ag = 0, the Lagrange multiplier test reduces to
{A,dF) =0, i.e. \; # 0 annihilates the image of the differential of F'. In this
case the function E to be minimized has effectively disappeared.
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Remark. Put properly into the control theoretic context, the method of La-
grange multipliers becomes the maximum principle of Pontryagin et al. [1962].
This principle has been frequently, and often incorrectly, applied to the problem
of finding subriemannian geodesics. (See the notes in section 4.7.)

5.3.2 Regular implies normal

Theorem 5.3.1 Fuvery regular minimizing geodesic is normal.

Proof. Suppose that v is a regular minimizing geodesic joining go to q;.
Write Q for the space of horizontal paths starting at go. Write Q{qo,q1) C Q2
for the space of horizontal curves joining qo to ¢1 that have square-integrable
derivatives. We have Q(go,q1) = end™}(q;) C ©, a submanifold of Q whose
tangent space at -y is the kernel of d(end),. We have that v minimizes the energy
function E restricted to Q(go, q1). Consequently dF = 0 upon restriction to this
kernel. For any continuous linear operator A : V; — V5, the annihilator of the
kernel of A equals the image of the adjoint A* : V) — V{*. Applying this fact
to d(end),, we have that dE(y) € im(d(end)}), which is to say that there exists
a A € Ty @ such that

dE — d(end)(A) = 0. (5.14)
This is just the standard argument justifying the method of Lagrange multipli-
ers.

We now recall our coordinate formula 5.13 for the adjoint. Let u be the con-
trols (components) of our curve v relative to the orthonormal horizontal frame
X that determines our coordinates, and form the Hamiltonian H,, as in equation
5.12. Let (q(t),p(t)) € T;Q denote the solution to the corresponding Hamilton’s
equations in 7*Q with terminal point (g1, A). Then d(end)%(\) = P(y(t),p(t)) €
L%(I,R*) where P = (Py,...,P) is the vector of momentum functions corre-
sponding to the horizontal frame X = (X,...,X}). Consequently, if v € L?
denotes any variation of «, and hence of the path ~, then

(dlend); () () = [ PO3(0).p(0) - (01

Now E = [ £ ua(t)%dt, so that dE(v)(v) = [u-vdt. It follows that

dE — d(end)fy)\ = / (u(t) — P(q(t), p(t)) - v{t)dt.
Since the left-hand side must be zero for all v, we have
U (t) = Po(g(t),p(t)) ae., a=1,2,... k. (5.15)

Recall that the vector field defining Hamilton's equations for any time-
dependent function f: T*Q x I — R is obtained by using the symplectic form
to invert the one-form d, , f, where the differential d, , means differentiate only
with respect to the T*Q-variables (see Appendix E). We have f(¢,p,t) = H,, =



