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Figure 4 * 2 0 Solar System Formation The condensation
theory of planet formation (not drawn to scale; Pluto not shown
in part e). (a) The solar nebula after it has contracted and
flattened to form a spinning disk (Figure 4.17b). The large blob
in the center will become the Sun. Smaller blobs in the outer
regions may become jovian planets, (b) Dust grains act as
condensation nuclei, forming clumps of matter that collide, stick
together, and grow into moon-sized planetesimals. (c) Strong
winds from the still-forming Sun expel the nebular gas.
(d) Planetesimals continue to collide and grow, (e) Over the
course of a hundred million years or so, planetesimals form a
few large planets that travel in roughly circular orbits.
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FIGURE 8.9 Temperature differences in the solar nebula led to different kinds
of condensed materials, sowing the seeds for two different kinds of planets.

COSMIC Vt
3en»teit «r



(2.)

Planet

Mercury

Venus

Earth

Mars

Most asteroids

Jupiter

Saturn

Uranus

Neptune

Pluto

Most comets

Average Distance

from Sun (AU)

0.387

0.723

1.00

1.52

2-3

5.20

9.53

19.2

30.1

39.5

0-50,000

Temperature*

700 K

740 K

290 K

240 K

170 K

125 K

95 K

60 K

60 K

40 K

a few K§

Average Equatorial
Relative Size Radius (km)

•

•

•

•

•

•

•

2,440

6,051

6,378

3,397

< 5 0 0

71,492

60,268

25,559

24,764

1,160

a few km?

Average Density

(g/cm3)

5.43

5.24

5.52

3.93

1.5-3

1.33

0.70

1.32

1.64

2.0

<1?

Composition

Rocks, metals

Rocks, metals

Rocks, metals

Rocks, metals

Rocks, metals

H, He, hydrogen
compounds*

H, He, hydrogen
compounds*

H, He, hydrogen
compounds*

H, He, hydrogen
compounds*

Ices, rock

Ices, dust

Moons

0

0

1

2 (tiny)

?

16

18

17

8

1

?

Rings?

No

No

No

No

No

Yes

Yes

Yes

Yes

No

No

Table 14.1 Basic Properties of the Sun

Radius (/?Sun)

Mass(MSun)

Luminosity USun)

Composition (by

percentage of mass)

Rotation rate

Surface temperature

Core temperature

696,000 km (about 109 times the

radius of the Earth)

2 x 1030 kg (about 300,000 times

the mass of the Earth)

3.8 x 1026 watts

70% hydrogen, 28% helium,

2% heavier elements

27 days (equator) to 31 days (poles)

5,800 K (average); 4,000 K (sunspots)

15 million K
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4 solar wind

solar wind i i * ; * * ̂

Photosphere

Convective zone-^^f-t'-

zone

ELECTROMAGNETIC RADIATTON
The Sun emits radiation over the entire electromagnetic spectrum [see Figure]

The portions of the spectrum associated with space environment activity are the
very short wavelengths (X-rays and extreme ultraviolet) and the longer
wavelengths (radio waves). Energy at these wavelengths contribute less than one
percent of the sun's total energy output; but during active solar conditions, it is
increased radiation at these wavelengths that cause a noticeable impact on the near-
earth environment. However, even during the most active solar periods, the sun's
total energy output measured outside the earth's atmosphere is nearly constant (to
within 0.1 %/decade).
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Table 2.1. So/ar spectral regions.

Radio
Far Infrared
Infrared
Visible
Ultraviolet (UV)
Extreme ultraviolet (EUV)
Soft x-rays
Hard x-rays

X > 1 mm
10/xm < A < 1 mm

0.75 jLim < A < 10 jum

0.3/xm< X <0.75/zm
1200A < A <3000A

1 0 0 A < A < 1200A
l A < A < 100A

x < l A

Sunspots

X-Rays From Hot
Coronal Loops

Coronal Loops

Figure 2.2 Schematic diagram of the magnetic field topology
in the solar corona and the associated coronal features. The
solid curves with arrows are the magnetic field lines.2

Note: A = 10-10m.

Table 2.2. Energy and mass loss from

the Sun.1

Radiated power
Solar wind power
CME power
Mass loss (radiation)
Mass loss (particles)

3.8 x 1026 watts
4.1 x 1020 watts
7.0 x 1018 watts
4.2 x H^kgs" 1

1.3 x 10 9 kgs- ]

Table 2.3. Solar wind parameters near the Earth.10

Parameter Average Low-Speed High-Speed

Figure 2.6 Schematic diagram of the Sun-Earth system in
the Sun's ecliptic plane. The solar wind is in the radial
direction away from the Sun and the magnetic field lines
bend into spirals as the Sun slowly rotates.

nicrn'3)
u(kms~l)
nu(cm~2 s~l)
TP(K)
Te(K)
(l/2mpu

2)nu(erg cm"2 s"1)

fi
^ ( k m s - 1 )
^ ( k m s " 1 )

8.7
468
3.8 x
1.2 x
1.4 x
0.70
2.17
44
63

108

105

105

11.9
327
3.9 x
0.34 x
1.3 x
0.35
1.88
38
44

108

105

105

3.9
702
2.7 x 108

2.3 x 105

1.0 x 105

1.13
1.24
66
81

Above current sheet
Sun

Below current sheet

Earth Orbit
Above
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Magnetic fields of sunspots
suppress convection and prevent
surrounding plasma from sliding
sideways into sunspot.
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Figure 9 . T4 Sunspots This photograph of the Sun, taken
during a period of maximum solar activity, shows several
groups of sunspots. The largest spots in this image are more
than 20,000 km across, nearly twice the diameter of Earth.
Typical sunspots are only about half this size. (Polomar
Observatory)

Figure 9 . 1 5 Sunspots, Up Close (a) The largest pair of
sunspots in Figure 9.14. Each spot consists of a cool, dark inner
region called the umbra surrounded by a warmer, less dark
region called the penumbra. The spots appear dark because
they are slightly cooler than the surrounding photosphere,
(b) A high-resolution, true-color image of a single sunspot
shows details of its structure as well as the surface granularity
surrounding it. This spot is about the size of Earth. (Polomar
Observatory)

Figure 9-18 The
11-year sunspot cycle
is but one manifesta-
tion of the solar-
activity cycle. ^ —
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F igure 9 . 1 6 Sunspot Magnetism Sunspot pairs are linked by
magnetic field lines. The Sun's magnetic field lines emerge from
the surface through one member of a pair and reenter the Sun
through the other member. The leading members of all sunspot
pairs in the solar northern hemisphere have the same polarity
(labeled " N " or "S", as described in the text). If the magnetic field
lines are directed into the Sun in one leading spot, they are
inwardly directed in all other leading spots in that hemisphere.
The same is true in the southern hemisphere, except that the
polarities are always opposite those in the north.

Figure 9 . 1 7 Solar Rotation The Sun's differential rotation wraps and distorts the solar magnetic field. Occasionally, the field
lines burst out of the surface and loop through the lower atmosphere, thereby creating a sunspot pair. The underlying pattern of the
solar field lines explains the observed pattern of sunspot polarities. (If the loop happens to occur near the edge of the Sun and is seen
against the blackness of space, we see a phenomenon called a prominence, see Figure 9.20.)
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Fig. 5. Global night-time minimum and daytime maximum exospheric tempera-
tures derived, through the use of the present models, from the densities
obtained from the drag of three artificial satellites, plotted against the
smoothed 10.7-cm solar flux F^Q. 7« To obtain the data points, all
variations except the diurnal variation were suppressed by using the
equations associated with the models. The straight line through the
minimum temperatures is represented by the equation
Tmin = 3 7 9 ° + 3« 2 4 ° FIQ. 7 (see Eq. (14)); the one through the maxima,
by T m a x = 1 - 3 ° T m i n .
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Fig. 6. Ten-day means of the densities obtained from the drag of the
Explorer 1 satellite and of the exospheric temperatures derived
from them through the use of older models. Since the purpose
of this figure is to illustrate the variations of density and
temperature with the solar cycle (see bottom curve), it was not
deemed necessary to redo the temperature diagram by means
of the present models; the difference would be hardly noticeable.
MJD is the Modified Julian Day (JD minus 2 400 000. 5).

Fig. 7. Densities obtained from the drag of the Explorer 1 satellite and
exospheric temperatures derived from them by use of older models.
Since the purpose of this figure is to illustrate the 27-day oscillations
and the geomagnetic effect superimposed on the diurnal variation, it
was not deemed necessary to redo the temperature diagram by use
of the present models; the difference would be hardly noticeable. The
schematic diagrams of the diurnal and semi-annual variations are also
from older models.
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